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Variational treatment of a tube conveying fluid

Figure: Image of a garden hose and its mathematical description
No friction in the system for now, incompressible fluid, Reynolds
numbers ∼ 104 (much higher in some applications), general 3D
motions

Hose can stretch and bend arbitrarily (inextensible also possible)

Cross-section of the hose changes dynamically with deformations:
collapsible tube

Vakhtang Putkaradze Variational methods in fluid-structure interactions



Previous work

Constant fluid velocity in the tube, 2D dynamics:
English: Benjamin (1961); Gregory, Päıdoussis (1966); Päıdoussis
(1998); Doare, De Langre (2002); Flores, Cros (2009), . . .
Russian: Bolotin (?) (1956), Svetlitskii (monographs 1982, 1987),
Danilin (2005), Zhermolenko (2008), Akulenko et al. (2015) . . .
Hard to generalize to general 3D motions
Not possible to consistently incorporate the cross-sectional dynamics

Elastic rod with directional (tangent) momentum source at the end
– the follower-force method, see Bou-Rabee, Romero, Salinger
(2002), critiqued by Elishakoff (2005).

Shell models: Paidoussis & Denise (1972), Matsuzaki & Fung
(1977), Heil (1996), Heil & Pedley (1996) , . . . : Complex,
computationally intensive, difficult (impossible) to perform analytic
work for non-straight tubes.

3D dynamics from Cosserat’s model (Beauregard, Goriely & Tabor
2010): Force balance, not variational, cannot accommodate
dynamical change of the cross-section.

Variational derivation: FGB & VP (2014,2015).
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Variational treatment of changing cross-sections dynamics

Mathematical preliminaries:

1 Rod dynamics is described by SE (3)-valued functions (rotations and
translations in space) π(s, t) = (Λ, r)(s, t).

2 Fluid dynamics inside the rod is described by 1D diffeomorphisms
s = ϕ(a, t), where a is the Lagrangian label.

3 Conservation of 1-form volume element (fluid incompressibility)
defined through a holonomic constraint:

Q := A

∣∣∣∣
dr

ds

∣∣∣∣ =
(
Q0 ◦ ϕ−1(s, t)

)
∂sϕ
−1(s, t) (1)

where area A depends on the deformations of the tube.
4 Alternatively, evolution equation for Q is ∂tQ + ∂s(Qu) = 0.
5 Note that commonly used Au =const does not conserve volume for

time-dependent flow. See e.g. [Kudryashov et al, Nonlinear
dynamics (2008)] for correct derivation in 1D.
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Mathematical preliminaries: Geometric rod theory for
elastic rods I

Purely elastic Lagrangian

L = L(r, ṙ, r′,Λ, Λ̇,Λ′)

Use SE (3) symmetry reduction [Simo, Marsden, Krishnaprasad
1988] (SMK) to reduce the Lagrangian to `(ω,γ,Ω,Γ) of the
following coordinate-invariant variables (prime= ∂s , dot=∂t):

Γ = Λ−1r′ , Ω = Λ−1Λ′ , (2)

γ = Λ−1ṙ , ω = Λ−1Λ̇ . (3)

Note that symmetry reduction for elastic rods is left-invariant
(reduces to body variables).

Notation: small letters (e.g. ω,γ) denote time derivatives; capital
letters (e.g. Ω,Γ) denote the s-derivatives.
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Mathematical preliminaries: Geometric rod theory for
elastic rods II

Euler Poincaré theory: [Holm, Marsden, Ratiu 1998].
For elastic rods: compute variations as in [Ellis, Holm, Gay-Balmaz,
VP and Ratiu, Arch. Rat.Mech. Anal., (2010)]: consider
Σ = Λ−1δΛ ∈ so(3) and Ψ = Λ−1δr ∈ R3, and (Σ,Ψ) ∈ se(3).

δω =
∂Σ

∂t
+ ω ×Σ, δγ =

∂ψ

∂t
+ γ ×Σ + ω ×ψ (4)

δΩ =
∂Σ

∂s
+ Ω×Σ, δΓ =

∂ψ

∂s
+ Γ×Σ + Ω×ψ, (5)

Compatibility conditions (cross-derivatives in s and t are equal)

Ωt − ωs = Ω× ω , Γt + ω × Γ = γs + Ω× γ .
Critical action principle δ

∫
`dtds = 0+ (4,5) give SMK equations.

0 = δ

∫
`dtds =

∫ 〈
δ`

δω
, δω

〉
+

∫ 〈
δ`

δΩ
, δΩ

〉
+ . . .

=

∫
〈linear momentum eq,Ψ〉+ 〈angular momentum eq,Σ〉 dtds
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Mathematics preliminaries: incompressible fluid motion

Following Arnold (1966), describe a 3D incompressible fluid motion
by DiffVol group r = ϕ(a, t).

Eulerian fluid velocity is u = ϕt ◦ ϕ−1; symmetry-reduced
Lagrangian is ` = 1/2

∫
u2dr.

Variations of velocity are computed as

η =δϕ ◦ ϕ−1(s, t) , δu = ηt + u∇η − η∇u . (6)

Incompressibility condition

J =

∣∣∣∣
∂r

∂a

∣∣∣∣ = 1⇒ Lagrange multiplier p .

Euler equations: δ
∫
` dV dt = 0 with (6) and (??)

∂u

∂t
+ u · ∇u = −∇p , divu = 0

Further considerations: α-model, Complex fluids etc.: D. D. Holm &

many others
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Garden hoses: Lagrangian and symmetry reductions

1 Symmetry group of the system (ignoring gravity for now)

G = SE (3)×DiffA(R) = SO(3)sR×DiffA(R) . (7)

2 Position of elastic tube and fluid:

(π, ϕ) ·
((

Λ0, rt,0
)
, rf
)

=
(
π ·
(
Λ0, rt,0

)
︸ ︷︷ ︸
left invariant

, π · rf ◦ ϕ−1(s, t)︸ ︷︷ ︸
right invariant

)
.

3 Velocities:
(
vr , vf

)
=

d

dt

(
r(s, t) , r ◦ ϕ−1(s, t)

)

=
(

ṙ(s, t), ṙ ◦ ϕ−1(s, t) + r′(s, t)u(s, t)
)
. (8)

4 Change in cross-section A = A(Ω,Γ)

5 Incompressibility condition J = A(s, t)∂a
∂s |Γ| = 1 with Lagrange

multiplier µ (pressure)

∂Q

∂t
+

∂

∂s
(Qu) = 0 , with Q = A|Γ| . (9)
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Equations of motion





(∂t + ω×)
δ`

δω
+ γ × δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
−∂Q
∂Ω

µ

)
+ Γ×

(
δ`

δΓ
−∂Q
∂Γ

µ

)
= 0

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
−∂Q
∂Γ

µ

)
= 0

mt + ∂s (mu − µ) = 0, m :=
1

Q

δ`

δu

∂tQ + ∂s(Qu) = 0, Q = A|Γ|
Compatibility condition: Λst = Λts , rst = rts

∂tΩ = ω ×Ω + ∂sω , ∂tΓ + ω × Γ = ∂sγ + Ω× γ

Assume A = A(Ω,Γ) , symmetric tube with axis E1 for Lagrangian

`(ω,γ,Ω,Γ, u)

=
1

2

∫ (
α|γ|2 +

〈
Iω,ω

〉
+ ρA(Ω,Γ)|γ + Γu|2 −

〈
JΩ,Ω

〉
− λ|Γ− E1|2

)
|Γ|ds .

See FGB & VP for linear stability analysis, nonlinear solutions etc.
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Non-conservation of energy

Define the energy function

e(ω,γ,Ω,Γ, u) =

∫ L

0

(
δ`

δω
· ω +

δ`

δγ
· γ +

δ`

δu
u

)
ds−`(ω,γ,Ω,Γ, u)

and boundary forces at the exit (free boundary)

Fu :=
δ`

δu
u−µQ

∣∣∣
s=L

, FΓ :=
δ`

δΓ
−µ∂Q

∂Γ

∣∣∣
s=L

, FΩ :=
δ`

δΩ
−µ∂Q

∂Ω

∣∣∣
s=L

.

Then, the energy changes according to

d

dt
e(ω,γ,Ω,Γ, u) =

∫ T

0
(FΩ ·Ω + FΓ · Γ + Fuu)

∣∣∣
s=0

s=L
dt.

The system is not closed and the energy is not conserved. Similar
statement is true for variational discretization.
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Variational discretization of tube conveying fluid in space:
definitions

As in Demoures et al (2014), discretize s as s → (s0, s1, . . . , sN) and
define the variables λi := Λ−1

i Λi+1 ∈ SO(3) (relative orientation)
and κi = Λ−1

i (ri+1 − ri ) ∈ R3 (relative shift).

Define the forward Lagrangian map s = ϕ(a, t) and back to labels
map a = ψ(s, t) = ϕ−1(s, t).

Discretize ψ(s, t) as ψ(t) = (ψ1(t), ψ2(t), . . . , ψN(t)) with
ψi (t) ' ψ(si , t).

Discretize the spatial derivative as Diψ(t) :=
∑

j∈J ajψi+j(t), where
J is a discrete set around 0,

For example, we can take Diψ = (ψi − ψi−1)/h (backwards
derivative), in that case

J = (−1, 0) and a−1 = −1

h
, a0 =

1

h
.

For more general cases, for example, variable s-step, we take
Diψ(t) :=

∑
j∈i+J Aijψj(t).
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Variational discretization of a tube conveying fluid in
space: definitions

Discretize the conservation law (Q0 ◦ ϕ−1)∂sϕ
−1 = Q(Ω,Γ) as

Q0Diψ = F (λi ,κi ) := Fi ⇒ Ḟi + Di

(
uF
)

= 0

Differentiate the identity s = ϕ(ψ(s, t), t) with respect to time to
get u(s, t) = (ϕt ◦ ψ)(s, t) as

u(s, t) = (∂tϕ ◦ ψ)(s, t) = −∂tψ(s, t)

∂sψ(s, t)
⇒ ui (t) = − ψ̇i

Diψ

Define the approximation for the action

S =

∫
`(ω,γ,Ω,Γ, u)dtds → Sd =

∫ ∑

i

`d(ωi ,γ i , λi ,κi , ui )dt
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Variational discretization of variables: variations

Define the discrete action principle

δ

∫ ∑

i

[
`d(ωi ,γ i , λi ,κi , ui ) + µi

(
Q0Diψ − F (λi ,κi )

)]
dt = 0

Compute the variations of elastic in variables terms of free
variations ξi = Λ−1

i δΛi ∈ so(3) and ηi = Λ−1
i δri ∈ R3 as

δλi = −ξiλi + λiξi+1 δκi = −ξi × κi + λiηi+1 − ηi ,

Compute the variations of velocity in terms of δψi

δui = − δψ̇i

Diψ
+

ψ̇i

(Diψ)2

∑

j∈J

ajδψi+j = − Q0

Diψ

(
δψ̇i + uiDiδψ

)
.

Terms proportional to ξi give angular momentum conservation law

Terms proportional to ηi give linear momentum conservation law

Terms proportional to ψi give a fluid momentum, but we need to
use the fluid conservation law Q0Diψ = F (λi ,κi ) := Fi to remove
all ψ from equations.
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Variational integrator for spatial discretization I

Angular momentum: terms proportional to ξi =
(
Λ−1
i δΛi

)∨ 1

(
d

dt
+ ωi×

)
∂`d
∂ωi

+ γ i ×
∂`d
∂γ i

+

[(
∂`d
∂λi
− µi

∂F

∂λi

)
λTi

−λTi−1

(
∂`d
∂λi−1

− µi−1
∂F

∂λi−1

)]∨
+ κi ×

(
∂`d
∂κi
− µi

∂F

∂κi

)
= 0

Compare with the continuum equation:

(∂t + ω×)
δ`

δω
+ γ× δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
− ∂Q

∂Ω
µ

)
+ Γ×

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
=0

Linear momentum: terms proportional to ηi = Λ−1
i δri

(
d

dt
+ ωi×

)
∂`d
∂γ i

+

(
∂`d
∂κi
− µi

∂F

∂κi

)
− λTi−1

(
∂`d
∂κi−1

− µi−1
∂F

∂κi−1

)
= 0

Corresponding continuum equation

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
= 0

1We denote â = −εijkak is the hat map for R3 → so(3), and a∨ = a ∈ R3 is
its inverse

Vakhtang Putkaradze Variational methods in fluid-structure interactions



Variational integrator for spatial discretization I

Angular momentum: terms proportional to ξi =
(
Λ−1
i δΛi

)∨ 1

(
d

dt
+ ωi×

)
∂`d
∂ωi

+ γ i ×
∂`d
∂γ i

+

[(
∂`d
∂λi
− µi

∂F

∂λi

)
λTi

−λTi−1

(
∂`d
∂λi−1

− µi−1
∂F

∂λi−1

)]∨
+ κi ×

(
∂`d
∂κi
− µi

∂F

∂κi

)
= 0

Compare with the continuum equation:

(∂t + ω×)
δ`

δω
+ γ× δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
− ∂Q

∂Ω
µ

)
+ Γ×

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
=0

Linear momentum: terms proportional to ηi = Λ−1
i δri

(
d

dt
+ ωi×

)
∂`d
∂γ i

+

(
∂`d
∂κi
− µi

∂F

∂κi

)
− λTi−1

(
∂`d
∂κi−1

− µi−1
∂F

∂κi−1

)
= 0

Corresponding continuum equation

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
= 0

1We denote â = −εijkak is the hat map for R3 → so(3), and a∨ = a ∈ R3 is
its inverse
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Variational integrator for spatial discretization II

Fluid momentum equation: terms proportional to δψi

d

dt

(
1

Fi

∂`d
∂ui

)
+ D+

i

(
u

F

∂`d
∂u
− µ

)
= 0

where we have defined the dual discrete derivative
D+

i X := −∑j∈J ajXi−j , and m∨c := − 1
2

∑
ab εabcmab

Continuum equation:

mt + ∂s (mu − µ) = 0, m :=
1

Q

δ`

δu

Conservation law in the discrete form:

Q0Diψ = F (λi ,κi ) := Fi ⇒ Ḟi + Di

(
uF
)

= 0

Continuum version

Q(Ω,Γ) := A |Γ| =
(
Q0 ◦ ϕ−1(s, t)

)
ϕ′ ◦ ϕ−1(s, t) ⇒ ∂tQ + ∂s(Qu) = 0
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An example: 1D stretching motion

x 

0 h(1+x1) h(2+x2) 

Assume that all motion of the tube is along the E1 direction, so
rk = h(k + xk , 0, 0)T and Λi = Id3×3, where xk is the dimensionless
deviation from equilibrium.

Consider a simplified model with only three points, k = 0, 1, 2,
denote x = x1.

Fixed BC on the left, x0 = 0 and no deformation in the
cross-section.

Free BC on the right, x2 = x1 = x .

Express all variables ui , µi in terms of xi and its time derivatives.

Get a nonlinear ODE ẍ = f (x , ẋ) for a single variable x(t).
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Numerical solutions of stretching tube equations

Figure 3.1 Trajectories of the 1-dimensional stretching tube system, where x (t) is the

displacement of the center point from the resting position. The initial conditions are x0 = 0

and x0
0 varied from 10 to -25.

0 1 2 3
−10

−5

0

5

10

t

x
(t

)

Stretching Tube Trajectories

3.3 Stability Analysis

3.3.1 Steady State Solutions

Let us now analyse and study the stability of this system. First, we will look for steady state

solutions. So let us write (3.38) with x0 = x00 = 0

3

2
V 2

0

✓
F0

F1

◆2

� 3

2
V 2

0

F0

F1

(1 + x)2 + P

✓
3

2
x2 + x

◆
+

1

2
V 2

0 �Zx (1 + x)3 � µ0�T 2

⇢F1

x = 0 (3.41)

Now, we want to find x0 which is a solution of this steady state equation. So let us expand

(3.41):

3

2
V 2

0

"✓
1 � �Zx2

2

◆2

�
✓

1 � �Zx2

2

◆
(1 + x)2

#
+ P

✓
3

2
x2 + x

◆
+ Z̃x (1 + x)3 � M0x = 0

(3.42)
3

2
V 2

0


��Zx2

2
+
�2Z2x4

4
� 2x � x2 +

�Zx2

2

�
2x + x2

��
+

Px

✓
3

2
x + 1

◆
+ Z̃x (1 + x)3 � M0x = 0

(3.43)

31

Figure: Trajectories x(t) starting with x(0) = 0 for varying initial
conditions x ′(0) = x ′0.
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Steady states and their stability as a function of u0

Parameter values:

h = 0.1, T = 1, µ0 = 1, ρ = 11, F1 = 2, α = 1, β = 3, ξ = 1.

0 0.125 0.25 0.375 0.5

−10

−5

0

5

10

Equilibrium points

u
0

x

0 0.125 0.25 0.375 0.5

−15

−7.5

0

7.5

15

Stability of equilibrium points

u
0

R
e

(r
)

Figure: Left: Equilibrium points as a function of u0, Right: their stability.
Color labeling is the same for each equilibrium point.
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Time and space discretization

Discretize s → (s0, s1, . . . , sN) and t → (t0, t1, . . . , tM).

Define the temporal and spatial relative orientations and shifts (first
index is s, second index is t):

λi,j := Λ−1
i,j Λi+1,j , κi,j := Λ−1

i,j (ri+1,j − ri,j)

qi,j := Λ−1
i,j Λi,j+1 , γ i,j := Λ−1

i,j (ri,j+1 − ri,j) .

Define discrete spatial and temporal derivatives are
Ds

i,jψ :=
∑

k∈K ajψi,j+k , Dt
i,jψ :=

∑
m∈M bmψi+m,j

The velocity is given by

ui,j = −
Dt

i,jψ

Ds
i,jψ

(
Compare with u = −ψt

ψs

)

Discrete conservation law is

Q0D
s
i,jψ = Fi,j ⇒ Dt

i,jF + Ds
i,j( uF ) = 0 .
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Variational integrator in time and space

Consider the critical discrete action principle

δ
∑

i,j

Ld

(
λi,j ,κi,j , qi,j ,γ i,j , ui,j

)
+ µi,j

(
Q0D

s
i,jψ − F (λi,j ,κi,j)

)
= 0

Perform variations to obtain equations of motion

Angular momentum equation: terms proportional to

Σi,j =
(

Λ−1
i,j δΛi,j

)∨

[
∂Ld

∂qi,j
qTi,j − qTi,j−1

∂Ld

∂qi,j−1

]∨
+

[(
∂Ld

∂λi,j
−µi,j

∂F

∂λi,j

)
λTi,j

−λTi−1,j

(
∂Ld

∂λi−1,j
−µi−1,j

∂F

∂λi−1,j

)]∨
+γ i,j×

∂Ld

∂γ i,j

+κi,j×
∂Ld

∂κi,j
=0

Continuum equation for reference

(∂t + ω×)
δ`

δω
+ γ× δ`

δγ
+ (∂s + Ω×)

(
δ`

δΩ
− ∂Q

∂Ω
µ

)
+ Γ×

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
=0
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Equations of motion, continued

Linear momentum equation: terms proportional to Ψi,j = Λ−1
i,j δri,j

∂Ld

∂γ i,j

−qTi,j−1

∂Ld

∂γ i,j−1

+

(
∂Ld

∂κi,j
−µi,j

∂F

∂κi,j

)
−λTi−1,j

(
∂Ld

∂κi−1,j
− µi−1,j

∂F

∂κi−1,j

)
= 0

Continuum version for reference:

(∂t + ω×)
δ`

δγ
+ (∂s + Ω×)

(
δ`

δΓ
− ∂Q

∂Γ
µ

)
= 0

Fluid momentum equation: terms proportional to δψi,j

Dt,+
i,j m + Ds,+

i,j (um − µ) = 0 , mi,j :=
1

Fi,j

∂Ld

∂ui,j

Ds,+
i,j X := −

∑

k∈K

akXi,j−k , Dt,+
i,j X := −

∑

m∈M

bjXi−m,j

Continuum version: mt + ∂s (mu − µ) = 0, m :=
1

Q

δ`

δu
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Tube with expandable walls filled with compressible gas

1 Add entropy S and density ρ as variables; internal energy e(ρ,S)

de = −p d

(
1

ρ

)
+TdS ⇒ p(ρ, S) = ρ2 ∂e

∂ρ
(ρ, S) ,T (ρ, S) =

∂e

∂S
(ρ,S) ,

2 Changes in radius of tube R(s, t) contributing to elastic energy,
A = πR2, Q = A|Γ|

3 Remove the incompressibility condition

4 Equations for density and entropy

ξt + ∂sξu = 0 , St + u∂sS = 0 , ξ := ρQ .

5 Symmetry reduced Lagrangian

`(ω,γ,Ω,Γ, u, ξ,S ,R, Ṙ) = `0 − ξe , ξ := ρQ

6 Perform variations to obtain equations of motion
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Equations of motion





(∂t + ω×)
∂`0

∂ω
+ γ × ∂`0

∂γ
+ (∂s + Ω×)

(
∂`0

∂Ω
+
�
��p
∂Q

∂Ω

)

+Γ×
(
∂`0

∂Γ
+
�
��p
∂Q

∂Γ

)
= 0

(∂t + ω×)
∂`0

∂γ
+ (∂s + Ω×)

(
∂`0

∂Γ
+ p

∂Q

∂Γ

)
= 0

∂t
∂`0

∂u
+ u∂s

∂`0

∂u
+ 2

∂`0

∂u
∂su = ξ∂s

∂`0

∂ξ
− Q∂sp

∂t
∂`0

∂Ṙ
− ∂2

s

∂`0

∂R ′′
+ ∂s

∂`0

∂R ′
− ∂`0

∂R
− p

∂Q

∂R
= 0

∂tΩ = Ω× ω + ∂sω, ∂tΓ + ω × Γ = ∂sγ + Ω× γ
∂tξ + ∂s(ξu) = 0, ∂tS + u∂sS = 0

If Q = πR2|Γ| then some terms ���cancel.
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Rankine-Hugoniot conditions

Define [f ] to be the jump of f across the shock. Then, assume that the
tube is continuous so [γ] = 0, [Γ] = 0 etc. to obtain

c[ρ] = [ρu] (mass)

c
[
ρu
]

=

[
ρu2 +

1

|Γ|2 p
]

(momentum)

c [E ] =

[
1

2
ρ |γ + Γu|2 +

p

|Γ|2 Γ · (γ + Γu) + ρue

]
(energy)

Compare with R-H conditions for straight tube: Γ = E1, γ = 0:

c[ρ] = [ρu] (mass)

c[ρu] = [ρu2 + p] (momentum)

c[E ] =

[(
1

2
ρu2 + ρe + p

)
u

]
(energy)

(FGB, VP, in preparation)
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On the role of friction in the tube conveying fluid

Ftube Ffluid

In spatial frame, there are equal and opposite forces acting on the
tube from the fluid, and fluid from the tube.
Let us study a simplified model where friction dominates the
motion of the fluid – Darcy’s law
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A simple problem: pendulum with a viscous droplet

2 Setting of the problem

Suppose the mass of the pendulum is M , and mass of the droplet is m. Let us denote the
angle position of the center of mass of the pendulum without the droplet as �, and the
angular position of the droplet as  . If the pendulum’s length is l, then the Lagrangian
of the system involving both pendulum and droplet will be

L =
1

2
Ml2�̇2 +

1

2
ml2 ̇2 + Mgl cos�+ mgl cos . (2.1) Lagrangian

Darcy’s law of friction (1.3) gives a non-holonomic constraint

 ̇ � �̇ = �↵̃ sin , ↵̃ :=
Ag

l
(2.2) Constraint

Equations of motion need to be written using the Lagrange-d’Alembert’s principle:

�

Z
Ldt = 0 on variations satisfying � � �� = 0 (2.3) LdA

According to the Lagrange-d’Alembert’s principle, the variations will satisfy the homo-
geneous (in velocities) part of the equation, hence the condition on variations in (2.3).
Taking the variations gives equations of motion

8
<
:

M
⇣
l2�̈+ gl sin�

⌘
+ m

⇣
l2 ̈ + gl sin 

⌘
= 0

 ̇ � �̇ = �↵̃ sin 
(2.4) Equations_dimensional

Equations (2.4) can be non-dimensionalized using the choice of time scale T =
p

l/g and
defining two dimensionless parameters ↵ = ↵̃T and ✏ = m/M . The non-dimensionalized
version of (2.4) is 8

<
:
�̈+ sin�+ ✏

⇣
 ̈ + sin 

⌘
= 0

 ̇ � �̇ = �↵ sin 
(2.5) Equations_non_dim

Equations (2.5) can be further transformed into the standard ODE form by substitution
of  ̈ computed using the time derivative of the constraint to give

(
(1 + ✏)�̈+ sin�+ ✏ sin � ✏↵ ̇ cos = 0

 ̇ � �̇ = �↵ sin 
(2.6) Equations_non_dim2

and  ̇ can be substituted using the constraint to give a regular ODE in the variables
�, �̇,  8

<
:

(1 + ✏)�̈+ sin�+ ✏ sin � ✏↵ cos 
⇣
�̇� ↵ sin 

⌘
= 0

 ̇ = �̇� ↵ sin 
(2.7) Equations_non_dim2

Equations (2.7) were simulated using Matlab’s ODE45 code with the results shown on
Figure 2.1. In addition to the solutions �(t) and  (t), we also plot the energy computed
as

E =
1

2
Ml2�̇2 +

1

2
m ̇2 � Mgl cos�� mgl cos . (2.8) Energy_dim
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Pendulum
Droplet

F

-F

Spatial frame: Deviation of pendulum of mass M from vertical is
φ, deviation of droplet of mass m from vertical is ψ; length of
pendulum L.
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Dynamics of the pendulum with droplet I

Lagrangian:

L0 =
1

2
ML2φ̇2 + MgL cosφ+

1

2
mL2ψ̇2 + mgL cosψ

Choose time scale T =
√

L/g , rescale Lagrangian by MgL to obtain

L =
1

2
φ̇2 + cosφ+ ε

(
1

2
ψ̇2 + cosψ

)
, ε :=

m

M

Darcy’s law: Assume that friction dominates the motion of fluid. Darcy’s
law reads

Relative velocity = K × gravity force ⇒ ψ̇ − φ̇ = −α sinψ

Nonholonomic constraint! Use Lagrange-d’Alembert’s method

δ

∫
Ldt = 0 on variations satisfying δψ − δφ = 0

Equations of motion :




φ̈+ sinφ+ ε

(
ψ̈ + sinψ

)
= 0

ψ̇ − φ̇ = −α sinψ
(10)
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Energy behavior on solutions

Define total energy E = 1
2

(
φ̇2 + εψ̇2

)
− (cosφ+ ε cosψ) .

Then energy evolves according to

Ė = (φ̈+ sinφ)φ̇+ ε(ψ̈ + sinψ)ψ̇ = ε
(
ψ̈ + sinψ

)(
ψ̇ − φ̇

)
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Figure: Top: solutions φ(t) and ψ(t). Bottom: Energy E (t).

The answer is wrong! The energy cannot increase, since all the friction

forces are internal
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Another approach

Kozlov (1980’s-90’s) and follow-up papers:
It is not sufficient to define the Lagrangian and the constraint.
One needs to know what the physics is to derive the equations of
motion.
Lagrange-d’Alembert’s for dynamics with non-conservative forces∫

Ldt =

∫
Fbodyδφ+ Ffluidδψ =

∫
A
(
φ̇− ψ̇

)
(δφ− δψ) dt

Equations of motion:





φ̈+ sinφ = −A(φ̇− ψ̇)

ε
(
ψ̈ + sinψ

)
= A(φ̇− ψ̇)

Then, energy evolves as

Ė =
(
φ̈+ sinφ

)
φ̇+ ε

(
ψ̈ + sinψ

)
ψ̇ = −A

(
ψ̇ − φ̇

)2
≤ 0

Moreover, Ė = 0 iff φ̇ = ψ̇ (synchronization)

Vakhtang Putkaradze Variational methods in fluid-structure interactions



Results of simulations

z = φ− ψ ⇒ z ′′ + A
1 + ε

ε
z ′ + 2 cos(

φ+ ψ

2
) sin(

z

2
) = 0

For small φ and ψ, the state z∗ = 0 is linearly stable
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Figure: Left: solutions for ε = 0.1 and A = 1, Right: |φ− ψ| vs t.

Solutions converge to φ = ψ (’constraint manifold’) after initial decay.

The constraint is holonomic from the dynamics chosen by the system as

t →∞. That is the ’dynamic’ Darcy’s law.
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Darcy’s law, energy behavior, and generalizations

Let us introduce another potential force on the droplet to augment
Darcy’s law

L =
1

2
φ̇2 + cosφ+ ε

(
1

2
ψ̇2 + S cosψ

)
, ε :=

m

M
, S 6= 1 > 0

We obtain the equations of motion





φ̈+ sinφ = −A(φ̇− ψ̇)

ε
(
ψ̈ + S sinψ

)
= A(φ̇− ψ̇)

No convergence to constraint manifold! ψ = ψ = 0 is asymptotically

stable, and all solutions → 0 as t →∞
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Behavior of solutions
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Figure: Simulations of equations with S = 2, A = 1 and ε = 0.1

Fast decay to ’slow manifold’; slow decay to 0.
Need to consider time scales as well (order of limits, large but
finite times)
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Digression: an even simpler problem

M

m
-k y

-K x

x y0

Figure: Droplet on a moving cart

Linear equations of motion:
{
ẍ + x = −A (ẋ − ẏ)

ε (ÿ + Sy) = A (ẋ − ẏ)
(11)

Asymptotically stable for S 6= 1, all solutions → 0

Stable at S = 1: convergence to x = y (synchronization).
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Coming back to the pendulum: body frame

Body variables (capitals) are defined

Φ = φ , Ψ = ψ − φ ⇒ φ = Φ, ψ = Ψ + Φ (12)

Spatial Lagrangian transforms into the body Lagrangian as

LB =

(
1

2
Φ̇2 + cos Φ

)
+ ε

(
1

2

(
Ψ̇ + Φ̇

)2

+ cos(Φ + Ψ)

)
(13)

Transformation of forces using L-d’A external forces
Ff,sp and Fs,sp are forces acting on the fluid and the solid in spatial

frame. Then body frame forces are computed as

δ

∫
Ldt =

∫
Ff,spδψ + Fs,spδφdt =

∫

�������(
Ff,sp + Fs,sp

)

︸ ︷︷ ︸
body

δΦ + Ff,sp︸ ︷︷ ︸
fluid

δΨ

(14)

Equations of motion :





Φ̈ + sin Φ = AΨ̇

ε
(

Ψ̈ + Φ̈ + sin(Ψ + Φ)
)

= −AΨ̇
(15)
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Variational poromechanics: 1 D motion

Darcy’s law urel = µ(∇p + f) (spatial frame)
However, µ depends on the local properties of the fluid – must be
in the body frame.

Fluid

Porous  
media 
w/fluid

x0

Pressure

PressurePorous  
media 
w/fluid

Boundary

Figure: One-dimensional porous media: opening the gap
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Variables and variations

1 Motion of porous media x = ψ(X , t) – embeddings in R1

2 A = ϕ(X , t) is the Lagrangian motion of fluid particles starting at X

3 f (X , t) is porosity with conservation law
Q0 ◦ ϕ−1(X , t)∂Xϕ

−1(X , t) = Q(X , t), and Q = f (ψx)ψX

4 Relative fluid velocity U = ϕ̇ ◦ ϕ−1(X , t)

5 Absolute fluid velocity

u(X , t) =
∂xf
∂t
◦ ϕ−1(X , t) = ψt + UψX .

6 Variations in U are computed as δU = ηt + U∂Xη − η∂XU, with
η = δϕ ◦ ϕ−1

7 Lagrangian L = L(ψ,ψX ,U)

8 Spatial friction Ffluid,s = −K (u − ψ̇), Fmedia,s = K (u − ψ̇)
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Variational principle

1 Taking variations as follows

δ

∫
L(ψt , ψX ,U)− P

(
Q0 ◦ ϕ−1(X , t)∂Xϕ

−1(X , t)− Q(X , t)
)
dXdt

=

∫
Ffluid,b η + Fmedia, b δψ dXdt

2 Can be generalized to 3D and arbitrary metrics using D/Dt, DIV
and ∇ operators (see Marsden & Hughes, and also FGB’s talk)

3 Equations of motion (cf. MacMinn et al, 2016 in spatial frame and
spatial Darcy’s law):




∂t
∂L

∂U
+ U∂X

∂L

∂U
+ 2

∂L

∂U
∂XU = −Q ∂P

∂X
− µU , Q := f (ψX )ψX

∂t
∂L

∂ψt
+ ∂X

∂L

∂ψX
− ∂X

(
P
∂Q

∂ψX

)
=�

�Fpm

Qt + ∂X (QU) = 0

E :=

∫ (
ψt

∂L

∂ψt
+ U

∂L

∂U
− L

)
dX ⇒ Ė = −

∫
µU2dX ≤ 0

4 Procedure can also be repeated in spatial frame. Why?
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Conclusions and future work

1 Variational methods lead to consistent equations for fluid-structure
interactions problem

2 Fluid conservation leads to holonomic constraints, viscous forces
lead to constraints on ’inertial manifold’ (non-holonomic?)

3 One needs to be careful defining limits and computing Darcy’s law

4 ? How do we compute Darcy’s law without solving the complete
problem

5 ? Darcy’s law as non-holonomic constraint?

6 ? Dynamic porosity/permeability

7 ? When should we use elastic body frame vs spatial frame?

8 ? Spatial vs body representation in fluid-structure interaction:
which one to use?

9 Why are non-holonomic constraints so difficult?

Happy birthday, Darryl!
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