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Machine learning in a nutshell

Machine learning in a nutshell

We approach to machine learning as an input/output problem.

Input: it is denoted by the character z. It contains available
information for the solution of the problem (historical data, explanatory
factors, features of the individuals that need to be classified).
Output: denoted generically by y. Contains the solution of the problem
(forecasted data, explained variables, classification results).

Purely empirical approach not based on first principles but on a
training/testing routine.

We distinguish between static/discrete-time and continuous-time
setups and between deterministic and stochastic situations since they
lead to very different levels of mathematical complexity.
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Machine learning in a nutshell

Examples

Deterministic setup: an explicit functional relation (via a just
measurable function) is assumed between input and output.

Static/Discrete-time: observables or diagnostics variables in complex
physical or noiseless engineering systems (domotics), translators,
memory tasks, games.
Continuous time: integration or path continuation of (chaotic)
differential equations: molecular dynamics, structural mechanics,
vibration analysis, space mission design. Autopilot systems, robotics.

Stochastic setup: the input and the output are random variables or
processes and only probabilistic dependence is assumed between
them.

Static/Discrete-time: image classification, speech recognition, time
series forecasting, volatility filtering, factor analysis.
Continuous time: physiological time series classification, financial
bubble detection.

L. Grigoryeva, J. Henriques, L. Larger, J.-P. Ortega ( Universität Konstanz, Germany, Université Bourgogne Franche-Comté, France, Universität Sankt Gallen, Switzerland, CNRS, France )Time-delay reservoir computers DarrylFest, July, 2017 4 / 71



Machine learning in a nutshell

Setups considered

Static/Discrete time Continuous time
Deterministic Stochastic Deterministic Stochastic

Characterization of
ingredients

z ∈ Rn

y ∈ Rq
z ∈ (L2(Ω,F ,P))n

y ∈ (L2(Ω,F ,P))q
z ∈ C∞([a, b],Rn)
y ∈ C∞([a, b],Rn)

z and y are Rn and Rq-valued
processes adapted with respect

to a given filtration F
Problem to be

solved
y = f (z)

f measurable
E [y | z] y(·) = F (z(·)) E [y(·) | z(·)]

Object to be
trained

Real/complex
function

Conditional
expectation

Functional/Operator
Causal Filter

Stochastic
Causal Filter

Approach and
source of

Universality

Approximation
theory

(Semi)-parametric
statistics

Kalman filter

Control theory
Stone-Weierstraß

Functional data analysis and
Stochastic control

theory
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Static problems, neural networks, and approximation theorems The deterministic case

Neural networks

Input z1

Input z2

Input z3

Input z4

Output y

Hidden
layer

Input
layer

Output
layerw1 w2

y = ψ

 5∑
i=1

w2
i ψ

 4∑
j=1

w1
ij zj

 , ψ sigmoid function. (1)
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Static problems, neural networks, and approximation theorems The deterministic case

Universality in neural networks and approximation theorems

Neural networks are implemented as a machine learning device by
tuning the weights wi using a gradient descent algorithm
(backpropagation) that minimizes the approximation error based on a
training set.

In the deterministic case, the objective is to recover an explicit
functional relation between input and output.

In the absence of noise there is not danger of overfitting.
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Static problems, neural networks, and approximation theorems The deterministic case

Universality problem: how large is the class of input-output
functions that can be generated using feedforward neural networks as
in (1)?

Hilbert’s 13th problem on multivariate functions: can any
continuous function of three variables be expressed as a composition
of finitely many continuous functions of two variables? This question
is a generalization of the original problem for algebraic functions
posed in the 1900 ICM in Paris and in [Hil27]

L. Grigoryeva, J. Henriques, L. Larger, J.-P. Ortega ( Universität Konstanz, Germany, Université Bourgogne Franche-Comté, France, Universität Sankt Gallen, Switzerland, CNRS, France )Time-delay reservoir computers DarrylFest, July, 2017 8 / 71



Static problems, neural networks, and approximation theorems The deterministic case

The Kolmogorov-Arnold representation theorem and
Kolmogorov-Sprecher networks

Theorem (Kolmogorov-Arnold [Kol56, Arn57])

There exist fixed continuous increasing functions ϕp,q(x) on I = [0, 1] such
that each continuous function f on I n can be written as

f (x1, . . . , xn) =
2n+1∑
q=1

gq

 n∑
p=1

ϕpq(xp)


where the gq are properly chosen continuous functions of one variable.

This amounts to saying that the only genuinely multivariate function
is the sum!

This is a representation and not an approximation theorem
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Static problems, neural networks, and approximation theorems The deterministic case

Theorem (Sprecher [Spr65, Spr96, Spr97])

There exist constants λp and fixed continuous increasing functions ϕq(x)
on I = [0, 1] such that each continuous function f on I n can be written as

f (x1, . . . , xn) =
2n+1∑
q=1

gq

 n∑
p=1

λpϕq(xp)


where the gq are properly chosen continuous functions of one variable.

The gq functions depend on f but not λp and ϕq. All the information
contained in the multivariable continuous function f is contained in
the single variable continuous functions gq.

This is not ideal for machine learning applications because we would
need to train the gq functions. It still can be done (see the CMAC
in [CG92])
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Static problems, neural networks, and approximation theorems The deterministic case

The Kolmogorov-Sprecher network (taken from [CG92])
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Static problems, neural networks, and approximation theorems The deterministic case

The Cybenko and the Hornik et al. theorems

Definition

A squashing function is a map ψ : R→ [0, 1] that is non-decreasing and
that

lim
λ→−∞

ψ(λ) = 0 and lim
λ→∞

ψ(λ) = 1
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Static problems, neural networks, and approximation theorems The deterministic case

Approximation of continuous functions

Theorem (Cybenko [Cyb89])

Let ψ be a continuous squashing function. Then, the functions
Gψ,N : I n → R of the form

Gψ,N(z;θ) =

(
N∑

1=1

w2
j ψ
(
〈w1

j , z〉+ θj
))

, w1
j , z ∈ Rn,w2 ∈ RN , θj ∈ R,

are dense in C (I n), that is, given any function f ∈ C (I n) and ε > 0, there
is a sum of this type for which

|Gψ,N(z;θ)− f (z)| < ε, for all z ∈ I n.

This result proves that any continuous function can be approximated
using a feedforward neural network with a single hidden layer if we use
a given continuous activation function.
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Static problems, neural networks, and approximation theorems The deterministic case

Approximation of measurable functions and functions with
finite support

The Hornik, Stinchcombe, and White [HSW89] theorems:

The previous theorem holds even if the function f is only measurable
and the activation function is a not necessarily continuous squashing
function.

Functions with finite support can be exactly attained using a
feedforward neural network with a single hidden layer if the activation
function attains 0 and 1: let {z1, . . . , zk} be a set of distinct points in
Rn and let f : Rn → R be an arbitrary function, then there exists a
feedforward neural network with k neurons in its hidden layer and
transfer function Gψ,N such that Gψ,N(zi ;θ) = f (zi ).

The network can be trained so that it learns not only the function but
also its derivatives [HSW90, GW92].

This result has been extended to backpropagation (as opposed to
feedforward) neural networks by Hecht-Nielsen [HN89].
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Static problems, neural networks, and approximation theorems The deterministic case

The Maurey-Jones-Barron Theorem

Let G be a set of approximating functions: splines with free nodes,
trigonometric polynomials with free frequencies, feedforward neural
networks.

The variable basis approximation consists of using the set

spannG :=

{
n∑

i=1

wigi | wi ∈ Rn, gi ∈ G

}
.

When G is a subset of a normed linear space (X , ‖ · ‖), we use the
G -variation

‖f ‖G := inf{c > 0 | f /c ∈ cl conv(G ∪ −G )}.
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Static problems, neural networks, and approximation theorems The deterministic case

Theorem

(X , ‖ · ‖) a Hilbert space, G a bounded subset and sG = supg∈G ‖g‖. For
every f ∈ X and every positive integer n

‖f − spannG‖ ≤
√

(sG‖f ‖G )2 − ‖f ‖2

n
.

Any function in a ball of radius r in G -variation can be approximated
by a neural network with n hidden units computing functions from G
within accuracy r/

√
n.

This estimate holds for any number of variables: no curse of
dimensionality.
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Static problems, neural networks, and approximation theorems The deterministic case

Implementation

It involves three main issues:
1 Choice of an architecture: squashing function, number of layers,

number of neurons in each layer, and connectivity between them.
2 Estimation of the connectivity weights: a supervised learning

approach is taken. Realizations of the input and the output are used
to minimize an error function via a gradient descent method.
Potential problems:

Local minima
Flat gradients in deep structures

3 Cross validation and regularization: a posteriori verification of the
goodness of the architecture choice in the first point regarding:

Deterministic case: is this the most economic structure for a prescribed
accuracy level in the approximation problem?
Stochastic case: are we overfitting?

In both cases the solution is obtained using new architectures selected
via cross-validation or pruning techniques (see [KvD03] for references
and [SX99, SCHU16] for Lasso related approaches).
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Static problems, neural networks, and approximation theorems The stochastic case

Non-linear regressions

The deterministic universal approximation properties of neural networks yield
non-parametric estimators for non-linear regression functions. Consider the
following heteroscedastic regression model:

yt = f (zt)+εt , {zt} ∼ IID(p(z)), εt |(zt = z) ∼ IID(0, s2
ε (z) <∞), t = 1, . . . ,T ,

(2)
and assume that the functions f , s2

ε : Rn → R are continuous and bounded.
Notice that hypotheses (2) imply that, in this case,

E [yt |zt ] = f (zt).

In order to estimate the regression function f , we fit a neural network with a
hidden layer and a sufficiently large number N of neurons using two realizations
{z1, . . . , zT} and {y1, . . . , yT} of the input and the output, which yields the

following estimator θ̂T of the weights vector θ:

θ̂N = argmin
θ

1

T

T∑
t=1

{yt − Gψ,N(zt ;θ))}2
. (3)
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Static problems, neural networks, and approximation theorems The stochastic case

Under appropriate conditions θ̂N converges in probability for T →∞ and
for a fixed N to the parameter vector θN which corresponds to the best
approximation of f (z) by a function of type Gψ,N(z;θ), that is,

θN = argmin
θ

= E[{f (zt)− Gψ,N(zt ;θ)}2]. (4)

Under somewhat stronger assumptions, it can be shown the asymptotic
normality of the estimator θ̂N [FN00].

Remark: Many important examples like nonlinear state space models
(ARSV for example) do not satisfy the independence hypothesis on the
input signal zt or there is just no function f which makes necessary the
use of other tools like the nonlinear Kalman filter.
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Dynamic problems and reservoir computing The deterministic case

Offline and online computing

Turing machines compute sequentially and offline batches of
information. Computations have a beginning and an end.
Neuronal and “behaving” systems compute online as information
arrives (probably desynchronized and with different sampling
frequencies) and reuse the result of previous computations

Offline and online computations (taken from [Maa11])
L. Grigoryeva, J. Henriques, L. Larger, J.-P. Ortega ( Universität Konstanz, Germany, Université Bourgogne Franche-Comté, France, Universität Sankt Gallen, Switzerland, CNRS, France )Time-delay reservoir computers DarrylFest, July, 2017 20 / 71



Dynamic problems and reservoir computing The deterministic case

Mathematical formulation of reservoir computing

Reservoir computing is based on three main principles:

The input signal z(t) ∈ Rn is inserted as the external forcing of the
flow Ft : RN ×Rn → RN of a non-autonomous dynamical system (the
reservoir):

x(t) = Ft(x0, z(t)). (5)

The value x(t) is the reservoir state at time t.

A static readout h : RN → Rq is trained in order to obtain the desired
output y(t) out of the input z(t):

y(t) = h(x(t)).

Multitasking: different readouts can be trained on the same reservoir
output in order to extract different pieces of information about the
input.
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Dynamic problems and reservoir computing The deterministic case

Fundamentally new approach to neural computing
[Jae01, JH04, MNM02, VSDS07, LJ09]; defining features of RC: the
fading-memory, separation, and approximation properties [LJ09]

Modification of the traditional RNN in which the architecture and the
neuron weights of the network are created in advance (for example
randomly) and remain unchanged during the training stage

If readout layer is linear then inference and theoretical performance
evaluation becomes possible!!
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Dynamic problems and reservoir computing The deterministic case

Reservoir computing and neural processes

The reservoir computing approach approach resembles neural
processes in which sensory inputs (input signals) are pre-processed by
the neural microcircuits of a cortical column and then various single
neurons (readouts) extract information from it and send it to other
brain areas.

The use of different readouts serves different computational goals.
Example: in the case of the visual cortex determine, size, direction of
motion, identity of objects.

The division of information processing between reservoir and readout
is very efficient (one processing serves several computational goals)
and helps explaining the energy efficiency of the brain.

Neurophisiology evidence: spike trains coming from different
projection neurons from the same cortical column tend to be weakly
correlated.
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Universality Theorems The control theoretical approach

Universality result for neural circuits [MJS07]

Suppose that we are given an external continuous-time input z(t) and a
solution u(t) of a non-autonomous nth-order differential equation of the
form

y (n)(t) = G (y(t), y ′(t), y ′′(t), . . . , y (n−1)(t)) + z(t). (6)

Then, for any non-autonomous dynamical system of the form

ẋ(t) = f (x(t)) + g(x(t)) · v(t), f , g : Rn → Rn, (7)

that has the fading memory property (see below), there exist a feedback
K : Rn ×R→ R and a smooth readout h : Rn → R such that any solution
y(t) of (6) can be written as y(t) = h(x(t)) with x(t) the solution of the
system

ẋ(t) = f (x(t)) + g(x(t)) · K (x(t), z(t) + z0(t)), x(0) = 0,

with z0(t) a fixed input that satisfies that z0(t) = 0 for all t ≥ 1.
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Universality Theorems The control theoretical approach

The proof of this result is control-theory based.

The feedback K and the readout h depend only on the function G
that characterizes the system that needs to be simulated but not on
the external output z(t) that needs to be processed.

Since these two functions are static, they are ideal targets for learning.

The function h is chosen in many situations to be just linear and
training is carried out by solving a simple (regularized) regression
problem.

This result shows that RCs constructed using the solutions of
dynamical systems of the form (7) have the computational power of a
universal Turing machine when put together with suitable feedback
and readout functions. This follows from the fact that every Turing
machine can be simulated by systems of equations of the form (6)
(see [Bra95, SS94, SS92, Orp97]).

The dynamical systems (7) include as a particular case the standard
systems of nonlinear differential equations that are used to model the
dynamics of firing rates in recurrent circuits of neurons.
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Universality Theorems The operator approach

The filtering/operator point of view [MNM02]

We now use operators L : C 0(Rn)→ C 0(RN) instead of flows Ft like
in (5) in order to transform the input signal into the reservoir state curve:

L(z(·)) = x(·).

Time invariance: Let Un
t0

the time-shift operator for curves in Rn,
that is Un

t0
(z(·))(t) = z(t + t0). The filter L is called time invariant if

L ◦ Un
t0

= UN
t0
◦ L

Causality: L is causal if L(z(·))(t) does not depend on z(s) for s > t.

Fading memory property: L(z(·))(0) can be approximated by the
outputs L(u(·))(0) for any other input u that approximates z on a
sufficiently long time interval [−T , 0] going back into the past.
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Universality Theorems The operator approach

Equivalently, in order to compute the most significant bits of
L(z(·))(0) it is not necessary to know the precise value of the input
function z for any time s and it is also not necessary to know
anything about the values of z for more than a finite time interval
back into the past.

Fading memory filters are automatically causal.

The category of time-invariant fading memory filters is large and
includes well-known examples like Volterra series; it can actually be
shown [BC85, MS00] that any time-invariant fading memory filter can
be approximated by a (possibly infinite) Volterra series.

Separation property: a class L of filters has the separation property
if for any two inputs z and u such that z(s) 6= u(s), for some s ≤ t,
there exists L ∈ L such that L(z)(t) 6= L(u)(t).
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Universality Theorems The operator approach

Universality theorem [MM04]

Theorem

Let F be an arbitrary time-invariant filter that satisfies the fading memory
property. Assume the availability of a space of fading memory filters L
that satisfies the pointwise separation property.
Then, for any chosen accuracy, there exists m ∈ N, filters L1, . . . , Lm in
the space L, and a readout function h : Rm → R such that F can be
approximated by the composition h ◦ (B1, . . . ,Bm).
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Universality Theorems The operator approach

Observations

Examples
Dynamic networks [MS00]: feedforward neural networks with
time-varying weights.
Synaptic dynamical models by Tsodyks, Pawelzik, and
Markram [TPM98].

Remarkable consequence: for a large variety of classes L of basis
filters (such as delay lines, linear filters, dynamic synapses, or circuits
with fading memory) the pointwise separation property, in
combination with sufficiently “flexible” readout maps, endows the
resulting RC with universal computational power in the giant class of
filters F that are time-invariant and have fading memory.

Fading memory filters only generate fading memory filters. Not the
case using the neural circuit approach. Major computational jump.

Proof goes via the Stone-Weierstrass theorem.
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Time-delay reservoir computers

Time-delay reservoir computers

TDRs are based on the interaction of the discrete input signal z(t) ∈ R
with the solution space of a TDDE of the form

ẋ(t) = −x(t) + f (x(t − τ), I (t),θ), (8)

where f is a nonlinear smooth function (nonlinear kernel), θ ∈ RK is the
parameter vector, τ > 0 is the delay, x(t) ∈ R, and I (t) ∈ R is obtained
via temporal multiplexing of the input signal z(t) over the delay period.

The choice of nonlinear kernel f is determined by the physical
implementation; consider two parametric sets of kernels:

Mackey-Glass [MG77]: f (x , I ,θ) = η(x+γI )
1+(x+γI )p

, θ = (η, γ, p)

Ikeda [Ike79]: f (x , I ,θ) = η sin2 (x + γI + φ), θ = (η, γ, φ)

Used in the RC electronic [ASV+11] and optoelectronic [LSB+12]
realizations.
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Time-delay reservoir computers

Discrete time model of TDR

Consider the Euler time-discretization of (8) with integration step d := τ/N:

(x(t)− x(t − d))/d = −x(t) + f (x(t − τ), I (t),θ). (9)

Define neuron layers x(t) and input layers I(t) := Cz(t) ∈ RN by setting

xi (t) := x(tτ−(N−i)d), Ii (t) := I (tτ−(N−i)d), i ∈ {1, . . . ,N}, t ∈ Z,

where xi (t) is the ith neuron value of the tth layer of the reservoir. Then
the solutions of (9) are given by

xi (t) := e−ξxi−1(t)+(1−e−ξ)f (xi (t−1), Ii (t),θ), x0(t) := xN(t−1), ξ := log(1+d),

A smooth map F : RN × RN × RK → RN specifies the neuron values as a
recursion via

x(t) = F (x(t − 1), I(t),θ), (10)

where F is constructed out of the nonlinear kernel map f ; F is referred to as
the reservoir map.
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c c c

X1(1) X2(1) XN (1) X1(2) X2(2) XN (2) X1(T ) X2(T ) XN (T )

z1 z2 zT

I(1) I(2) I(T )

I1(1) I2(1) IN(1) I1(2) I2(2) IN(2) I1(T ) I2(T ) IN(T )

WoutWout Wout C

B

A

Architecture of the time-delay reservoir (TDR) and the three modules of the reservoir computer

(RC): the input layer A, the time-delay reservoir B, and the readout layer C.
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Input and output modules

Input: Take a multi-dimensional time series z(t) ∈ Rn as the input signal. For
each t define I(t) := Cz(t) ∈ RN , where C ∈MN,n is the so called input mask
that takes care of the dimensional and temporal multiplexing.
Output: Let the training be carried out with a teaching signal y(t) ∈ Rn that
is used to construct a readout Wout out of the solution of the ridge regression:

Wout := argmin
W∈MN,n

(
T∗∑
t=1

‖W> · x(t)− y(t)‖2 + λ‖W ‖2
Frob

)
, (11)

whose solution is
Wout = (XXT + λIN)−1XY , (12)

where X ∈ MN,T∗ is the reservoir output given by Xi,j := xi (j) and Y ∈ MT∗,n

is the teaching matrix containing the vectors y(t), t ∈ {1, . . . ,T ∗}, organized by
rows, λ ∈ R is a regularization parameter (usually obtained via cross-validation).
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Physical implementation: reservoir computing (RC) devices

A major feature of the RC is the possibility of constructing physical
realizations of reservoirs instead of simulating them using a computer

Chaotic dynamical systems can be used to construct reservoirs that exhibit
the RC features: in [ASV+11] using chaotic electronic oscillators or using
optoelectronic devices like in [LSB+12]

Optoelectronic implementation of RC with a single nonlinear element subject to
delayed feedback [LSB+12]
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Universality vs performance optimization

Universality is a reassuring feature but in practice there are architecture
restrictions on the:

Basis filters available

Functional form of the readout

It is hence important to be able to evaluate RC performance for a given
architecture and a given task so that it can be optimized by tuning the
available parameters in the setup.

We do so in what follows in the setup of TDRs so that we can test the
robustness of a given setup with respect to modifications in the task and
the parameters.
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Optimal performance: stability and unimodality

Behavior of the reservoir performance in a quadratic memory task as a function of the c̄ and
var(c). The top panels show how the performance degrades very quickly as soon as c̄ and
var(c) separate from zero. The bottom panels depict the reservoir performance as a function
of the various output means and variances. We have indicated with red markers the cases in
which the reservoir visits the stability basin of a contiguous stable equilibrium hence showing
how unimodality is associated to optimal performance.
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Stability analysis

Theorem (Grigoryeva, Henriques, Larger, JPO, 2015)

Let x0 be an equilibrium of the reservoir time-delay differential equation in
autonomous regime, that is, when I (t) = 0, and suppose that there exists
ε > 0 and kε ∈ R such that one of the following conditions holds

(i) f (x + x0, 0,θ) ≤ kεx + x0 for all x ∈ (−ε, ε)

(ii)
f (x + x0, 0,θ)− x0

x
≤ kε for all x ∈ (−ε, ε).

If |kε| < 1 then x0 is asymptotically stable. If |kε| ≤ 1 then x0 is stable.

Corollary (Grigoryeva, Henriques, Larger, JPO, 2015)

Let x0 be an equilibrium of the reservoir TDDE and suppose that the nonlinear
reservoir kernel function f is continuously differentiable at x0. If
|∂x f (x0, 0,θ)| < 1 (respectively, |∂x f (x0, 0,θ)| ≤ 1), then x0 is asymptotically
stable (respectively, stable).
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Corollary (Stability of the equilibria of the Ikeda TDDE; Grigoryeva, Henriques,
Larger, JPO, 2015)

Consider the reservoir TDDE in autonomous regime based on the Ikeda kernel,

f (x , 0,θ) = η sin2(x + φ). (13)

The Ikeda nonlinear TDDE exhibits two families of equilibria:

(i) The trivial solution x0 = 0 for any η ∈ R and φ = πn, n ∈ Z.
The equilibium x0 = 0 is asymptotically stable for any η ∈ R.

(ii) The non-trivial equilibria x0 are obtained as solutions of the
equation x0 = η sin2(x0 + φ), for any η ∈ R and φ 6= πn, n ∈ Z.
These equilibria are asymptotically stable (respectively, stable) if

| sin(2x0 + 2φ)| < 1

|η|
(respectively, | sin(2x0 + 2φ)| ≤ 1

|η|
).

(14)
When |η| < 1 (respectively, |η| ≤ 1), there exists only one
non-trivial equilibrium that is always asymptotically stable
(respectively, stable).
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Stability of the TDR: discrete time approximation

Proposition (Grigoryeva, Henriques, Larger, JPO, 2015)

The point x0 ∈ R is an equilibrium of the reservoir time-delay differential
equation in autonomous regime, that is when I (t) = 0, if and only if the vector
x0 := x0iN is a fixed point of the N-dimensional discretized nonlinear
time-delay reservoir

ẋ(t) = F (x(t − 1), I(t),θ) (15)

in autonomous regime, that is, when I(t) = 0N .

Theorem (Grigoryeva, Henriques, Larger, JPO, 2015)

Let x0 = x0iN be a fixed point of the N-dimensional recursion
x(t) = F (x(t − 1), I(t),θ) in autonomous regime. Then, x0 ∈ RN is
asymptotically stable (respectively stable) if |∂x f (x0, 0,θ)| < 1 (respectively,
|∂x f (x0, 0,θ)| ≤ 1).
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The approximating model and nonlinear memory capacity

Consider a stable equilibrium x0 ∈ R of the autonomous system associated to (8)
or, equivalently, a stable fixed point x0 := (x0, . . . , x0)> ∈ RN of (10). We
construct the approximation of (10) by using its linearization at x0 with respect
to the delayed self-feedback and its Rth-order Taylor expansion with respect to
its dependence on the signal injection:

x(t) = F (x0, 0N ,θ) + A(x0,θ)(x(t − 1)− x0) + ε(t), (16)

where A(x0,θ) := DxF (x0, 0N ,θ) and ε(t) is given by:

ε(t) = (1− e−ξ) (qR (z(t), c1) , . . . , qR (z(t), c1, . . . , cN))> ,

with

qR (z(t), c1, . . . , cr ) :=
R∑
i=1

z(t)i

i !
(∂

(i)
I f )(x0, 0,θ)

r∑
j=1

e−(r−j)ξc ij ,

and (∂
(i)
I f )(x0, 0,θ) the ith order partial derivative of the nonlinear kernel f with

respect to I (t) evaluated at (x0, 0,θ).
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Let the input signal be {z(t)}t∈Z ∼ IID(0, σ2
z ), then {I(t)}t∈Z ∼ IID(0N ,ΣI ), with

ΣI := σ2
zc>c, and {ε(t)}t∈Z ∼ IID(µε,Σε) with

µε = (1− e−ξ) (qR (µz , c1) , . . . , qR (µz , c1, . . . , cN))> ,

where µi
z := E

[
z(t)i

]
and Σε := E

[
(ε(t)− µε)(ε(t)− µε)>

]
∈ SN with the entries

given by:

(Σε)ij =(1− e−ξ)2((qR(·, c1, . . . , ci ) · qR(·, c1, . . . , cj))(µz)

− qR(µz , c1, . . . , ci )qR(µz , c1, . . . , cj)), i , j = 1, . . . ,N.

The process (16) is a VAR(1) model

x(t)− µx = A(x0,θ)(x(t − 1)− µx) + (ε(t)− µε) (17)

with µx = (IN − A(x0,θ))−1(F (x0, 0N ,θ) − A(x0,θ)x0 + µε) and an autocovariance

function Γ(k) := E
[
(x(t)− µx) (x(t − k)− µx)>

]
, k ∈ Z, recursively determined by

the Yule-Walker equations [Lüt05]:

vec(Γ(0)) = (IN2 − A(x0,θ)⊗ A(x0,θ))−1 vec(Σε),

Γ(k) = A(x0,θ)Γ(k − 1), Γ(−k) = Γ(k)>.
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The nonlinear memory capacity estimations

A h-lag memory task is determined by a function H : Rh+1 → R (in general
nonlinear) that is used to generate y(t) := H(z(t), z(t − 1), . . . , z(t − h)) ∈ R
out of the reservoir input {z(t)}t∈Z.

Recall, that the optimal linear readout Wout adapted to the memory task H is
given by the solution of a ridge (or Tikhonov [Tik43]) linear regression problem

(Wout, aout) := argmin
W∈RN ,a∈R

(
E
[
(W> · x(t) + a− y(t))2

]
+ λ‖W‖2

)
. (18)

Using the fact that {x(t)}t∈Z is the unique stationary solution of VAR(1) ap-
proximating system (17) for the TDR (17) obtain

Wout =(Γ(0) + λIN)−1Cov(y(t), x(t)), (19)

aout =E [y(t)]−W>outµx , (20)

where µx , Γ(0) ∈ SN are provided in (17), and Cov(y(t), x(t)) is a vector in RN

that has to be determined for every specific memory task H.
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The error committed by the reservoir when using the optimal readout is

MSEH = var (y(t))− Cov(y(t), x(t))>(Γ(0) + λIN)−1(Γ(0) + 2λIN)

× (Γ(0) + λIN)−1Cov(y(t), x(t)).

Using the VAR(1) approximating model (17) of RC, the corresponding H-memory
capacity is

CH(θ, c, λ) =Cov(y(t), x(t))>(Γ(0) + λIN)−1(Γ(0) + 2λIN) (21)

× (Γ(0) + λIN)−1Cov(y(t), x(t))/var(y(t)). (22)

Additionally,
0 ≤ CH(θ, c, λ) ≤ 1.

Once a specific reservoir and task H have been fixed, the capacity function CH(θ, c, λ)
can be explicitly written down and it can hence be used to find reservoir parameters
θopt and an input mask copt that maximize it, by solving the optimization problem

(θopt, copt) := argmax
θ∈RK ,c∈RN

CH(θ, c, λ). (23)

L. Grigoryeva, J. Henriques, L. Larger, J.-P. Ortega ( Universität Konstanz, Germany, Université Bourgogne Franche-Comté, France, Universität Sankt Gallen, Switzerland, CNRS, France )Time-delay reservoir computers DarrylFest, July, 2017 45 / 71



Time-delay reservoir computers Models and performance estimations

Optimal nonlinear capacity

The h-lag quadratic memory task. Take a quadratic task function of the form
H(zh(t)) := zh(t)>Qzh(t), for some symmetric h + 1-dimensional matrix Q. In

this case var(y(t)) = (µ4
z − σ4

z )
∑h+1

i=1 Q2
ii + 4σ4

z

∑h+1
i=1

∑h+1
j>i Q

2
ij , and

Cov(y(t), xi (t)) = (1− e−ξ)
h+1∑
j=1

N∑
r=1

Qjj(A
j−1)ir

× (sR(µz , c1, . . . , cr )− σ2
zqR(µz , c1, . . . , cr )),

where the polynomial sR on the variable x is defined as sR(x , c1, . . . , cr ) :=
x2 · qR(x , c1, . . . , cr ).
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Error exhibited by a TDR computer with a Mackey-Glass kernel in a 3-lag quadratic memory
task as a function of the separation between neurons d and the parameter γ, respectively. The
points in the surfaces of the middle and right panels are the result of Monte Carlo evaluations
of the NMSE exhibited by the discrete and continuous time TDRs, respectively. The left panel
was constructed modeling the reservoir with an approximating VAR(1) model.
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Error exhibited by a TDR computer with a Mackey-Glass kernel in a 6-lag quadratic memory
task as a function of the separation between neurons d and the parameter η. The points in the
surfaces of the middle and right panels are the result of Monte Carlo evaluations of the NMSE
exhibited by the discrete and continuous time TDRs, respectively. The left panel was
constructed modeling the reservoir with an approximating VAR(1) model.
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Other applications of the reservoir model

Evaluation of the finite sample training and testing errors: Given
a reservoir output X of size T , the total mean square reservoir
training error conditional on X and for any teaching signal Y , is given
by

MSEtotal,λ | X = trace (Σ)

+
1

T
trace[trace (Σ)

(
RλXAX>

(
RλXX> − 2IN+1

))
+ λ2T 2RλWW>RλXX>],

where N is the number of neurons of the reservoir, X =
(
iT ||X>

)>
,

and W :=
(
a||W>)> with W := Γ(0)−1Cov (x(t), y(t)) and

a := µy −W>µx . Finally, Rλ := (XAX> + λT IN+1)−1 and

Σ := Cov (y(t), y(t))−W>Γ(0)W .
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The RC defining features: Consider the reservoir model driven by
the real valued and non-necessarily stationary input signal {z(t)}t∈Z.

(i) Let c ∈ RN be an input mask and I(t) := cz(t) the
corresponding input forcing. Let

FR
I (I(t), x0,θ) :=

R∑
i=1

1

i !
D

(i)
I F (x0, 0N ,θ)

i factors︷ ︸︸ ︷
I(t)⊗ · · · ⊗ I(t)

Assume that one of the following conditions holds:

(a) The map FR
I (·, x0,θ) : RN → RN is injective.

(b) The input signal is bounded.

If A(x0,θ) := DxF (x0, 0N ,θ) has no zero eigenvalues, then
the reservoir model satisfies the separation property.

(ii) The input signal {z(t)}t∈Z is strictly stationary with finite
automoments up to order 2R and that it is bounded and the
linear map A(x0,θ) is such that ‖A(x0,θ)‖ < 1, then the
reservoir model satisfies the uniform fading memory property.
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Application examples: usual benchmarks and early
applications

RC has outperformed well-established methods of nonlinear system
identification, prediction, and classification (see [LJ09] for a review):

Prediction of chaotic dynamics (three orders of magnitude accuracy
improvement [JH04])
Nonlinear wireless channel equalization (two orders of magnitude
improvement [JH04])
Japanese Vowel benchmark (zero test error rate, previous best:
1.8% [JLPS07])
Financial forecasting (winner of the international forecasting
competition NN321)
Isolated spoken digits recognition (improvement of word error rate on
benchmark from 0.6% of previous best system to 0.2% and further to
0% test error in more recent
works [JLPS07, ASV+11, LSB+12, PDS+12, BSMF13])
NARMA model identification task [AP00, RT11].

1http://www.neural-forecasting-competition.com/NN3/index.htm
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Application examples: classification

Deep RC networks outperform all state-of-the-art techniques in the
written digit classification using the MNIST corpus [JDD+15]. RC
halves the error exhibited by deep neural network committees and the
results are robust with respect to the presence of various noises.

A similar architecture [TJSM10] has shown performances comparable
to state-of-the-art technology in the phoneme recognition problem
based on the TIMIT corpus with a competitive training effort.

Hi-Res EEG signals: monitoring of epileptic seizures in
animals [BSVS09, BVvM+11, BVN+13, NDK11] and in the
discrimination of the emotion valence in humans [KHBG15].

Electrocardiogram signals (ECGs) [LS13].

Fuel cell diagnostics [Hugo]
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Application examples: forecasting

Industrial production time series [WSS08, WS10]

Great Lakes water level in [Cou10]

Short-term forecasting of wind speed [FLdA+08]

Water inflow forecasting [SOP+07]

Short-term electric consumption [DS12] and temperature [DOS13]

Telephone calls load [BSU+15]

Short-term stock price prediction [LYS09] with applications to
intelligent stock trading systems [LYS11]
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Application examples: volatility forecasting

TDRs have been shown in [GHLO14] to outperform standard
multivariate parametric models in the modeling of realized financial
volatility and correlations.

Average realized volatility forecasting performance using RC and VEC(1,1) models estimated via
maximum likelihood (MLE). The sMSFE reported is obtained with the estimated parametric
models. All the TDRs considered have been generated using the nonlinear Mackey-Glass kernel
with p = 2.
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A final example: volatility filtering

The standard ARSV model is given by the prescription{
yt = µ+ σtεt , {εt} ∼ IID(0, 1)
bt = γ + φbt−1 + wt , {wt} ∼ IID(0, σ2

w )
(24)

where bt := log(σ2
t ), γ ∈ R, φ ∈ (−1, 1). Assume that {εt} and {wt} are

uncorrelated (can be relaxed to account for the leverage effects and
assymetric behaviour of stock prices).
Observations:

the process {σt} is a non-traded stochastic latent variable that, unlike
in GARCH-like models [Eng82, Bol86] is not a predictable process
that can be written as a function of previous returns and volatilities;

the unique stationary returns process induced by (24) provided that
φ ∈ (−1, 1) is a WN (no autocorrelation) with finite moments of
arbitrary order.
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ARSV: estimation and filtering techniques

References on the model: Taylor [Tay86, Tay05]

1 Bayesian approach: Jacquier et al. [JPR94], many others.
2 Non-Bayesian approaches:

Harvey et al. [HRS94], Ruiz [Rui94] suggested a QML estimator based
on the Kalman filter
Meyer et al. [MFB03] and Shimada and Tsukuda [ST05] use
approximated linear filtering methods based on Laplace approximation
to produce a MLE
h-likelihood estimation approach of Castillo and Lee [dCL08],
[LWLdC11] based on treating the ARSV models as a GLM with varying
random effects
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Application examples

Performance comparison
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Application examples

Kalman testing error: 100.63%

h-likelihood testing error: 82.50%

Reservoir testing error (5 nodes, Ikeda kernel, optimized parameters):
73.88%

No restrictions on the model prescription or on the innovations
character
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L. Grigoryeva, J. Henriques, L. Larger, J.-P. Ortega ( Universität Konstanz, Germany, Université Bourgogne Franche-Comté, France, Universität Sankt Gallen, Switzerland, CNRS, France )Time-delay reservoir computers DarrylFest, July, 2017 62 / 71



References

References III

G. Cybenko.

Approximation by superpositions of a sigmoidal function.
Mathematics of Control, Signals, and Systems, 2(4):303–314, dec 1989.

Joan del Castillo and Youngjo Lee.

GLM-methods for volatility models.
Stat. Model., 8(3):263–283, 2008.

Ali Deihimi, Omid Orang, and Hemen Showkati.

Short-term electric load and temperature forecasting using wavelet echo state networks with neural reconstruction.
Energy, 57:382–401, 2013.

Ali Deihimi and Hemen Showkati.

Application of echo state networks in short-term electric load forecasting.
Energy, 39(1):327–340, 2012.

Robert F. Engle.

Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation.
Econometrica, 50(4):987–1007, 1982.

Aida A. Ferreira, Teresa B. Ludermir, Ronaldo R. B. de Aquino, Milde M. S. Lira, and Otoni N. Neto.

Investigating the use of Reservoir Computing for forecasting the hourly wind speed in short -term.
In 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
pages 1649–1656. IEEE, jun 2008.

Jürgen Franke and Michael H. Neumann.

Bootstrapping neural networks.
Neural Computation, 12(8):1929–1949, aug 2000.
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