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Collective behavior in nature has attracted attention across a broad spectrum of observers, ranging
from artists, biologists, and ecologists, to engineers, mathematicians and physicists. As our ability to
gather data in this arena grows, so does the need for refined tools to analyze it with the aim of
uncovering the principles and mechanisms of collective motion. In this talk, we present a new
construction of a fiber bundle and connection in the sense of Ehresmann, to study such questions.
Taken together with the classical notion of principal bundle structure of configuration space over
shape space, the results yield ways to decompose collective motion into kinematic modes and to
examine associated energy partitions. This is joint work with Matteo Mischiati.



Waves of Starlings

FIGURE 3.10 A murmuration of European starlings. Waves of turning in tight flocks of starlings
propagate as waves, which are thought to deter predation from birds of prey. Photo credit: Muffin.

G. Beauchamp, Social Predation, Academic Press, Elsevier Inc., Amsterdam, 2014. *




Flocking — mechanisms for behavior
Collaboration with Andrea Cavagna Laboratory

Some Background - In our laboratory at the University of Maryland, we work with
trajectory data on flocking behavior of European starlings provided by our
collaborator Dr. Andrea Cavagna from University of Rome. Our approach aims to
uncover the individual-level steering control which gives rise to observed flocking
behavior. Here we see a small flock making a cohesive turn, apparently for predator
avoidance.



Starling Flock — Trajectory Reconstruction
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Biswadip Dey, PhD thesis, 2015

Reconstruction of data, taken from a rooftop spot in the city center of Rome,
in front of one of roosting sites used by starlings.

The first event (49) involves a single turn, and the second event (20) involves
two consecutive turns. The third event (59) shows a minimally maneuvering
flock.

These reconstructions were obtained by applying an optimal control method
(with regularizing jerk penalty functional) from sampled data.



Starling Flock - structure
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For an individual starling along with its neighborhood (made up k nearest

neighbors), define the velocity of the neighborhood center of mass.
The temporal average value of the direction cosine between an
individual’s velocity and its neighborhood’s center of mass velocity is it’s

coherence
The figures show dependence of the flock-averaged coherence on the

neighborhood size k.
Notice that the dependence on the notion of “k-nearest neighbor” or the

topological distance is consistent across different events,
and the flock averaged coherence gets maximized by choosing 5-7 nearest

neighbors — earlier noted by Ballerini et. al.



Meeting Darryl Holm
* 1986 at Berkeley -
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NONLINEAR STABILITY ANALYSIS OF STRATIFIED
FLUID EQUILIBRIA

By H. D. I. ABARBANEL!, D. D. HOLM?, J. E. MARSDENS?,
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For me, long before flocks, there were coupled inert mechanical systems to think about.

Having recently completed work on Lie-Poisson structures associated to coupled rigid

bodies, | visited Berkeley at the invitation of Jerrold Marsden in 1984 and was beginning to
collaborate on stability questions in mechanics. Soon after, | met Darryl Holm and Tudor

Ratiu. Their work on fluid and plasma equilibria were important in my own efforts with

Jerry on using the Energy-Casimir method (specifically convexity estimates) to analyze the
stability of equilibria of a spinning rigid body with a flexible attachment —a model problem

of interest in spacecraft dynamics.

Happy Birthday Darryl



London Mathematical Society.
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Meeting Darryl Holm e

* Cornell

Mathematics Colloquium, Cornell University, Ithaca: (November 14, 1989)
“Mechanics, Control and Holonomy™

* Los Alamos

Workshop on Nonlinear Control, Los Alamos National Laboratory: (July 24 - August 1,
1991)
“Control Problems on Principal Bundles and Nonholonomic Mechanics”

Astrophysical Journal, vol. 62, p. 84 (1925)

THE MOLECULAR STRU'CTUREH AND INFRA-RED
SPECTRUM OF METHANE

By DAVID M. DENNISON PSK, “Eulerian Many-body Problems,’; 1989,
Contemporary Mathematics, 97:187-208

Soon | became interested in questions of robotics in space, where the problems associated
to constraints arising from conservation of angular momentum took center stage. Through
interactions with Richard Montgomery, | began to appreciate the role of connections and
curvature in this setting. There was an intense semester (fall 1989) led by Jerry Marsden at
Cornell which included workshops on geometric phases and related matters. This was a
period that also laid the ground work for discussions on links between geometric
mechanics and chemistry (molecules viewed as many degrees of freedom systems). These
things also came up later at a Los Alamos workshop. There is an essential linkage between
these subjects. Space robots with joints actuated by motors must respect constraint on
overall angular momentum — joint motions couple to overall rotation.

Molecules vibrate — infra-red spectroscopy is based on this. They also translate and
rotate. Can these normal modes be decoupled?

No, for reasons of angular momentum constraint. Related questions about discrete
symmetry and the ozone molecule were featured in Marsden’s Lectures

to the London Mathematical Society (1%t edition 1992).
David Dennison, on the Physics faculty at the University of Michigan was a pioneer in the
development of a mechanics of spectroscopy.



Spectroscopy

A. Guichardet — “On the rotation and vibration motions of molecules,” Annales de I'Institut
Henri Poincare, section A, tome 40, no.3 (1984), 329-342.

Abstract: In the second stage of the Born-Oppenheimer approximation, a moving molecule
is considered as a set of points of the Euclidean space which represent the kernels of the
atoms constituting the molecule; in books on Molecular Spectroscopy, under the title
<<separation of rotation and vibration motions>>, one actually defines the rotational and
vibrational energies, but not the vibration motion. In the present paper we propose a
mathematical definition of these last ones, and we prove that they cannot be separated
from the rotation motions, in that sense that performing a purely vibrational motion, a
molecule can, at the end of a finite time, come to a final configuration which is deduced
from the initial one by an arbitrary pure rotation. //

Spectroscopic read-outs of absorbance or transmittance peaks at different tell-tale

frequencies corresponding to normal modes yield information about a chemical sample.

In general for a molecule with N atoms there are 3N-6 normal modes of vibration. These
are tangent to the shape space.

Guichardet computed the curvature of the (Smale) Guichardet connection on the
principal bundle of configurations relative to the center of mass with structure group SO(3)
and base space = space of shapes. He showed that in general the curvature does not
vanish. Thus a prescribed holonomy can be realized by a path in the space of shapes, i.e. a
sequence of vibrations.

For the space roboticist a related question is how to achieve a prescribed holonomy by
an optimal path in joint-space. How much “vibrational cost” must we incur at a minimum
for a prescribed overall rotation? Alex Pines identified such ISOHOLONOMY problems.

Principle: Operate near the maxima of curvature to get “the most bang for the
buck”.
These ideas connect with investigations by Wilczek and Shapere and others.



MOLECULAR
VIBRATIONS

e Methane Vibrational Normal Modes

v,: Symmetric C-H Stretch v,: Doubly Degenerate Bend
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https://www.youtube.com/watch?v=3RgEIr8NtMI — Caltech CHEM STUDY video (1958)

From Physical Chemistry in Action (Figure 18) —

(1) breathing mode — symmetric stretch; (2) doubly degenerate bending mode — same
frequencies; (3) triply degenerate antisymmetric stretch; (4) triply degenerate bending
mode

Molecules absorb energy from light of a certain frequency (corresponding to a normal

mode) and jump to higher level of energy; certain vibrational frequencies are signatures of

the presence of certain chemical bonds or functional groups in complex molecules.
Are flocks like complex molecules? When subject to predator attack does a flock
display normal modes — or in this talk, kinematic modes?



Molecules and Flocks

* Flock as a moving point cloud (of agents) — with bonds
governed by sensorimotor coupling — akin to a molecule?

* What are the kinematic modes (akin to normal modes of
molecular vibrations) — in avoidance maneuvers elicited by
predator attack? Or in purposeful behavior such as homing?

* Should we think of form of a flock as a point in shape space
(dimension growing linearly in size) or as a collective notion —
e.g. ensemble inertia tensor ?

* What is the analog of a spectroscopic read-out for a flocking
event?

Fiber bundle structures are shown to provide answers.

Matteo Mischiati, and P. S. Krishnaprasad Proc. R. Soc. A 2017;473:20160571
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Here we pose some questions driven by a loose analogy.
In what follows, we present a top-down view — leading to constructions from data to
modes.
This is in contrast to bottom-up synthesis of strategies and feedback laws of interactions, to
be tested against raw trajectory data.
Top-down view generates intermediate data representations against which interaction laws
can be tested.

Our constructions are built on fiber bundles

10



Fiber Bundle
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Graphical illustration of (a) fiber bundle and (b) connection. (a) The line passing through p
€P is the fiber over b=rt (p). The shaded region is m1(U), where U is an open
neighbourhood of b € B, which is diffeomorphic to UXF (a cylinder strip). (b) The tangent
vector Ap (vp) along the fiber (vertical) is the one defined by the Ehresmann connection
(form) applied to the arbitrary tangent vector v, (black arrow). The tangent vector hor(vp) is
the other (horizontal) component of v, and can be uniquely mapped to a tangent vector v,
on base space through the differential map drm.



Quotienting by Translation
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We proceed to construct fiber bundles from the space of point clouds. Schematic of (a)
rigid translation fibering and (b) the associated orthogonal decomposition of an arbitrary
collective motion vreTrR.



Ensemble Inertia Tensor

n
n(c)=£K= Z m,-ciu:,-T —cMc!, Veec.

i=1

The ensemble inertia tensor K of a collective can be visualized as an ellipsoid centered at
the center of mass, with semi-principal axes of length proportional to the eigenvalues of K

and pointing in the direction of the corresponding eigenvectors.
Any configuration relative to center of mass (i.e. point cloud) also defines a polygon.

Thus here we pass from a polygon to an ellipsoid.



Two Fiberings
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Schematic of (a) shape fibering and (b) ensemble fibering. 14

Schematic of (a) shape fibering with structure group SO(3) and (b) ensemble fibering with
fiber Stiefel manifold of (n-1)x3 orthonormal matrices

14



Fibers

Ensemble fibering has fibers diffeomorphic to Stiefel
manifold

Va1 2 (VeRWD8 st VTV =1
with diffeomorphism given by

fiw: cen YKy V=fxw(c)=WIMY2TQTA 2 ey, 14

where W is any #n x (n — 1) matrix with orthonormal columns

orthogonal to the vector [/ /mitot - - - J:;z,,/r;ztot]T.

15



Two Connections
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Schematic of the orthogonal decompositions of a collective motion relative to the centre of
mass (vceTcC3d), based on (a) shape (principal) or (b) ensemble (Ehresmann) connection.

Schematic of the orthogonal decompositions of a collective motion relative to the center of
mass (vc € TcC3d), based on (a) shape or (b) ensemble connection.



Lyapunov and Ehresmann

Theorem 5.6 (Ensemble connection). For the ﬁbrr bundle ((Tg‘f,fr,h', Vy—13), the Ehresmann

connection associated with metric (4.2) is given by
Ac(ve) =ve — S(c, ve)e,
where S(c, v¢) is the solution to the matrix Lyapunov equation:
S(c, ve)K(c) + K(c)S(c, ve) = F(c, ve),

with F(c, ve) £ veMc! + cMv, T = 25ym(chcT).

Matteo Mischiati, and P. S. Krishnaprasad Proc. R. Soc. A 2017;473:20160571

(5.10)

(5.11)
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A Further (Conditional) Splitting

(a) (b) (c)
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SO@3) | 1. l inertia tensor deformation
K*1803) TSI 0 0T (Ste, v)) Qe inertia tensor rotation

Schematic of (a) the fibering of the space of ensemble inertia tensors K+, (b) the associated
orthogonal decomposition of any SKETKK+* and (c) the decomposition it induces on inertiam
tensor transformation S(c,vc)c. )

Schematic of (a) the fibering of the space of ensemble inertia tensors K*, (b) the associated
orthogonal decomposition of any SKETKKx* and (c) the decomposition it induces on inertia

tensor transformation S(c,vc)c.



Energy Partition
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The kinetic energy E of a snapshot of collective motion can be successively split
into components associated with kinematic modes orthogonal to each other. Two
alternative splittings, (a)—(b’)—(c’)—(d) and (a)—(b")—(c")—(d), are obtained combining the
following earlier results: (a) rigid translation connection (b’) ensemble fibering and
connection (¢’) decomposition of inertia tensor transformations (b”) shape fibering and
connection (¢") orthogonality between rigid rotations and inertia tensor deformations (d)
decomposition of inertia tensor deformations. 13

The kinetic energy E(Vr) of a snapshot of collective motion vr € TrR can be iteratively split
into additive components associated with elementary motions orthogonal to each other.
Two alternative splittings, (a)—(b")—(c’)—(d) and (a)—(b")—(c”)—(d), are obtained combining
the following earlier results: (a) rigid translation connection (b’) ensemble fibering and
connection (c¢’) decomposition of inertia tensor transformations (b”) shape fibering and
connection (c”) orthogonality between rigid rotations and inertia tensor deformations (d)
decomposition of inertia tensor deformations.

19
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Hierarchical leadership network generated for a single flock flight.

100 -

50

-100

|

1]

~O—rIMOOZI>

L

-200

-150

-100

M Nagy ef al. Nature 464, 890-893 (2010) doi:10.1038/nature08891

08 - 0.2
o T ol 06 o ) 1lo
12 os > 102 | 827 06 1o

, o

ola 04 04 | 04 08

B g2
0240 2| b2we
N s X e X /A

o2 02
@ ek . OO0
0.

02 2 02 02

nature

0

In the work of Nagy et. al. (2010), published in Nature, hierarchies were identified in small

flocks of pigeons engaged in (a) free flight as in the picture and (b) homing; video
animations will be shown if time permits. The hierarchies were identified by velocity
correlations and delays associated to steering actions. For us this data is primarily of
interest in illustrating the extraction of kinematic modes.

20



a0 vt +7y)

/

Vit +13)

P b
vi(t +15)

c
1
N D VA \ﬁ s
0
1
w__ :
v <
Fo
0
Figure 1| Summary of directional correlation function analysis for
determining leader-follower relationships within a flock. a, Method for
determining dji(t), the projected distance of birds i (light grey) and j (dark -
grey) onto the direction of motion of the whole flock at each time step, t. The
cross indicates the centre of mass of the flock. The relative position of the *

birds, x;(t) — x;(t), is projected onto vg,c(t), the average velocity of the
whole flock. For each pair (i # j) the directional correlation function is
Cii(7) = {v(t)ev;(t + 7)), where {...) denotes time average. The arrows show
the direction of motion, v,(t). b, Visualization of the scalar product of the
normalized velocity ofbird iat time tand that of bird jat time ¢+t in a. Here,
bird j is following bird i with directional correlation delay time ;. ¢, Cj(7)
during a flock flight (that shown in Fig. 2). For more transparency only the
data of birds A, M, G, D and C (in the order of hierarchy for that flight) are
shown. The solid symbols indicate the maximum value of the correlation
function, Cj;(7).
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Hierarchical leadership network generated from multiple flock flights

a 7,=0.14s

73=0.07s
7=0.07s

7,=005s

7,=0.00s

Te=-005s

7,=-0.06s

7. =-019s

T5=-020s
Figure 3 | Hierarchical leadership network generated from multiple flock
flights. a, Overall hierarchical network of all birds that flew together on at
least two occasions (Cpin = 0.99). The flock-averaged directional correlation
delay time for each bird, 7, is indicated on the left; note that it has the same
order as the network, as it was used to order those birds between whom
relative ranks could not be resolved on the basis of edges alone. b, Average
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Energy Partition
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(d) Eens.def= Ew] ¥ Eens.rcs

The kinetic energy E of a snapshot of collective motion can be successively split
into components associated with kinematic modes orthogonal to each other. Two
alternative splittings, (a)—(b’)—(c’)—(d) and (a)—(b")—(c")—(d), are obtained combining the
following earlier results: (a) rigid translation connection (b’) ensemble fibering and
connection (¢’) decomposition of inertia tensor transformations (b”) shape fibering and
connection (¢") orthogonality between rigid rotations and inertia tensor deformatlons (d)
decomposition of inertia tensor deformations.

The kinetic energy E(Vr) of a snapshot of collective motion vr € TrR can be iteratively split
into additive components associated with elementary motions orthogonal to each other.
Two alternative splittings, (a)—(b")—(c’)—(d) and (a)—(b")—(c”)—(d), are obtained combining
the following earlier results: (a) rigid translation connection (b’) ensemble fibering and
connection (c¢’) decomposition of inertia tensor transformations (b”) shape fibering and
connection (c”) orthogonality between rigid rotations and inertia tensor deformations (d)
decomposition of inertia tensor deformations.

We apply this energy partition to the pigeon flock data.

23
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Energy partition analysis of pigeon flocking (data from http://hal.elte.hu/pigeonflocks [14]).

Analysis of pigeon flocking (data from http://hal.elte.hu/pigeonflocks [14]). (a) Homing
flight trajectories, with time-stamps every 60 s. (b,c) Time evolution of the energy ratios
(6.1)—(6.2) for event (a). Note the change around t=200. (d—f) Free flight trajectories with
time evolution of the energy ratios (as in (a—c)). (g) Histogram of the energy ratios (6.2) in
(f), with split y-axis. Note that E_ /E and E _/E can be as high as 0.5 and 0.2, respectively.
(h,i) Mean probability distributions across free flights (n=6) of the individual energy ratios
((h), consistent with (g)) and their cumulative sums (). Error bars denote standard
deviation. The sum (E_ _+E_+E _)/E has 93+4% probability of being in the range
[0.95,1.00] and 4+3% probability of being in the range [0.90,0.95].
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These comments are in reference to the energy partitions of flight data in the previous

slide.

Figure 8a—f shows the time evolution of the energy ratios for a representative section of homing
flight and a free flight around a roosting site. In both events, the two alternative decompositions
(6.1) and (6.2) gave almost identical results, making one of them effectively redundant; in fact,
Erot and Eensrot were very close to each other, with Eiot often a bit larger. Not unexpectedly,
the homing flight was very close to a rigid translation, with all the pigeons moving almost
synchronously. However, the energy decomposition revealed an interesting period of time in
which the synchronization was temporarily lost; inspection of the trajectories shows that two
of the birds deviated from the common trajectory of the others during that period. The free
flight is more interesting than the homing flight, in that periods of pure rigid translation were
alternated with periods with significant rigid rotation and volume-changing motions (accounting,
respectively, for up to 50 and 20% of the total energy, figure 8g). Statistical analysis of multiple
free flights (17 = 6) confirmed that rigid translation, rotation and expansion or compression were
consistently the three main components of motion (figure 8h), together accounting for at least
90% of the energy 97% of the time (figure 8i). This cannot be explained by chance, as both E;ot
and Eyo) would play a much smaller role (and the shape transformation energy Egppres @ much
larger one) if the bird velocities were randomly distributed around the centre of mass velocity
(electronic supplementary material, section (p)). The relevance of the rigid rotation energy may
reflect, instead, the strategic choice of the pigeons to fly at an almost stationary height relative to
the ground, which enforces rotation about the gravity axis.

25
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Figure 9. Comparison of mean probability distributions obtained from actual pigeon free flights (data, n = 6) with those
obtained in comparable artificial flocking events generated with random pigeon velocities relative to the center of mass
(control). All energy ratios are relative t0 E,e; = E — Eeom: (@) Eshp.res/Erets (0) Evot/Erets (€) Evot/Eret, (d)
Egem/Erets @) Ecns.rot/Ervets (1) Eens.res/Erc- The height of the bars reflects the standard deviation of,the

distributions (+1std).
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Prior work on dyadic and polyadic interactions (between agents modeled as active
particles), developed bio-inspired sensori-motor feedback laws as building blocks for
collective behavior. We also examined interactions derived from optimal control principles
applied to collective cost functionals. Graph-based descriptions — such as cyclic pursuit
strategies, were used in bottom-up synthesis techniques, and analyzed by symmetry
reduction to shape spaces and applications of dynamical systems principles. We aim to
bring together these results and the data representations (modes) discussed today to solve
the inverse problem of uncovering mechanisms of natural collective behavior.
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In the setting of 3 agent constant bearing cyclic pursuit, there arise parameter values
supporting periodic orbits in phase space (reduced from 9 dimensions to 2 dimensions by
SE(2) symmetry, restriction to attracting invariant manifold, and change of time scale). The
arguments use time-reversal symmetry. Figure shows physical space trajectories.

Such low dimensional examples may arise as motifs with interesting dynamical
aspects that influence overall complex flock behavior.
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Thank you for listening
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