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Motivation: space engineering

rendez-vous maneuvres

Warning: spoilers next



The Martian



Hidden figures





Simple variational splines:
optimal control with state space TQ

• State equation ∇γ̇(t) γ̇(t) = u ∈ TQ

• Minimize some functional of γ(t), γ̇(t), u(t).

• Boundary conditions: initial and final vectors.

The Lagrangian approach was first studied by Andrew Lewis
and Richard Murray in the mid 1990’s.

Online appendix of Lewis and Bullo’s book has a section.

Recent results by M. Barbero-Liñán.



Many people worked (and still work) in the theme

since the 1990’s.

Noakes, Heinzinger and Paden

P. Crouch, Fatima Silva-Leite (and her group)

For higher order splines

Balmaz/Holm/Meier/Ratiu/Vialard

T. Bloch, L. Colombo, D. Martin, ...

(sorry for many omissions)



Simple variational splines

A smooth time-parametrized curve γ(t) connecting

two prescribed tangent vectors in TQ where Q is a

Riemannian manifold.

Cubic, or L2 splines

L =
∫ T

0
|u|2 dt

Time minimal, or L∞ splines

Connect the end vectors in minimum time, under

the constraint of acceleration norm ≤ A.



Research proposal:

time minimal splines in Diff
(controlling EPDiff/LDDMM)

Recent papers used cubic splines in computational anatomy.

N. Singh. M. Niethammer, Splines for Diffeomorphic Image Regression.
MICCAI 2014. Lecture Notes in Computer Science, vol 8674.

N. Singh, F.-X. Vialard and M. Niethammer, Splines for diffeomorphisms,
Medical Image Analysis, 25 (2015), 56 –71.



We argue (following L. Noakes) that time-minimal
may have advantages over cubic splines.

• Pauley and Noakes showed that cubic splines
behave badly in manifolds of negative curvature
- the scalar velocity diverges in finite time. With
bounded acceleration the issue disappears.

• The time minimal problem is always accessible no
matter how small A is chosen. A. Weinstein used in
his thesis an interesting construction: nearly dense
curves with bounded geodesic curvature.

M. Pauley and L. Noakes, Cubics and negative curvature. Differential

Geometry and its Applications 30, Issue 6 (2012) 694-701.

A. Weinstein, The cut locus and conjugate locus of a riemannian mani-

fold, Annals, 87 (1968), 2941.



The ODEs for time minimal splines

ẋ = v

∇ẋv = Aα/|α|
∇ẋα = −p
∇ẋp = R(Aα/|α|, v)v



Focus of the talk:

some observations on S2 splines

• Cubic splines on the sphere: revisiting the

special solutions in Darryl’s and associates

paper on Invariant Variational Problems

(Gay-Balmaz, Holm, Meier, Ratiu, Vialard)

• These special solutions also exist in the

time minimal problem

• Speculations about the dynamics in T ∗(TS2)



Yet another figure eight!!

Gay-Balmaz, Holm, Meier, Ratiu, Vialard

Invariant Higher-order Variational Problems II

JNLS, 22:4553597, 2012 (IHOVP2)

Invariant Higher-order Variational Problems

CMP, 309, 413458, 2012



The blue circles forming the tilted figure eight have κg = 1.



We will present here another view on these
special cubic splines

• The figure eight solutions form a center manifold

of dimension 4: C ⊂ T ∗(TS2).

• 2-dimensional stable and unstable manifolds

Wu(C),Ws(C), with loxodromic eigenvalues
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r is the radius of the sphere, and the parameter v

is the linear velocity along the trajectories.



For time-minimal splines: also loxodromic

λ = µ

(
±
√

(
√

2− 1)/2± i
√

(
√

2 + 1)/2
)

• µ =
√

2A/r is the radius of the momentum sphere
that contains the reduced system equilibrium. A is
the maximal acceleration allowed.

• The velocity in the circles is v =
√
Ar.

Fix the corresponding energy level: the phase space
has dimension 7. The center manifold is parametrized
by T1(S2) ≡ SO(3).

The dimension count is dimC = 5 + 5− 7 = 3.



The figure eights and the equators are organizing
centers for the dynamics of both problems

Loxodromic eigenvalues and nonintegrability make
a good combination to produce spline curves.

A poetic analogy: Joy of life fountain, Hyde park

(pretend its a rotating spinkler)



Warm-up: numerical experiment using BOCOP∗

q = r (cosφ cos θ, cosφ sin θ, sinφ) spherical coordinates

∇q̇q̇ (:=
(
r cosφ θ̈ − 2r sinφ θ̇ φ̇

)
eθ +

(
rφ̈+ r cosφ sinφ θ̇2

)
eφ)

= ū1 eθ + ū2 eφ = u1 t + u2 n

State equations

θ̇ = vθ
φ̇ = vφ
v̇θ = 2 tanφ vθ vφ + ū1/(r cosφ)

v̇φ = − cosφ sinφ v2
θ + ū2/r .

* BOCOP implements Pontryagin’s method to optimal control problems

(F. Bonnan’s group at INRIA, www.bocop.org)



Decompose the acceleration in terms of the tangent vector
and normal in the surface

ū1 eθ + ū2 eφ = u1 t + u2 n

t =
vθ cosφ√

v2
θ cos2 φ+ v2

φ

eθ +
vφ√

v2
θ cos2 φ+ v2

φ

eφ

n = −
vφ√

v2
θ cos2 φ+ v2

φ

eθ +
vθ cosφ√

v2
θ cos2 φ+ v2

φ

eφ

ū1 = u1
vθ cosφ√

v2
θ cos2 φ+ v2

φ

− u2
vφ√

v2
θ cos2 φ+ v2

φ

ū2 = u1
vθ cosφ√

v2
θ cos2 φ+ v2

φ

+ u2
vθ cosφ√

v2
θ cos2 φ+ v2

φ



For the time minimal problem the implicit equation solver in
BOCOP adjusts the four unknown momenta (pθ, pφ, pvθ, pvφ) at
the initial time and finds the time interval T leading to the
four coordinates of the end velocity vector∗.

Due to the SO(3) symmetry, in the simulations the initial
and final positions can be taken at the equator (φ = 0), and
the initial longitude also set at θo = 0.

Thus the data to be chosen are θf and the initial and final
values of the velocities vθ, vφ.

The implicit solver is a shooting method to reach θf , vfθ , v
f
φ in

an unknown time T from the initial values θo = φo = 0, voθ, v
o
φ.

∗At first sight there are 5 unknowns to 4 implicit equations, but
the momenta pvθ, pvφ act under a scale invariance so they behave
as just one unknown.



A challenge to the audience

θo = φo = φf = 0, θf = π/2,

θ̇o = 0, θ̇f = 0, φ̇o = +1, φ̇f = −1 .

Objective value
f(x*) = 2.221489e+00

The correct value is 2.22144146908... What it is?

A beer or chocolate to whoever guesses during the talk

Hint: These boundary conditions correspond to unit tan-

gent vectors at the endpoints of a semicircle with kg = 1

inside the unit sphere.



x1 = θ, x2 = φ, v1 = θ̇, v2 = φ̇;

u1, u2 are tangential and normal accelerations, respectively.

Note the scale of the vertical axis. Small numerical error.

Educated guess: u1 ≡ 0, u2 ≡ 1.



Added after the talk:

Peter Lynch, Cornelia Vizman and François-Xavier

Vialard guessed π/
√

2 correctly.

They got their prizes.



Part I. Some theory

State equation

∇γ̇(t) γ̇(t) = u ∈ TQ

Minimize some functional of γ(t), γ̇(t), u(t).



Our methodology: Pontryagin’s principle
to get a Hamiltonian system in T ∗(TQ)

• Introduce split coordinates using a connection so

that the u-family of Hamiltonians is as simple as

possible.

• The symplectic form will be noncanonical, with

curvature terms.

This approach can be extended to higher order

variational problems, addressed in IHOVP I, II by

Balmaz, Holm, Meier, Ratiu, Vialard.



Control problems on anchored vector bundles

State space = A 3 (x, a) a vector or affine bundle

q : A→ Q with a connection ∇. Anchor: ρ : A→ TQ.

State equations: ẋ = ρ(a), ∇ẋa = u

For u = 0, geodesic equations relative to (ρ,∇).

Examples:

i) A = TQ and ρ = id

ii) Control of nonholonomic systems (Bloch, Colombo, ...)

iii) Control on (almost) algebroids (Martinez, Marrero, ....)



An useful observation for landmark splines

Mario Michelli: landmarks geodesics are best

described in terms of the cometric.

Control on TQ with a Levi-Civita connection can

be recast, via the dual connection, to a control

problem with state space A = T ∗Q.



Just a glimpse for A = TQ
(see our JGM paper for details)

(p̃i, α̃j, ṽ
k, x̃k) canonical coordinates in T ∗(TQ)

relative to (ṽk, x̃k) on TQ

(pi, αj, v
k, xk) be coordinates on T ∗Q⊕TQ T ∗Q

Using the connection in TQ gets invariantly

p̃i = pi + Γkijv
jαk, α̃j = αj, ṽ

k = vk, x̃k = xk.

Canonical 1-form in T ∗(TQ) writes as

θ = pidx
i + αa(dva + Γaibv

bdxi),



Symplectic structure in split variables

Ω∇|(x,v,p,α) = dxi ∧ dpi + (dva + Γaibv
bdxi) ∧ (dαa − Γcjaαcdx

j)

−
1

2
Rbijav

aαbdx
i ∧ dxj,

R ∈ Ω2(M,End(TQ)) is the Riemannian curvature

tensor of ∇ and the Christoffel symbols are those

of the dual connection∗ ∇̃ on T ∗Q→ Q.

∗The Christoffel symbols of ∇̃ are minus the transpose of those
of ∇, ∇̃∂xidxj = −Γj

ikdx
k.



Hamiltonian vectorfield

ẋi = ∂piH

ṗi = −∂xiH + Γbia(va∂vbH − αb∂αaH) +Rbijav
aαbẋ

j

v̇a + Γaibẋ
ivb = ∂αaH

α̇a − Γbiaẋ
iαb = −∂vaH.

The equations simplify for functionals depending

on the metric (a nice cancellation occurs, see the

JGM paper)



Cost functionals depending on metric g

• For cubic splines,

Hcubic := H∗,∇ =
1

2β
g−1(α, α) + 〈p, v〉 , u∗ = α]/β,

where g(α], v) = α(v).

• Time minimal:

Htmin := H∗,∇ = −1+A
√
g−1(α, α)+〈p, v〉 , u∗ = Aα]/|α]|.



Recovering ∇(3)
ẋ ẋ = −R(∇ẋẋ, ẋ)ẋ for cubic splines

• For cubic splines, u∗ = α] (take β = 1).

Differentiate ∇ẋẋ = u∗ = α] covariantly twice and

use the equations of motion for α and p.

We recover the equations found by Crouch and

Leite and Noakes, Heinzinger, Paden.

• For the time minimal problem, the system cannot

be cast as a single equation of third order.

ẋ = v, ∇ẋv = Aα]/|α]|
∇ẋα] = −p], ∇ẋp] = R(Aα]/|α]|,v)v.



Part II (remaining of the talk)

• •We present the reduced equations for Q = SO(2).

Reconstruction of the curve γ(t) is achieved by a

time dependent linear system of ODEs for the

orthogonal matrix R(t) whose first column is the

unit tangent vector of the curve and whose last

column is the unit normal vector to the sphere.

• We find special analytical solutions, that are

organizing centers for the dynamics: precisely the

solutions in IHOVP2.

• Simulations show chaotic behavior



Reduction of SO(3) symmetry

Fom eight variables

θ, φ, vθ, vφ, (states) pθ, pφ, pvθ, pvφ (costates) in T ∗(TS2)

to five variables

(a, v,M1,M2,M3).

v© is the scalar velocity, conjugated to costate a©
and (M1,M2,M3) are costate variables such that

{Mi,Mj} = εijkMk .

Casimir:

µ2 = M2
1 +M2

2 +M2
3 .



Poisson map (taking r = 1)

The Poisson map from unreduced variables (x, v, p, α),

where x ∈ S2 and v, p, α ⊥ x to the reduced (a, v,M1,M2,M3)

is

a = α · v/v , v = |v|
M1 = det(p,v/v, x)

M2 = p · v/v
M3 = det(α, x, v)

See the JGM paper for the derivation.



Reduced Equations, time minimal on S2(r)

v̇ = aA/
√
a2 +M2

3/v
2

ȧ = −M2/r +
AM2

3

v3
√
a2 +M2

3/v
2

Ṁ = det



i j k

M1 M2 M3

0 v/r AM3

v2
√
a2+M2

3/v
2


v = 0 is a regularizable singularity

(unreduction and the various symmetries).



Reduced Equations, cubic splines
(min

∫T
0 β|u(t)|2 dt)

v̇ = a/β

ȧ = −M2/r +M2
3/(β v3)

Ṁ = det


i j k

M1 M2 M3

0 v/r M3/(β v2)


Both have Casimir µ2 = M2

1 +M2
2 +M2

3



Before showing results about the dynamics of these

reduced ODEs and the corresponding reconstructed

trajectories in S2(r) I outline the derivation.

( In retrospect, I think this idea for reduction was

already in a presentation by Krishna)



Darboux frame

For a closed smooth convex surface Σ ⊂ R3, the

Gauss map induces a diffeomorphism between

TΣ− 0 ≡ R+ × SO(3)

vq ↔ (v,R)

Here v = ||vq|| > 0, vq = v e1. R ∈ SO(3) as follows.

Gauss: q ∈ Σ 7→ e3(q) (external normal).

Take e2 = e3 × e1 , R = columns(e1, e2, e3).

R(t) is the Darboux frame of a curve γ(t) in Σ.



Darboux formulas and reconstruction

e′1 = κg e2 + κn e3

e′2 = −κg e1 + τg e3

e′3 = −κn e1 − τg e2 (′= d/ds)

κg = geodesic curvature
κn = normal curvature
τg = geodesic torsion.

Reconstruction equations:

Ṙ = RX , X = v

 0 −κg −κn
κg 0 −τg
κn τg 0

 .



Controls: u = (u1, u2)

∇γ̇γ̇ = u1 e1 + u2 e2, u1 = v̇ , u2 = v2κg

The normal curvature κn cannot be a control.

It is determined by the constraining force.

[In fact, taking derivatives in the ambient space,

γ̈ = v̇ e1 + v2 e′1 = u1 e1 + v2(κg e2 + κn e3) = ∇γ̇ γ̇ + v2κn e3

with

κn = (e′1, e3) = −(e′3, e1) := B(e1, e1)

where B is the second fundamental form of the surface.]



Geodesic torsion is also intrinsic

Darboux found the interesting formula

τg = τg(e1) = (κ1 − κ2) sinφ cosφ

φ is the angle between the unit tangent vector e1 to

the curve and a principal direction on the surface.

The geodesic torsion vanishes identically on any

spherical curve.



Optimal control problems in TQ
Q two dimensional convex surface

Cubic splines min
∫ T
0 (β/2) (u2

1 + u2
2) dt, fixed T

Time minimal: min
∫ T
0 dt, free T

State equations: v̇ = u1 , Ṙ = RX

X =

 0 −u2/v −v B(e1, e1)
u2/v 0 −v τg(e1)
v B(e1, e1) v τg(e1) 0

 .

with prescribed initial and end vectors.



For the sphere S2(r) : τg ≡ 0, B ≡ −1/r

X =

 0 −u2/v v/r
u2/v 0 0
v/r 0 0


Usual identification:

X ≡ Ω = (0 , v/r , u2/v)

Introduce costates (a,M)

a↔ v , M = (M1,M2,M3)↔ Ω = (Ω1,Ω2,Ω3)

with commutation relations

{a, v} = 1, {Mi,Mj} = εijkMk .



Optimal controls by very simple static optimiza-

tions

• Time minimal Hamiltonian u-family:

H = −1 + a · u1 +M2 v/r +M3 · u2/v . (1)

Maximize (1) subject to u2
1 + u2

2 ≤ A
2 .

• Cubic splines Hamiltonian u-family:

H = −(β/2) (u2
1 +u2

2) +a ·u1 +M2 v/r+M3 ·u2/v . (2)

Maximize (2) without restrictions on u1, u2.

so ....



Optimal controls and Hamiltonians

• For time minimal

u∗1 = Aa/
√
a2 +M2

3/v
2 , u∗2 = AM3/(v

√
a2 +M2

3/v
2) .

H∗ = −1 +A
√
a2 +M2

3/v
2 +M2v/r

• For cubic splines

u∗1 = a/β, u∗2 = M3/(βv)

H∗ =
1

2β

(
a2 + (M3/v)2

)
+M2 v/r .



Non uniformly run geodesics are splines
(cubic or time minimal) for any metric.

They have only tangential acceleration, there is no

normal acceleration. The trajectory runs as t3 for

cubic splines, and as t2 for time minimal. In the

latter, however, there is in general a bang-bang

phenomenon (that happens only once): a sudden

jump in the acceleration from positive to negative.

Linearization around these solutions is hopeless.

For Q = S2 we have the equators.



Figure eights: they run linearly in time.

Along these trajectories, the tangential accelera-

tion vanishes.

For cubic splines, they were already given in IHOVP2.

These figure-eight trajectories in the sphere also exist

in the time minimal splines problem.

We now show that the figure eights are relative

equilibria: correspond to reduced system fixed points

(both for cubic and time minimal splines) and these

are of loxodromic type.





Cubic splines: reduced system fixed points

Parametrize by v ∈ R+, µ =
√

2 βv3/r.

a = 0, M1 = 0, M2 = β
v3

r
, M3 = ±β

v3

r

Since u∗2 = M3/(βv) = κg v2 and M3 = ±βv
3

r , we get

|κg| =
1

r
.

[On the sphere of radius r, the parallel of latitude θ has

geodesic curvature κg = tan θ/r. Hence θ = π/4.]



Reconstruction

The reconstructed curves in S2 with R(0) = I are

two orthogonal touching circles making a 45◦ angle

with the equatorial plane.

They are given by

γ(t) = r

(√
2

2
sinα, ±

1

2
(1− cosα),

1

2
(1 + cosα)

)

with

α =
v

r

√
2 t.



Another proof: u∗2 = M3
βv , M3 = ±βv

3

r ⇒ u∗2 = ±v
2

r .

Ṙ = RX∗ with X∗ =

 0 ∓v/r v/r
±v/r 0 0
−v/r 0 0


R(t) = rotations with angular velocity ω =

√
2 v/r

about

(ux, uy, uz) = (0 ,

√
2

2
, ±
√

2

2
).

Recall that for an unit vector (ux, uy, uz) the rota-

tion matrix R(α) with R(0) = I is given by

[
cosα+ u2

x(1− cosα) uxuy(1− cosα)− uz sinα uxuz(1− cosα) + uy sinα
uxuy(1− cosα)− uz sinα cosα+ u2

y(1− cosα) uzuy(1− cosα)− ux sinα
uzux(1− cosα)− uy sinα uzuy(1− cosα) + ux sinα cosα+ u2

z(1− cosα)

]



Reconstructed solution: third column of R(α).

We could allow v < 0 also, so we can describe both

twin circles in both directions. We have therefore

four solutions, each twin pair starting at the north

pole (0,0, r) with velocity vector (v,0,0).

Count variables: the family those parametrized cir-

cles, under the SO(3) action, forms a 4-dimensional

invariant manifold for the dynamics in T ∗(TS2).



The fixed points are focus-focus singularities

Spherical coordinates on the momentum sphere

M = µ ( cosφ cos θ , sinφ , cosφ sin θ ) .

Restrict to the symplectic manifold

Mµ := T ∗R+ × S2
µ

where S2
µ is the momentum sphere of radius |µ|

(and recall that T ∗R+ = {(v, a) : v > 0}).

We will get an interesting Hamiltonian system...



The fixed points are focus-focus singularities, ctd

Let z = sinφ. The symplectic form on Mµ becomes

ΩMµ = da ∧ dv + µ cosφ dφ ∧ dθ = da ∧ dv + µdz ∧ dθ

and the reduced optimal Hamiltonian is

Hred
∗ =

1

2β
a2 +

µ2

2β

(cosφ sin θ)2

v2
+ µ sinφ (v/r)

=
1

2β
a2 +

µ2

2β
(1− z2) (sin θ)2/v2 + µ z v/r .



Equilibria

ao = 0 , v3
o = ±

(
µ r

β

)√
2/2

θo = π/2 or 3π/2 , z0 = ±
√

2/2

with energy

h∗ = (3/2)β (v4/r2).

Take v or µ as parameter, together with r, β.

It turns out that the matrix that linearizes the

Hamiltonian system is the same for all equilibria.



Linearization

A =


0 −3β v2

r2 −3
√

2β v3

r2 0
1
β 0 0 0

0 0 0
√

2 v
2 r

0 3
r −

√
2 v
r 0



Furthermore, its characteristic polynomial does not

depend on β:

p = λ4 +
4 v2

r2
λ2 +

12 v4

r4
.



Eigenvalues are loxodromic (focus-focus type)
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In T ∗TS2, the union for all v 6= 0 of these circles

with κg = 1/r forms a center manifold C.

dim C = 4

In the reduced space we have local unstable and

stable (spiralling) manifolds of dimension two.

They lift to W s
C, W

u
C, which then are 6-dimensional

stable and unstable manifolds inside T ∗TS2.



This dimension count is coherent:

dimC = 6 + 6− 8 = 4 .

Several global dynamical question can now be posed:

on the unreduced system, take initial conditions

near the focus-focus equilibrium. What happens

with their solutions and with the corresponding

unreduced solutions?

Global behavior of Wu and W s is in order. Do they

intersect transversally?



Equators are in the ‘periphery’ of phase space

With z = sinφ. Then a, v, θ ∈ R , |z| ≤ 1.

v̇ = a/β , ȧ = µ

(
−z/r +

µ

β
(1− z2)

(sin θ)2

v3

)
,

θ̇ =
v

r
−

µ

β

z (sin θ)2

v2
, ż =

µ

β
sin θ cos θ

(z − 1)(z + 1)

v2
.

The horizontal lines z = ±1 are invariant.

They corresponds to M1 = M3 = 0,M2 = ±µ.

Hence: reconstruction at z = ±1 yields equators.



Reconstruction at z = ±1 yields the equators

The coordinate a runs uniformly in time (from left

to right at z = −1 and from right to left at z = +1)

a(t) = −sign(z)µt/r + ao.

As we expect, v is quadratic on time, with leading

term −sign(z)µt2/(2rβ).

As for θ, for |t| sufficiently large the second term

in the equation for θ̇ can be dropped out. Thus

for such large |t| we have θ(t) ∼ −sign(z)µt3/(6rβ).



Of interest to symplectic topologists?

This means that except possibly at intermediate

times, the horizontal invariant θ lines in the plane

(θ, z) for z = ±1 run in opposite ways.

Poincaré-Birkhoff theorem should be applicable.



Time minimal: reduced system fixed points

v̇ = aA/
√
a2 +M2

3/v
2

ȧ = −M2/r +
AM2

3

v3
√
a2 +M2

3/v
2

Ṁ = det



i j k

M1 M2 M3

0 v/r AM3

v2
√
a2+M2

3/v
2





Equilibria live in the Casimir sphere µ =
√

2A/r

a = 0 , v = ±
√
Ar

M = µ (0,
√

2/2,±
√

2/2) if v > 0

M = µ (0,−
√

2/2,∓
√

2/2) if v < 0

The reconstructed R(t) is the product of R(0) by

rotation around the unit vector

(0, sign(v)/
√

2, sign(M3)/
√

2) .

with angular velocity

ω =
√

2A/r .



Who got the prize?

Take A = r = 1 then we get the same parametrized

curve of the cubic splines problem, with v = 1.

γ(t) =

(√
2

2
sinα, ±

1

2
(1− cosα),

1

2
(1 + cosα)

)
,

with

α =
√

2 t

For the end point α = π we get

T = π/
√

2



Symplectic description of the reduced system

H = µ zv/r +A
√
a2 + µ2(1− z2) (sin θ)2/v2

Ω = da ∧ dv + µdz ∧ dθ, dz = cosφ dφ

with −1 ≤ z ≤ 1, θ ∈ <mod 2π.



Equations of motion in variables (a, v, z, θ)

ȧ = −Hv = −µz/r +
µ2A(1− z2)(sin θ)2

v3
√
P

v̇ = Ha = Aa/
√
P

µż = −Hθ = −µ2A (1− z2) sin θ cos θ /(v2
√
P )

µθ̇ = Hz = µv/r − µ2Az (sin θ)2 / (v2
√
P )

where P = a2 + µ2(1− z2) (sin θ)2/v2 .

The equilibria are

a = 0 , v = ±
√
Ar

v > 0 : θ = ±π/2 , φ = π/4 (z =
√

2/2)

v < 0 : θ = ±π/2 , φ = −π/4 (z = −
√

2/2)



Linearization at the four equiilibria (µ =
√

2A/r)

These matrices are all equal. In the order (a, v, z, θ):

L =


0 2/r2 2

√
2Ar 0

−Ar 0 0 0

0 0 0 −
√
A/(2r)

0 −2/r 2
√

2
√
A/r 0


The characteristic polynomial is

p(λ) = λ4 + 4
A

r
λ2 + 8

A2

r2

The eigenvalues are loxodromic:

λ = µ

(
±
√

(
√

2− 1)/2± i
√

(
√

2 + 1)/2
)



Gallery, time optimal problem



Coordinate a(t) of a solution emanating near the equilibrium.

Parameters r = A = 1. Note the near linear evolution of a(t)

for larger values of t, with slope near 1.



Coordinate v(t). At t ∼ 16 further work is needed to see if v

reaches zero. Note the quadratic evolution for larger t.



Note the dramatic change in sign of z around t ∼ 16. For

larger t it seems to stabilize short of z = −1.



Gallery: cubic splines
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Energy h = 0.01. Regular trajectories.
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Energy h = 0.332412099. There is a large chaotic zone, with

escaping trajectories.
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Reduced trajectory emanating from the unstable equilibrium,

projected in the (v, a) plane. v is growing quadratically with

respect to a.



Corresponding reconstructed trajectory in the physical sphere.

It approaches (a neighborhood of) an equator. It stays there

or returns to a vicinity of the reduced equilibrium?



Thanks for the attention.

Darryl, keep up the good work!!


