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Turbulence in physical space
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Incompressible flow

Conservation of mass and momentum:

∂juj = 0

∂tui + ∂j(uiuj) + ∂ip −
1

Re
∂jjui = 0

convective flux: nonlinear, destabilizing

viscous flux: linear, dissipative

Ratio – Reynolds number

Re =
convection

dissipation
=

UL

ν

Turbulence requires Re ≫ 1
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Energy cascading process in 3D
I III

k
−5/3

ln(k)

ln(E)

II

ki kd

I: large-scales stirring at integral length-scale ℓi ∼ 1/ki

II: inviscid nonlinear transfer – inertial range E ∼ k−5/3

III: viscous dissipation dominant ℓd ∼ 1/kd
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Complexity of turbulent flow

Kolmogorov: small scales are viscous, isotropic and universal

Proposition: properties depend on viscosity ν and dissipation

rate ε
[ν] = length2/time ; [ε] = length2/time3

Scales: make length and time

η =
(ν3

ε

)1/4
∼

1

kd
; τη =

(ν

ε

)1/2

Three dimensions:

#dof ∼
( ℓ

η

)3
∼ Re9/4 ; #time-steps ∼

tend

τη
∼ Re1/2

Computationally intensive problem as Re ≫ 1
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Computational challenge

Reynolds scaling of numerical resolution

N =

(

ℓ

η

)3

∼ Re9/4

Memory: if Re → Re × 10 then N → 109/4 × N ≈ 175 × N

Reynolds scaling of numerical work

Work ∼ Re1/2 Re9/4 ∼ Re11/4

CPU: if Re → Re × 10 then W → 1011/4W ≈ 560W

Tough simulation problem

- direct approach often impractical

- capture primary features instead
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Four themes to be mastered:

Phenomenology of (coarsened) turbulence

Turbulence modeling and numerical methods

Error-assessment for large-eddy simulation

High-performance computing
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Filtering Regularization Testing Conclusion

DNS and LES in a picture

capture both large and small scales: resolution problem

Coarsening/mathematical modeling instead: LES
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Filtering Regularization Testing Conclusion

Filtering Navier-Stokes equations

∂juj = 0 ; ∂tui + ∂j(uiuj) + ∂ip −
1

Re
∂jjui = 0

Convolution-Filtering: filter-kernel G

ui = L(ui) =

∫

G(x − ξ)u(ξ) dξ ; L(1) = 1

Large-eddy equations:

∂ju j = 0

∂tu i + ∂j(u iuj) + ∂ip −
1

Re
∂jju i = −∂j(uiuj − uiu j)

Sub-filter stress tensor

τij = uiuj − uiu j = L(Πij(u))− Πij(L(u)) = [L,Πij ](u)
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Filtering Regularization Testing Conclusion

Spatial filtering, closure problem

After closure - Shorthand notation:

NS(u) = 0 ⇒ NS(u) = −∇ · τ(u,u) ⇐ −∇ · M(u)

Basic LES formulation

Find v : NS(v) = −∇ · M(v)

What models M are available/reasonable?
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Filtering Regularization Testing Conclusion

Eddy-viscosity modeling

Obtain smoothing via increased dissipation:

∂tu i + ∂j(u jui) + ∂ip −
( 1

Re
+ νt

)

∂jju i = 0

Damp large gradients: dimensional analysis

νt = length × velocity ∼ ∆ × ∆|∂xu|

Effect: Strong damping at large filter-width and/or gradients
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Filtering Regularization Testing Conclusion

Some explicit subgrid models

Popular models:

Dissipation: Eddy-viscosity models, e.g., Smagorinsky

τij → −νtSij = −(CS∆)2|S|Sij ; effect
1

Re
→

( 1

Re
+ νt

)

Similarity: Inertial range, e.g., Bardina

τij → [L,Πij ](u) = u iuj − uiu j

Mixed models ?

mij = Bardina + CdSmagorinsky

Cd via dynamic Germano-Lilly procedure
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Filtering Regularization Testing Conclusion

Dissipation or regularization?

Smagorinsky Leray

Capture turbulence with eddy-viscosity or, with mathematics?
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Filtering Regularization Testing Conclusion

More regularization in LES

Ciprian Foias — Darryl Holm — Edriss Titi

Models with rigorously established existence, uniqueness,

regularity, convergence to NS, transformation, symmetries, ...
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Filtering Regularization Testing Conclusion

Mathematical regularization as subgrid model

Dynamic models popular in LES but:

– expensive; ad hoc implementation features (‘clipping’)

– still limited accuracy; complex flow extension difficult

Regularization principle directly altering the nonlinearity

Systematically obtain implied subgrid closure

‘Inherit’ rigorous mathematical properties

Maintain transport structure and transformation properties

of equations

Consider two examples: Leray and NS-α
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Filtering Regularization Testing Conclusion

From Leray regularization to SFS model
Proposal:

∂tvi + v j∂jvi + ∂iq −
1

Re
∂jjvi = 0

Convolution filtering Leray: use ∂jv j = 0

∂tv i + ∂j(v jvi) + ∂iq −
1

Re
∂jjv i = 0

Rewrite into LES template:

∂tv i + ∂j(v jv i) + ∂iq −
1

Re
∂jjv i = −∂j(v jvi − v jv i)

Implied Leray model:

mL
ij = v jvi − v jv i = L

(

v jL
−1(v i)

)

− v jv i

with L−1 formally inverting L
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Filtering Regularization Testing Conclusion

Regularization requires filter-inversion

Geometric series: repeated filtering

L−1 = (I − (I − L))−1 →

N
∑

n=0

(I − L)n

For example:

N = 0 : u = L−1
0 (u) = u

N = 1 : u = L−1
1 (u) = u + (I − L)u = 2u − u

N = 2 : u = L−1
2 (u) = u + (I − L)u + (I − L)(I − L)u

= 3u − 3u + u
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Filtering Regularization Testing Conclusion

Regularization requires filter-inversion
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Filtering Regularization Testing Conclusion

Alternative regularizations
Consider a − b models: ∂jvj = 0 and

∂tvi + ∂j(ajbi) + ∂iq −
1

Re
∂jjvi = 0

Then

Choose: aj = vj ; bi = vi to obtain NS

Choose: aj = v j ; bi = vi to obtain Leray

Choose: aj = vj ; bi = v i to obtain modified Leray

Choose: aj = v j ; bi = v i to obtain modified Bardina

Or, implied models: mR
ij = ajbi − v jv i , i.e.,

Leray : mL
ij = v jvi − v jv i

Modified Leray : mmL
ij = vjv i − v jv i

Modified Bardina : mmB
ij = v jv i − v jv i
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Filtering Regularization Testing Conclusion

NS-α regularization
Kelvin’s circulation theorem

d

dt

(

∮

Γ(u)
uj dxj

)

−
1

Re

∮

Γ(u)
∂kk uj dxj = 0 ⇒ NS − eqs

Filtered Kelvin theorem (Γ(u) → Γ(u)) extends Leray

t1

t 2

u

u
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Filtering Regularization Testing Conclusion

NS-α regularization

Filtered Kelvin circulation theorem

d

dt

(

∮

Γ(u)
uj dxj

)

−
1

Re

∮

Γ(u)
∂kkuj dxj = 0

Euler-Poincaré

∂tuj + uk∂kuj + uk∂juk + ∂jp − ∂j(
1

2
ukuk)−

1

Re
∂kkuj = 0

Rewrite into LES template: Implied subgrid model

∂tu i + ∂j(u jui) + ∂ip −
1

Re
∂jju i

= −∂j

(

u jui − ujui

)

−
1

2

(

uj∂iu j − uj∂iuj

)
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Filtering Regularization Testing Conclusion

Cascade-dynamics – computability

NSa

k

k

∼ 1/∆

−13/3

E

k−3

M

kkk

k

L DNS

−5/3

NS-α,Leray are dispersive

Regularization alters spectrum – controllable cross-over as

k ∼ 1/∆: steeper than −5/3
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Filtering Regularization Testing Conclusion
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Filtering Regularization Testing Conclusion

A posteriori testing

filtered
NS
eqs.

NS
eqs.

❄
❄

filter

p,u i

p,ui

❄

filter

✲

✲✲

DNS

LES

error-sources:
- subgrid-model
- numerical algorithm
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Filtering Regularization Testing Conclusion

HIT at Reλ = 50, 100

Pseudo-spectral method and explicit time-stepping

Range: ∆ = ℓ/64, ℓ/32, ℓ/16, ℓ/8, ℓ/4, ℓ/2 at

N = 32,64,128,256,512
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Filtering Regularization Testing Conclusion

Smagorinsky
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Filtering Regularization Testing Conclusion

Error-landscape: Definition
Framework for collecting error information:

E
h

δ

N

lS

Each Smagorinsky LES corresponds to single point:

(

N,
ℓS

h

)

; error : δE

Contours of energy error δE — fingerprint of LES
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Filtering Regularization Testing Conclusion

Interacting simulation errors

Computational model limited by numerical and modeling errors

HIT error landscape
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Iterative optimization?



Filtering Regularization Testing Conclusion

SIPI - basic algorithm
Goal: minimize total error at given N

S

δ

C

CS

a b d c

E

Initial triplet: no-model, dynamic and half-way

New iterand

d = b −
1

2

(b − a)2[δE (b)− δE (c)]− (b − c)2[δE (b)− δE (a)]

(b − a)[δE (b)− δE (c)]− (b − c)[δE (b)− δE (a)]
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Filtering Regularization Testing Conclusion

SIPI applied to homogeneous turbulence
Each iteration = separate simulation
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(b)

Reλ = 50 (a) and Reλ = 100 (b). Resolutions N = 24 (solid),

N = 32 (dashed) and N = 48 (dash-dotted)

Iterations: ◦ → ∗ → ⋄ → � → +
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Filtering Regularization Testing Conclusion

Regularization
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Filtering Regularization Testing Conclusion

Flow-structures: DNS, Leray, modified Leray
∆ = ℓ/64 ∆ = ℓ/32 ∆ = ℓ/16 ∆ = ℓ/8

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

DNS at 5123 and LES at 1283

Bernard Geurts: A review of mathematical regularization as model for small-scale turbulence



Filtering Regularization Testing Conclusion

Skewness prediction
Grid-independent LES: N = 128
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Figure: Filtered DNS (solid), Leray (dash), NS-α (dash-dot), Modified
Leray (dot) and Modified Bardina (solid with ∗). From bottom to top:

∆ = ℓ/64, ℓ/32, ℓ/16, ℓ/8, ℓ/4 and ∆ = ℓ/2 – curves are shifted
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Filtering Regularization Testing Conclusion

Numerical contamination Leray: Reλ
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Figure: N = 128 (dash), N = 64 (dash-dot), N = 32 (dot) and
N = 16 (solid) (bottom to top) ∆ = ℓ/64, ℓ/32 and ℓ/16.
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Filtering Regularization Testing Conclusion

Is regularization modeling practical?
Computational speed-up

W ≈
(

NDNS/NLES

)4

Increased Re: factor ≈ W 1/3 since complexity ∼ Re3

General impression:

‘very accurate’ predictions at small filter-widths:

∆/ℓ . 1/64, requiring N ≈ 128

W ≈ 256 allows factor ≈ 6 in Re

‘quite accurate’ predictions as 1/32 . ∆/ℓ . 1/16,

requiring N = 32 to N = 64 provided proper SFS model

W ≈ 4096 − 65536 allows factor ≈ 16 to ≈ 40 in Re

‘sometimes still OK’ as ∆/ℓ ≈ 1/8, requiring N ≈ 16:

W ≈ 106, i.e., factor ≈ 100 in Re

considerable errors at very large filter-widths: ∆/ℓ & 1/4
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Filtering Regularization Testing Conclusion

Mixing
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Filtering Regularization Testing Conclusion

Mixing layer: testing ground for LES

(a)

(b)

(a): Flow domain mixing layer

(b): Spark shadow photograph
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Filtering Regularization Testing Conclusion

Basic mixing layer configuration
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Filtering Regularization Testing Conclusion

Some mean flow properties
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Kinetic energy and momentum thickness

Smagorinsky too dissipative

Bardina, dynamic models preferred
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Filtering Regularization Testing Conclusion

Closer look: Streamwise energy spectrum
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Dissipation: Smagorinsky too much, Bardina not enough

dynamic models quite acceptable

‘middle range’ wavenumbers much too high
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Filtering Regularization Testing Conclusion

Instantaneous snapshots of spanwise vorticity
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(d)

a: DNS, b: Bardina, c: Smagorinsky, d: dynamic

Accuracy limited: regularization models better?
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Filtering Regularization Testing Conclusion

Leray and NS-α predictions: Re = 50, ∆ = ℓ/16

(DNS) (DNS)

(Leray) (NS-α)

Snapshot u2: red (blue) corresponds to up/down
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Filtering Regularization Testing Conclusion

Momentum thickness θ as ∆ = ℓ/16
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Filtered DNS (◦)

Leray-model

323: dash-dotted

643: solid

963: △
dynamic model

323: dashed

643: dashed with ⋄
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Filtering Regularization Testing Conclusion

Streamwise kinetic energy E as ∆ = ℓ/16
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Filtering Regularization Testing Conclusion

Robustness at arbitrary Reynolds number
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Filtering Regularization Testing Conclusion
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Filtering Regularization Testing Conclusion

Concluding remarks

Does mathematical regularization imply accurate SFS model?

reviewed coarsened turbulence

closure problem: eddy-viscosity and regularization

illustrated a posteriori testing for HIT and mixing layer

Leray and NS-α are accurate and Leray is more robust

open challenge:

what fluid-mechanical properties should be included for
successful NS regularization?

what is needed to assure/predict simulation reliability?
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