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Happy Birthday Darryl !
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1. The asymptotic law of distribution of prime numbers

In 1792, Gauss, at the age of 15, conjectured that the asymptotic law of
distribution of prime numbers is

π(Λ) ∼ Λ

log Λ
.

In 1859, Riemann published his paper On the number of primes less than a given
magnitude, in which the zeta function

ζ(z) =
∑
n≥1

1

nz
=
∏
p

(
1− 1

pz

)−1

played a prominent role.
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2. Analytic number theory

Riemann’s observations are based on the fact that ζ(z) can be meromorphically
continued (simple pole at z = 1), and on the identity:

1{y > 1} =
1

2πi

∫ 2+i∞

2−i∞

yz

z
dz.

Consider to start with the counting of the integers:

∑
1≤n≤Λ

1 =
∑
n≥1

1

{
Λ

n
> 1

}
=

1

2πi

∫ 2+i∞

2−i∞

∑
n≥1

(
Λ

n

)z
dz

z

=
1

2πi

∫ 2+i∞

2−i∞
ζ(z)

Λz

z
dz = Λ− 1

2
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Similarly, we have

ψ(Λ) =
∑
p≤Λ

log p =
1

2πi

∫ 2+i∞

2−i∞

∑
p

log p

(
Λ

p

)z
1

z
dz

=
1

2πi

∫ 2+i∞

2−i∞

∑
p

log p

pz
Λz

z
dz ≈ 1

2πi

∫ 2+i∞

2−i∞

ζ ′(z)

ζ(z)

Λz

z
dz

The derivation of the expression for ψ(Λ) then relies on the study of the
properties of ζ(z), in particular, its zeros.

The reflection formula

ζ(z) = 2zπz−1 sin(πz/2)Γ(1− z)ζ(1− z)

shows that the zeta function vanishes trivially for z = −2n (n = 1, 2, . . .).

Riemann conjectured (the Riemann Hypothesis) that the nontrivial zeros of ζ(z)
all lie on the straight line

ℜ(z) = 1

2
.
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3. The Hilbert-Pólya conjecture

Assuming that the Riemann hypothesis holds true, and writing

zn =
1

2
+ iEn,

the (real) numbers {En} should correspond to the eigenvalues of a Hermitian
operator (the so-called Riemann operator).

4. The Berry-Keating conjecture

In 1989, Berry and Keating conjectured that the Riemann operator should be
given by a quantisation of the classical Hamiltonian

H = xp.

A lot of efforts have been made by various authors to find such Hamiltonian, but
without success until now.
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5. Outline of the talk

We consider the ‘Hamiltonian’ operator

Ĥ =
1

1− e−ip̂
(x̂p̂ + p̂x̂) (1− e−ip̂),

which reduces to the classical Hamiltonian function H = 2xp.

It will be shown that with the boundary condition

ψ(0) = 0

the eigenvalues {En} of Ĥ satisfy the property that
{
1
2(1− iEn)

}
are the zeros

of the Riemann zeta function.

The Riemann hypothesis follows if all eigenvalues of Ĥ are real.

Using the pseudo-Hermiticity of Ĥ, a heuristic analysis will be presented that
suggests that this is indeed the case.
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6. The shift operator and its inverse

Defining

∆̂ ≡ 1− e−ip̂,

in units ℏ = 1 we have

p̂ = −i
d

dx
so that

∆̂f (x) = f (x)− f (x− 1).

As for ∆̂−1 we have

∆̂−1 =
1

1− e−ip̂
=

1

ip̂

−ip̂

e−ip̂ − 1
=

1

ip̂

∞∑
n=0

Bn
(−ip̂)n

n!
.

In particular, if f (x) → 0 sufficiently fast, then we have

∆̂−1f (x) = −
∞∑
k=1

f (k + x).
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7. Uniqueness of ∆̂ψ

We multiply the eigenvalue equation

Ĥψ = Eψ

on the left by ∆̂.

Recall that
Ĥ = ∆̂−1(x̂p̂ + p̂x̂)∆̂.

This gives a first-order linear differential equation

(x̂p̂ + p̂x̂)∆̂ψ = −i

(
2x

d

dx
+ 1

)
∆̂ψ = E ∆̂ψ

for the function ∆̂ψ, whose solution is unique and is given by

∆̂ψ = x−z

up to a multiplicative constant.

Therefore,
ψ(x) = ∆̂−1x−z.

New Trends in Applied Geometric Mechanics c⃝ DC Brody 2017



Zeros of the Riemann Zeta Function - 10 - Madrid, 3 July 2017

8. Eigenstates and eigenvalues

The eigenstates of Ĥ are given by the Hurwitz zeta function

ψz(x) = −ζ(z, x + 1)

on the positive half line R+, with eigenvalues

E = i(2z − 1).

To see this, observe that, up to an additive constant,

∆̂−1x−z =
1

ip̂

∞∑
n=0

Bn
(−ip̂)n

n!
x−z

=
1

ip̂

∞∑
n=0

Bn
(−ip̂)n

n!
(ip̂)

x1−z

1− z

=
1

1− z

∞∑
n=0

Bn
(−ip̂)n

n!
x1−z.

Because ip̂ = ∂x and

∂nx x
µ =

Γ(µ + 1)

Γ(µ− n + 1)
xµ−n,
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setting µ = 1− z we find

∆̂−1x−z =
Γ(2− z)

1− z

∞∑
n=0

Bn
(−1)n

n!

x1−z−n

Γ(2− z − n)
,

but we have Γ(2− z) = (1− z)Γ(1− z) and

1

Γ(2− z − n)
=

1

2πi

∫
C

du eu un+z−2,

so

∆̂−1x−z =
Γ(1− z)

2πi
x1−z

∫
C

du eu uz−2
∞∑
n=0

Bn
(−u/x)n

n!

=
Γ(1− z)

2πi
x1−z

∫
C

du euuz−2 −u/x
e−u/x − 1

=
Γ(1− z)

2πi
x−z

∫
C

du
euuz−1

1− e−u/x
.

Now we scale the integration variable according to u/x = t and obtain

∆̂−1x−z =
Γ(1− z)

2πi

∫
C

du
exttz−1

1− e−t
= −ζ(z, x + 1).
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As for the eigenvalues, we have

Ĥψz(x) = ∆̂−1 (x̂p̂ + p̂x̂) ∆̂∆̂−1x−z = i(2z − 1)ψz(x).

Note that for ℜ(z) > 1 we have

−ζ(z, x + 1) =
Γ(1− z)

2πi

∫
C

du
exttz−1

1− e−t
= −

∞∑
k=1

1

(x + k)z
.
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9. The boundary condition

We now impose the boundary condition that ψn(0) = 0 for all n.

Because ζ(z, 1) = ζ(z), this implies that z can only be discrete zeros of the
Riemann zeta function: If z = 1

2(1− iE) then i(2z − 1) = E.

Can z be a trivial zero?

For the trivial zeros z = −2n, n = 1, 2, . . ., we have

ψz(x) = − 1

2n + 1
B2n+1(x + 1),

where Bn(x) is a Bernoulli polynomial =⇒ |ψz(x)| grows like x2n+1 as x→ ∞.

For the nontrivial zeros ψz(x) oscillates and grows sublinearly.

Thus, for the trivial zeros ∆̂ψz(x) blows up and for the nontrivial zeros ∆̂ψz(x)
goes to zero as x→ ∞.
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10. Relation to pseudo-Hermiticity

If we consider the space-time (PT) inversion on the canonically transformed
variables (x̂, p̂) → (p̂,−x̂) so that PT : (x̂, p̂, i) −→ (x̂,−p̂,−i), then we find
that iĤ is PT symmetric.

However, since PT ψn(x) = ψ−n(x), the PT symmetry is broken for all zn ∈ C.

“Eigenvalues of iĤ are purely imaginary” ⇒ “The Riemann hypothesis holds”

To proceed, assume that p̂† is symmetric and that

Ĥ† = (1− eip̂) (x̂p̂ + p̂x̂)
1

1− eip̂
.

Then if we define the operator η̂ according to

η̂ = sin2 1
2p̂,

which is nonnegative, bounded, and Hermitian under our assumption, we get

Ĥ† = η̂Ĥη̂−1.
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Thus, our Hamiltonian Ĥ is pseudo-Hermitian:

ρ̂Ĥρ̂−1 = ĥ,

where
ρ̂†ρ̂ = η̂ = sin2 1

2p̂.
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11. Quantisation condition for the Berry-Keating Hamiltonian

Recall that ρ̂†ρ̂ = η̂ = sin2 1
2p̂.

Choosing ρ̂ = ∆̂ we have the Berry-Keating Hamiltonian

ĥBK = x̂ p̂ + p̂ x̂,

with eigenstates and eigenvalues

ϕBKz (x) = x−z and E = i(2z − 1).

The boundary condition ψ(0) = 0 then translates into the quantisation condition
for the Berry-Keating Hamiltonian, either as

lim
x→0

[
ϕBKz (x)− ζ(z, x− 1)

]
= 0

or alternatively as

lim
x→1

ϕBKz (x) = − lim
x→1

ζ(z, x + 1).
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12. Biorthogonal systems

The eigenstates {ψ̃n(x)} of

Ĥ† = (1− eip̂) (x̂p̂ + p̂x̂)
1

1− eip̂

are given by
ψ̃n(x) = x−zn − (x + 1)−zn.

Using {ψ̃n(x)}, we introduce an inner product as follows.

For any

ψ(x) =
∑
n

cnψn(x),

where
∑

n |cn|2 <∞, we define its associated state by

ψ̃(x) =
∑
n

cnψ̃n(x).

[Ref: Brody, Biorthogonal quantum mechanics. J. Phys. A47, 035305 (2014)]
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The inner product of a pair of such functions ψ(x) and φ(x) is then defined by

⟨φ, ψ⟩ = ⟨φ̃|ψ⟩ ≡
∫
φ̃(x)ψ(x)dx.

Alternatively stated, since φ̃(x) = η̂φ(x), we have ⟨φ, ψ⟩ = ⟨φ|η̂|ψ⟩.
Because

ψ̃n(x) = ∆̂†∆̂ψn(x) = ∆̂†∆̂∆̂−1x−zn = ∆̂†x−zn,

we find

⟨ψ̃m|ψn⟩ =
∫ ∞

0

dxx−1+i(En−Ēm)/2.

It follows that if the Riemann hypothesis is correct, then for m ̸= n we have

⟨ψ̃m|ψn⟩ = 0

for the nontrivial zeros, whereas ⟨ψ̃m|ψn⟩ = ∞ for the trivial zeros.

It also follows from ⟨ψ̃n|ψn⟩ ̸= 0 that the eigenvalues are nondegenerate if RH
holds true; conversely, for any nontrivial zero zn such that ℜ(zn) ̸= 1

2, the
eigenstates are degenerate.

New Trends in Applied Geometric Mechanics c⃝ DC Brody 2017



Zeros of the Riemann Zeta Function - 19 - Madrid, 3 July 2017

In terms of the inner product introduced above, under the assumption on the
Hermiticity of p̂ we find, using ∆̂†∆̂ = η̂, that

⟨Ĥφ, ψ⟩ =

∫ ∞

0

dx φ̄(x)∆̂†(x̂ p̂ + p̂ x̂)(∆̂†)−1∆̂†∆̂ψ(x)

=

∫ ∞

0

dx φ̄(x)∆̂†(x̂ p̂ + p̂ x̂)∆̂ψ(x)

=

∫ ∞

0

dx φ̄(x)∆̂†∆̂∆̂−1(x̂ p̂ + p̂ x̂)∆̂ψ(x)

= ⟨φ, Ĥψ⟩.
Hence under this assumption, Ĥ is Hermitian (symmetric).

We also find that on the inner product space ⟨·, ·⟩, if we demand p̂† = p̂, then it
is necessary and sufficient that ψ(0) = 0.
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13. Fourier representation

One might ask: Why the Hamiltonian

Ĥ =
1

1− e−ip̂
(x̂p̂ + p̂x̂) (1− e−ip̂) ?

In the momentum space the eigenfunction can be written

ψ̂(p) = Γ(1−z)

[
(−ip)z−1

1− eip
− i(2π)z−1

( ∞∑
k=1

kz−1

p + 2πk
− (−1)z

∞∑
k=1

kz−1

p− 2πk

)]
.

This provides an integral representation for the Riemann zeta function∫ iϵ+∞

iϵ−∞
ψ̂(p) dp = ζ(z).

Identifying the differential equation satisfied by ψ̂(p) in the momentum space is
an open question.
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14. Relation to quantum mechanics

A possible way of making a connection to quantum theory is to introduce a
regularisation scheme, for example, by letting x ∈ [Λ−1,Λ], renormalising the
states according to

ψn(x) → (ln Λ)−1/2ψn(x),

and then taking the limit Λ → ∞.

Interestingly, the expectation value of the position operator ρ̂−1x̂ρ̂ in the state
ψn(x) for any n in the renormalised theory is

Λ

lnΛ
,

which for large Λ gives the leading term in the counting of prime numbers
smaller than Λ

Reference: Bender, C.M., Brody, D.C. & Müller, M.P. “Hamiltonian for the
zeros of the Riemann zeta function” Physical Review Letters, 118, 130201
(2017) .
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Happy Birthday again Darryl!
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