Toric non-abelian Hodge theory II

joint with Nick Proudfoot

Tamás Hausel

IST Austria & EPF Lausanne http://hausel.ist.ac.at

Hitchin 70: Celebrating 30 years of Higgs bundles and 15 years of generalized geometry ICMAT, Madrid Sept. 2016

Non-abelian Hodge theory

- Simpson (1990), Hitchin (1987) for Riemann surfaces
- G complex reductive algebraic group, e.g. $G = GL_n(\mathbb{C})$ C smooth complex projective curve (w. decorations)
- $oldsymbol{\circ} \mathcal{M}_{\mathrm{B}} := H^1_{\mathrm{B}}(\mathsf{C}, \mathrm{G}) = \left\{egin{array}{l} \mathsf{moduli} \ \mathsf{of} \ \pi_1(\mathsf{C})
 ightarrow \mathrm{G} \end{array}
 ight\}$
- $\mathcal{M}_{DR} := H^1_{DR}(C, G) = \{ \text{moduli of flat G-connections on } C \}$
- $\bullet \ \mathcal{M}_{\mathrm{Dol}} := H^1_{\mathrm{Dol}}(\mathcal{C}, \mathrm{G}) = \{ \mathsf{moduli} \ \mathsf{of} \ \mathrm{G\text{-}Higgs} \ \mathsf{bundles} \ \mathsf{on} \ \mathcal{C} \}$
- Non-Abelian Hodge Theorem: $\mathcal{M}_{\mathrm{Dol}} \cong_{\mathit{diff}} \mathcal{M}_{\mathrm{DR}} \stackrel{ au_{\mathit{RH}}}{\cong}_{\mathit{an}} \mathcal{M}_{\mathrm{B}}$
- $\begin{array}{lll} \bullet & \mathsf{Hitchin\ map:} & \chi: \mathcal{M}_{\mathrm{Dol}} & \to & \mathcal{A} \\ & (E,\phi) & \mapsto & \mathit{CharPol}(\phi) \\ \mathsf{proper}, \ \mathsf{integrable\ system} \end{array}$
- ullet often $0\in \mathcal{A}$ when $\chi^{-1}(0)\sim \mathcal{M}_{\mathrm{Dol}}$ nilpotent cone
- $C \cong \mathbb{P}^1 \rightsquigarrow \mathcal{M}^*_{\mathrm{DR}} := \{ \mathsf{moduli} \ \mathsf{of} \ \mathsf{flat} \ \mathsf{connections} \ \mathsf{on} \ C \times G \}$
- $\mathcal{M}^*_{\mathrm{DR}}\subset\mathcal{M}_{\mathrm{DR}}$ open, $\mathcal{M}^*_{\mathrm{DR}}\cong \mathit{Q}$ star-shaped quiver variety

Conjectures on MHS on $H^*(\mathcal{M}_{\mathrm{B}})$

Conjecture

- (Hodge-Tate) $h^{p,q}(H^*(\mathcal{M}_B)) \neq 0 \Rightarrow p = q$
- (Curious Hard Lefschetz) $\alpha := [\Re(\Omega)] \in H^{2;2,2}(\mathcal{M}_{\mathrm{B}})$

$$L^{l}: Gr_{\dim -2l}^{W}H^{i-l}(\mathcal{M}_{\mathrm{B}}) \stackrel{\cong}{\to} Gr_{\dim +2l}^{W}H^{i+l}(\mathcal{M}_{\mathrm{B}})$$

$$\times \times \times \cup \alpha^{l}$$

(purity conjecture)

$$W_k H^k(\mathcal{M}_{\mathrm{B}}) \stackrel{\tau_{RH}^*}{\cong} H^k(\mathcal{M}_{\mathrm{DR}}^*)$$

• (P = W)perverse filtration P on $H^*(\mathcal{M}_{\mathrm{Dol}})$ induced by Hitchin map χ

$$W_{2k}H^*(\mathcal{M}_{\mathrm{B}}) = P_kH^*(\mathcal{M}_{\mathrm{Dol}})$$

• proved for $G = GL_2$ and many consintency checks

Toric hyperkähler varieties

- Bielawski–Dancer (2000) Hausel–Sturmfels (2002)
- $A \in M_{d\times n}(\mathbb{Z})$ surj. $\sim 0 \to \mathbb{Z}^{n-d} \stackrel{B}{\to} \mathbb{Z}^n \stackrel{A}{\to} \mathbb{Z}^d \to 0$
- taking Hom to $\mathbb{T} := \mathbb{C}^{\times} \leadsto 0 \leftarrow \mathbb{T}^{n-d} \overset{B^T}{\leftarrow} \mathbb{T}^n \overset{A^T}{\leftarrow} \mathbb{T}^d \to 0$

•
$$\mathbb{T}^d \subset \mathbb{T}^n \subset T^* \mathbb{C}^n$$
; moment map $(x_i y_i)_i \downarrow \qquad \qquad |X| \downarrow \qquad |X| \downarrow \qquad |X| \downarrow \qquad |X| \downarrow \qquad |X| \downarrow \qquad |X| \downarrow \qquad |X| \downarrow \qquad |X| \downarrow \qquad \qquad |X| \downarrow$

 $\nu_{\mathsf{A}}: (T^*\mathbb{C})^n \to (\mathfrak{t}^d)^*$

- $Q_A^{\xi} :=
 u_A^{-1}(\xi) / / \mathbb{T}^d$ toric hyperkähler variety of dim = 2(n-d)
- $\mathbb{T}^{n-d} \subset Q_A^{\xi}$ with moment map $\nu : Q_A^{\xi} \to (\mathfrak{t}^{n-d})^*$ whose discriminental locus is a hyperplane arrangement $\mathcal{H}_A \subset (\mathfrak{t}^{n-d})^*$ modeled on $B^T = [b_1, \dots, b_n] \in \mathbb{Z}^{n-d}$
- $H^*(Q_A^{\xi})$ understood from the combinatorics of \mathcal{H}_A e.g. dim $H^*(Q_A^{\xi})=\#$ vertices of \mathcal{H}_A
- example: for any quiver Γ with n edges and d+1 vertices $\rightsquigarrow A_{\Gamma}(e_{ij}) = v_i v_j$ a surjective matrix $A_{\Gamma} \in M_{d \times n}(\mathbb{Z})$ $\rightsquigarrow Q_{\Gamma}^{\xi} := Q_{A_{\Gamma}}^{\xi}$ toric quiver variety

Toric character varieties

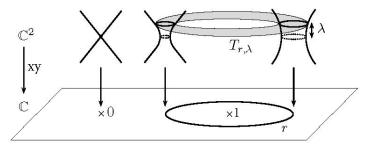
- Crawley-Boevey-Shaw (2006)
- $Z=\mathbb{C}^2\setminus\{1-xy=0\}$ with symplectic form $\Omega=\frac{dx\wedge dy}{1-xy}$ and usual \mathbb{T} -action is quasi-Hamiltonian with moment map $\mu: Z \to \mathbb{T}$ $(x,y) \mapsto 1-xy$

- for generic $\zeta \in \mathbb{T}^d$ define $\mathcal{M}_{\mathrm{B}}^{\zeta} := \mu_A^{-1}(\zeta) / / \mathbb{T}^d$ toric Betti space of dim = 2(n-d) with symplectic form $\Omega \in \Omega^2(\mathcal{M}_{\mathrm{B}}^{\zeta})$ of Alexeev-Malkin-Meinrenken (1998)
- Γ quiver $\rightsquigarrow A = A_{\Gamma} \rightsquigarrow \mathcal{M}_{\mathrm{B}}^{\zeta}$ multiplicative quiver variety of Crawley-Boevey–Shaw (2006)

Special Lagrangian fibration on $\mathcal{M}_{ t B}^{\zeta}$

• Auroux (2009): $\begin{array}{c} \chi: Z \to \mathbb{R}^2 \\ (x,y) & (log(|1-xy|),|x|^2-|y|^2) \\ \text{proper special Lagrangian fibration:} \end{array}$

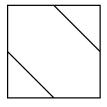
$$\chi^{-1}(r,\lambda) = \mathcal{T}_{r,\lambda} \cong \left\{ egin{array}{ll} \mathbb{T}^2_{\mathbb{R}} \cong U(1)^2 & (r,\lambda)
eq (0,0) \\ ext{pinched torus} & (r,\lambda) = (0,0) \end{array}
ight.$$



• $\sim \chi_A : \mathcal{M}_{\mathrm{B}}^{\zeta} \to (\mathbb{R}^2)^{n-d}$ proper special Lagrangian fibration; "toric Hitchin map in the Betti complex structure" degeneracy locus of χ_A is hyperplane arrangement \mathcal{H}_A in $(\mathbb{R}^2)^{n-d}$ modelled on vector configuration $[b_1, \ldots, b_n] \in \mathbb{Z}^{n-d}$

Toroidal core

- $\zeta \in \mathbb{T}^d_{\mathbb{R}} \subset \mathbb{T}^d_{\mathbb{C}} \leadsto \mathcal{H}_A$ linear hyperplane arrangement $\leadsto \mathcal{C}^{\zeta}_A := \chi_A^{-1}(0)$ toroidal core: non-normal compact toric variety over a toroidal hyperplane arrangement
- Γ quiver $\sim \mathcal{C}_{A_{\Gamma}}^{\zeta} \cong_{diff} \overline{Jac}_{\zeta}(C_{\Gamma})$ compactified Jacobian of reducible nodal rational curve C_{Γ} of Oda-Seshadri (1979)



• e.g. $C_{\Gamma}\cong$

$$\overline{\mathit{Jac}}_{\zeta}(\mathit{C}_{\Gamma})\cong$$

Theorem (Hausel-Proudfoot 2015)

 $\zeta\in\mathbb{T}^d_\mathbb{R}\subset\mathbb{T}^d_\mathbb{C}$ generic $\leadsto\mathcal{C}^\zeta_A\subset\mathcal{M}^\zeta_{\mathrm{B}}$ is a homotopy equivalence

ullet proof by Morse theory for $|\chi_{\mathcal{A}}|^2:\mathcal{M}_{\mathrm{B}}^\zeta o \mathbb{R}$

Toric Hodge-Tate and Curious Hard Lefschetz

Theorem (Hausel-Proudfoot, 2015)

 $H^*(\mathcal{M}_\mathrm{B}^\zeta)$ is Hodge-Tate and satisfies Curious Hard Lefschetz.

- sketch of proof:
- define $Z^x := Z \setminus \{x = 0\} \cong \mathbb{T}^2$ "toric cluster torus"
- $S \subset \{1,\ldots,n\} \rightsquigarrow (\mathcal{M}_{\mathrm{B}}^{\zeta})_{S} := Z^{S} \times (Z^{x})^{S^{c}} / / / /_{\zeta}^{qH} \mathbb{T}^{d} \subset \mathcal{M}_{\mathrm{B}}^{\zeta}$
- $b_S \subset \{b_1,\ldots,b_n\} \subset \mathbb{Z}^{n-d}$ linearly independent \Rightarrow $(\mathcal{M}_{\mathrm{B}}^{\zeta})_S \cong Z^{|S|} \times \mathbb{T}^{n-d-|S|}$ in particular satisfies HT and CHL
- $\bullet \ (\mathcal{M}_{\mathrm{B}}^{\zeta})_{\mathcal{S}_1} \cap (\mathcal{M}_{\mathrm{B}}^{\zeta})_{\mathcal{S}_2} = (\mathcal{M}_{\mathrm{B}}^{\zeta})_{\mathcal{S}_1 \cap \mathcal{S}_2}$
- claim: $\mathcal{M}_{\mathrm{B}}^{\zeta} = \bigcup_{b_{\mathrm{S}} \ \mathsf{lin.}} \ (\mathcal{M}_{\mathrm{B}}^{\zeta})_{\mathcal{S}}$
- result follows from Mayer-Vietoris

Toric purity

Theorem (Hausel–Proudfoot, 2015)

$$W_k H^k(\mathcal{M}_{\mathrm{B}}^{\mathrm{e}^\xi}) \cong H^k(Q_A^\xi)$$

• proof: define $\tau_{RH}: \mathbb{C}^2 \to Z$:

$$(x,y) \in \mathbb{C}^2 \quad \xrightarrow{\tau_{RH}} \quad \left\{ \begin{array}{ll} \left(x, \frac{1-\exp(xy)}{x}\right) \in Z & x \neq 0 \\ (0,-y) \in Z & x = 0 \end{array} \right.$$

$$xy \downarrow \qquad \qquad \downarrow 1 - xy$$

- $\sim \tau_{RH}: Q_A^{\xi} \to \mathcal{M}_{\mathrm{B}}^{e^{\xi}}$ $\sim \tau_{PM}^{*}: W_k H^k(\mathcal{M}_{\mathrm{B}}^{e^{\xi}}) \to H^k(Q_A^{\xi})$ is surjective
- $\dim(W_*H^*(\mathcal{M}_{\mathrm{B}}^{e^{\xi}})) \stackrel{CHL}{=} \dim(H^{mid}(\mathcal{M}_{\mathrm{B}}^{e^{\xi}})) = \dim(H^{top}(\mathcal{C}_A^{e^{\xi}}))$ = #top dim regions in toroidal hyperplane arrangement = #vertices of hyperplane arrangement = $\dim(H^*(Q_A^{\xi}))$

Comments on toric P = W

- recall $\chi:Z\to\mathbb{R}^2$
- $\chi^{-1}(\Delta) \cong_{diff} T$ where $T \to \Delta$ is the Tate curve
- \leadsto a neighbourhood of $\mathcal{C}_A^\zeta \subset \mathcal{M}_\mathrm{B}^\zeta$ is diffeomorphic to a local abelian fibration with central singular fiber the toroidal core $\mathcal{C}_A^\zeta \leadsto$ perverse filtration on $H^*(\mathcal{C}_A^\zeta)$

Conjecture (de Cataldo-Hausel-Migliorini, 2007)

$$\zeta \in \mathbb{T}^d_\mathbb{R} \subset \mathbb{T}^d_\mathbb{C} \leadsto W_{2k}H^*(\mathcal{M}_\mathrm{B}^\zeta) \cong P_k(H^*(\mathcal{C}_A^\zeta))$$

• would follow from Mayer-Vietoris if we had $\mathcal{C}_A^\zeta := \chi_A^{-1}(\Delta_{bd}) \sim \mathcal{M}_\mathrm{B}^\zeta \text{ when } \zeta \in (\mathbb{R}^\times)^d \subset \mathbb{T}^d \\ \Delta_{bd} \subset \mathbb{R}^{n-d} \text{ bounded complex of the hyperplane arrangement}$

Problem

Can one cover the usual GL_n -character varieties \mathcal{M}_B with the (toric) character varieties corresponding to integral (nodal) spectral curves?