$SO_0(p, p + 1)$ -Higgs bundles

Brian Collier

University of Maryland

Plan

- ullet Motivation, background and p=1
- p = 2, low dimensional isomorphisms and Zariski closures
- $p \ge 3$
- X = (S, J) will be a Riemann surface of genus $g \ge 2$
- ullet H \subset G maximal compact of a connected semisimple Lie group
- $\bullet \ \mathfrak{g}=\mathfrak{h}\oplus \mathfrak{m}$ Cartan decomposition of \mathfrak{g}

Definition

A G-Higgs bundle is a pair $(\mathcal{E}_{H_{\mathbb{C}}}, \varphi)$ where $\mathcal{E}_{H_{\mathbb{C}}}$ is a holomorphic $H_{\mathbb{C}}$ bundle and $\varphi \in H^0(X, \mathcal{E}_{H_{\mathbb{C}}}[\mathfrak{m}_{\mathbb{C}}] \otimes K)$.

$$\{(\mathcal{E}_{\mathsf{H}_{\mathbb{C}}}, \varphi) \text{ polystable}\}/\mathcal{G}_{\mathsf{H}_{\mathbb{C}}} = \mathcal{M}(\mathsf{G})$$

For $G = SL(n, \mathbb{C})$ $(E, \Phi : E \rightarrow E \otimes K)$ with $det(E) = \mathcal{O}$ and $Tr(\Phi) = 0$ Unstable if $\exists F \subset E$ with $\Phi(F) \subset F \otimes K$ and deg(F) > 0.

Topological invariants

Topological H bundles over X are classified by $\pi_1(H) = \pi_1(G) = \pi_1(H_{\mathbb{C}})$.

$$\mathcal{M}(\mathsf{G}) = \bigsqcup_{\pmb{\omega} \in \pi_1(\mathsf{H})} \mathcal{M}^{\pmb{\omega}}(\mathsf{G})$$

If G is compact or complex $\mathcal{M}^{\omega}(\mathsf{G})$ is nonempty and connected (Ramanathan, Li). For a real groups this is more complicated

Theorem (Hitchin)

If G is a split real group (such as $PSL(n,\mathbb{R}), Sp(2n,\mathbb{R}), SO_0(p,p+1)$) there is a connected component of $\mathcal{M}(G)$ which is diffeomorphic to a vector space of holomorphic differentials and not distinguished by $\pi_1(H)$ if $rank(G) \geq 2$.

$$\mathsf{Hit}(\mathsf{SO}_0(p,p+1)) = igoplus_{j=1}^p H^0(\mathcal{K}^{2j})$$

$SO_0(p, p + 1)$ -Higgs bundles

Definition

An $SO_0(p, p+1)$ -Higgs bundle is a triple (V, W, η) where V and W are rank p and p+1 orthogonal vector bundles with trivial determinant and $\eta \in H^0(V^* \otimes W \otimes K)$... $\eta : V \rightarrow W \otimes K$.

Orthogonal structures $Q_V:V\stackrel{\cong}{\longrightarrow} V^*$ and $Q_W:W\stackrel{\cong}{\longrightarrow} W^*$ The corresponding $\mathrm{SL}(2p+1,\mathbb{C})$ -Higgs bundle is

$$(E,\Phi) = \left(V \oplus W, \begin{pmatrix} 0 & \eta^T \\ \eta & 0 \end{pmatrix}\right)$$

where $\eta^T: W \rightarrow V \otimes K$ is given by $Q_V^{-1} \circ \eta^* \circ Q_W$.

p = 1

$$V = \mathcal{O}, \quad (W, Q_W) = \left(L \oplus L^{-1}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right) \qquad L \stackrel{\beta}{\bigvee_{\gamma}} \mathcal{O} \stackrel{\beta}{\bigvee_{\gamma}} L^{-1}$$
$$\eta = (\beta, \gamma) \in H^0(LK) \oplus H^0(L^{-1}K).$$

If
$$deg(L) > 0$$
 then (by stability) then $\gamma \neq 0 \in H^0(L^{-1}K)$, thus $d = deg(L) \leq 2g - 2$, (similarly $d = deg(L) \geq -2g + 2$)
$$\mathcal{M}(\mathsf{SO}_0(1,2)) = \bigsqcup_{-2g+2 \leq d \leq 2g-2} \mathcal{M}_d(\mathsf{SO}_0(1,2))$$

Theorem (Hitchin)

For $d \neq 0$, the space $\mathcal{M}_d(SO_0(1,2))$ is smooth and diffeomorphic to a rank |d| + g - 1 vector bundle \mathcal{F}_d over $Sym^{-|d|+2g-2}(X)$.

Corollaries

- $|\pi_0(\mathcal{M}(SO_0(1,2))| = 1 + 2(2g-2)$
- If $d \neq 0$, $H^*(\mathcal{M}_d(SO_0(1,2))) \cong H^*(Sym^{-|d|+2g-2}(X))$
- (maximal case) L=K and $\mathcal{M}_{2g-2}(\mathsf{SO}_0(1,2))\cong H^0(K^2)$

$$(V,W,\eta): V,Q_V=L\oplus L^{-1},\begin{pmatrix} 0&1\\1&0\end{pmatrix} W,Q_W$$

$$\eta = (\beta, \gamma) \in H^0(LK \otimes W) \oplus H^0(L^{-1}K \otimes W)$$

Topological invariants: deg(L) and $sw_2 \in H^2(X, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z}$. $deg(L) > 0 \Rightarrow \gamma \neq 0$.

$$LK^{-1} \xrightarrow{\gamma} W \xrightarrow{Q_W} W^* \xrightarrow{\gamma^*} L^{-1}K$$

is an element of $H^0((L^{-1}K)^2) \setminus \{0\}$, thus $deg(L) \leq 2g - 2$

$$\mathcal{M}(\mathsf{SO}_0(2,3)) = \bigsqcup_{2g-2 < b < 2g-2} \mathcal{M}^{b,\mathsf{sw}_2}(\mathsf{SO}_0(2,3))$$

When deg(L) = 2g - 2, $(L^{-1}K)^2 = \mathcal{O}$ (i.e. $L^{-1}K$ is an $O(1,\mathbb{C})$ -bundle).

$$W = im(\gamma) \oplus im(\gamma)^{\perp} \cong LK^{-1} \oplus W_0 \cong det(W_0) \oplus W_0$$

where W_0 is a holomorphic $O(2,\mathbb{C})$ -bundle. In this case, the Higgs bundle is given by:

$$det(W_0)K \xrightarrow{q_2} det(W_0) \xrightarrow{q_2} det(W_0)K^{-1}$$

$$\bigoplus_{\beta_{W_0}^T} W_0 \swarrow_{\beta_{W_0}} \beta_{W_0}$$

New topological invariant: $sw_1(W_0, Q_0) \in H^1(X, \mathbb{Z}/2\mathbb{Z})$, if $sw_1 = 0$

$$deg(M) > 0$$
 then $\mu \in H^0(M^{-1}K^2) \setminus \{0\} \Rightarrow deg(M) \leq 4g - 4g$

$$\mathcal{M}^{2g-2}(\mathsf{SO}_0(2,3)) = \bigsqcup_{sw_1 \neq 0} \mathcal{M}^{2g-2,sw_2}_{sw_1} \ \sqcup \bigsqcup_{0 \leq d \leq 4g-4} \mathcal{M}^{2g-2}_d$$

 $2(2^{2g}-1)+1+4g-4$ components (Bradlow–Garcia-Prada–Gothen) For |b|<2g-2, $\mathcal{M}^{b,sw_2}(\mathsf{SO}_0(2,3))$ is connected (Gothen-Oliviera)

$$|\pi_0(\mathcal{M}(\mathsf{SO}_0(2,3))| = 1 + 2(2g - 1 + 2(2^{2g} - 1) + 4g - 3).$$

Theorem (C.)

For d>0, the space $\mathcal{M}_d^{2g-2}(\mathsf{SO}_0(2,3))$ is smooth and diffeomorphic to the product $\mathcal{F}_d\times H^0(K^2)$ where \mathcal{F}_d is a rank d+3g-3 vector bundle over $\mathit{Sym}^{-d+4g-4}(X)$.

Corollaries

- For d > 0, $H^*(\mathcal{M}_d^{2g-2}(SO_0(2,3))) \cong H^*(Sym^{-d+4g-4}(X))$
- $\mathcal{M}^{2g-2}_{4g-4}(\mathsf{SO}_0(2,3)) \cong H^0(K^4) \oplus H^0(K^2)$ (Hitchin component)

$$\mathcal{M}^{2g-2}(\mathsf{SO}_0(2,3)) = \bigsqcup_{sw_1 \neq 0} \mathcal{M}^{2g-2,sw_2}_{sw_1} \ \sqcup \bigsqcup_{0 \leq d \leq 4g-4} \mathcal{M}^{2g-2}_d$$

Theorem (Alessandrini-C.)

The spaces $\mathcal{M}_{sw_1}^{2g-2,sw_2}(SO_0(2,3))$ is an orbifold 'diffeomorphic' to

$$\mathcal{F}/(\mathbb{Z}/2\mathbb{Z}\oplus\mathbb{Z}/2\mathbb{Z})\times H^0(K_X^2)$$

where $\mathcal{F} \to \operatorname{Prym}^{sw_2}(X_{sw_1},X)$ is the rank 6g-6 vector bundle over the connected component of the Prym variety associated to sw_2 with $\pi^{-1}(M) = H^0(MK_{X_{sw_2}}^2)$. Here $\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$ acts as

$$\tau \cdot (M, \mu) = (\iota^* M, \iota^* \mu)$$
 and $\sigma \cdot (M, \mu) = (\iota^* M, -\iota^* \mu)$

Corollary

 $\mathcal{M}^{2g-2,sw_2}_{sw_1}(\mathsf{SO}_0(2,3))$ deformation retracts onto $\mathsf{Prym}^{sw_2}(X_{sw_1},X)/\mathbb{Z}/2\mathbb{Z}$

Proof

A Higgs bundle in $\mathcal{M}_{sw_1}^{2g-2,sw_2}(SO_0(2,3))$ is given by

Parameterize points of $\mathcal{M}_0^{2g-2}(X_{sw_1}, SO_0(2,3))$ which are ι^* -invariant.

So (M, μ, ν, q_2) is ι^* invariant if $M \in \mathsf{Prym}(X_{\mathsf{sw}_1}, X)$, $\iota^* \mu = \nu$, $\iota^* q_2 = q_2$ Set $\pi : \mathcal{F} \to \mathsf{Prym}(X_{\mathsf{sw}_1}, X)$ with $\pi^{-1}(M) = H^0(MK_{X_{\mathsf{sw}_1}}^2) \cong \mathbb{C}^{3g_{X_{\mathsf{sw}_1}}-3}$. This gives a surjection

$$\mathcal{F} \times H^0(K^2) \longrightarrow \mathcal{M}^{2g-2,sw_2}_{sw_1}(SO_0(2,3))$$

The ι^* -invariant gauge transformations of $(K \oplus K^{-1}, M \oplus M^{-1} \oplus \mathcal{O})$ are $\begin{pmatrix} 1 & 0 & 0 & \pm 1 & 0 \end{pmatrix}$

generated by
$$(g_1, g_2^{\pm}) = \left(\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & \pm 1 & 0 \\ \pm 1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \right)$$

$$(g_1, g_2^{\pm}) \cdot (M, \mu, \nu, q_2) = (M^{-1}, \pm \nu, \pm, \mu, q_2).$$

This gives a difffeomorphism

$$\mathcal{F}/(\mathbb{Z}/2\mathbb{Z})^2\times H^0(K^2)\longleftrightarrow \mathcal{M}^{2g-2,sw_2}_{sw_1}(SO_0(2,3)$$

Dimension check:

$$dim(Prym(X_{SW_1}, X)) = g_{X_{SW_2}} - g = 2g - 1 - g = g - 1$$

fiber dimension: $3gX_{SW1} - 3 = 3(2g - 1) - 3 = 6g - 6$.

Mod(S)-invariant parameterizations of $\mathcal{X}^{2g-2}(SO_0(2,3))$

$$\mathcal{M}(X,\mathsf{G}) \xleftarrow{\cong_X} \mathcal{X}(\pi_1(S),\mathsf{G}) = \mathsf{Hom}^{red}(\pi_1(S),\mathsf{G})/\mathsf{G}$$

$$h_\rho: \widetilde{X} \to \mathsf{G}/\mathsf{H}$$

The mapping class group acts on $\mathcal{X}(\pi_1(S), \mathsf{G})$ but not on $\mathcal{M}(\mathsf{G})$.

Theorem (Labourie, C, Alessandrini-C)

For each maximal $SO_0(2,3)$ -rep $\rho \in \mathcal{X}^{2g-2}(\pi_1(S),SO_0(2,3))$ there is a unique Riemann surface structure X_ρ in which the harmonic metric $h_\rho : \widetilde{X}_\rho \to SO_0(2,3)/SO(2) \times SO(3)$ is a minimal immersion.

Corollary (Labourie, C., Alessandrini-C.)

There is a mapping class group invariant projection

- $\mathcal{X}_d^{2g-2}(SO_0(2,3)) \rightarrow Teich(S)$
- $\mathcal{X}_{sw_1}^{2g-2,sw_2}(SO_0(2,3)) \rightarrow Teich(S)$

If $h_{\rho}:\widetilde{X}{
ightarrow}(\mathsf{G}/\mathsf{K},g)$ is harmonic, the Hopf differential is given by

$$(h_{\rho}^*g)^{(2,0)} = Tr(dh_{\rho}^{1,0} \otimes dh_{\rho}^{1,0}) \in H^0(K_X^2)$$

Measures the failure of h_{ρ} to be conformal. If h_{ρ} is harmonic and conformal then h_{ρ} is a (branched) minimal immersion (Sacks-Uhlenbeck). Consider the energy function on $\mathcal{X}(\mathsf{G}) \times \mathsf{Teich}(S)$

$$\mathcal{E}: \mathcal{X}(\mathsf{G}) \times \mathsf{Teich}(S) \rightarrow \mathbb{R}$$
 $\mathcal{E}(\rho, X) = \int\limits_{X} |dh_{\rho}^{1,0}|^2$

- For each $X \in \text{Teich}(S)$, $\mathcal{E}_X : \mathcal{X}(G) \to \mathbb{R}$ gives the Morse function on $\mathcal{M}(G)$, it has variations of Hodge structures as critical points.
- For each $\rho \in \mathcal{X}(\mathsf{G}), \mathcal{E}_{\rho} : \mathsf{Teich}(S) \to \mathbb{R}$ has minimal immersions as critical points, (Euler-Lagrange Eq $\mathit{Tr}(dh_{\varrho}^{(1,0)} \otimes dh_{\varrho}^{(1,0)}) = 0$).

Theorem (Labourie)

If ρ is a maximal representation then \mathcal{E}_{ρ} is smooth and proper.

Low dimensional isomorphisms and Zariski closures

$$\mathsf{SO}_0(1,2) \cong \mathsf{PSL}(2,\mathbb{R}) \cong \mathsf{PSp}(2,\mathbb{R}) \qquad \text{and} \qquad \mathsf{SO}_0(2,3) \cong \mathsf{PSp}(4,\mathbb{R})$$

 $\mathcal{X}(\mathsf{PSL}(n,\mathbb{R}))$ has 3-components, only the Hitchin component does not contain compact representations. (Hitchin)

Maximal $Sp(4, \mathbb{R})$ reps are special.

Theorem (Bradlow-Garcia-Prada-Gothen, C.)

Each of the components $\mathcal{X}^{2g-2,sw_2}_{sw_1}(SO_0(2,3))$, $\mathcal{X}^{2g-2}_0(SO_0(2,3))$ and $\mathcal{X}^{2g-2}_{4g-4}(SO_0(2,3))$ contain reps Fucshian $SO_0(1,2)$ times SO(2) or irreducibly embedded Fuchsian Zariski closure. For 0 < d < 4g-4, all representations in $\mathcal{X}^{2g-2}_d(SO_0(2,3))$ are Zariski dense.

Theorem (C.)

For each integer $d \in (0, p(2g-2)]$ there is a smooth connected component $\mathcal{M}_d(\mathsf{SO}_0(p, p+1))$ of $\mathcal{M}(\mathsf{SO}_0(p, p+1))$ which is diffeomorphic to the product

$$\mathcal{F}_d \times \bigoplus_{j=1}^{p-1} H^0(K^{2j})$$

where $\mathcal{F}_d \rightarrow \operatorname{Sym}^{-d+p(2g-2)}(X)$ is a rank d+(2p-1)(g-1) vector bundle.

Remark: $dim(\mathcal{F}_d) = dim(H^0(K^{2p}))$

Corollaries

- $H^*(\mathcal{M}_d(SO_0(p, p+1)) \cong Sym^{-d+p(2g-2)}(X)$.
- $|\pi_0(\mathcal{M}(SO_0(p, p+1))| \ge p(2g-2) + 4$
- maximal case $\mathcal{M}_d(\mathsf{SO}_0(p,p+1)) = \mathsf{Hit}(\mathsf{SO}_0(p,p+1)).$

Proof

The Higgs bundles is this component are given by (V, W, η)

$$\eta = \begin{pmatrix}
1 & 0 & 0 & \cdots & 0 & \nu \\
1 & q_2 & q_4 & \cdots & q_{2p-2} \\
& & \ddots & \ddots & \\
& & & 1 & q_2
\end{pmatrix} : V \longrightarrow W \otimes K$$

 $M \in \operatorname{Pic}^d(X)$, $\mu \in H^0(M^{-1}K^p) \setminus \{0\}$, $\nu \in H^0(MK^p)$, (\mathcal{E}, Φ) is given by

 $M \in \text{Pic}^d(X), \ \mu \in H^0(M^{-1}K^p) \setminus \{0\}, \ \nu \in H^0(MK^p), \ q_{2j} \in H^0(K^{2j}).$

Lemma

For $(M, \mu, \nu, q_2, \cdots, q_{2p-2})$ the only gauge transformations which act on this data is $(M, \mu, \nu, q_2, \cdots, q_{2p-2}) \longrightarrow (M, \lambda \mu, \lambda^{-1} \nu, q_2, \cdots, q_{2p-2})$.

$$\mathcal{F}_d imes \bigoplus_{j=1}^r H^0(K^{2j}) \longrightarrow \mathcal{M}(\mathsf{SO}_0(p,p+1))$$
 open $tr(\Phi^{2j}) = q_{2j} \text{ for } j Since $\mathsf{Sym}^a(X)$ is compact, and the Hitchin fibration is proper, a divergent sequence in$

There is also a component $\mathcal{M}_0(\mathsf{SO}_0(p,p+1))$

$$M \in \operatorname{Pic}^{0}(X), \ \mu \in H^{0}(M^{-1}K^{p}), \ \nu \in H^{0}(MK^{p}), \ \nu = 0 \Leftrightarrow \mu = 0$$

Lemma

For $(M,\mu,\nu,q_2,\cdots,q_{2p-2})$ the only gauge transformations which act on this data is $(M,\mu,\nu,q_2,\cdots,q_{2p-2}) \longrightarrow (M,\lambda\mu,\lambda^{-1}\nu,q_2,\cdots,q_{2p-2})$ and $(M,\mu,\nu,q_2,\cdots,q_{2p-2}) \longrightarrow (M^{-1},\lambda\nu,\lambda^{-1}\mu,q_2,\cdots,q_{2p-2})$.

- Image of Ψ has dimension $dim(\{M,\mu,\nu\}/\mathbb{C}^* \times \mathbb{Z}/2\mathbb{Z})$ which is the expected dimension
- Properness of the Hitchin fibration implies the closure of the image of

Connected componets of $\mathcal{M}(\mathsf{SO}_0(p,p+1))$

Theorem (Arroyo—Bradlow—C.—Gothen—Garcia-Prada—Oliveira)

For
$$p$$
-odd, $|\pi_0(\mathcal{M}(\mathsf{SO}_0(p,p+1)))| = 1 + p(2g-2) + 4$.
For p -even, $|\pi_0(\mathcal{M}(\mathsf{SO}_0(p,p+1)))| = 2(2^{2g}-1) + 1 + p(2g-2) + 4$.

Parameterizations

If is p-even then for each $(sw_1, sw_2) \in H^1(X, \mathbb{Z}/2\mathbb{Z}) \setminus \{0\} \times H^2(X, \mathbb{Z}/2\mathbb{Z})$ there is a component $\mathcal{M}(\mathsf{SO}_0(p, p+1))$ which is an orbifold diffeomorphic to $\mathcal{F}/(\mathbb{Z}/2\mathbb{Z})^2 \times \bigoplus_{j=1}^{p-1} H^0(K^{2j})$ where $\pi: \mathcal{F} \to \mathsf{Prym}(X_{sw_1}, X)$ is the rank (2p-1)(2g-2) vector bundle with $\pi^{-1}(M) = H^0(MK_{X_{sw_2}}^p)$.

The Higgs bundles are given by

 W_0 is a holomorphic $O(2,\mathbb{C})$ bundle with $det(W_0)=I$. Pulling back to the orientation double cover...

Remarks on Positivity

- If deg(M) = 0 and $\mu = \nu = 0$, then the representation has Zariski closure in $SO(p-1,p) \times SO(2)$ and it is Anosov.
- Better, it is POSITIVE.
- Similarly for $\mathcal{M}^{2g-2,sw_2}_{sw_1}(\mathsf{SO}_0(p,p+1))$ if $\eta_0=0$ then the Zariski closure is in $\mathsf{S}(\mathsf{O}(p,p-1)\times\mathsf{O}(2))$ and is POSITIVE.
- If Guichard-Wienhard conjecture is true (positivity is a closed condition) then the whole components $\mathcal{M}_0^{2g-2}(\mathsf{SO}_0(p,p-1))$ and $\mathcal{M}_{\mathsf{sw}_1}^{2g-2,\mathsf{sw}_2}(\mathsf{SO}_0(p,p+1))$ correspond to positive representations.
- If $deg(M) \neq 0$ the components are smooth, so there are no preferred (Fuchsian/Hitchin) points.

Thank you

HAPPY BIRTHDAY NIGEL