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1 The classical factorization method

Consider the unit mass 2D anisotropic oscillator classical Hamiltonian on the Euclidean plane

H =
1

2
(p2x + p2y) +

1

2
(ω2

xx
2 + ω2

yy
2),

where (x, y) ∈ R2 are Cartesian coordinates, (px, py) their conjugate momenta and the frequencies (ωx, ωy)
are arbitrary real numbers. If we introduce

ωx = γωy, ωy = ω, γ ∈ R+/{0}, ξ = γx, pξ = px/γ, ξ ∈ R, (1.1)

the Hamiltonian H can be rewritten as

H =
1

2
p2y +

ω2

2
y2 + γ2

(
1

2
p2ξ +

ω2

2γ2
ξ2
)
. (1.2)

The two 1D Hamiltonians Hξ and Hy given by

Hξ =
1

2
p2ξ +

ω2

2γ2
ξ2, Hy =

1

2
p2y +

ω2

2
y2, H = Hy + γ2Hξ, (1.3)

are two integrals of the motion for H: {H,Hξ} = {H,Hy} = {Hξ, Hy} = 0.

The factorization approach is based on the definition of “ladder functions” B±, such that Hξ =
B+B−, and “shift functions” A±, satisfying Hy = A+A−. These are

B± = ∓ i√
2
pξ +

1√
2

ω

γ
ξ , {Hξ, B±} = ∓i ω

γ
B±, {B−, B+} = −i ω

γ
.

A± = ∓ i√
2
py −

ω√
2
y , {Hy, A±} = ±iωA±, {A−, A+} = iω.

The remarkable point now is that if we consider a rational value for γ,

γ =
ωx
ωy

=
m

n
, m, n ∈ N∗, (1.4)

we obtain two complex additional constants of motion X± and from them two real ones X and Y :

X± = (B±)n(A±)m , X =
1

2
(X+ +X−), Y =

1

2i
(X+ −X−). (1.5)

Thus we recover the (super)integrable anisotropic Euclidean oscillators [1, 2, 3]:

Theorem 1. (i) The Hamiltonian H (1.2) is integrable for any value of the real parameter γ, since it
is endowed with a quadratic constant of motion given by either Hξ or Hy (1.3).

(ii) When γ = m/n is a rational parameter (1.4), the Hamiltonian (1.2) defines a superintegrable
anisotropic oscillator with commensurate frequencies ωx : ωy and the additional constant of motion is
given by either X or Y in (1.5). The sets (H,Hξ, X) and (H,Hξ, Y ) are formed by three functionally
independent functions.

• The 1 : 1 oscillator. We set γ = 1 so m = n = 1, ωx = ωy = ω, ξ = x and pξ = px:

H1:1 =
1

2
(p2x + p2y) +

ω2

2
(x2 + y2),

X = −1
2
(pxpy + ω2xy), Y = −1

2
ω(xpy − ypx).

The quadratic integral X is one of the components of the Demkov–Fradkin tensor, meanwhile Y is
proportional to the angular momentum J = xpy − ypx.

• The 2 : 1 oscillator. Take γ = 2, m = 2 and n = 1, ωx = 2ωy = 2ω, ξ = 2x and pξ = px/2:

H2:1 =
1

2
p2y +

ω2

2
y2 + 4

(
1

2
p2ξ +

ω2

8
ξ2
)

=
1

2
(p2x + p2y) +

ω2

2

(
4x2 + y2

)
,

X = − ω

4
√

2

(
py(ξpy − 4ypξ)− ω2ξy2

)
= − ω

2
√

2

(
pyJ − ω2xy2

)
,

Y =
1

2
√

2

(
pξp

2
y + ω2y(ξpy − ypξ)

)
=

1

4
√

2

(
pxp

2
y + ω2y(4xpy − ypx)

)
.

Remark. Any m : n oscillator (with γ) is equivalent to the n : m one (with 1/γ). This (trivial) fact
from the Euclidean viewpoint will no longer hold when the curvature of the space is non-vanishing.

2 The quantum factorization method

The 2D anisotropic oscillator quantum Hamiltonian on the Euclidean plane reads

Ĥ =
1

2
(p̂2x + p̂2y) +

1

2
(ω2

xx
2 + ω2

yy
2) = −~2

2

(
∂2

∂x2
+

∂2

∂y2

)
+

1

2
(ω2

xx
2 + ω2

yy
2).

By introducing the frequency ω and the new variable ξ (1.1) we find that

Ĥ = −~2

2

∂2

∂ y2
+
ω2

2
y2 + γ2

(
−~2

2

∂2

∂ ξ2
+

ω2

2γ2
ξ2
)
, (2.1)

and the corresponding eigenvalue equation is given by Ĥ Ψ(ξ, y) = EΨ(ξ, y). From (2.1) we get the
1D Hamiltonian operators

Ĥξ = −~2

2

∂2

∂ ξ2
+

ω2

2γ2
ξ2, Ĥy = −~2

2

∂2

∂ y2
+
ω2

2
y2, Ĥ = Ĥy + γ2Ĥξ , (2.2)

such that [Ĥ, Ĥξ] = [Ĥ, Ĥy] = [Ĥξ, Ĥy] = 0. We look for factorized solutions, Ψ(ξ, y) = Ξ(ξ)Y (y):

Ĥξ Ξ(ξ) = Eξ Ξ(ξ), Ĥy Y (y) = Ey Y (y).

The factorizations of these systems in terms of ladder operators B̂± and shift operators Â± read

Ĥξ = B̂+B̂− + λB, Ĥy = Â+Â− + λA,

B̂± = ∓ ~√
2

∂

∂ξ
+

ω√
2γ

ξ, λB =
~ω
2γ
,

Â± = ∓ ~√
2

∂

∂y
− ω√

2
y, λA = −~ω

2
.

The commutation rules of the two sets of operators (Ĥξ, B̂±) and (Ĥy, Â±) read

[Ĥξ, B̂±] = ±~ω
γ
B̂±, [B̂−, B̂+] =

~ω
γ
,

[Ĥy, Â±] = ∓~ωÂ±, [Â−, Â+] = −~ω.

If γ = m/n, with m,n ∈ N∗, as in the classical case, we obtain “additional” higher-order symmetries
for Ĥ (2.1), beyond Ĥξ and Ĥy, since the operators

X̂± = (B̂±)n (Â±)m are such that [Ĥ, X̂±] = 0 . (2.3)

Summarizing, the quantum counterpart of Theorem 1 can be stated as follows.

Theorem 2. (i) The Hamiltonian Ĥ (2.1) commutes with the operators Ĥξ and Ĥy (2.2) and defines
an integrable quantum system for any value of the real parameter γ.

(ii) Whenever γ = m/n is a rational parameter, the Hamiltonian Ĥ commutes with X̂± (2.3). The sets
(Ĥ, Ĥξ, X̂+) and (Ĥ, Ĥξ, X̂−) are formed by three algebraically independent observables. The quantum
anisotropic oscillator with commensurate frequencies ωx : ωy is a superintegrable quantum model.

Remark. From this the corresponding spectrum can be found which is degenerate for a rational γ [4].

3 Classical anisotropic curved oscillators

The curved analog of the Euclidean Hamiltonian H on the sphere S2 (κ > 0) and on the hyper-
bolic plane H2 (κ < 0) is given in terms of the Gaussian curvature κ by [4]

Hκ = Tκ + Uγ
κ =

1

2

(
p2x

C2
κ(y)

+ p2y

)
+
ω2

2

(
T2
κ(γx)

C2
κ(y)

+ T2
κ(y)

)
(3.1)

Cκ(u) =


cos
√
κu κ > 0

1 κ = 0
cosh

√
−κu κ < 0

, Sκ(u) =


1√
κ

sin
√
κu κ > 0

u κ = 0
1√
−κ sinh

√
−κu κ < 0

, Tκ(u) ≡ Sκ(u)

Cκ(u)
.

After introducing ξ = γx (1.1) we find that

Hκ =
p2y
2

+
γ2Hξ

κ

C2
κ(y)

− ω2

2κ
, Hξ

κ =
p2ξ
2

+
ω2

2κγ2 C2
κ(ξ)

, {Hκ, H
ξ
κ} = 0. (3.2)

Next ladder and shift functions for Hξ
κ are found to be

Hξ
κ = B+

κ B
−
κ +

ω2

2κγ2
, B±κ = ∓ i√

2
Cκ(ξ) pξ +

Eκ√
2

Sκ(ξ), Eκ(pξ, ξ) =

√
2κHξ

κ .

Hκ = A+
κA
−
κ + λAκ , A±κ = ∓ i√

2
py −

γEκ√
2

Tκ(y), λAκ =
1

2κ

(
γ2E2κ − ω2

)
.

These functions provide two additional integrals of the motion [4]:

{Hκ, X
±
κ } = 0, where X±κ = (B±κ )n(A±κ )m .

Theorem 3. (i) For any γ, the Hamiltonian Hκ (3.1) defines an integrable anisotropic curved
oscillator on S2 and H2, whose (quadratic) constant of motion is given by Hξ

κ (3.2).

(ii) When γ = m/n is a rational parameter, Hκ defines a superintegrable anisotropic curved oscil-
lator and the additional constant of motion is given by either X+

κ or X−κ . The sets (Hκ, H
ξ
κ, X

+
κ ) and

(Hκ, H
ξ
κ, X

−
κ ) are formed by three functionally independent functions.

4 Quantum anisotropic curved oscillators

We define the quantum curved anisotropic oscillator Hamiltonian by [4]

Ĥκ = −~2

2

(
1

C2
κ(y)

∂2

∂x2
+

∂2

∂y2
− κTκ(y)

∂

∂y

)
+
ω2

2

(
T2
κ(γx)

C2
κ(y)

+ T2
κ(y)

)
. (4.1)

After the change of variable ξ = γx (1.1) we write Ĥκ in terms of a 1D symmetry operator Ĥξ
κ

Ĥκ = −~2

2

∂2

∂y2
+

~2

2
κTκ(y)

∂

∂y
+
γ2Ĥξ

κ

C2
κ(y)

− ω2

2κ
, κ 6= 0,

Ĥξ
κ = −~2

2

∂2

∂ξ2
+

ω2

2κγ2 C2
κ(ξ)

, [Ĥκ, Ĥ
ξ
κ] = 0. (4.2)

The eigenvalue equation for Ĥκ is ĤκΨκ(ξ, y) = EκΨκ(ξ, y) with factorizable solutions of the form
Ψκ(ξ, y) = Ξε

κ(ξ)Y
γε
κ (y). Now ladder operators B̂±κ for Ĥξ

κ turn out to be

B̂−κ =
~√
2

Cκ(ξ)
∂

∂ ξ
+

1√
2

Sκ(ξ) Êκ,

B̂+
κ = − ~√

2
Cκ(ξ)

∂

∂ ξ
+

1√
2

Sκ(ξ) Êκ,

λ̂Bκ = −Êκ
2κ

(Êκ + ~κ), Êκ Ξε
κ(ξ) = εΞε

κ(ξ) .

And the shift operators Ĥκ = Â+
κ Â
−
κ + λ̂Aκ are given by

Â+
κ = − ~√

2

∂

∂y
− 1√

2
(γÊκ − ~κ) Tκ(y),

Â−κ =
~√
2

∂

∂y
− γÊκ√

2
Tκ(y), λ̂Aκ =

γÊκ
2κ

(γÊκ − ~κ)− ω2

2κ
.

Then the “additional” symmetry operators X̂±κ for the quantum Hamiltonian Ĥκ in the rational
γ = m/n case are defined as

X̂±κ = (Â±κ )m(B̂±κ )n, m, n ∈ N∗. (4.3)

Theorem 4. (i) The quantum Hamiltonian Ĥκ (4.1) defines an integrable quantum system for any
value of the parameter γ, since it commutes with the operator Ĥξ

κ (4.2).

(ii) When γ is a rational parameter, Ĥκ defines a superintegrable anisotropic quantum curved
oscillator with additional symmetry operators given by (4.3). The sets (Ĥκ, Ĥ

ξ
κ, X̂

+
κ ) and (Ĥκ, Ĥ

ξ
κ, X̂

−
κ )

are formed by three algebraically independent operators.

Remark. The corresponding spectrum of Ĥκ on the sphere and on the hyperbolic case has been analyt-
ically solved in [4]. For a rational γ the spectrum is degenerate providing a new exactly solvable
model. Furthermore, the spectrum of the quantum anisotropic oscillator on S2 is purely discrete (and
has infinite values), whilst a (finite) discrete spectrum plus a continuous one arises for the system on H2.
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