The anisotropic oscillator on curved spaces: A new exactly solvable model

Ángel Ballesteros^a, <u>Francisco J. Herranz</u>^a, Şengul Kuru^b and Javier Negro^c ^aU. de Burgos, Spain ^bU. of Ankara, Turkey ^cU. de Valladolid, Spain

1 The classical factorization method

Consider the unit mass 2D anisotropic oscillator classical Hamiltonian on the Euclidean plane

$$H = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(\omega_x^2 x^2 + \omega_y^2 y^2)$$

where $(x, y) \in \mathbb{R}^2$ are Cartesian coordinates, (p_x, p_y) their conjugate momenta and the frequencies (ω_x, ω_y) are arbitrary real numbers. If we introduce

$$\omega_x = \gamma \omega_y, \qquad \omega_y = \omega, \qquad \gamma \in \mathbb{R}^+ / \{0\}, \qquad \xi = \gamma x, \qquad p_\xi = p_x / \gamma, \qquad \xi \in \mathbb{R}, \tag{1.1}$$

the Hamiltonian ${\cal H}$ can be rewritten as

$$H = \frac{1}{2}p_y^2 + \frac{\omega^2}{2}y^2 + \gamma^2 \left(\frac{1}{2}p_\xi^2 + \frac{\omega^2}{2\gamma^2}\xi^2\right).$$
 (1.2)

The two 1D Hamiltonians H^{ξ} and H^{y} given by

$$H^{\xi} = \frac{1}{2}p_{\xi}^{2} + \frac{\omega^{2}}{2\gamma^{2}}\xi^{2}, \qquad H^{y} = \frac{1}{2}p_{y}^{2} + \frac{\omega^{2}}{2}y^{2}, \qquad H = H^{y} + \gamma^{2}H^{\xi}, \tag{1.3}$$

are two integrals of the motion for H: $\{H, H^{\xi}\} = \{H, H^{y}\} = \{H^{\xi}, H^{y}\} = 0.$

The factorization approach is based on the definition of "ladder functions" B^{\pm} , such that $H^{\xi} = B^+B^-$, and "shift functions" A^{\pm} , satisfying $H^y = A^+A^-$. These are

$$B^{\pm} = \mp \frac{i}{\sqrt{2}} p_{\xi} + \frac{1}{\sqrt{2}} \frac{\omega}{\gamma} \xi, \qquad \{H^{\xi}, B^{\pm}\} = \mp i \frac{\omega}{\gamma} B^{\pm}, \qquad \{B^{-}, B^{+}\} = -i \frac{\omega}{\gamma}.$$
$$A^{\pm} = \mp \frac{i}{\sqrt{2}} p_{y} - \frac{\omega}{\sqrt{2}} y, \qquad \{H^{y}, A^{\pm}\} = \pm i \omega A^{\pm}, \qquad \{A^{-}, A^{+}\} = i \omega.$$

The remarkable point now is that if we consider a rational value for γ ,

$$\gamma = \frac{\omega_x}{\omega_y} = \frac{m}{n}, \qquad m, n \in \mathbb{N}^*, \tag{1.4}$$

we obtain two complex additional constants of motion X^{\pm} and from them two real ones X and Y:

$$X^{\pm} = (B^{\pm})^{n} (A^{\pm})^{m}, \qquad X = \frac{1}{2} (X^{+} + X^{-}), \qquad Y = \frac{1}{2i} (X^{+} - X^{-}).$$
(1.5)

Thus we recover the (super)integrable anisotropic Euclidean oscillators [1, 2, 3]:

Theorem 1. (i) The Hamiltonian H(1.2) is integrable for any value of the real parameter γ , since it is endowed with a quadratic constant of motion given by either H^{ξ} or $H^{y}(1.3)$.

(ii) When $\gamma = m/n$ is a rational parameter (1.4), the Hamiltonian (1.2) defines a superintegrable anisotropic oscillator with commensurate frequencies $\omega_x : \omega_y$ and the additional constant of motion is given by either X or Y in (1.5). The sets (H, H^{ξ}, X) and (H, H^{ξ}, Y) are formed by three functionally independent functions.

• The 1:1 oscillator. We set
$$\gamma = 1$$
 so $m = n = 1$, $\omega_x = \omega_y = \omega$, $\xi = x$ and $p_{\xi} = p_x$:

$$H^{1:1} = \frac{1}{2}(p_x^2 + p_y^2) + \frac{\omega^2}{2}(x^2 + y^2),$$

$$X = -\frac{1}{2}(p_x p_y + \omega^2 x y), \qquad Y = -\frac{1}{2}\omega(xp_y - yp_x).$$

The commutation rules of the two sets of operators $(\hat{H}^{\xi}, \hat{B}^{\pm})$ and $(\hat{H}^{y}, \hat{A}^{\pm})$ read

$$[\hat{H}^{\xi}, \hat{B}^{\pm}] = \pm \frac{\hbar\omega}{\gamma} \hat{B}^{\pm}, \qquad [\hat{B}^{-}, \hat{B}^{+}] = \frac{\hbar\omega}{\gamma},$$
$$[\hat{H}^{y}, \hat{A}^{\pm}] = \mp \hbar\omega \hat{A}^{\pm}, \qquad [\hat{A}^{-}, \hat{A}^{+}] = -\hbar\omega$$

If $\gamma = m/n$, with $m, n \in \mathbb{N}^*$, as in the classical case, we obtain "additional" higher-order symmetries for \hat{H} (2.1), beyond \hat{H}^{ξ} and \hat{H}^{y} , since the operators

$$\hat{X}^{\pm} = (\hat{B}^{\pm})^n \, (\hat{A}^{\pm})^m \qquad \text{are such that} \qquad [\hat{H}, \hat{X}^{\pm}] = 0 \,.$$
 (2.3)

Summarizing, the quantum counterpart of Theorem 1 can be stated as follows.

Theorem 2. (i) The Hamiltonian \hat{H} (2.1) commutes with the operators \hat{H}^{ξ} and \hat{H}^{y} (2.2) and defines an integrable quantum system for any value of the real parameter γ .

(ii) Whenever $\gamma = m/n$ is a rational parameter, the Hamiltonian \hat{H} commutes with \hat{X}^{\pm} (2.3). The sets $(\hat{H}, \hat{H}^{\xi}, \hat{X}^{+})$ and $(\hat{H}, \hat{H}^{\xi}, \hat{X}^{-})$ are formed by three algebraically independent observables. The quantum anisotropic oscillator with commensurate frequencies $\omega_x : \omega_y$ is a superintegrable quantum model.

Remark. From this the corresponding spectrum can be found which is degenerate for a rational γ [4]

3 Classical anisotropic curved oscillators

The curved analog of the Euclidean Hamiltonian H on the sphere S^2 ($\kappa > 0$) and on the hyperbolic plane H^2 ($\kappa < 0$) is given in terms of the Gaussian curvature κ by [4]

$$H_{\kappa} = \mathcal{T}_{\kappa} + U_{\kappa}^{\gamma} = \frac{1}{2} \left(\frac{p_x^2}{C_{\kappa}^2(y)} + p_y^2 \right) + \frac{\omega^2}{2} \left(\frac{T_{\kappa}^2(\gamma x)}{C_{\kappa}^2(y)} + T_{\kappa}^2(y) \right)$$
(3.1)

$$C_{\kappa}(u) = \begin{cases} \cos\sqrt{\kappa} u & \kappa > 0\\ 1 & \kappa = 0\\ \cosh\sqrt{-\kappa} u & \kappa < 0 \end{cases}, \quad S_{\kappa}(u) = \begin{cases} \frac{1}{\sqrt{\kappa}}\sin\sqrt{\kappa} u & \kappa > 0\\ u & \kappa = 0\\ \frac{1}{\sqrt{-\kappa}}\sinh\sqrt{-\kappa} u & \kappa < 0 \end{cases}, \quad T_{\kappa}(u) \equiv \frac{S_{\kappa}(u)}{C_{\kappa}(u)}.$$

After introducing $\xi = \gamma x$ (1.1) we find that

$$H_{\kappa} = \frac{p_y^2}{2} + \frac{\gamma^2 H_{\kappa}^{\xi}}{C_{\kappa}^2(y)} - \frac{\omega^2}{2\kappa}, \qquad H_{\kappa}^{\xi} = \frac{p_{\xi}^2}{2} + \frac{\omega^2}{2\kappa\gamma^2 C_{\kappa}^2(\xi)}, \qquad \{H_{\kappa}, H_{\kappa}^{\xi}\} = 0.$$
(3.2)

Next **ladder** and **shift** functions for H_{κ}^{ξ} are found to be

$$H_{\kappa}^{\xi} = B_{\kappa}^{+} B_{\kappa}^{-} + \frac{\omega^{2}}{2\kappa\gamma^{2}}, \qquad B_{\kappa}^{\pm} = \mp \frac{i}{\sqrt{2}} C_{\kappa}(\xi) p_{\xi} + \frac{\mathcal{E}_{\kappa}}{\sqrt{2}} S_{\kappa}(\xi), \qquad \mathcal{E}_{\kappa}(p_{\xi},\xi) = \sqrt{2\kappa H_{\kappa}^{\xi}}.$$
$$H_{\kappa} = A_{\kappa}^{+} A_{\kappa}^{-} + \lambda_{\kappa}^{A}, \qquad A_{\kappa}^{\pm} = \mp \frac{i}{\sqrt{2}} p_{y} - \frac{\gamma \mathcal{E}_{\kappa}}{\sqrt{2}} T_{\kappa}(y), \qquad \lambda_{\kappa}^{A} = \frac{1}{2\kappa} \left(\gamma^{2} \mathcal{E}_{\kappa}^{2} - \omega^{2}\right).$$

These functions provide two additional integrals of the motion [4]:

$$\{H_{\kappa}, X_{\kappa}^{\pm}\} = 0, \quad \text{where} \quad X_{\kappa}^{\pm} = (B_{\kappa}^{\pm})^n (A_{\kappa}^{\pm})^m.$$

Theorem 3. (i) For any γ , the Hamiltonian H_{κ} (3.1) defines an integrable anisotropic curved oscillator on \mathbf{S}^2 and \mathbf{H}^2 , whose (quadratic) constant of motion is given by H_{κ}^{ξ} (3.2).

(ii) When $\gamma = m/n$ is a rational parameter, H_{κ} defines a superintegrable anisotropic curved oscillator and the additional constant of motion is given by either X_{κ}^+ or X_{κ}^- . The sets $(H_{\kappa}, H_{\kappa}^{\xi}, X_{\kappa}^+)$ and $(H_{\kappa}, H_{\kappa}^{\xi}, X_{\kappa}^-)$ are formed by three functionally independent functions.

4 Quantum anisotropic curved oscillators

We define the quantum curved anisotropic oscillator Hamiltonian by [4]

$$\hat{H}_{\kappa} = -\frac{\hbar^2}{2} \left(\frac{1}{C_{\kappa}^2(y)} \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \kappa \operatorname{T}_{\kappa}(y) \frac{\partial}{\partial y} \right) + \frac{\omega^2}{2} \left(\frac{\operatorname{T}_{\kappa}^2(\gamma x)}{C_{\kappa}^2(y)} + \operatorname{T}_{\kappa}^2(y) \right).$$
(4.1)

The quadratic integral X is one of the components of the **Demkov–Fradkin tensor**, meanwhile Y is proportional to the **angular momentum** $J = xp_y - yp_x$.

• The 2:1 oscillator. Take $\gamma = 2$, m = 2 and n = 1, $\omega_x = 2\omega_y = 2\omega$, $\xi = 2x$ and $p_{\xi} = p_x/2$:

$$\begin{split} H^{2:1} &= \frac{1}{2} p_y^2 + \frac{\omega^2}{2} y^2 + 4 \left(\frac{1}{2} p_{\xi}^2 + \frac{\omega^2}{8} \xi^2 \right) = \frac{1}{2} (p_x^2 + p_y^2) + \frac{\omega^2}{2} \left(4x^2 + y^2 \right), \\ X &= -\frac{\omega}{4\sqrt{2}} \left(p_y (\xi p_y - 4y p_{\xi}) - \omega^2 \xi y^2 \right) = -\frac{\omega}{2\sqrt{2}} \left(p_y J - \omega^2 x y^2 \right), \\ Y &= \frac{1}{2\sqrt{2}} \left(p_{\xi} p_y^2 + \omega^2 y (\xi p_y - y p_{\xi}) \right) = \frac{1}{4\sqrt{2}} \left(p_x p_y^2 + \omega^2 y (4x p_y - y p_x) \right). \end{split}$$

Remark. Any m : n oscillator (with γ) is equivalent to the n : m one (with $1/\gamma$). This (trivial) fact from the Euclidean viewpoint will no longer hold when the **curvature** of the space is non-vanishing.

2 The quantum factorization method

The 2D anisotropic oscillator quantum Hamiltonian on the Euclidean plane reads

$$\hat{H} = \frac{1}{2}(\hat{p}_x^2 + \hat{p}_y^2) + \frac{1}{2}(\omega_x^2 x^2 + \omega_y^2 y^2) = -\frac{\hbar^2}{2}\left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}\right) + \frac{1}{2}(\omega_x^2 x^2 + \omega_y^2 y^2).$$

By introducing the frequency ω and the new variable ξ (1.1) we find that

$$\hat{H} = -\frac{\hbar^2}{2} \frac{\partial^2}{\partial y^2} + \frac{\omega^2}{2} y^2 + \gamma^2 \left(-\frac{\hbar^2}{2} \frac{\partial^2}{\partial \xi^2} + \frac{\omega^2}{2\gamma^2} \xi^2 \right), \qquad (2.1)$$

and the corresponding **eigenvalue equation** is given by $\hat{H} \Psi(\xi, y) = E \Psi(\xi, y)$. From (2.1) we get the 1D Hamiltonian operators

$$\hat{H}^{\xi} = -\frac{\hbar^2}{2} \frac{\partial^2}{\partial \xi^2} + \frac{\omega^2}{2\gamma^2} \xi^2, \qquad \hat{H}^y = -\frac{\hbar^2}{2} \frac{\partial^2}{\partial y^2} + \frac{\omega^2}{2} y^2, \qquad \hat{H} = \hat{H}^y + \gamma^2 \hat{H}^{\xi}, \qquad (2.2)$$

such that $[\hat{H}, \hat{H}^{\xi}] = [\hat{H}, \hat{H}^{y}] = [\hat{H}^{\xi}, \hat{H}^{y}] = 0$. We look for factorized solutions, $\Psi(\xi, y) = \Xi(\xi) Y(y)$:

$$\hat{H}^{\xi} \Xi(\xi) = E^{\xi} \Xi(\xi), \qquad \hat{H}^{y} Y(y) = E^{y} Y(y)$$

The factorizations of these systems in terms of ladder operators \hat{B}^{\pm} and shift operators \hat{A}^{\pm} read

$$\begin{split} \hat{H}^{\xi} &= \hat{B}^{+}\hat{B}^{-} + \lambda^{B}, \qquad \hat{H}^{y} = \hat{A}^{+}\hat{A}^{-} + \lambda^{A}, \\ \hat{B}^{\pm} &= \mp \frac{\hbar}{\sqrt{2}}\frac{\partial}{\partial\xi} + \frac{\omega}{\sqrt{2}\gamma}\xi, \qquad \lambda^{B} = \frac{\hbar\omega}{2\gamma}, \\ \hat{A}^{\pm} &= \mp \frac{\hbar}{\sqrt{2}}\frac{\partial}{\partial y} - \frac{\omega}{\sqrt{2}}y, \qquad \lambda^{A} = -\frac{\hbar\omega}{2}. \end{split}$$

After the change of variable $\xi = \gamma x$ (1.1) we write \hat{H}_{κ} in terms of a 1D symmetry operator \hat{H}_{κ}^{ξ}

$$\hat{H}_{\kappa} = -\frac{\hbar^2}{2} \frac{\partial^2}{\partial y^2} + \frac{\hbar^2}{2} \kappa \operatorname{T}_{\kappa}(y) \frac{\partial}{\partial y} + \frac{\gamma^2 \hat{H}_{\kappa}^{\xi}}{\operatorname{C}_{\kappa}^2(y)} - \frac{\omega^2}{2\kappa}, \qquad \kappa \neq 0,$$
$$\hat{H}_{\kappa}^{\xi} = -\frac{\hbar^2}{2} \frac{\partial^2}{\partial \xi^2} + \frac{\omega^2}{2\kappa\gamma^2 \operatorname{C}_{\kappa}^2(\xi)}, \qquad [\hat{H}_{\kappa}, \hat{H}_{\kappa}^{\xi}] = 0.$$
(4.2)

The **eigenvalue equation** for \hat{H}_{κ} is $\hat{H}_{\kappa}\Psi_{\kappa}(\xi, y) = E_{\kappa}\Psi_{\kappa}(\xi, y)$ with factorizable solutions of the form $\Psi_{\kappa}(\xi, y) = \Xi_{\kappa}^{\epsilon}(\xi) Y_{\kappa}^{\gamma\epsilon}(y)$. Now **ladder operators** \hat{B}_{κ}^{\pm} for \hat{H}_{κ}^{ξ} turn out to be

$$\hat{B}_{\kappa}^{-} = \frac{\hbar}{\sqrt{2}} C_{\kappa}(\xi) \frac{\partial}{\partial \xi} + \frac{1}{\sqrt{2}} S_{\kappa}(\xi) \hat{\mathcal{E}}_{\kappa},$$
$$\hat{B}_{\kappa}^{+} = -\frac{\hbar}{\sqrt{2}} C_{\kappa}(\xi) \frac{\partial}{\partial \xi} + \frac{1}{\sqrt{2}} S_{\kappa}(\xi) \hat{\mathcal{E}}_{\kappa},$$
$$\hat{\lambda}_{\kappa}^{B} = -\frac{\hat{\mathcal{E}}_{\kappa}}{2\kappa} (\hat{\mathcal{E}}_{\kappa} + \hbar\kappa), \qquad \hat{\mathcal{E}}_{\kappa} \Xi_{\kappa}^{\epsilon}(\xi) = \epsilon \Xi_{\kappa}^{\epsilon}(\xi)$$

And the **shift operators** $\hat{H}_{\kappa} = \hat{A}^+_{\kappa} \hat{A}^-_{\kappa} + \hat{\lambda}^A_{\kappa}$ are given by

Then the "additional" symmetry operators \hat{X}^{\pm}_{κ} for the quantum Hamiltonian \hat{H}_{κ} in the rational $\gamma = m/n$ case are defined as

$$\hat{X}^{\pm}_{\kappa} = (\hat{A}^{\pm}_{\kappa})^m (\hat{B}^{\pm}_{\kappa})^n, \qquad m, n \in \mathbb{N}^*.$$

$$(4.3)$$

Theorem 4. (i) The quantum Hamiltonian \hat{H}_{κ} (4.1) defines an integrable quantum system for any value of the parameter γ , since it commutes with the operator \hat{H}_{κ}^{ξ} (4.2).

(ii) When γ is a rational parameter, \hat{H}_{κ} defines a superintegrable anisotropic quantum curved oscillator with additional symmetry operators given by (4.3). The sets $(\hat{H}_{\kappa}, \hat{H}_{\kappa}^{\xi}, \hat{X}_{\kappa}^{+})$ and $(\hat{H}_{\kappa}, \hat{H}_{\kappa}^{\xi}, \hat{X}_{\kappa}^{-})$ are formed by three algebraically independent operators.

Remark. The corresponding spectrum of \hat{H}_{κ} on the sphere and on the hyperbolic case has been analytically solved in [4]. For a **rational** γ the **spectrum is degenerate** providing **a new exactly solvable model**. Furthermore, the spectrum of the quantum anisotropic oscillator on \mathbf{S}^2 is purely discrete (and has infinite values), whilst a (finite) discrete spectrum plus a continuous one arises for the system on \mathbf{H}^2 .

Acknowledgments

This work was partially supported by MINECO under projects MTM2013-43820-P and MTM2014-57129-C2-1-P, and by Junta de Castilla y León under grants BU278U14 and VA057U16.

References

- [1] J.M. Jauch, E.L. Hill, Phys. Rev. **57** (1940) 641.
- [2] J.P. Amiet, S. Weigert, J. Math. Phys. 43 (2002) 4110.
- [3] M.A. Rodríguez, P. Tempesta, P. Winternitz, Phys. Rev. E 78 (2008) 046608.
- [4] A. Ballesteros, F.J. Herranz, Ş. Kuru, J. Negro, Ann. Phys. 373 (2016) 399 (arXiv:1605.02384).