

# Lie Groupoids and Algebroids applied to the study of Uniformity and Homogeneity of material bodies V. M. Jiménez and M. de León victor.jimenez@icmat.es

**CSIC-ICMAT** 

| Purposes                                                                              | Integrability                                                                                    | Proposition                               | Material groupoid and                                                                                                                                                      |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>To characterize uniformity and<br/>homogeneity of a material body</li> </ul> | Let $\Pi^1_G(M,M)  ightarrow M$ be a transitive Lie subgroupoid of $\Pi^1(M,M)  ightarrow M.$    |                                           | algebroid                                                                                                                                                                  |
| which properties of a special Lie groupoid ( <i>material Lie groupoid</i> ).          | $\Pi^1_G(M,M)$ is said to be <i>integrable</i> if for each $x,y \in M$ there exist two open      | for all $x,y\in M$ there exist coordinate | Let $\mathcal{B}$ be a material body with $\phi_0$ the reference configuration and $W$ the response                                                                        |
| <ul> <li>To use the functor from Lie<br/>groupoids to Lie algebroids to</li> </ul>    | sets $U,V\subseteq M$ with $x\in U,y\in V$<br>and two local charts, $\psi_U:U	o\overline{U}$ and | respectively such that                    | $W: \Pi^1(\mathcal{B}, \mathcal{B}) \to V$ the response<br>functional. We consider<br>$\Omega(\mathcal{B}) \subseteq \Pi^1(\mathcal{B}, \mathcal{B})$ as the set of 1-jets |
| characterize these properties over its                                                |                                                                                                  |                                           | $j^1_{x,y}\psi$ on ${\cal B}$ such that                                                                                                                                    |

associated Lie algebroid.

• To use the *Lie algebroid of derivations* to give a geometric characterization of these properties.

## Definitions

- Let M be an n-dimensional manifold.  $\Pi^1\left(M,M
ight) 
ightarrow M$  is the Lie groupoid where  $\Pi^1(M,M)$  is the set of all 1-jets of isomorphisms over M and, (i)  $lpha\left(j_{x,y}^{1}\phi
ight)=x$ 

(ii)  $eta\left(j_{x,y}^{1}\phi
ight)=y$ (iii)  $j_{y,z}^1\psi\cdot j_{x,y}^1\phi=j_{x,z}^1\left(\psi\circ\phi
ight).$ 

This groupoid is called the *1-jets* groupoid on M.

- The associated Lie algebroid  $A\Pi^{1}(M, M)$  is called the 1-jets Lie algebroid.

Let  $(x^i)$  and  $(y^j)$  be local coordinate systems on M. We can induce local coordinates on  $\Pi^1\left(M,M
ight)$  as follows

#### diffeomorphism

 $\Psi_{U,V}: \Pi^1_G(U,V) \to \overline{U} \times \overline{V} \times G,$ such that  $\Psi_{U,V} = (\psi_U \circ lpha, \psi_V \circ eta, \overline{\Psi}_{U,V})$  , where  $\overline{\Psi}_{U\!,V}\left(j^1_{x,y}\phi
ight) =$  $=j_{0,0}^1\left( au_{-\psi_V(y)}\circ\psi_V\circ\phi\circ\psi_U^{-1}\circ au_{\psi_U(x)}
ight).$ 

### Equivalence

 $\Pi_G(M,M)$  is integrable if and only if we can cover M by local charts  $(\psi_U, U)$  such that induce (Local) Lie groupoid isomorphisms from  $\Pi^1_G(U,U)$ to the trivial Lie groupoid on G.

 $\mathbf{I} (\mathbf{a}, \mathbf{g}) - (\mathbf{a}, \mathbf{g}, \mathbf{o}_i),$ 

takes values into  $\Pi^1_G(M,M)$ . The local section of # (ii)

 $AP\left(x^i,rac{\partial}{\partial x^i}
ight)=\left(x^i,rac{\partial}{\partial x^i},0
ight),$ takes values into  $A\Pi^1_G(M,M)$ . The local covariant derivative with (iii) Christoffel symbols equal to zero respect to  $(x^i)$ , i.e.,

$$abla^{\Lambda} rac{\partial}{\partial x^{i}} = 0,$$
 $rac{\partial}{\partial x^{j}} rac{\partial}{\partial x^{j}} x^{i}$ 
take values into  $\mathcal{D}\left(A\Pi^{1}_{G}\left(M,M
ight)
ight).$ 

 $W\left(j_{y,\kappa(y)}^{1}\kappa\cdot j_{x,y}^{1}\psi
ight)=W\left(j_{y,\kappa(y)}^{1}\kappa
ight),$ for each (local) infinitesimal deformation  $j_{y,\kappa(y)}^{{\scriptscriptstyle 1}}\kappa_{\cdot}$ Our assumption is that  $\Omega(\mathcal{B})$  is a Lie subgroupoid of  $\Pi^1(\mathcal{B}, \mathcal{B})$ . This groupoid is called *material subgroupoid*. The associated Lie algebroid  $A\Omega(\mathcal{B})$  is called material algebroid.

Characterization Let  $\mathcal{B}$  be a material body, •  $\mathcal{B}$  is uniform iff  $\Omega(\mathcal{B})$  is transitive. •  $\mathcal{B}$  is homogeneous iff  $\Omega(\mathcal{B})$  is an integrable subgroupoid of  $\Pi^{1}\left( \mathcal{B},\mathcal{B}
ight) .$ 

#### Conclusions

 ${\cal B}$  is locally homogeneous if and only if for all  $x,y\in {\cal B}$  there exist coordinate systems  $(x^i)$  and  $(y^j)$  over x and yrespectively such that

• The local section of  $(\alpha, \beta)$ 

• 
$$x^i \left( j_{x,y}^1 \psi 
ight) = x^i \left( x 
ight).$$
  
•  $y^j \left( j_{x,y}^1 \psi 
ight) = y^j \left( y 
ight).$   
•  $y^j_i \left( j_{x,y}^1 \psi 
ight) = rac{\partial \left( y^j \circ \psi 
ight)}{\partial x^i_{|x}}.$ 

Using the functor which turns Lie groupoids into Lie algebroids, we can consider local coordinates on  $A\Pi^{\perp}(M,M)$  as follows

 $A\Pi^1\left(U,U
ight):\left(\left(x^i,x^i,\delta^i_j
ight),0,v^i,v^i_j
ight)\cong 0$ 

$$\cong \left(x^i,v^i,v^i_j
ight).$$

takes values into  $\Omega(\mathcal{B})$ .

• The local section of  $\sharp$ 

$$oldsymbol{P}\left(x^{i},y^{j}
ight)=\left(x^{i},y^{j},\delta_{i}^{j}
ight),$$

$$AP\left(x^i,rac{\partial}{\partial x^i}
ight)=\left(x^i,rac{\partial}{\partial x^i},0
ight),$$

 $abla^{\Lambda}_{egin{array}{c}\partial\partial\partial x^{i}}rac{\partial}{\partial x^{j}}=0,\ rac{\partial}{\partial x^{j}}
onumber \label{eq:alpha}$ 

takes values into  $A\Omega(\mathcal{B})$ .

• The local covariant derivative with Christoffel symbols equal to zero respect to  $(x^i)$ , i.e.,

take values into  $\mathcal{D}\left(A\Omega\left(\mathcal{B}\right)\right)$ .

#### Theorem Let M be an n-dimensional manifold and $\mathfrak{D}\left(TM ight)$ be the algebroid of derivations on M. We can consider a map $\mathcal{D}:\Gamma\left(A\Pi^{1}\left(M,M ight) ight) ightarrow$ Der (TM) given by

 $\mathcal{D}\left(\Lambda
ight) riangleq D^{\Lambda}=-rac{\partial}{\partial t_{ert t=0}}$ 

Remark Let  $W: \Pi^1(\mathcal{B}, \mathcal{B}) \to V$  be the response functional which defines  $\Omega(\mathcal{B})$ . Then, we can define a new map  $W^{-1}:\Pi^1\left(\mathcal{B},\mathcal{B}
ight)
ightarrow V$  given by  $W^{-1} = W \circ i,$ 

where i is the inversion map of the 1-jets groupoid on  ${\cal B}$ . In this way, a section  $\Theta$  of  $A\Pi^1\left({\cal B},{\cal B}
ight)$  is a section of the

which define a Lie algebroid isomorphism  $\mathcal{D}:A\Pi^1\left(M,M
ight)
ightarrow\mathfrak{D}\left(TM
ight)$  over the identity map on M.

 $(\overline{Ex}p_t\Lambda)$ 

 $\Lambda \in \Gamma \left( A \Pi^1 \left( M, M 
ight) 
ight)$  be a section of the 1-jets algebroid with local expression

 $\Lambda\left(x^{i}
ight)=\left(x^{i},\Lambda^{j},\Lambda^{j}_{i}
ight).$ 

The matrix  $\Lambda_i^j$  is (locally) the associated matrix to  $D^{\Lambda}$ , i.e.,

$$D^{\Lambda}\left(rac{\partial}{\partial x^i}
ight) = -\sum_j \Lambda^j_i rac{\partial}{\partial x^j},$$

and the base vector field of  $D^{\Lambda}$  is given locally by  $(x^i, \Lambda^j)$ .

material algebroid if and only if

$$TW^{-1}\left( X_{\Theta}
ight) =0.$$

Equivalently, we can characterize the Lie subalgebroid  $\mathcal{D}\left(A\Pi^1_G\left(\mathcal{B},\mathcal{B}
ight)
ight)$  of  $\mathcal{D}\left(T\mathcal{B}
ight)$  in the obvious way. In fact, Let  $(x^i)$ be a local coordinate system on  $\mathcal B$  and D be a derivation on  $\mathcal B$  with base vector field X. We denote

• 
$$X(x^i) = (x^i, \Lambda^j)$$
.  
•  $D\left(\frac{\partial}{\partial x^i}\right) = \sum_j \Lambda^j_i \frac{\partial}{\partial x^j}$ .

Then, D is in  $\mathcal{D}\left(A\Pi^1_G(\mathcal{B},\mathcal{B})
ight)$  if and only if over any  $(x^i)$  local coordinate system on  $\mathcal{B}$  it is satisfied that  $dW^{-1}_{ert\left(x^{i},x^{i},g^{j}_{i}
ight)}\left(0,\Lambda^{j},-\Lambda^{j}_{l}\cdot g^{l}_{i}
ight)=0,$ 

for all material symmetry  $g \in G(x)$  which is locally written as follows

$$g\cong \left(x^i,x^i,g^j_i
ight).$$