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1 The Hamiltonian formulation of a Liénard equation

and Cheillini’s integrability condition

Consider a class of second order differential equations (ODE) in which

the damping term is proportional to the velocity ẋ, i.e.,

ẍ + f (x)ẋ + g(x) = 0. (1.1)

This is equivalent to the standard system,

ẋ = y, ẏ = −f (x)y − g(x). (1.2)

To deduce a Lagrangian for such a planar system we use the Jacobi

Last Multiplier (JLM), M , whose relationship with the Lagrangian,

L = L(t, x, ẋ), for any second-order equation of the form

ẍ = F (t, x, ẋ) (1.3)

is

M =
∂2L

∂ẋ2
. (1.4)

Note that the JLM, M = M(t, x, ẋ) satisfies, by definition, the fol-

lowing equation
d

dt
(logM) +

∂F

∂ẋ
= 0, (1.5)

which in the present case is

d

dt
(logM)− f (x) = 0. (1.6)

Assuming that its formal solution is related to a new variable u defined

via

M(t, x) = exp

(∫
f (x)dt

)
:= u1/α
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we find that

u̇ = αuf (x). (1.7)

Let us now set

ẋ = u + W (x),

where the particular form of W (x) is to be determined. On taking

the time derivative of the last equation and using (1.7) we have

ẍ = (αf (x) + W ′(x))ẋ− αf (x)W. (1.8)

Comparing (1.1) and (1.8) we see that

W ′(x) = −(α + 1)f (x) and αW (x) =
g(x)

f (x)
.

The consistency of these expressions leads to the integrability condi-

tion:
d

dx

(
g

f

)
= −α(α + 1)f (x), (1.9)

which serves to determine the parameter α for given f and g. Compar-

ison of d
dx( gf ) = sf and (1.9) shows that the constant s = −α(1 +α).

Furthermore the system (1.2) is equivalent to the system

ẋ = u +
1

α

g

f
, u̇ = αuf

subject of course to the condition (1.9).

2 Chiellini integrability and Bi-Hamiltonian structure

of polynomial class of Liénard equation

From the above discussion it is clear that the system (1.2) is equivalent

to the following system

u̇ = αuf (x), ẋ = u +
1

α

(
g

f

)
, (2.1)
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subject to Cheillini’s condition for integrability (1.9). Assuming that

this system admits a Hamiltonian structure we may recast (2.1) as

ẋ = u +
1

α

g

f
= −J ∂H

∂u
, u̇ = αuf (x) = J

∂H

∂x
, (2.2)

where H is the Hamiltonian of the system and J is symplectic, then

up on equating the mixed derivative ofH w.r.t. x and u we get the fol-

lowing linear partial differential equation determining the symplectic

J :

Jx(u +
1

α

g

f
) + αf (x)uJu = −Jf (x). (2.3)

We assume that the function f (x) is of the form

f (x) = a xµ (2.4)

then condition (1.9) which then determines the function g(x) leads to

g(x) = xµ + a2
α(1− α)

µ + 1
x2µ+1, (2.5)

where we have set the constant of integration to be a−1, without loss

of generality. Consequently the system (2.1) now appears as

u̇ = αauxµ, (2.6)

ẋ = (u +
1

αa
) +

1− α
µ + 1

axµ+1. (2.7)

In general if we assume

ẋ = u +
1

α

g

f
= −J ∂H

∂u
, u̇ = αuf (x) = J

∂H

∂x
, (2.8)

where H is the Hamiltonian of the system and J is symplectic, then

up on equating the mixed derivative ofH w.r.t. x and u we get the fol-

lowing linear partial differential equation determining the symplectic
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J :

Jx(u +
1

α

g

f
) + αf (x)uJu = Jf (x). (2.9)

For the chosen form of f (x) and g(x) given in (2.5) this becomes

Jx

[
(u +

1

αa
+

1− α
1 + µ

axµ+1

]
+ (aαuxµ)Ju = Jaxµ. (2.10)

The Lagrange system for (2.9) is in general

dx

u + α−1g/f
=

du

αuf
=

dJ

−Jf
. (2.11)

Its characteristics are easily found to be:

c1 = Ju1/α (2.12)

c2 = u(α+1)/α

[
g

f
+
α(α + 1)

2α + 1
u

]
, (2.13)

where J is the component of a symplectic matrix. The general solution

of (2.11) is therefore of the form c1 = F (c2) where F is an arbitrary

function. Assuming F (c2) = c2 we have

J = u

(
g

f
+
α(α + 1)

2α + 1
u

)
. (2.14)

It remains to calculate the Hamiltonian H which using the last ex-

pression for J in (2.8) is given by

H = ln

[
|u|−1/α

∣∣∣∣gf +
α(α + 1)

2α + 1
u

∣∣∣∣−1/(α+1)
]
. (2.15)

Thus we claim:
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Proposition 2.1 Let the Liénard equation satisfy Chiellini’s in-

tegrability condition then the planar system u̇ = αuf (x), ẋ =

u + 1
α
g
f admits a bihamiltonian structure, with symplectic struc-

tures given by

J1 = k1u
1/α, J2 = k2u

1/(1−α), (2.16)

where k1 and k2 are arbitrary constants.

3 A Lagrangian and Hamiltonians of Liénard equation

Now from (1.4) and (2.1) we have

∂2L

∂ẋ2
=

(
ẋ− 1

α

g

f

)1/α

,

so that

L(x, ẋ, t) =

(
ẋ− 1

α
g
f

)1/α+2

(1/α + 1)(1/α + 2)
+ h1(x, t)ẋ + h2(x, t).

Here h1(x, t) and h2(x, t) are arbitrary functions of integration. In-

serting this Lagrangian into the Euler-Lagrange equation and using

(1.1) we find that

h1t − h2x = 0.

Therefore choosing h1(x, t) = Gx and h2(x, t) = Gt it follows that

L =

(
ẋ− 1

α
g
f

)1/α+2

(1/α + 1)(1/α + 2)
+
dG

dt
. (3.1)
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We can drop the total derivative term without loss of generality. The

conjugate momentum is then defined in the usual manner by

p =
∂L

∂ẋ
=

(
ẋ− 1

α
g
f

)1/α+1

(1/α + 1)
,

and therefore

ẋ =
1

α

g

f
+ ((1/α + 1)p)1/(1/α+1) .

Using the standard Legendre transformation the Hamiltonian is found

to be

H = pẋ− L =
1

α
p
g

f
+

α

2α + 1

(
α + 1

α
p

)2α+1
α+1

. (3.2)

The corresponding canonical equations are:

ẋ =
∂H

∂p
=

1

α

g

f
+

(
α + 1

α
p

) α
α+1

, (3.3)

ṗ = −∂H
∂x

= (α + 1)fp. (3.4)

In terms of the scaled variable p̃ := (α+ 1)/αp the Hamiltonian (3.2)

has the following appearance,

H(x, p̃;α) =
1

α + 1
p̃
g

f
+

α

2α + 1
p̃
2α+1
α+1 . (3.5)

Note that α is a parameter and H changes if α changes. The canon-

ical Poisson bracket accordingly becomes {x, p̃} = (α + 1)/α. From

Chiellini condition the function g = K(x)f and hence the Hamilto-

nian assumes the form

H(x, p̃;α) =
p̃

α + 1
K(x) +

α

2α + 1
p̃
2α+1
α+1 . (3.6)
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If K(x) is a linear function of x then the first factor reduces to the well
known Berry-Keating Hamiltonian. Thus the Liénard Hamiltonian is
a deformation of the Berry-Keating Hamiltonian.

4 Constant of motion of damped oscillator from Non

standard Hamiltonian

Recall the Hamiltonian of the Liénard equation in terms of (ẋ, x),

H =
(ẋ− 1

α
g
f )1+1/α

2 + 1/α
(ẋ +

1

1 + α

g

f
). (4.1)

Proposition 4.1 The Hamiltonian H is a first integral of the

Liénard equation.

Proof : By direct calculation. 2

Let us rewrite Eqn. (4.1)

H =
(ẋ− 1

α
g
f )1/α

2 + 1/α

(
ẋ2 − 1

α(1 + α)

g

f
ẋ− 1

α(1 + α)
(
g

f
)2
)
. (4.2)

Let us focus on to damped oscillator, where f (x) = γ and g(x) =

x.

Proposition 4.2 The equation (4.2) reduces to constant of mo-

tion

I = eγt(ẋ2 + γxẋ + x2)

of damped harmonic oscillator when for f (x) = γ and g(x) = x.

Proof : It is clear from the Chiellini integrability condition 1
γ2

=

−α(α + 1). Substituting f (x), g(x) we obtain

(ẋ2 − 1

α(1 + α)

g

f
ẋ

1

α(1 + α)
(
g

f
)2) = (ẋ2 + γxẋ + x2).
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Our next step is to show that
(ẋ− 1

α
g
f )

1/α

2+1/α = eγt. If we take a log of both

sides and differentiating w.r.t. time t, we obtain

ẍ− 1

α

d

dx

(g
f

)
ẋ = αγ

(
ẋ− 1

α

g

f

)
, where f (x) = γ, g(x) = x.

Once using Chiellini condition one can show that the above equation

satisfies damped oscillator equation. 2

Let us now focus on to Liénard equation.

Proposition 4.3 The non standard Hamiltonian for the Liénard

equation

HL =
(ẋ− 1

α
g
f )1/α

2 + 1
α

(
ẋ2 − 1

α(1 + α)

g

f
ẋ− 1

α(1 + α)
(
g

f
)2
)

can be re-written as

HL = e
∫
f(x)dt

(
ẋ2 − 1

α(1 + α)

g

f
ẋ− 1

α(1 + α)
(
g

f
)2
)
. (4.3)

One can easily check that dHL
dt = 0.

5 Non standard Hamiltonian to contact Hamiltonian

We start with the damped harmonic oscillator. Let us consider h =

(ẋ2+γxẋ+x2). Let y = ẋ and s(x, y) = xy, then h becomes contact

Hamiltonian hc = y2 + x2 + γs, and the equation of motions read

ẋ = y, ẏ = −x− γy, ṡ = y2 − x2 − γs.

We can generalize the Hamiltonian equation to a contact manifold

ẋi =
∂hc
∂yi

, ẏi = −∂hc
∂xi
− ∂hc

∂s
yi ṡ = yi

∂hc
∂yi
− hc. (5.1)
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From the first two equations it is clear that this dynamics induces

a standard Hamiltonian dynamics over the physical phase space when-

ever the generating function hc does not depend on s. Futhermore

this set of equations is very similar to the Nosé-Hoover thermostat

and Density Dynamics equations.

The contact Hamiltonian vector field Xhc takes the form

∂hc
∂y

∂

∂x
− (

∂hc
∂x

+
∂hc
∂s

y)
∂

∂y
+ (y

∂hc
∂y
− hc)

∂

∂s
, (5.2)

which satisfies

dhc = dη(Xhc, ·)− LXhcη(·). (5.3)

Here η is contact one form that satisfies the condition η ∧ (dη)n 6= 0

for a contact manifold T . There is another fundamental object called

the Reeb vector field ξ which satisfies η(ξ) = 1 and dη(ξ) = 0. In

terms of contact coordinates (xi, yi, s) 1-form η and the Reeb vector

field can be expressed as

η = ds− yidxi, ξ =
∂

∂s
.

Given two contact vector fields Xf and Xg on a differentiable

manifold M and a symplectic form ω one obtains the following Lie

bracket called the Jacobi bracket from

{f, g} = i[Xf ,Xg]ω,

where its expression in local coordinates is given by

{f, g} =

n∑
k=1

( ∂f
∂xk

∂g

∂yk
− ∂f

∂yk

∂g

∂xk
)

+
(
f −

n∑
k=1

yk
∂f

∂yk

)∂g
∂s
−
(
g −

n∑
k=1

yk
∂g

∂yk

)∂f
∂s
.
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So we map non standard Hamiltonian to contact or cosymplectic
mechanics, given by M. de Leon et al. , Bravetti et al.

In the case of the Liénard equation things are not so simple.

Define

s = − 1

α(1 + α)

g

f
ẋ. (5.4)

Then we obtain

ṡ = − 1

α(1 + α)

d

dx
(
g

f
)ẋ2 − 1

α(1 + α)

g

f

(
− f (x)ẋ− g(x))

= f (x)
(
ẋ2 +

1

α(1 + α)

g

f
ẋ +

1

α(1 + α)
(
g

f
)2
)
.

Now once again we write the Hamiltonian HL as HL ≡ hc = y2 −
1

α(1+α)(
g
f )2 + s, then a straight forward computation shows

ṡ = f (x)
(
y
∂h

∂y
− hc

)
. (5.5)

Unfortunately we can not recast the Liénard equation in contact me-
chanics form, unless f (x) = constant.

6 More on conformal Hamiltonian formalism

If we drop the ẋ term from the earlier defined Lagrangian for the

Liénard equation we obtain

L =
1

2
e
∫ t f(x(s))ds(ẋ2 +

1

α(α + 1)
(
g

f
)2
)
, (6.1)

where we introduced a normalization factor.

Let us start with the Lagrangian flow correspond to the following

Euler-Lagrange equation

d

dt

(
e
∫ t f(x(s))ds∂L

∂y

)
= e

∫ t f(x(s))ds∂L
∂x
. (6.2)
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This can be simplified to

d

dt
(
∂L
∂y

) =
∂L
∂x
− f (x)y, (6.3)

this becomes the Liénard equation for L = 1
2(y2 + 1

α(α+1)(
g
f )2). Using

the Legendre transformation associated to L,

FLL : TM → T ∗M, (x, y) 7→ (x,
∂L
∂y

(x, y)),

we rewrite the above equation in (conformal) Hamiltonian form

ẋ =
∂H
∂p

, ṗ = −∂H
∂x
− f (x)p, (6.4)

where we have tacitly used the consequence of the Legendre transform
∂L
∂x = −∂H

∂x .

The vector field Xλ
H on M is conformal with real parameter λ if

iXλ
H
ω = dH − λθ, where ω = dx ∧ dp = −dθ and H ∈ C∞(M).

This condition is equivalent to LXλ
H
ω = −λω.

Note that the hypothesis of exact symplectic manifold does not

restrain the generality, since a symplectic manifold admits a vector

field Xλ
H with LXλ

H
ω = −λω if and only if it is exact. If in addition,

H1(M) = 0, then all conformal vector fields on M are given by

{XH + λZ} |H ∈ C∞(M)}, iZω = −θ.

First step to generalize the definition of a conformal Hamiltonian

vector on an exact symplectic manifold is to introduce Z = fp ∂
∂p such

that

L
X
f
H
ω = −d(fθ), where H1(M) = 0.
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If f (x) is an arbitrary function of x, then H1(M) 6= 0, then we

can not have a conformal vector field on exact symplectic manifold.

Locally we can define Zf = f (x)p ∂
∂p and the conformal Hamiltonian

Xf
H = XH + Zf , which is a sum of Hamiltonian vector field and

generalized Liouville vector field yields the vector field of the Liénard

equation.

7 Deformation of Lagrangians

We will show that the Lagrangian derived here is a deformation of

a more elementary Lagrangian L. Consider a differential function

φ : R→ R, then for a Lagrangian L, the deformation of Lagrangian

function is φ(L).

Theorem 7.1 (Cariñena-Nũnez) Let L is a regular Lagrangian

for a SODE vector field ΓL such that i(ΓL)dΘL = 0, where ΘL is

the Poincaré-Cartan form defined as

ΘL =
∂L

∂vi
ϑi + Ldt =

∂L

∂vi
dqi − ELdt,

where ϑi = dqi − vidt are the n (local) one forms which generate

the contact distribution and EL = ∆(L) − L with ∆ = vi∂vi be-

ing the Liouville vector field. The equations of motion for φ(L),

i(Γ(φ(L)dΘφ(L) = 0 yields

Γφ(L)
(∂L
∂vi
)
− ∂L

∂qi
+
φ′′

φ′
dL

dt

∂L

∂vi
= 0. (7.1)

It is worth to note that the Poincaré-Cartan form for deformed

Lagrangian is

Θφ(L) = φ′′(L)dL ∧ S∨(dL) + φ′(L)dΘL, (7.2)
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where S∨ is the dual endomorphism on differential forms of the vertical
endomorphism S of R × TQ. Here S is a (1, 1) tensor field and for
every π-vertical vector field S satisfies S(Γ) = 0, S(Y ) = 0 and
S([Γ, Y ]) = −Y .

8 Application to Liénard system

The Lagrangian L derived earlier using JLM with Chiellini condition

is a power of more elementary Lagrangian L, thus the deformed La-

grangian of L is given by

φ(L) =

(
ẋ− 1

α
g
f

)1/α+2

(1/α + 1)(1/α + 2)
=

1

(1/α + 1)(1/α + 2)
L1/α+2, (8.1)

where the elementary Lagrangian is given by

L =

(
ẋ− 1

α

g

f

)
. (8.2)

It is clear that φ′′

φ′ = 1+α
α

1
L.

Proposition 8.1 The Hergoltz equation obtained from (7.1)

d

dt

(∂L
∂vi
)
− ∂L
∂qi

+
φ′′

φ′
dL

dt

∂L
∂vi

= 0 (8.3)

yields the Liénard equation ẍ + f (x)ẋ + g(x) = 0.

Proof : By straight forward calculation we obtain

φ′′

φ′
=

1 + α

α

1

L
,

dL
dt

= ẍ + (α + 1)f (x)ẋ,
∂L
∂x

= (α + 1)f (x).

Substituting in (8.3) we obtain the Liénard equation. 2
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9 Chiellini integrability condition and metriplectic struc-

ture

In this section we show that using Chiellini integrability condition

the Liénard equation can be reformulated in terms of the complex

Hamiltonian theory. To this end we define

Vx =
g

f
, Vxx ≡

d

dx
(
g

f
) = µf. (9.1)

Therefore in terms of the new function V a Liénard type ODE

has the form therefore be written as

ẍ +
1

µ
Vxxẋ + (

1

2µ
V 2
x )x = 0. (9.2)

As a first-order system of ODEs it may be recast as

ẋ=y ,

ẏ=−1

µ
Vxxy − (

1

2µ
V 2
x )x . (9.3)

Lemma 9.1 The Lienard equation transforms under

y = p− Vx. (9.4)

to new set of first order ODE

ẋ=p− Vx ,

ṗ=−(
1

µ
− 1)Vxxp− (

1

2µ
V 2
x )x . (9.5)

Proof: It is clear that

ṗ = Vxx(p− Vx)−
1

µ
Vxx(p− Vx)−

1

2µ
(V 2

x )x
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= −(
1

µ
− 1)Vxxp− (

1

2µ
V 2
x )x. 2

Our aim is next to rewrite the system (9.3) in a metriplectic and

complex form. Let S be a real valued function on a m-dimensional

manifold M . If M is compact smooth Riemannian manifold, the

gradient vector field associated with the metric g =
∑
gijdx

i ⊗ dxj
is given by

grad(S) = G
( ∂S
∂x1

, · · · , ∂S

∂xm
),

where G = (gij) and (x1, · · · , xm) is a local coordinate.

P.J. Morrison introduced a natural geometrical formulation of

dynamical systems that exhibit both conservative and nonconservative

characteristics. A metriplectic system consists of a smooth manifold

M , two smooth vector bundle maps J ], G] : T ∗M → TM covering

the identity, and two functions H,S ∈ C∞(M), the Hamiltonian or

total energy and the entropy of the system, such that it yields Poisson

bracket and positive semidefinite symmetric bracket

J(df, dh) = {f, h}, G(df, dh) = (f, g),

respectively. Moreover, the additional requirements that H remains

a conserved quantity and S continues to be dissipated. These re-

quirements can be met if the following conditions on H and S are

satisfied {S, F} = 0 and (H,F ) = 0 for all F ∈ C∞(M), i.e,

JdS = GdH = 0. It shows that S is a Casimir function for the

Poisson tensor J and dH is a null vector for the symmetric tensor G.

In this paper we work with a slightly weaker condition of metriplec-

tic condition, i.e. JdS + GdH = 0.
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Proposition 9.1 The Liénard equation of motion take the fol-

lowing form

Ẋ = J∇H1 −G∇S, (9.6)

where X =

(
x

p

)
. Here J is the standard symplectic matrix and

the second term represents gradient flow, where G is defined by

G =

(
1
α 0

0 α

)
,

where α is a parameter. The H1 and S are given by

H1 =
1

2
p2 +

1

2µ
V 2
x +

(
(
1

µ
− 1)Vx − αx

)
p, (9.7)

S =
1

2
p2 + α

(1

µ
V − α

2
x2
)
. (9.8)

Proof: It is easy to see that

H1x =
[1

µ
VxVxx +

(
(
1

µ
− 1)Vxx − α

)
p
]
, (9.9)

H1p = p +
(
(
1

µ
− 1)Vx − αx

)
, (9.10)

Sx = α[
1

µ
Vx − αx], (9.11)

and Sp = p. Using all these expressions we obtain our result. 2

Corollary 9.1 If µ = 2 and p = Vx then the Liénard equation

satisfies weaker metriplectic condition, i.e., JdS + GdH = 0.
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10 Complex Hamiltonian formulation and Liénard equa-

tion

Suppose S be the symplectic foliation of M . We denote by N the

distribution defined as the g-orthogonal complement to S. Thus at

every point m a decomposition into direct sum of sub-bundles, i.e.

TmM = TmS ⊕Nx. If the Poisson bivector Π is parallel with respect

to the Levi-Civita connection ∇, i.e. ∇Π = 0. There is a classical

result of Lichnerowicz that the distribution N is integrable. Hence

together with the symplectic structure and the restriction of the metric

g to the symplectic leaves defines a Kähler structure.

It is also possible to express the Hamiltonian of an equation of

the Liénard type within the framework of the complex Hamiltonian

theory. In this section we adopt more straight forward approach, and

once again we demostrate the role of Chiellini integrability condition.

Proposition 10.1 The equations of motion take the complex form,

given by

d

dt

(
p

x

)
=

(
{H1, p}
{H1, x}

)
+ J

(
{H2, p}
{H2, x}

)
, (10.1)

where J is an almost complex structure defined by

J =

(
0 −α
1
α 0

)
,

where α is a parameter. The Hamiltonians are given by

H1 =
1

2
p2 +

1

2µ
V 2
x +

(
(
1

µ
− 1)Vx − αx

)
p, (10.2)

H2 =
1

2
p2 + α

(1

µ
V − α

2
x2
)
. (10.3)
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A complex structure allows one to endow a real vector space

V with the structure of a complex vector space. In other words,

given any real vector space V we may define its complexification by

VC = V ⊗R C and J is guaranteed to have eigenvalues which satisfy

a2 = −1, namely a = ±i. Thus we may write

VC = V+ ⊕ V−

where V+ and V− are the eigenspaces of +i and−i respectively. Given

such a matrix J we can define the equation of motion in terms of the

complex coordinates

ż = {HC, z}, (10.4)

generated by the complex Hamiltonian function HC = H1 + iH2,

where H1 and H2 are as given in (10.2) and (10.3) respectively.

Lemma 10.1 The Liénard equation can be recast as

ż = {H1 + iH2, z}, (10.5)

where z = 1√
2α

(αx− ip). The conjugate z∗ = 1√
2α

(αx + ip) and z

satisfy

{z∗, z} = −i. (10.6)

Proof: Equating real and imaginary part we obtain

αẋ = α{H1, x} + {H2, p}, −ṗ = α{H2, x} − {H1, p}.

By normalizing these set of we obtain that these equations are equiv-

alent to ṗ and ẋ equations. Thus we find our desired result. Moreover

it is easy to check directly that {z∗, z} = −i. 2

By changing coordinates (x, p)→ (z, z∗) one rewrite the Hamil-

tonian equation in complex form in terms of the complex Poisson

19



bracket

{K,L} = −i
(∂K
∂z∗

∂L

∂z
− ∂K

∂z

∂L

∂z∗
)
. (10.7)

Proposition 10.2 Suppose the Chiellini integrability condition

is satisfied for the Liénard equation of motion. Then Liénard

equation can be expressed in complex Hamiltonian form

ż = {HC, z} = −i∂HC

∂z∗
, (10.8)

with complex coordinates and complex Hamiltonian function HC =

H1 + iS, where H1 and S are as given in (10.2) and (10.3) re-

spectively.
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