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Abstract
We introduce the notions of uniformly accelerated, unchanged direction and circular motion in General Relativity in
the realm of the Lorentzian Geometry. We analyse the completeness of the inextensible trajectories of observers
which obey one of these motions, when the ambient spacetime has certain symmetries.

1. Introduction
In a non-Relativistic setting, a particle may be detected as accelerated by using an accelerometer. An accelerometer may
be intuitively thought as a sphere in whose center there is a small round object which is supported on elastic radii of the
sphere surface. If a free falling observer carries such a accelerometer, then it will notice that the small round object remains
just at the center. Whereas it will be displaced if the observer obeys an accelerate motion. This argument suggests that a
uniformly accelerated motion may be detected from a constant displacement of the small round object. Analogously,if the
ball moves along a radius, the observer may though that its motion obeys a rectilinear trajectory. At the same way, it would
be natural that if an observer checks that the small ball describes a plane uniform rotation, then it believes that it obeys a
uniform circular motion. This idea has the advantage that may be used independently if the spacetime where the observer
lies is relativistic or not. Now, our aim is to provide rigour to some assertions like “the accelerometer marks a constant
value” or “the proper acceleration does not change its direction”.

2. The Fermi-Walker connection
Let (M, 〈 , 〉) be an n(≥ 2) − dimensional spacetime, endowed with a fixed time orientation. We consider an observer in M
as a (smooth) timelike unit curve γ : I −→M , I an open interval of R, such that γ ′(t) is future pointing for any proper time
t of γ [4]. At each event γ(t) the tangent space Tγ(t)M splits as

Tγ(t)M = Tt ⊕Rt,

where Tt = Span{γ ′(t)} and Rt = T⊥t . Endowed with the restriction of 〈 , 〉, Rt is a spacelike hyperplane of Tγ(t)M . It is
interpreted as the instantaneous physical space observed by γ at t. Clearly, the observer γ is able to compare spatial
directions at t. In order to compare v1 ∈ Rt1 with v2 ∈ Rt2, t1 < t2 and |v1| = |v2|, the observer γ could use, as a first attempt,
the parallel transport along γ defined by the Levi-Civita covariant derivative along γ,

P γ
t1,t2

: Tγ(t1)M −→ Tγ(t2)M.

Unfortunately, this linear isometry satisfies P γ
t1,t2

(Rt1) = Rt2 if γ is free falling (i.e., γ is a geodesic) but this property does
not remain true for any general observer.

Now, for each Y ∈ X(γ) put Y T
t , Y

R
t the orthogonal projections of Yt on Tt and Rt, respectively, i.e., Y T

t = −〈Yt, γ ′(t)〉 γ ′(t)
and Y R

t = Yt − Y T
t . In this way, we define Y T , Y R ∈ X(γ). We have [5],

Proposition 1 There exists a unique connection ∇̂ along γ such that

∇̂XY =
(
∇XY

T
)T

+
(
∇XY

R
)R
,

for any X ∈ X(I) and Y ∈ X(γ).

This connection ∇̂ is called the Fermi-Walker connection of γ. It shows the suggestive property that if Y ∈ X(γ) satisfies
Y = Y R (i.e., Yt may be observed by γ at any t) then

(
∇̂XY

)
t
∈ Rt for any t, where ∇ is the usual Levi-Civita connection.

Associated to the Fermi-Walker connection on γ, there exist a parallel transport

P̂ γ
t1,t2

: Tγ(t1)M −→ Tγ(t1)M,

which is a lineal isometry and satisfies P̂ γ
t1,t2

(Rt1) = Rt2. Therefore, given v1 ∈ Rt1 and v2 ∈ Rt2, with t1 < t2 and |v1| = |v2|,
the observer γ may consider P̂ γ

t1,t2
(v1) instead v1, with the advantage to wonder if P̂ γ

t1,t2
(v1) is equal to v2 or not.

The acceleration
Dγ ′

dt
satisfies

Dγ ′

dt
(t) ∈ Rt, for any t. Therefore, it may be observed by γ whereas the velocity γ ′ is not

observable by γ.

3. Uniformly accelerated motion
Definition 1 An observer γ : I −→M is said to obey a uniformly accelerated (UA) motion if

P̂ γ
t1,t2

(
Dγ ′

dt
(t1)

)
=
Dγ ′

dt
(t2),

for any t1, t2 ∈ I with t1 < t2. Equivalently, if the equation

D̂

dt

(
Dγ ′

dt

)
= 0,

holds everywhere on I, i.e.,
Dγ ′

dt
is Fermi-Walker parallel along γ [1].

Clearly, if γ is free falling, then it is a UA observer.

The UA observers may be characterized as follows.

Proposition 2 For any observer γ : I −→M , the following assertions are equivalent:

(a) γ is a UA observer.

(b) γ is a solution of third-order differential equation

D2γ ′

dt2
=

〈
Dγ ′

dt
,
Dγ ′

dt

〉
γ ′.

(c) γ is a Lorentzian circle or it is free falling.

(d) γ has constant curvature and the remaining curvatures equal to zero.

(e) γ, viewed as an isometric immersion from (I,−dt2) to M , is totally umbilical with parallel mean curvature vector.

4. Unchanged direction motion
Definition 2 An observer γ : I −→M is said to obey an unchanged direction (UD) motion if

P̂ γ
t1,t2

(
Dγ ′

dt
(t1)

)
= λ(t1, t2)

Dγ ′

dt
(t2),

for a certain proportional factor λ and for any t1, t2 ∈ I with t1 < t2 [2].

Clearly, if an observer γ is a free falling then it obeys a UD motion. More generally, a UA observer satisfies (1) with λ = 0.
Thus, it obeys a UD motion. Of course, the family of UD observers is much bigger than the one of the UA observers.

Definition 3 An observer γ : I −→M is said to obey a piecewise unchanged direction motion if γ satisfies the equation∣∣∣Dγ ′
dt

∣∣∣2 D2γ ′

dt2
=

1

2

d

dt

∣∣∣Dγ ′
dt

∣∣∣2Dγ ′
dt

+
∣∣∣Dγ ′
dt

∣∣∣4 γ ′ .
Some geometric characterizations of this kind of observers are shown in the following proposition.

Proposition 3 For any observer γ : I −→M with nowhere zero acceleration the following assertions are equivalent:

(a) γ is a piecewise UD observer.

(b) The development of γ is a piecewise planar curve in the tangent space of every point.

(c) γ has all the curvatures equal to zero except (possibly) the first one.

(d) γ, viewed as an isometric immersion from (I,−dt2) to M , is (totally umbilical) with parallel normalized mean curvature
vector whenever it is defined.

The following result shows a sort of first integral, which will be useful tool in order to study the completeness of the
inextensible trajectories.

Theorem 4 Let a : I −→ R be a smooth function and v, w ∈ TpM such that |v|2 = −1, |w|2 = 1 and 〈v, w〉 = 0. The 4-velocity
of the unique UD observer γ satisfying the initial conditions

γ(0) = p, γ ′(0) = v,
Dγ ′

dt
(0) = a(0)w,

is given by
γ ′(t) = cosh

(
V (t)

)
L(t) + sinh

(
V (t)

)
M(t),

where

V (t) =

∫ t

0

a(s)ds,

and L,M are two Levi-Civita parallel vector fields along γ with L(0) = v and M(0) = a(0)w.

5. Uniformly circular motion
First we expose the notion of planar motion, to make precise when an observer intuitively considers that it is moving along
a plane.

Definition 4 An observer γ : I −→ M obeys a planar motion if for some t0 ∈ I, there exists an observable plane
Πt0 ⊂ γ′(t0)

⊥ ⊂ Tγ(t0)M , such that

P̂ γ
t,t0

(
Dγ ′

dt
(t)

)
∈ Πt0

for any t ∈ I [3].

A uniform circular motion is a particular case of planar motion.

Definition 5 An observer γ : I −→M , following a planar motion, is said to obey an uniform circular (UC) motion if∣∣∣Dγ′
dt

∣∣∣2 = a2 and
∣∣∣D̂
dt

(
Dγ′

dt

) ∣∣∣2 = a2w2,

where a, w > 0 and a < w [3].

Here, a is de modulus of the acceleration, and w corresponds with the angular velocity which the observer perceives.

The UC observers may be characterized as follows.

Proposition 5 The three following assertions are equivalent

(a) A curve γ in M is a uniformly circular observer with centripetal acceleration a and frequency w.

(b) A curve γ in M is a Lorentzian helix with curvature a and torsion w.

(c) A curve γ in M is a solution of

D

dt

[
D2γ′

dt2
+ 〈γ′ , Dγ

′

dt
〉Dγ

′

dt
+
(
w2 −

∣∣∣Dγ′
dt

∣∣∣2)γ′] = 0.

An analogous result of Theorem 4 is also obtained for UC observers.

6. Completeness of the inextensible trajectories
The main completeness result, valid for UA, UD and UC observers is summarized in the following theorem.

Theorem 6 Let M be a spacetime which admits a timelike conformal and closed vector field K. If infM
√
−〈K,K〉 > 0,

then, each UA, UD or UC observer γ : I −→M such that γ(I) lies in a compact subset of M can be extended.

Corolary 7 In a compact spacetime admitting a timelike conformal and closed vector field, every UA, UD and UC observer
is complete.

By means of more analytical tools, it is also proved the completeness of these accelerated observers in certain physically
relevant pp-wave spacetimes.
A (four dimensional) Plane Wave is a spacetime (R4, g) which admits a coordinate system (u, v, x, y) such that the
Lorentzian metric may be expressed as follows,

g = H(u, x, y) du2 + 2dudv + dx2 + dy2,

where H(u, x, y) is a quadratic function in the coordinates x and y with coefficients depending on u, that is,

H(u, x, y) = A(u)x2 + B(u)y2 + C(u)xy + D(u)x + E(u)y + F (u).

The coordinates are known as a Brinkmann coordinate system of (R4, g).

Theorem 8 Every UA, UD or UC inextensible trajectory in a Plane Wave spacetime admitting a global Brinkmann chart
is complete.
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