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1. Introduction
Biharmonic curves on a Riemannian manifold M are the critical points of the bienergy functional

J(γ) =
1

2

∫ T

0

〈
D2γ

dt2
,
D2γ

dt2

〉
dt

and are seen as a natural generalization of geodesics ([3, 6]). The theory of Jacobi fields and conjugate points
along geodesics can be extended to biharmonic curves. Two characterizations of Jacobi fields along geodesics
can be used: the null vectors of the second variation of the energy functional and the variational vector
fields associated with a one-parameter family of geodesics. The generalized Jacobi fields along biharmonic
curves are called bi-Jacobi fields (see [2] for the theory of bi-Jacobi fields in general and [4] for bi-Jacobi
fields along geodesics).
In this work we extend some properties of Jacobi fields along geodesics to bi-Jacobi fields. We relate
bi-Jacobi fields to the biharmonic flow on the third order tangent bundle T 3M . We consider a connec-
tion map on T 3M and the corresponding nonlinear connection defined by its kernel ([1]). We describe
the connection map and the decomposition of TT 3M into vertical and horizontal subbundles in terms of
bi-Jacobi fields.

2. Bi-Jacobi fields
A bi-Jacobi field along a biharmonic curve γ is a vector field that is obtained as the variational vector field
of a variation of γ through biharmonic curves. It is well known that W is a bi-Jacobi field along γ if and
only if it satisfies the following fourth order differential equation
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where V is the velocity vector field dγ/dt.

Proposition 1 The set Jγ of all bi-Jacobi fields along a biharmonic curve γ is a vector space isomorphic
to (Tγ(t0)M)4 under the mapping W 7→ (W (t0), (DW/dt)(t0), (D

2W/dt2)(t0), (D
3W/dt3)(t0)). On Jγ we

have the symplectic structure defined by
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If the invariant along γ,< D2V/dt2, V > − 1
2
< DV/dt,DV/dt >, is different from zero, then Jγ splits into the

ω-nondegenerate subspace of tangential bi-Jacobi fields and the ω-orthogonal complement.

3. A connection map on T 3M

Let (T 3M,π3,M) be the third order tangent bundle of M and J the almost tangent structure on T 3M . A
connection map on T 3M is a morphism of vector bundles

K = (K1,K2,K3) : (TT
3M, τT 3M , T

3M)→ (TM (3), τ (3),M),
which satisfies

K3 ◦ J = K2, K2 ◦ J = K1, K1 ◦ J = π3 ∗,

where TM (3) = TM ⊕ TM ⊕ TM .
Let u ∈ T 3Mand γu be the unique biharmonic curve with initial conditions γ3u(0) = u, where γ3u is the lift
to T 3M of γu. For each ξ ∈ TuT 3M , consider an adapted curve w to ξ on T 3M and the variation of γu
given by α(s, t) = γw(s)(t). The map Ku : TuT

3M → (Tπ3(u)M)3, ξ 7→ Ku(ξ) = (K1,u(ξ);K2,u(ξ);K3,u(ξ)),
defined by
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is a connection map on T 3M .
The kernel of the connection map K, N1 = kerK, defines a nonlinear connection on T 3M and gives
the decomposition TuT

3M = N1(u) ⊕ V1(u), where V1 = kerπ3 ∗. From this connection, taking
J(N1(u)) = N2(u), J(N2(u)) = N3(u), JV1 = V2 and JV2 = V3, we obtain the decomposition

TuT
3M = N1(u)⊕N2(u)⊕N3(u)⊕ V3(u).

Using the linear isomorphism ju : TuT
3M → (Tπ3(u)M)4; ξ 7→ ju(ξ) = (π3 ∗|u(ξ),Ku(ξ)) we can identify ξ

with
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where W is the bi-Jacobi field associated with the variation α.
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