Abstract

We study solutions to the inverse mean curvature flow (IMCF) which evolve by homotheties of a given submanifold with arbitrary dimension and codimension.

Introduction

Homothetic soliton for the IMCF

 $\phi: M^n \to \mathbb{R}^m$ isometric immersion H nonvanishing mean curvature vector of M \perp the projection onto the normal bundle of M

$$-\frac{H}{|H|^2} = a\phi^{\perp}, \quad a \neq 0 \text{ constant}$$

- a velocity constant of ϕ .
- If a < 0, M is called *shrinker* for the IMCF.
- If a > 0, M is called *expander* for the IMCF.
- If ϕ is a homothetic soliton $\stackrel{\forall \rho > 0}{\Longrightarrow} \rho \phi$ is a homothetic soliton with the same constant velocity.
- Spherical minimal submanifolds are expanders for the IMCF (a = 1/n).

Ana M. Lerma (joint work with Ildefonso Castro)

Solitons for the IMCF

Any homothetic soliton ϕ for the IMCF with constant velocity a satisfies that:

- $\langle H, \phi \rangle = -1/a.$
- $\Delta |\phi|^2 = 2(n-1/a).$

Remark: The first condition characterizes the homothetic solitons for the IMCF of codimension one, including plane curves.

Closed expanders for the IMCF

• $M^n \subset \mathbb{R}^{n+1}$ closed homothetic soliton hypersurface for the IMCF $\Rightarrow M = \mathbb{S}^n$, up to dilations.

Rigidity results for the Clifford torus

The Clifford torus is the only closed homothetic soliton for the IMCF...

- \ldots which is an embedded torus in \mathbb{R}^4 .
- ... with constant or non negative Gauss curvature in \mathbb{R}^4 (besides the two-sphere \mathbb{S}^2).
- ... which satisfies the pinching condition $\frac{|\sigma|^2}{|H|^2} \leq \frac{3n-4}{n(2n-3)}$ when codimension and dimension are equal to n.

Theorem

Let $\phi: M^n \to \mathbb{R}^{2n} \equiv \mathbb{C}^n$ be a closed **Lagrangian** homothetic soliton for the inverse mean curvature flow. Then, up to dilations, $M = \mathbb{S}^1 \times N^{n-1}$, where N is a closed (n-1)-manifold, and ϕ is given by $\phi(e^{it}, x) = e^{it}\psi(x),$ where $\psi: N^{n-1} \to \mathbb{S}^{2n-1} \subset \mathbb{C}^n$ is a minimal Legendrian immersion.

Corollaries:

- M^2 closed Lagrangian homothetic soliton for the IMCF $\Rightarrow M$ is the Clifford torus, up to dilations.
- $2 M^3$ closed orientable Lagrangian homothetic soliton for the IMCF with sectional curvature K verifying that $K \geq 0$ or $K \leq 0 \Rightarrow M$ is, up to dilations, the Hopf immersion of $\mathbb{S}^1 \times \mathbb{S}^2$ in \mathbb{C}^3 or the immersion of $\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ in \mathbb{R}^6 .
- $3M^n$ closed Lagrangian homothetic soliton for the IMCF with sectional curvature K constant $\Rightarrow M$ is, up to dilations, the immersion of $\mathbb{S}^1 \times \mathbb{S}^1$. $\times \mathbb{S}^1$ in \mathbb{R}^{2n} .
- $\phi: M^n \to \mathbb{C}^n$ closed Lagrangian homothetic soliton for the IMCF with $3n^2|\sigma|^2 \leq (11n-6)|H|^2 \Rightarrow$ either $n^2|\sigma|^2 = (3n-2)|H|^2$ and ϕ is given, up to dilations, by the Hopf immersion of $\mathbb{S}^1 \times \mathbb{S}^{n-1}$ in \mathbb{C}^n or n=3, $|\sigma|^2 = |H|^2$ and ϕ is given, up to dilations, by $\mathbb{S}^1 \times \mathbb{S}^1 \times \mathbb{S}^1$ in \mathbb{C}^3 . • Closed Lagrangian homothetic solitons for the IMCF in \mathbb{C}^n satisfy $n^2 |\sigma|^2 \ge (3n-2)|H|^2$. $\mathbf{5}\phi: M^n \to \mathbb{C}^n$ closed Lagrangian homothetic soliton for the IMCF and invariant under the action of the special orthogonal group given by

 $SO(n) \times \mathbb{C}^n \longrightarrow \mathbb{C}^n / (A, (z_1, \dots, z_n)) \mapsto (z_1, \dots, z_n)A$

 $\Rightarrow \phi$ is given, up to dilations, by the Hopf immersion of $\mathbb{S}^1 \times \mathbb{S}^{n-1}$ in \mathbb{C}^n .

Homothetic solitons for the inverse mean curvature flow

Theorem

Let $\phi: M^n \to \mathbb{R}^m$ be a homothetic soliton for the IMCF with constant velocity a. If M is closed, then a = 1/n and ϕ must be a spherical minimal immersion.

Let $\phi: M^n \to \mathbb{C}^n$ be a Lagrangian pseudoumbilical homothetic soliton for the IMCF with constant velocity a. Then ϕ is locally congruent to

where $\psi : N \longrightarrow \mathbb{S}^{2n-1} \subset \mathbb{C}^n$ is a minimal Legendrian immersion of a Riemannian (n-1)manifold N and $\alpha : I \to \mathbb{C}^*$ is a regular plane curve such that α^n is a homothetic soliton for the inverse curve shortening flow with constant velocity na.

I. Castro and A.M. Lerma. *Homothetic solitons for* the inverse mean curvature flow. To appear in Results Math. Research supported by MEC-Feder grant MTM2014-52368-P.

Examples of Lagrangian homothetic solitons for the IMCF

$$a\kappa\langle\alpha',J\alpha\rangle = |\alpha'|$$

The Lagrangian homothetic solitons that are product of *n* plane curves are given by:

 $\mathbb{2S}^1 \times \mathbb{.}^k) \times \mathbb{S}^1 \times \mathbb{R}^{n-k} \hookrightarrow \mathbb{C}^n.$

 $\mathfrak{GC} \times \mathbb{R}^{n-1} \hookrightarrow \mathbb{C}^n$, where \mathcal{C} is a homothetic soliton for the inverse curve shortening flow.

Theorem

 $I \times N \longrightarrow \mathbb{C}^n, \quad (t, x) \mapsto \alpha(t)\psi(x),$

References