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Abstract
We study solutions to the inverse mean curvature
flow (IMCF) which evolve by homotheties of a
given submanifold with arbitrary dimension and
codimension.

Introduction

Homothetic soliton for the IMCF
„ : Mn æ Rm isometric immersion
H nonvanishing mean curvature vector of M
‹ the projection onto the normal bundle of M

≠ H

|H|2 = a„‹, a ”= 0 constant

• a velocity constant of „.
• If a < 0, M is called shrinker for the IMCF.
• If a > 0, M is called expander for the IMCF.
• If „ is a homothetic soliton ’fl>0=∆ fl„ is a homo-

thetic soliton with the same constant velocity.
• Spherical minimal submanifolds are expanders

for the IMCF (a = 1/n).

Examples of expanders for the IMCF:
1 The standard sphere Sn µ Rn+1.
2 The cylinders Sk ◊ Rn≠k µ Rn+1 (a = 1/k).
3 The Cli�ord immersion

Sn1(Ôn1) ◊ Sn2(Ôn2) Òæ Rn+2, n1 + n2 = n.

4 The product of n circles
S1◊ n). . . ◊S1 Òæ R2n.

5 The Hopf immersion S1 ◊ Sn≠1 æ Cn © R2n:
(eit, (x1, . . . , xn)) ‘æ

Ô
n eit (x1, . . . , xn).

Lagrangian submanifolds

(R2n © Cn, È , Í, J) complex Euclidean space
Ê(·, ·) = ÈJ ·, ·Í Kaehler two-form

„ : Mn æ Cn Lagrangian if „úÊ = 0

J : TM ≥= T ‹M

Solitons for the IMCF

Any homothetic soliton „ for the IMCF with
constant velocity a satisfies that:
• ÈH, „Í = ≠1/a.
• —|„|2 = 2(n ≠ 1/a).
Remark: The first condition characterizes the
homothetic solitons for the IMCF of codimension
one, including plane curves.

Theorem
Let „ : Mn æ Rm be a homothetic soli-
ton for the IMCF with constant velocity
a. If M is closed, then a = 1/n and „
must be a spherical minimal immersion.

Closed expanders for the IMCF

• Mn µ Rn+1 closed homothetic soliton hypersurface for the IMCF ∆ M = Sn, up to dilations.

Rigidity results for the Cli�ord torus
The Cli�ord torus is the only closed homothetic soliton for the IMCF. . .

. . . which is an embedded torus in R4.

. . . with constant or non negative Gauss curvature in R4 (besides the two-sphere S2).

. . . which satisfies the pinching condition |‡|2
|H|2 Æ 3n≠4

n(2n≠3) when codimension and dimension are equal to n.

Theorem

Let „ : Mn æ R2n © Cn be a closed Lagrangian homothetic soliton for the inverse mean curvature flow.
Then, up to dilations, M = S1 ◊ Nn≠1, where N is a closed (n≠1)-manifold, and „ is given by

„(eit, x) = eitÂ(x),
where Â : Nn≠1 æ S2n≠1 µ Cn is a minimal Legendrian immersion.

Corollaries:
1 M 2 closed Lagrangian homothetic soliton for the IMCF ∆ M is the Cli�ord torus, up to dilations.
2 M 3 closed orientable Lagrangian homothetic soliton for the IMCF with sectional curvature K verifying that
K Ø 0 or K Æ 0 ∆ M is, up to dilations, the Hopf immersion of S1 ◊ S2 in C3 or the immersion of
S1 ◊ S1 ◊ S1 in R6.

3 Mn closed Lagrangian homothetic soliton for the IMCF with sectional curvature K constant ∆ M is, up
to dilations, the immersion of S1◊ n). . . ◊S1 in R2n.

4 „ : Mn æ Cn closed Lagrangian homothetic soliton for the IMCF with 3n2|‡|2 Æ (11n ≠ 6)|H|2 ∆ either
n2|‡|2 = (3n ≠ 2)|H|2 and „ is given, up to dilations, by the Hopf immersion of S1 ◊ Sn≠1 in Cn or n = 3,
|‡|2 = |H|2 and „ is given, up to dilations, by S1 ◊ S1 ◊ S1 in C3.
• Closed Lagrangian homothetic solitons for the IMCF in Cn satisfy n2|‡|2 Ø (3n ≠ 2)|H|2.

5 „ : Mn æ Cn closed Lagrangian homothetic soliton for the IMCF and invariant under the action of the
special orthogonal group given by

SO(n) ◊ Cn ≠æ Cn
.
(A, (z1, . . . , zn)) ‘æ (z1, . . . , zn)A

∆ „ is given, up to dilations, by the Hopf immersion of S1 ◊ Sn≠1 in Cn.

Examples of Lagrangian
homothetic solitons for the IMCF

Inverse curve shortening flow
– = –(t) regular plane curve
Ÿ the curvature of –

aŸÈ–Õ, J–Í = |–Õ|
• The only compact regular solutions are circles

centered at the origin (proved by Andrews).
• The classification of all homothetic soliton cur-

ves was given by Drugan, Lee and Wheeler.

Examples of homothetic soliton curves.

The Lagrangian homothetic solitons that
are product of n plane curves are given by:
1 S1◊ n). . . ◊S1 Òæ Cn.
2 S1◊ k). . . ◊S1◊ Rn≠k Òæ Cn.
3 C ◊ Rn≠1 Òæ Cn, where C is a homothetic soliton
for the inverse curve shortening flow.

Theorem
Let „ : Mn æ Cn be a Lagrangian pseudoumbi-
lical homothetic soliton for the IMCF with cons-
tant velocity a. Then „ is locally congruent to

I ◊ N ≠æ Cn, (t, x) ‘æ –(t)Â(x),
where Â : N ≠æ S2n≠1 µ Cn is a minimal
Legendrian immersion of a Riemannian (n ≠ 1)-
manifold N and – : I æ Cú is a regular plane
curve such that –n is a homothetic soliton for the
inverse curve shortening flow with constant velo-
city na.
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