SYMMETRIES AND CONSERVATION LAWS IN MULTISYMPLECTIC SECOND-ORDER FIELD THEORIES: THE GRAVITATIONAL FIELD

Jordi Gaset, Narciso Román-Roy (Dept. Mathematics, UPC)

SUMMARY: Generalizing previous results for first-order field theories [3, 4], conserved quantities and different kinds of symmetries are studied for second order Lagrangian field theories. As an application we analyze the case of the Hilbert-Einstein formulation of the gravitational field. (Work in progress).

JET BUNDLES. SECOND-ORDER LAGRANGIAN FIELD THEORIES

(See [9]). Let $E \xrightarrow{\pi} M$ be a fiber bundle, dim E = m + n, over an orientable *m*-dimensional manifold M, whose volume form is $\eta \in \Omega^m(M)$, and let $J^k \pi$ be the kth-order jet bundle. The kth prolongation of a local section of π , $\phi \in \Gamma(\pi)$, to $J^k \pi$ is denoted by $j^k \phi \in \Gamma(\bar{\pi}^k)$. Points in $J^k \pi$ are denoted by $j_x^k \phi$, $x \in M$ and $\phi \in \Gamma(\pi)$ being a representative of the equivalence class. If $r \leq k$, natural projections are:

Observe that $\pi_r^s \circ \pi_s^k = \pi_r^k$, $\pi_0^k = \pi^k$, $\pi_k^k = \text{Id}_{J^k\pi}$, and $\bar{\pi}^k = \pi \circ \pi^k$. A section $\psi \in \Gamma(\bar{\pi}^k)$ is holonomic if $j^k(\pi^k \circ \psi) = \psi$; that is, ψ is the *k*th prolongation of a section $\phi = \pi^k \circ \psi \in \Gamma(\pi)$.

If (x^i, u^{α}) , $1 \leq i \leq m$, $1 \leq \alpha \leq n$, are local coordinates in E adapted to the bundle structure, such that $\eta = dx^1 \wedge \ldots \wedge dx^m \equiv d^m x$; then local coordinates in $J^k \pi$ are denoted (x^i, u_I^{α}) , with $0 \leq |I| \leq k$ (I is a multi-index; that is, an element of \mathbb{Z}^m where every component is positive, the *i*th position of the **Definition 5.** A conservation law or a conserved quantity of $(J^k \pi, \Omega_L)$ is a form $\xi \in \Omega^{m-1}(\mathcal{M})$ such that $L(\mathcal{X})\xi := (-1)^{m+1} i(\mathcal{X}) d\xi = 0$, for every $\mathcal{X} \in \ker^m_{\omega} \Omega_{\mathcal{L}}$.

Theorem 2. A form $\xi \in \Omega^{m-1}(\mathcal{M})$ is a conserved quantity of $(J^k \pi, \Omega_{\mathcal{L}})$ if, and only if, $L(\mathcal{Z})\xi = 0$, for every $\mathcal{Z} \in \ker^m \Omega$.

Proposition 2. If $\xi \in \Omega^{m-1}(\mathcal{M})$ is a conserved quantity of $(J^k \pi, \Omega_{\mathcal{L}})$ and $\mathcal{X} \in \ker_{\omega(I)}^m \Omega_{\mathcal{L}}$, then ξ is closed on the integral submanifolds of \mathcal{X} : if $j_S \colon S \hookrightarrow \mathcal{M}$ is an integral submanifold, then $dj_S^* \xi = 0$.

Theorem 3. (Noether): If $Y \in \mathfrak{X}(J^k\pi)$ is an infinitesimal Cartan symmetry of $(J^k\pi, \Omega_{\mathcal{L}})$, with $i(Y)\Omega_{\mathcal{L}} = d\xi_Y$. Then, for every $\mathcal{X} \in \ker^m_{\omega} \Omega_{\mathcal{L}}$ (and hence for every $\mathcal{X} \in \ker^m_{\omega(I)} \Omega_{\mathcal{L}}$), we have that $L(\mathcal{X})\xi_Y = 0$; that is, any Hamiltonian (m-1)-form ξ_Y associated with Y is a conserved quantity. (It is usually called a Noether current). As a particular case, if $L(Y)\Theta_{\mathcal{L}} = 0$ then $\xi_Y = i(Y)\Theta_{\mathcal{L}}$.

Definition 6. If $\Omega_{\mathcal{L}}$ is a premultisymplectic form (i.e., it is 1-degenerate) then the vector fields $Y \in$ ker $\Omega_{\mathcal{L}}$ are the (infinitesimal) gauge symmetries of $(J^k \pi, \Omega_{\mathcal{L}})$.

APPLICATION TO THE HILBERT-EINSTEIN ACTION

multi-index is denoted I(i), and $|I| = \sum I(i)$ is the length of the multi-index. An expression as |I| = k

means that the expression is taken for every multi-index of length k. The element $1_i \in \mathbb{Z}^m$ is defined as $1_i(j) = \delta_i^j$, n(ij) is a combinatorial factor which n(ij) = 1 for i = j, and n(ij) = 2 for $i \neq j$). The coordinate total derivatives are [6, 9]: $D_i = \frac{\partial}{\partial x^i} + \sum_{\substack{I = -0 \\ I \neq I_i = 0}}^{\kappa} u_{I+1_i}^{\alpha} \frac{\partial}{\partial u_I^{\alpha}}$. For every function $f, D_i f := L_{D_i} f$.

Definition 1. [4]. An m-multivector field in $J^k \pi$ is a skew-symmetric contravariant tensor of order m in $J^k\pi$. The set of m-multivector fields in $J^k\pi$ is denoted $\mathfrak{X}^m(J^k\pi)$. A multivector field $\mathbf{X} \in \mathfrak{X}^m(J^k\pi)$ is said to be locally decomposable if, for every $p \in J^k\pi$, there is an open neighbourhood $U_p \subset J^k \pi$ and $X_1, \ldots, X_m \in \mathfrak{X}(U_p)$ such that $\mathbf{X}|_{U_p} = X_1 \land \ldots \land X_m$. Locally decomposable m-multivector fields $\mathbf{X} \in \mathfrak{X}^m(J^k\pi)$ are locally associated with m-dimensional distributions $D \subset TJ^k \pi$. Then, X is integrable if its associated distribution is integrable. In particular, **X** is holonomic if it is integrable and its integral sections are holonomic sections of $\bar{\pi}^k$.

For a second-order classical field theory, a second-order Lagrangian density is a $\overline{\pi}^2$ -semibasic m-form $\mathcal{L} \in \Omega^m(J^2\pi)$; then $\mathcal{L} = L(\overline{\pi}^2)^*\eta$, where $L \in C^\infty(J^2\pi)$ is the Lagrangian function. The Lagrangian phase bundle is $J^3\pi$ and natural coordinates adapted to the fibration are $(x^i, u^\alpha, u^\alpha_i, u^\alpha_I, u^\alpha_I); 1 \le i \le m$, $1 \le \alpha \le n$, and I, J are multiindices with |I| = 2, |J| = 3. The Poincaré-Cartan *m*-form $\Theta_{\mathcal{L}} \in \Omega^m(J^3\pi)$ can be unambiguously constructed using the canonical structures of $J^k \pi$ [1, 5, 6] and it is given by

$$\Theta_{\mathcal{L}} = \left(\frac{\partial L}{\partial u_i^{\alpha}} - \sum_{j=1}^m \frac{1}{n(ij)} \frac{d}{dx^j} \frac{\partial L}{\partial u_{1_i+1_j}^{\alpha}}\right) (\mathrm{d}u^{\alpha} \wedge \mathrm{d}^{m-1}x_i - u_i^{\alpha} \mathrm{d}^m x) + \frac{1}{n(ij)} \frac{\partial L}{\partial u_{1_i+1_j}^{\alpha}} (\mathrm{d}u_i^{\alpha} \wedge \mathrm{d}^{m-1}x_j - u_i^{\alpha} \mathrm{d}^m x) + L\mathrm{d}^m x \equiv L_{\alpha}^i \mathrm{d}u^{\alpha} \wedge \mathrm{d}^{m-1}x_i + L_{\alpha}^{ij} \mathrm{d}u_i^{\alpha} \wedge \mathrm{d}^{m-1}x_j + (L - L_{\alpha}^i u_i^{\alpha} - L_{\alpha}^{ij} u_{1_i+1_j}^{\alpha})\mathrm{d}^m x$$

where $L_{\alpha}^{i} = \frac{\partial L}{\partial u_{i}^{\alpha}} - \sum_{j=1}^{m} D_{j} L_{\alpha}^{ij}$, $L_{\alpha}^{ij} = \frac{1}{n(ij)} \frac{\partial L}{\partial u_{1_{i}+1_{j}}^{\alpha}}$. The Poincaré-Cartan (m+1)-form is $\Omega_{\mathcal{L}} := -\mathrm{d}\Theta_{\mathcal{L}}$. A second-order Lagrangian system is specified as $(J^3\pi, \Omega_{\mathcal{L}})$. The solutions to the Lagrangian variational

For this system, M is a 4-dimensional manifold representing space-time and E is the manifold of Lorentzian metrics on M. Local coordinates in E are denoted $(x^{\mu}, g_{\alpha\beta})$, with $0 \le \alpha \le \beta \le 3$, and dim E = 14. The induced coordinates in $J^3\pi$ are $(x^{\mu}, g_{\alpha\beta}, g_{\alpha\beta,\mu}, g_{\alpha\beta,\mu\nu}, g_{\alpha\beta,\mu\nu\rho})$. The Hilbert-Einstein Lagrangian is

$$L_{EH} = \varrho g^{\alpha\beta} R_{\alpha\beta} = \varrho R \; ,$$

where $\rho \equiv \sqrt{|det(g_{\alpha\beta})|}$, R is the scalar curvature, $R_{\alpha\beta}$ are the components of the Ricci tensor, and $g^{\alpha\beta}$ is the inverse matrix of g. The Poincaré-Cartan 3-form $\Theta_{\mathcal{L}_{FH}}$ associated with the Lagrangian density $\mathcal{L}_{EH} = L_{EH} (\overline{\pi}^3)^* \eta = L_{EH} d^4 x$ is

$$\begin{split} \Theta_{\mathcal{L}_{EH}} &= -H \mathrm{d}^4 x + \sum_{\alpha \le \beta} L^{\alpha \beta, \mu} \mathrm{d}g_{\alpha \beta} \wedge \mathrm{d}^{m-1} x_{\mu} + \sum_{\alpha \le \beta} L^{\alpha \beta, \mu \nu} \mathrm{d}g_{\alpha \beta, \mu} \wedge \mathrm{d}^{m-1} x_{\nu} ; \\ L^{\alpha \beta, \mu} &= \frac{\partial L}{\partial g_{\alpha \beta, \mu}} - \sum_{\nu=0}^{3} \frac{1}{n(\mu\nu)} D_{\nu} \frac{\partial L}{\partial g_{\alpha \beta, \mu\nu}} = \frac{n(\alpha \beta)\varrho}{2} \left(\Gamma^{\alpha}_{\nu\sigma} (g^{\beta\sigma} g^{\mu\nu} - g^{\beta\mu} g^{\sigma\nu}) + \Gamma^{\beta}_{\nu\sigma} (g^{\alpha\sigma} g^{\mu\nu} - g^{\alpha\mu} g^{\sigma\nu}) \right) \\ L^{\alpha \beta, \mu\nu} &= \frac{1}{n(\mu\nu)} \frac{\partial L}{\partial g_{\alpha \beta, \mu\nu}} = \frac{n(\alpha \beta)}{2} \varrho (g^{\alpha\mu} g^{\beta\nu} + g^{\alpha\nu} g^{\beta\mu} - 2g^{\alpha\beta} g^{\mu\nu}) ; \\ H &= \sum_{\alpha \le \beta} L^{\alpha \beta, \mu} g_{\alpha \beta, \mu} + \sum_{\alpha \le \beta} L^{\alpha \beta, I} g_{\alpha \beta, I} - L, \end{split}$$

where $\Gamma^{\rho}_{\mu\nu}$ are the Christoffel symbols of the Levi-Civita connection of g. As it is usual, $\Omega_{\mathcal{L}_{EH}} = -d\Theta_{\mathcal{L}_{EH}}$.

As $\Omega_{\mathcal{L}_{EH}}$ is π_1^3 -projectable [2, 6, 7, 8] the π_1^3 -vertical vector fields in $J^3\pi$ are gauge symmetries.

Definition 7. 1. Let $F: M \to M$ be a diffeomorphism. The canonical lift of F to the bundle of metrics *E* is the diffeomorphism $\mathcal{F}: E \to E$ defined as follows: for every $(x, g_x) \in E$, then $\mathcal{F}(x, g_x) :=$ $(F(x), (F^{-1})^*(g_x))$. (Thus $\pi \circ \mathcal{F} = F \circ \pi$).

The canonical lift of \mathcal{F} to the jet bundle $J^k \pi$ is the diffeomorphism $j^k \mathcal{F} \colon J^k \pi \to J^k \pi$ defined as follows: for every $j_x^k \phi \in J^k \pi$, then $\mathcal{F}(j_x^k \phi) := j^k (\mathcal{F} \circ \phi \circ F^{-1})(x)$.

2. Let $Z \in \mathfrak{X}(M)$. The canonical lift of Z to the bundle of metrics E is the vector field $Y \in \mathfrak{X}(E)$ whose

problem posed by \mathcal{L} are holonomic sections $j^3\phi \colon M \to J^3\pi$ which are the integral submanifolds of a locally decomposable holonomic multivector field $\mathcal{X}_{\mathcal{L}} \in \mathfrak{X}^m(J^3\pi)$ satisfying the equation

$$i(\mathcal{X}_{\mathcal{L}})\Omega_{\mathcal{L}} = 0$$
. (1)

Let ker^m $\Omega_{\mathcal{L}} := \{ \mathcal{X} \in \mathfrak{X}^m(\mathcal{M}) \mid i(\mathcal{X})\Omega_{\mathcal{L}} = 0 \}$. If $\omega = (\overline{\pi}^3)^* \eta$, let ker^m $\Omega_{\mathcal{L}}$ be the set of *m*-multivector fields satisfying the equation (1) and the $\bar{\pi}^3$ -transversality condition $i(\mathcal{X})\omega \neq 0$, but being not necessarily locally decomposable. Then, we denote by $\ker_{\omega(I)}^m \Omega_{\mathcal{L}}$ the set of integrable *m*-multivector fields satisfying both conditions. Oviously we have that $\ker_{\omega(I)}^{m} \Omega_{\mathcal{L}} \subset \ker_{\omega}^{m} \Omega_{\mathcal{L}} \subset \ker^{m} \Omega_{\mathcal{L}}$.

SYMMETRIES AND CONSERVATION LAWS

Definition 2. 1. A symmetry of $(J^k \pi, \Omega_{\mathcal{L}})$ is a diffeomorphism $\Phi: J^k \pi \to J^k \pi \text{ s.t. } \Phi_*(\ker^m \Omega_{\mathcal{L}}) \subset$ $\ker^m \Omega_{\mathcal{L}}$. If $\Phi = j^k \varphi$ for a diffeormorphism $\varphi \colon E \to E$, the symmetry is natural.

2. An infinitesimal symmetry of $(J^k \pi, \Omega_{\mathcal{L}})$ is a vector field $Y \in \mathfrak{X}(\mathcal{M})$ whose local flows are local symmetries or, what is equivalent, such that $[Y, \ker^m \Omega_{\mathcal{L}}] \subset \ker^m \Omega_{\mathcal{L}}$. If $Y = j^k Z$ for some $Z \in \mathbb{R}$ $\mathfrak{X}(M)$, then the infinitesimal symmetry is natural.

Theorem 1. 1. Let $\Phi \in \text{Diff}(\mathcal{M})$ be a symmetry of $(J^k \pi, \Omega_{\mathcal{L}})$ such that $\Phi \in \text{Diff}(J^k \pi)$ restricts to a diffeormorphism $\varphi \colon M \to M$. Then, for every $\mathcal{X} \in \ker^m_{\omega(I)} \Omega_{\mathcal{L}}$, Φ transforms integral submanifolds of \mathcal{X} into integral submanifolds of $\Phi_*\mathcal{X}$, and hence $\Phi_*\mathcal{X} \in \ker^m_{\omega(I)} \Omega_{\mathcal{L}}$.

2. Let $Y \in \mathfrak{X}(J^k\pi)$ be an infinitesimal symmetry of $(J^k\pi, \Omega_{\mathcal{L}})$ and F_t a local flow of Y. If $Y \in \mathfrak{X}(J^k\pi)$ is $\bar{\pi}^3$ -projectable then, for every $\mathcal{X} \in \ker^m_{\omega(I)} \Omega_{\mathcal{L}}$, F_t transforms integral submanifolds of \mathcal{X} into integral submanifolds of $F_{t*}\mathcal{X}$, and hence $F_{t*}\mathcal{X} \in \ker_{\omega(I)}^{m} \Omega_{\mathcal{L}}$.

Definition 3. 1. A Cartan (Noether) symmetry of $(J^k \pi, \Omega_{\mathcal{L}})$ is a diffeomorphism $\Phi: J^k \pi \to J^k \pi$ such that, $\Phi^*\Omega_{\mathcal{L}} = \Omega_{\mathcal{L}}$. If, in addition, $\Phi^*\Theta_{\mathcal{L}} = \Theta_{\mathcal{L}}$, then Φ is said to be an exact Cartan symmetry. If $\Phi = j^k \varphi$ for a diffeormorphism $\varphi \colon E \to E$, the Cartan symmetry is natural.

associated local one-parameter groups of diffeomorphisms \mathcal{F}_t are the canonical lifts to the bundle of metrics E of the local one-parameter groups of diffeomorphisms F_t of Z.

The canonical lift of $Y \in \mathfrak{X}(E)$ to the jet bundle $J^k \pi$ is the vector field $Y^k \equiv j^k Y \in \mathfrak{X}(J^k \pi)$ whose associated local one-parameter groups of diffeomorphisms are the canonical lifts $j^{1}\mathcal{F}_{t}$ of the local one-parameter groups of diffeomorphisms \mathcal{F}_t of Y.

In coordinates, if
$$Z = u^{\mu}(x)\frac{\partial}{\partial x^{\mu}} \in \mathfrak{X}(M)$$
, the canonical lift of Z to the bundle of metrics $Y \in \mathfrak{X}(E)$ is

$$Y = u^{\mu}\frac{\partial}{\partial x^{\mu}} - \sum_{\alpha \leq \beta} \left(\frac{\partial u^{\mu}}{\partial x^{\alpha}}g_{\mu\beta} + \frac{\partial u^{\mu}}{\partial x^{\beta}}g_{\mu\alpha}\right)\frac{\partial}{\partial g_{\alpha\beta}}, \quad \text{and then}:$$

$$Y^{1} = u^{\mu}\frac{\partial}{\partial x^{\mu}} + \sum_{\alpha \leq \beta} Y_{\alpha\beta}\frac{\partial}{\partial g_{\alpha\beta}} + \sum_{\alpha \leq \beta} Y_{\alpha\beta\mu}\frac{\partial}{\partial g_{\alpha\beta,\mu}} = u^{\mu}\frac{\partial}{\partial x^{\mu}} - \sum_{\alpha \leq \beta} \left(\frac{\partial u^{\mu}}{\partial x^{\alpha}}g_{\mu\beta} + \frac{\partial u^{\mu}}{\partial x^{\beta}}g_{\mu\alpha}\right)\frac{\partial}{\partial g_{\alpha\beta}}$$

$$- \sum_{\alpha \leq \beta} \left(\frac{\partial^{2}u^{\nu}}{\partial x^{\alpha}\partial x^{\mu}}g_{\nu\beta} + \frac{\partial^{2}u^{\nu}}{\partial x^{\beta}\partial x^{\mu}}g_{\alpha\nu} + \frac{\partial u^{\nu}}{\partial x^{\alpha}}g_{\nu\beta,\mu} + \frac{\partial u^{\nu}}{\partial x^{\beta}}g_{\alpha\nu,\mu} + \frac{\partial u^{\nu}}{\partial x^{\mu}}g_{\alpha\beta,\nu}\right)\frac{\partial}{\partial g_{\alpha\beta,\mu}}.$$

For every $Z \in \mathfrak{X}(M)$, we have $L(Y^3)\mathcal{L}_{EH} = 0$, because \mathcal{L}_{EH} is invariant under diffeomorphisms. As Y^3 is a canonical lift, it is an infinitesimal Lagrangian symmetry. Thus, Y^3 it is an exact infinitesimal Cartan symmetry, its associated conserved quantity is $\xi_Y = i(Y^3)\Theta_{\mathcal{L}_{EH}}$ and, as $\Theta_{\mathcal{L}_{EH}}$ is π_1^3 -basic,

$$\xi_{Y} = i(Y^{3})\Theta_{\mathcal{L}_{EH}} = i(Y^{1})\Theta_{\mathcal{L}_{EH}} = \left(Y_{\alpha\beta}L^{\alpha\beta,\mu} + Y_{\alpha\beta\nu}L^{\alpha\beta,\nu\mu} - u^{\mu}H\right)d^{3}x_{\mu} + \left(u^{\nu}L^{\alpha\beta,\mu} - u^{\mu}L^{\alpha\beta,\nu}\right)dg_{\alpha\beta} \wedge d^{2}x_{\nu\mu} + \left(u^{\nu}L^{\alpha\beta,\lambda\mu} - u^{\mu}L^{\alpha\beta,\lambda\nu}\right)dg_{\alpha\beta,\lambda} \wedge d^{2}x_{\nu\mu},$$

where
$$d^2 x_{\mu\nu} = i \left(\frac{\partial}{\partial x^{\nu}}\right) i \left(\frac{\partial}{\partial x^{\mu}}\right) d^4 x.$$

The vector fields of the form Y^3 are the only natural infinitesimal Lagrangian symmetries [6, 8].

2. An infinitesimal Cartan (Noether) symmetry of $(J^k \pi, \Omega_L)$ is a vector field $Y \in \mathfrak{X}(J^k \pi)$ satisfying that $L(Y)\Omega_{\mathcal{L}} = 0$. If, in addition, $L(Y)\Theta_{\mathcal{L}} = 0$, then Φ is said to be an infinitesimal exact Cartan symmetry. If $Y = j^k Z$ for some $Z \in \mathfrak{X}(E)$, then the infinitesimal Cartan symmetry is natural.

Canonical lifts of diffeomorphisms and vector fields preserve the canonical structures of $J^k \pi$, but not $\Omega_{\mathcal{L}}$.

- **Definition 4.** 1. A Lagrangian symmetry of $(J^k \pi, \Omega_L)$ is a diffeomorphism $\Phi: J^k \pi \to J^k \pi$ such that Φ leaves the canonical geometric structures of $J^k \pi$ invariant and $\Phi^* \mathcal{L} = \mathcal{L}$ (Φ leaves \mathcal{L} invariant). A natural Lagrangian symmetry of $(J^k \pi, \Omega_L)$ is a diffeomorphism $\Phi: J^k \pi \to J^k \pi$ such that $\Phi = j^k \varphi$, for some diffeomorphism $\varphi \colon E \to E$, and Φ leaves \mathcal{L} invariant.
- 2. An infinitesimal Lagrangian symmetry of $(J^k \pi, \Omega_L)$ is a vector field $Y \in \mathfrak{X}(J^1 E)$ such that the canonical geometric structures of $J^k \pi$ are invariant under Y and $L(Y)\mathcal{L} = 0$ (Y leaves \mathcal{L} invariant). An infinitesimal natural Lagrangian symmetry of $(J^k \pi, \Omega_L)$ is a vector field $Y \in \mathfrak{X}(J^k \pi)$ such that $Y = j^k Z$, for some $Z \in \mathfrak{X}(E)$, and $L(j^k Z)\mathcal{L} = 0$.

Proposition 1. If $\Phi: J^k \pi \to J^k \pi$ is a Lagrangian symmetry of $(J^k \pi, \Omega_L)$, then $\Phi^* \Theta_L = \Theta_L$, and hence it is an exact Cartan symmetry.

If $Y \in \mathfrak{X}(J^k\pi)$ is an infinitesimal Lagrangian symmetry of $(J^k\pi, \Omega_{\mathcal{L}})$, then $L(Y)\Theta_{\mathcal{L}} = 0$, and hence it is an infinitesimal exact Cartan symmetry.

References

- [1] V. Aldaya, J.A. de Azcarraga, "Variational Principles on *rth* order jets of fibre bundles in Field Theory", J. Math. Phys. **19**(9) (1978) 1869-1875.
- [2] M. Castrillón, J. Muñoz-Masqué, M.E. Rosado, "First-order equivalent to Einstein-Hilbert Lagrangian", ArXiv: 1306.1123 [math.DG] (2013).
- [3] M. de León, D. Martín de Diego, A. Santamaría-Merino, "Symmetries in classical field theory", Int. J. Geom. Meths. Mod. Phys. 1(5) (2004) 651-710.
- [4] A. Echeverría-Enríquez, M.C. Muñoz-Lecanda, N. Román-Roy, "Multivector Field Formulation of Hamiltonian Field Theories: Equations and Symmetries", J. Phys. A: Math. Gen. 32 (1999) 8461-8484.
- [5] P.L. García, J. Muñoz-Masqué, "On the geometrical structure of higher order variational calculus", Atti. Accad. Sci. Torino Cl. Sci. Fis. Math. Natur. 117 (1983) suppl. 1, 127–147.

[6] D. Krupka, Introduction to Global Variational Geometry, Atlantis Studies in Variational Geometry, Atlantis Press 2015.

- [7] D. Krupka, O. Stepankova, " On the Hamilton form in second order calculus of variations", Procs. Int. Meeting on Geometry and Physics, 85-101. Florence 1982, Pitagora, Bologna, 1983.
- [8] M.E. Rosado, J. Muñoz-Masqué, "Integrability of second-order Lagrangians admitting a first-order Hamiltonian formalism", Diff. Geom. and Apps. 35 (Sup. September 2014) (2014) 164–177.
- [9] D.J. Saunders, The geometry of jet bundles, London Math. Soc., Lecture Not. Ser. 142, Cambridge Univ. Press, Cambridge, New York 1989.

Acknowledgements: We acknowledge the financial support of the Ministerio de Ciencia e Innovación (Spain), project MTM2014-15725-E, and of Generalitat de Catalunya, project 2014-SGR-634.