INVARIANT SOLUTIONS TO THE HETEROTIC EQUATIONS OF MOTION ON COMPACT QUOTIENTS OF LIE GROUPS

Centro Universitario de la Defensa de Zaragoza. Universidad de Zaragoza. IUMA.

Objectives

- 1. Provide new explicit smooth six-dimensional non-Kähler solutions to the Strominger system and the heterotic equations of motion.
- 2. Our solutions are based on the invariant Hermitian geometry on six-dimensional solvmanifolds studied by the authors in previous works.

Strominger system and equations of motion

[Str86] analyzed heterotic superstring background with space-time supersymmetry. The model requires a 10-dimensional manifold of the form:

 $\mathcal{M} = \underbrace{\mathcal{M}^{3,1}}_{\text{Lorenztian}} \times \underbrace{\mathcal{M}^{6}}_{\text{Lorenztian}} , \quad g = e^{2D(x)} \begin{pmatrix} g_{\mu,\nu}(x) & 0 \\ 0 & g_{m,n}(y) \end{pmatrix}$

Calabi-Yau m

Results: Our strategy

We choose $(M^6, J, F, \Psi, \nabla, A)$, where: $\blacktriangleright M^6 = G \setminus \Gamma$ compact quotient of Lie group $G \Longrightarrow \mathfrak{g}$ associated Lie algebra. \blacktriangleright (*J*, *F*, Ψ) is an invariant Hermitian balanced SU(3)-structure on M^6 . $\blacktriangleright \nabla = \nabla^{\varepsilon,\rho}$.

\blacktriangleright A is an SU(3)-instanton with respect to the previous structure.

Results: nilpotent case

- \mathfrak{h}_3 is the Lie algebra underlying the product of the 5-dimensional Heisenberg Lie group with \mathbb{R} . Consider: ► J: $d\omega^1 = d\omega^2 = 0$, $d\omega^3 = \omega^{1\overline{1}} - \omega^{2\overline{2}}$.
 ► SU(3)-instance of the set o ► SU(3)-instantons: ∇^+ and A_λ

Equations of motion (EM) are derived from the Lagrangian: $S = \int e^{-2\phi} [s^{g} + 4(\nabla^{g}\phi)^{2} - \frac{1}{2}|H|^{2} - \frac{\alpha'}{4}(Tr|F^{A}|^{2} - Tr|R|^{2})]\sqrt{-g} d^{10}x,$ where ϕ is a scalar field called *dilaton*. Very restrictive.

- Strominger system (SS): less restrictive than the equations of motion. If the dilaton is constant, we look for $(M^6, J, F, \Psi, \nabla, A)$ satisfying:
- ▷ Gravitino eq.: Hol(∇^+) ⊆ SU(3), being ∇^+ the Bismut connection associated to the Hermitian structure (J, F). Equiv: Ψ is a holomorphic (3,0)-form i.e. $\partial \Psi = 0$ trivializing the holomorphic canonical bundle. \triangleright Dilatino eq.: (M, J, F) is balanced, i.e. $dF^2 = 0$.
- \triangleright Gaugino eq.: A is Donaldson-Uhlenbeck-Yau instanton, i.e. $\Omega^A \in \mathfrak{su}(3)$.
- The Green-Schwarz anomaly cancellation condition:

$$dT = 2\pi^2 \alpha'(\rho_1(\nabla) - \rho_1(A)) = \frac{\alpha'}{4} (\operatorname{tr}(\Omega \wedge \Omega) - \operatorname{tr}(\Omega^A \wedge \Omega^A)), \quad (1)$$

- ▶ $\alpha' \in \mathbb{R} \setminus \{0\}$ (better in physics $\alpha' > 0$).
- \blacktriangleright τ is the torsion 3-form associated to ∇^+ . It is identified to $\tau = JdF$.
- Ω is the curvature form of a metric connection ∇ on *TM*.
- Relation between (EM) and (SS) [lva10]:

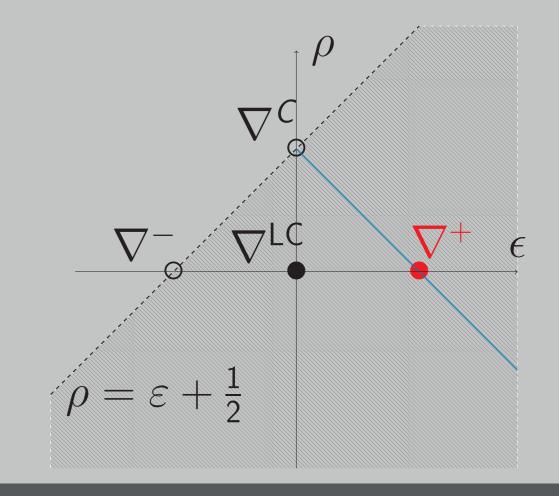
A solution to (SS) satisfies (EM) $\iff \nabla$ in (1) is an instanton.

$F_t = \frac{i}{2} (\omega^{1\bar{1}} + \omega^{2\bar{2}} + t^2 \omega^{3\bar{3}}). \qquad (\sigma^{A_\lambda})_2^1 = -(\sigma^{A_\lambda})_4^3 = \lambda (e^5 + e^6).$

Results (with $\alpha' > 0$):

 \blacktriangleright (SS) using A_{λ} with respect to $\nabla^{\varepsilon,\rho}$ if and only if $\rho < \varepsilon + \frac{1}{2}$.

▶ (EM) if $\nabla = \nabla^+$.



Results: semisimple case

- $\mathfrak{sl}(2,\mathbb{C})$ is the Lie algebra of $SL(2,\mathbb{C}) = \{M \in GL(2,\mathbb{C}), | \det M = 1\}$. ► J: $d\omega^1 = \omega^{23}$, $d\omega^2 = -\omega^{13}$, $d\omega^3 = \omega^{12}$, $F = \frac{i}{2}(\omega^{1\bar{1}} + \omega^{2\bar{2}} + \omega^{3\bar{3}})$. $\blacktriangleright \nabla^{\varepsilon,\rho} \text{ is an SU(3)-instanton} \iff \nabla^{\varepsilon,\rho} = \nabla^{\mathsf{C}} \text{ (flat) or } \nabla^{\varepsilon,\rho} = \nabla^{+} \text{ (non-flat).}$ Consider: $\beta(\varepsilon,\rho) = 1 + 4\varepsilon + 4\varepsilon^2 + 32\varepsilon^3 - 12\rho - 24\varepsilon\rho - 32\varepsilon^2\rho + 36\rho^2 + 32\varepsilon\rho^2 - 32\rho^3.$ **Results** (with $\alpha' > 0$):
- ▶ If $\beta(\varepsilon, \rho) \neq 0$, consider $A = \nabla^c$ and sign $(\alpha') = \text{sign} (\beta(\varepsilon, \rho))$. Then: (SS) for ∇^{LC} and $\nabla^{t<0}$ and (EM) for ∇^+ .

Antecedents

- There are several proposals for connections ∇ in (1): \triangleright Levi-Civita: ∇^{LC} . Torsion-free.
 - \triangleright Bismut-Strominger: $\nabla^+ = \nabla^{LC} + \frac{1}{2}T$, where T = JdF. ▷ Chern: $\nabla^{C} = \nabla^{LC} + \frac{1}{2}C$, where $C(\cdot, \cdot, \cdot) = dF(J \cdot, \cdot, \cdot)$.
 - \triangleright Hull: $\nabla^- = \nabla^{LC} \frac{1}{2}\overline{T}$. ▷ Hermitian connections (Gauduchon): $\nabla^t = \nabla^{LC} + \frac{1-t}{4}\tau + \frac{1+t}{4}C$, $t \in \mathbb{R}$. $(\nabla^+ = \nabla^{t=-1}, \nabla^c = \nabla^{t=1}).$
- Solutions to SS & EM:
 - FIUV09 First explicit solutions based on nilmanifolds (compact quotients) of nilpotent Lie groups) with $\alpha' > 0$, constant dilaton and non-flat instanton A.
 - ▶ (SS) for $\nabla = \nabla^{LC}, \nabla^+$.
 - \blacktriangleright (EM) for $\nabla = \nabla^+$ in a nilmanifold with underlying Lie algebra \mathfrak{h}_3 .
 - \triangleright [UV15] Explicit solutions for (SS) based on the nilpotent Lie algebra $\mathfrak{h}_{19}^$ with $\alpha' > 0$, constant dilaton, non-flat instanton and $\nabla = \nabla^{C}$ in (1).
 - ▷ [FIUV14] non-invariant explicit solutions with non-constant dilaton for (SS) on nilmanifolds which are \mathbb{T}^2 -bundles over \mathbb{T}^4 .
 - \triangleright [AG14], [FY15] explicit solutions for (SS) on compact quotient of $SL(2, \mathbb{C})$ with respect to $\nabla^{t<0}$ (flat) and $\nabla^{t<-1}$ (non-flat).

▶ If $\beta(\varepsilon, \rho) \neq 0$, consider $A = \nabla^c$ and sign $(\alpha') = \text{sign} (\beta(\varepsilon, \rho) - 8)$. Then, (SS) for $\nabla^{t < -1}$.

Results: solvable case

- \mathfrak{g}_7 is a solvable Lie algebra admitting lattices and complex structures with holomorphically trivial canonical bundle:
- $\blacktriangleright J: d\omega^1 = i \,\omega^1 \wedge (\omega^3 + \omega^3), \ d\omega^2 = -i \,\omega^2 \wedge (\omega^3 + \omega^3), \ d\omega^3 = \omega^{11} \omega^{22}.$ ► $2F_u = i(\omega^{1\overline{1}} + \omega^{2\overline{2}} + \omega^{3\overline{3}}) + u\omega^{1\overline{2}} - \overline{u}\omega^{2\overline{1}}, u \in \mathbb{C}, |u| < 1.$
- ► SU(3)-instantons: ∇^+ (only if u = 0) and $A_{\lambda,\mu}$ defined by the following connection 1-forms: $(\sigma^{A_{\lambda,\mu}})_2^1 = -(\sigma^{A_{\lambda,\mu}})_4^3 = \lambda e^5 + \mu e^6$.

Results (with $\alpha' > 0$):

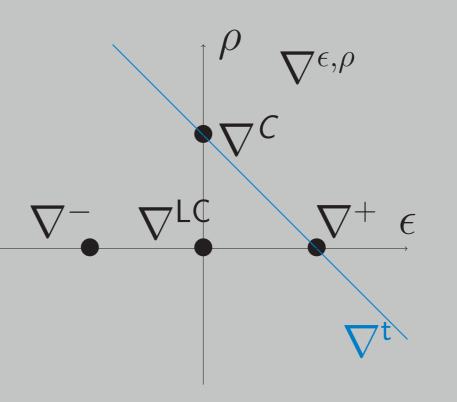
- \blacktriangleright *u* = 0:
 - \triangleright (SS) using $A_{\lambda,\mu}$ with respect to $\nabla^{\varepsilon,\rho}$ if and only if $\rho < \varepsilon + \frac{1}{2}$. \triangleright (EM) if $\nabla = \nabla^+$.
- ▶ $u \neq 0$: (SS) using $A_{\lambda,\mu}$ with respect to $\nabla^{\varepsilon,\rho}$ if and only if $(\varepsilon,\rho) \in \Delta_+$. In particular for ∇^c .

A new family of metric connections

In [OUV16] we define a new family of metric connections:

 $\nabla^{\varepsilon,\rho} = \nabla^{LC} + \varepsilon \tau + \rho c, \ (\varepsilon,\rho) \in \mathbb{R}^2.$ This family includes all the previous connections: $abla^{LC}=
abla^{0,0},\quad
abla^-=
abla^{-1/2,0},$ $abla^+=
abla^{1/2,0},\quad
abla^{\mathcal{C}}=
abla^{0,1/2},$ $\nabla^t = \nabla^{\varepsilon, 1/2 - \varepsilon}.$

Result: $\nabla^{\varepsilon,\rho}$ is Hermitian $\iff \varepsilon + \rho = \frac{1}{2}$.



References

[AG14] B. Andreas, M. García-Fernández, Commun. Math. Phys. 332 (2014), 1381–1383. [FIUV14] F. Fernández, S. Ivanov, L. Ugarte, D. Vassilev, JHEP 06 (2014) 073. [FIUV09] F. Fernández, S. Ivanov, L. Ugarte, R. Villacampa, Commun. Math. Phys. 288 (2009), 677–697. [FY15] T. Fei, S.-T. Yau, Commun. Math. Phys. 338 (2015), 1183–1195. [Iva10] S. Ivanov, Phys. Lett. B 685 (2010), 190–196. [OUV] A. Otal, L. Ugarte, R. Villacampa, arxiv. 1604.02851v1[math.DG]. [Str86] A. Strominger, Nucl. Phys. B 274 (1986), 253–284.

[UV14] L. Ugarte, R. Villacampa, Asian J. Math. 18 (2014), 229–246.

XXV INTERNATIONAL FALLWORKSHOP ON GEOMETRY AND PHYSICS

aotal@unizar.es, ugarte@unizar.es, raquelvg@unizar.es