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Objectives

1. Provide new explicit smooth six-dimensional non-Kähler solutions to the
Strominger system and the heterotic equations of motion.

2. Our solutions are based on the invariant Hermitian geometry on
six-dimensional solvmanifolds studied by the authors in previous works.

Strominger system and equations of motion

[Str86] analyzed heterotic superstring background with space-time
supersymmetry. The model requires a 10-dimensional manifold of the form:

M = M
3,1︸︷︷︸

Lorenztian

× M
6︸︷︷︸

Hermitian mfd generalizing

Calabi-Yau mfd

, g = e
2D(x)

(
gµ,ν(x) 0

0 gm,n(y)

)

I Equations of motion (EM) are derived from the Lagrangian:

S =
∫

e
−2φ[sg + 4(∇gφ)2 − 1

2|H|2 − α′

4 (Tr|FA|2 − Tr|R|2)]
√−g d

10
x,

where φ is a scalar field called dilaton. Very restrictive.
I Strominger system (SS): less restrictive than the equations of motion. If

the dilaton is constant, we look for (M6, J, F ,Ψ,∇, A) satisfying:
. Gravitino eq.: Hol(∇+) ⊆ SU(3), being ∇+ the Bismut connection

associated to the Hermitian structure (J, F). Equiv: Ψ is a holomorphic
(3,0)-form i.e. ∂̄Ψ = 0 trivializing the holomorphic canonical bundle.

. Dilatino eq.: (M, J, F) is balanced, i.e. dF
2 = 0.

. Gaugino eq.: A is Donaldson-Uhlenbeck-Yau instanton, i.e. ΩA ∈ su(3).

. The Green-Schwarz anomaly cancellation condition:

dT = 2π2α′(p1(∇)− p1(A)) =
α′

4
(tr(Ω ∧ Ω)− tr(ΩA ∧ ΩA)), (1)

I α′ ∈ R \ {0} (better in physics α′ > 0).
I T is the torsion 3-form associated to ∇+. It is identified to T = JdF .
I Ω is the curvature form of a metric connection ∇ on TM.

I Relation between (EM) and (SS) [Iva10]:

A solution to (SS) satisfies (EM)⇐⇒ ∇ in (1) is an instanton.

Antecedents

I There are several proposals for connections ∇ in (1):
. Levi-Civita: ∇LC . Torsion-free.
. Bismut-Strominger: ∇+ = ∇LC + 1

2T , where T = JdF .
. Chern: ∇C = ∇LC + 1

2C , where C(·, ·, ·) = dF(J·, ·, ·).
. Hull: ∇− = ∇LC − 1

2T .
. Hermitian connections (Gauduchon): ∇t = ∇LC + 1−t

4 T + 1+t
4 C , t ∈ R.

(∇+ = ∇t=−1, ∇c = ∇t=1).
I Solutions to SS & EM:
. [FIUV09] First explicit solutions based on nilmanifolds (compact quotients

of nilpotent Lie groups) with α′ > 0, constant dilaton and non-flat
instanton A.
I (SS) for ∇ = ∇LC , ∇+.
I (EM) for ∇ = ∇+ in a nilmanifold with underlying Lie algebra h3.

. [UV15] Explicit solutions for (SS) based on the nilpotent Lie algebra h−19

with α′ > 0, constant dilaton, non-flat instanton and ∇ = ∇C in (1).
. [FIUV14] non-invariant explicit solutions with non-constant dilaton for
(SS) on nilmanifolds which are T2-bundles over T4.

. [AG14],[FY15] explicit solutions for (SS) on compact quotient of SL(2,C)
with respect to ∇t<0 (flat) and ∇t<−1 (non-flat).

A new family of metric connections

In [OUV16] we define a new family of metric connections:

∇ε,ρ = ∇LC + εT + ρC , (ε, ρ) ∈ R2.
This family includes all the previous
connections:
∇LC = ∇0,0, ∇− = ∇−1/2,0,
∇+ = ∇1/2,0, ∇C = ∇0,1/2,
∇t = ∇ε,1/2−ε.

•∇
+

•∇C

∇t

•∇
−

•∇
LC ε

ρ ∇ε,ρ

Result: ∇ε,ρ is Hermitian ⇐⇒ ε + ρ = 1
2.

Results: Our strategy

We choose (M6, J, F ,Ψ,∇, A), where:
I M

6 = G\Γ compact quotient of Lie group G =⇒ g associated Lie algebra.
I (J, F ,Ψ) is an invariant Hermitian balanced SU(3)-structure on M

6.
I ∇ = ∇ε,ρ.
I A is an SU(3)-instanton with respect to the previous structure.

Results: nilpotent case

h3 is the Lie algebra underlying the product of the 5-dimensional
Heisenberg Lie group with R. Consider:

I J : dω1 = dω2 = 0,
dω3 = ω11̄ − ω22̄.

I Ft = i
2(ω11̄ + ω22̄ + t

2ω33̄).

I SU(3)-instantons: ∇+ and Aλ

defined by:
(σAλ)1

2 = −(σAλ)3
4 = λ(e5 + e

6).

Results (with α′ > 0):

I (SS) using Aλ with respect
to ∇ε,ρ if and only if
ρ < ε + 1

2.

I (EM) if ∇ = ∇+.
•∇

+

◦∇
C

ρ = ε + 1
2

◦∇
−

•∇
LC ε

ρ

Results: semisimple case

sl(2,C) is the Lie algebra of SL(2,C) = {M ∈ GL(2,C), | det M = 1}.
I J : dω1 = ω23, dω2 = −ω13, dω3 = ω12, F = i

2(ω11̄ + ω22̄ + ω33̄).

I ∇ε,ρ is an SU(3)-instanton ⇐⇒ ∇ε,ρ = ∇C (flat) or ∇ε,ρ = ∇+ (non-flat).

I Consider:
β(ε, ρ) = 1 + 4ε+ 4ε2 + 32ε3− 12ρ− 24ερ− 32ε2ρ+ 36ρ2 + 32ερ2− 32ρ3.

Results (with α′ > 0):

I If β(ε, ρ) 6= 0, consider A = ∇c and sign (α′) = sign (β(ε, ρ)). Then: (SS)
for ∇LC and ∇t<0 and (EM) for ∇+.

I If β(ε, ρ) 6= 0, consider A = ∇c and sign (α′) = sign (β(ε, ρ)− 8). Then,
(SS) for ∇t<−1.

Results: solvable case

g7 is a solvable Lie algebra admitting lattices and complex structures with
holomorphically trivial canonical bundle:

I J : dω1 = i ω1 ∧ (ω3 + ω3̄), dω2 = −i ω2 ∧ (ω3 + ω3̄), dω3 = ω11̄ − ω22̄.

I 2Fu = i(ω11̄ + ω22̄ + ω33̄) + u ω12̄ − ū ω21̄, u ∈ C, |u| < 1.

I SU(3)-instantons: ∇+ (only if u = 0) and Aλ,µ defined by the following
connection 1-forms: (σAλ,µ)1

2 = −(σAλ,µ)3
4 = λe5 + µe6.

Results (with α′ > 0):

I u = 0:

. (SS) using Aλ,µ with respect to
∇ε,ρ if and only if ρ < ε + 1

2.

. (EM) if ∇ = ∇+.

I u 6= 0: (SS) using Aλ,µ with respect
to ∇ε,ρ if and only if (ε, ρ) ∈ ∆+.
In particular for ∇c.

"

⇢

�+

�

rt

r+

rC

References
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