Worldline time reversal and Massless Supermultiplets

Paul K. Townsend

University of Cambridge

Based on Worldline CPT and Massless Supermultiplets with Alex Arvanitakis and Luca Mezincescu arXiv:1607.00526

Madrid, 1 September 2016

Paul K. Townsend (University of Cambridge)

Worldline Time Reversal

Madrid, 1 September 2016

∃ ► < ∃ ►</p>

Motivation

Particles vs Fields: which is more useful/fundamental?

- Particles: Dirac, Tomonaga, Feynman (appendix to QED paper)
- Fields: Heisenberg & Pauli, Schwinger

Feynman's diagrams originated from his particle viewpoint. Dyson re-interpreted them as visual aids to Schwinger's field theory calculations. Fields triumphed, until the emergence of

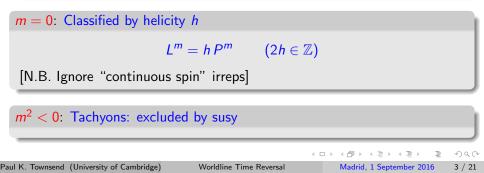
String Theory

This was a return to Feynman's viewpoint but with strings instead of particles. A bonus: Worldsheet physics \rightarrow Spacetime physics

This led to a *particle revival* (still ongoing). And a question. \rightarrow Is there a Worldline physics \rightarrow Spacetime physics bonus?

Unitary irreps of 4D Poincaré

 $m^2 > 0$: Classified by m^2 and spin sSpin from Pauli-Lubanski pseudo-vector $L^m = \frac{1}{2} \epsilon^{mnpq} P_n J_{pq}$ $L^2 = s(s+1)m^2$ $(2s \in \mathbb{Z})$



CPT

CPT theorem: any **local** relativistic QFT on 4D Minkowski spacetime is CPT invariant \Rightarrow free-field multiplets are CPT self-conjugate

• $m^2 > 0$. Unitary irrep of spin *s* has helicity content

 $h_s = (-s, -s+1, \cdots, s-1, s)$

CPT self-conjugate since $CPT : h \rightarrow -h$

• m = 0. Helicity content for spin $s \neq 0$ is $h_s = (-s, s)$

CPT self-conjugate but reducible.

Can we not get the irreducible $s \neq 0$ rep. by quantization of some massless particle action?

Paul K. Townsend (University of Cambridge)

Massless Particle

Reparametrization invariant phase-space action for massless particle is

$$S = \int dt \left\{ \dot{x}^m p_m - \frac{1}{2} e \, p^2 \right\}$$

where e(t) is Lagrange multiplier for mass-shell constraint $p^2 = 0$. Poincaré Noether charges are

$$P_m = p_m, \qquad J_{mn} = x_m p_n - x_n p_m$$

The particle has zero spin because $L^m = 0$.

Phase Space Dimension

Phase space has dimension $2 \times 4 = 8$ but physical phase space has dimension 8 - 2 = 6 because of the mass-shell constraint and the reparametrization invariance.

Paul K. Townsend (University of Cambridge)

Worldline CPT

Action is invariant under worldline time reversal, which we can combine with "spacetime reversal" (PT) to get transformations

$$egin{array}{ll} t o -t\,; & e(t) o e(-t) & x^m(t) o -x^m(-t)\ & p_m(t) o p_m(-t) \end{array} iggree \ (\dagger)$$

Realized in QT by anti-unitary operator $K = B \circ K_0$ $K_0 = c.c.$ and B is unitary.

 $\rightarrow K\Psi$ is charge conjugate of wavefunction Ψ [more on this later]

Moral: The transformation (†) becomes CPT in quantum theory. Call it "Worldline CPT".

Paul K. Townsend (University of Cambridge)

イロト イポト イヨト イヨト

Sac

3

Kramers degeneracy

$K^2 = \pm 1$

 $\begin{array}{ll} \mathrm{K \ involutive:} &\Rightarrow & \mathcal{K}^2 = \epsilon \,, \quad |\epsilon|^2 = 1 \\ \mathcal{K} = B \circ \mathcal{K}_0 : &\Rightarrow & \mathcal{K}^2 = BB^* = B(B^{\mathsf{T}})^{-1} \end{array} \right\} \Rightarrow B = \epsilon \, B^{\mathsf{T}} \Rightarrow \ \epsilon^2 = 1 \ \end{array}$

► $K^2 = 1$. In this case we can impose $K\Psi = \Psi$, a reality condition.

→ $K^2 = -1$. In this case Ψ and $K\Psi$ are linearly independent. If $\left[K, \widehat{\text{Ham}}\right] = 0$ then Ψ and $K\Psi$ are also degenerate.

This is Kramers degeneracy: A doubling of the states in time-reversal invariant theories with $K^2 = -1$

Solve $p^2 = 0$ in terms of *commuting* Majorana spinor *U*:

$$p_m = \bar{U}\Gamma_m U \qquad (\Rightarrow \ p^2 \equiv 0)$$
$$\Rightarrow \quad \dot{x}^m p_m = \dot{\bar{U}}W + \frac{d}{dt}(\dots) , \qquad \boxed{W = \not \times U} \quad \text{(incidence relation)}$$

Spinor pair (U, W) is a twistor: spinor of conformal group SU(2,2)

- **Problem**: U and W are not independent because $\bar{U}\gamma_5 W \equiv 0$
- Resolution: impose identity as spin-shell constraint with Lagrange multiplier s(t), to get twistor action

$$S_0 = \int dt \left\{ \dot{ar{U}}W - arsigma U \gamma_5 W
ight\}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ろの⊙

Spin-shell constraint & U(1) gauge invariance

Poincaré Noether charges are now

$$\left. \begin{array}{c} P_m = p_m(U) \,, \\ J_{mn} = -\frac{1}{2} \overline{U} \Gamma_{mn} W \end{array} \right\} \quad \Rightarrow \quad h = \frac{1}{2} \overline{U} \gamma_5 W$$

Spin-shell constraint $h = 0 \implies$ particle has zero helicity.

⇒ $\varsigma(t)$ is gauge potential for \Rightarrow chiral U(1) gauge invariance:

$$egin{array}{rcl} U&
ightarrow &e^{artheta\gamma_5}\,U\ W&
ightarrow &e^{-artheta\gamma_5}\,W\ arsigma&
ightarrow &arsigma^2_5=-1 ig)\ arsigma&
ightarrow &arsigma+\dotartheta\end{array}$$

 \Rightarrow Physical phase space dimension $= 2 \times 4 - 2 = 6$, as required

WCS term and non-zero helicity

To get helicity $h = \frac{n}{2}$ just change spin-shell constraint to

$$\frac{1}{2}\left(\bar{U}\gamma_5W-n\right)=0$$

Equivalent to adding to action the Worldline Chern Simons term

$$S_{WCS} = n \int dt \varsigma(t)$$

In Euclidean path integral, with $t \sim t + T$, we may make large U(1) gauge transformation with parameter $\vartheta(t) = 2\pi t/T$:

$$\delta S_{WCS} = 2\pi n \qquad \Rightarrow \quad \delta \left[e^{iS_{WCS}} \right] = 0 \quad \text{iff} \quad \overline{n \in \mathbb{Z}}$$

 \Rightarrow helicity is quantized in units of $\frac{1}{2}$.

人 ヨト・人 ヨト

Broken CPT

Spin-zero twistor action: $S_0 = \int dt \left\{ \dot{\bar{U}}W - \varsigma U\gamma_5 W \right\}$

Still invariant under worldline CPT. Transformations are now

$$egin{aligned} t &
ightarrow -t\,; & \leftert arsigma(t) &
ightarrow -arsigma(-t)\,, ert \ W(t) &
ightarrow -W(-t) \end{aligned}$$

This implies $h(t) \rightarrow -h(-t)$ but h(t) = h, constant of motion: $\Rightarrow CPT : h \rightarrow -h$

But CPT : $S_{WCS} \rightarrow -S_{WCS} \Rightarrow$ non-zero helicity breaks CPT

What about CPT theorem? No contradiction: wave equation for $\Psi(U)$ is non-local in spacetime. Paul K. Townsend (University of Cambridge) Worldline Time Reversal Madrid, 1 September 2016

Worldline time reversal for fermions

Action for "real" anticommuting variable ψ : $S = \int dt \, i \psi \dot{\psi}$ [factor of *i* because $(\psi \psi')^* = -(\psi \psi')$]

- **Problem**: $\psi(t) \rightarrow \sigma \psi(-t) \Rightarrow S \rightarrow -\sigma^2 S = -S$ for $\sigma = \pm 1$
- **Resolution**: include a factor of *i*: $\psi(t) \rightarrow i\sigma\psi(-t)$

But did we not say that ψ is "real"? No, we said it was ""real"".

→ "Reality" for anticommuting variables is a formal rule: $\psi^* = \psi$, but $\psi^* = -\psi$ is a physically equivalent rule.

Consistency with QM: $\operatorname{Ham}(t) \to \operatorname{Ham}(-t) \Rightarrow [K, \widehat{\operatorname{Ham}}] = 0$

A spin $\frac{1}{2}$ particle in Minkowski_D has classical description via "spinning particle" action, with local worldline supersymmetry. In light-cone gauge

$$S = S_{ ext{bosonic}} + \int dt \; rac{i}{2} oldsymbol{\lambda} \cdot \dot{oldsymbol{\lambda}}$$

where λ is anticommuting (D-2)-vector. "Worldline CPT" includes

$$oldsymbol{\lambda}(t)
ightarrow i\eta \,oldsymbol{\lambda}(-t) \quad \Rightarrow K \hat{oldsymbol{\lambda}} K^{-1} = \eta \, \hat{oldsymbol{\lambda}} \qquad (\eta = \pm 1)$$

For D = 2 + 2n, one can show that

$$K^2 = \eta^n (-1)^{\frac{1}{2}n(n-1)}$$

Kramers degeneracy and Majorana spinors [Henty, Howe, PKT] If $K^2 = 1$ is not possible (e.g. D = 6) then $K\Psi = \Psi$ is not consistent. \Rightarrow non-existence of Majorana spinors

Paul K. Townsend (University of Cambridge)

Sac

イロト 不得 トイヨト イヨト 二日

4D Susy: massless supermultiplets

Susy algebra

Supersymmetric field theories have \mathcal{N} spinor charges. In Weyl spinor notation they are $\{Q_{\alpha}^{i}; \alpha = 1, 2; i = 1, ..., \mathcal{N}\}$, and complex conjugates $(Q_{\alpha}^{i})^{*} \equiv \bar{Q}_{\dot{\alpha} i}$. Algebra is

$$\left\{ \mathcal{Q}^{i}_{lpha},\mathcal{Q}^{j}_{eta}
ight\} =0\,, \qquad \left\{ \mathcal{Q}^{i}_{lpha},ar{\mathcal{Q}}_{\dot{lpha}}j
ight\} =\delta^{i}_{j}P_{lpha\dot{lpha}}\,,$$

where $2x^2$ Hermitian matrix *P* is equivalent to 4-momentum.

Massless super-Poincaré irreps

Choose frame $P = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \Rightarrow Q_1^i$ are \mathcal{N} Clifford algebra creation operators, which we use to build supermultiplet from state $|h\rangle$ annihilated by $\bar{Q}_{1\,i}$. Get $2^{\mathcal{N}}$ states with maximum helicity $h + \frac{N}{2}$.

Paul K. Townsend (University of Cambridge)

Massless Supermultiplet Peculiarities

- $\mathcal{N} = 4$. Starting from $|-1\rangle$ we get the CPT self-conjugate Maxwell multiplet with helicities $h = (-1; -\frac{1}{2} \times 4; \cdots, 1)$
- $\mathcal{N} = 2$. Starting from $|-\frac{1}{2}\rangle$ we get (?) $h = (-\frac{1}{2}, 0, 0, \frac{1}{2})$. In fact, the only CPT self-conjugate $\mathcal{N} = 2$ massless supermultiplet is the **hypermultiplet**

$$h = (-\frac{1}{2}, 0, 0, \frac{1}{2}) \times 2$$
 Why $\times 2$?

N = 1. Starting from |s⟩ we get the superhelicity s supermultiplet h = (s, s + 1/2). This is not CPT self-conjugate.
 What happened to the CPT theorem?

4D massless superparticle [Brink, Schwarz]

 \mathcal{N} -extended superparticle action is

$$S = \int dt \left\{ \left(\dot{x}^m + i \sum_{i=1}^{\mathcal{N}} \bar{\theta}_i \gamma^m \dot{\theta}_i \right) p_m - \frac{1}{2} e p^2 \right\} \,,$$

where θ_i are N anticommuting Majorana spinors (spinor indices supressed)

- Super-Poincaré invariant (with N spinor charges)
- But also has fermionic gauge invariance [Siegel], which complicates quantization.

Light-cone gauge quantization: State space is irreducible \mathcal{N} -extended supermultiplet

Paul K. Townsend (University of Cambridge)

Worldline Time Reversal

Madrid, 1 September 2016 16 / 21

Supertwistors [Ferber]

Supertwistor = spinor of (N-extended) superconformal group Equivalently: complex (4|n)-plet of SU(2, 2|N):

$$(U, W; \xi^i)$$
 $(i = 1, \dots, \mathcal{N})$

For superparticle, $\left| \xi_i = \bar{U}(\mathbb{I} + i\gamma_5)\theta_i \right|$ (anticommuting scalars)

>> Superparticle action in supertwistor variables is

$$S = \int dt \left\{ \dot{\bar{U}}W + i \sum_{i=1}^{N} \bar{\xi}_i \dot{\xi}_i - 2\varsigma H \right\} \qquad H = h - \frac{1}{2} \sum_{i=1}^{N} \bar{\xi}_i \xi_i \,.$$

H is "classical superhelicity". Constraint is H = 0.

Quantum supertwistors [Shirafuji]

In quantum theory, with standard operator ordering,

$$\sum_{i=1}^{\mathcal{N}} \bar{\xi}_i \xi_i \to \frac{1}{2} \sum_{i=1}^{\mathcal{N}} \left[\xi_i^{\dagger}, \xi_i \right] = \sum_{i=1}^{\mathcal{N}} \hat{\nu}_i - \frac{\mathcal{N}}{2}$$

The $\hat{\nu}_i$ are fermi number operators: $\nu_i = 0, 1$. Quantum constraint $\hat{H}\Psi = 0$ gives helicities:

$$h = \frac{1}{2} \sum_{i=1}^{\mathcal{N}} \nu_i - \frac{\mathcal{N}}{4}$$

• $\mathcal{N} = 4$: $h = (-1, -\frac{1}{2} \times 4, 0 \times 6, \frac{1}{2} \times 4, 1)$. Maxwell supermultiplet.

CPT self-conjugate because $CPT : H \rightarrow -H$.

Kramers degeneracy and the hypermultiplet

Twistor action has \mathcal{N} fermi oscillators. For even $n \equiv \mathcal{N}$

$$\mathcal{K}^2 = (-1)^{\mathcal{N}/2} = \left\{ egin{array}{cc} 1 & \mathcal{N} = 0, 4, 8, \dots \ -1 & \mathcal{N} = 2, 6, \dots \end{array}
ight.$$

•
$$\mathcal{N} = 4$$
: $\mathcal{K}^2 = 1$ $\Rightarrow 2^{\mathcal{N}} = 2^4 = 8 + 8$ states.
Maxwell supermultiplet

• $\mathcal{N} = 2$: $\mathcal{K}^2 = -1$ $\Rightarrow 2 \times 2^{\mathcal{N}} = 2^3 = 4 + 4$ states Hypermultiplet

Doubling due to Kramers degeneracy

$$\mathcal{N} = 6 \implies K^2 = -1$$
 for gravitino supermuliplet
 \checkmark Scalars in complex **20** of $SU(6)$.

Э

Sac

$\mathcal{N}=1$ and the CPT anomaly

For standard operator ordering: $h = \frac{\nu}{2} - \frac{1}{4}$. This gives $h = (-\frac{1}{4}, \frac{1}{4})$, but then $2h \notin \mathbb{Z}$. To get $2h \in \mathbb{Z}$ we must add WCS term, e.g.

$$S_{WCS} = \left(n + \frac{1}{2}\right) \int dt \, s \qquad (n \in \mathbb{Z})$$

Now we get superhelicity *n*: $h = (n, n + \frac{1}{2})$, but

 \rightarrow WCS coefficient $\neq 0$ for any $n \Rightarrow$ CPT anomaly

Analogy with 3D Parity anomaly [Redlich]

Integrating out single fermi oscillator gives WCS term with coefficient $\pm \frac{1}{2}$. This violates large U(1) gauge invariance. Cancel gauge anomaly by adding "classical" WCS term \Rightarrow CPT anomaly.

Canceling the CPT anomaly

• To avoid global U(1) anomaly of $\mathcal{N} = 1$ superparticle action S_0 , we added WCS term

$$S[Z;s] \equiv S_0[U,W;\xi;s] \pm \frac{1}{2} \int dt \, s$$

 Now cancel CPT anomaly by analogy with 3D Parity anomaly [Hagen] Take action

$$S[Z, \tilde{Z}; s, \tilde{s}] = \left(S_0 + \tilde{S}_0\right) + \frac{1}{2}S_{WCS}[s] - \frac{1}{2}S_{WCS}[\tilde{s}]$$

Quantzation now gives (for n = 0) reducible but CPT conjugate Wess-Zumino supermultiplet $h = \left(-\frac{1}{2}, 0, 0, \frac{1}{2}\right)$.

Conclusion: all peculiarities of massless supermultiplets can be understood from a worldline perspective!

Paul K. Townsend (University of Cambridge)

Worldline Time Reversal