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What is a Hamilton Jacobi equation?

The Hamilton–Jacobi equation (HJE) is a differential equation in partial
derivatives used in Classical Mechanics to obtain equations of motion.

H +
∂S

∂t
= 0 (1)

where S is called a Hamilton’s principal function and it is a function of
S(q1, . . . , qn, t) of the n coordinates that define the configuration of the system
and time. Here H is the Hamiltonian of the system

H

(
q1, . . . , qn,

∂S

∂q1
, . . . ,

∂S

∂q1
, t

)
(2)

where the conjugate momenta correspond with the first derivatives of the
funcion S with respect to the coordinates.
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Where does the HJE derive from?
Their derivation comes from a generating type 2 function, such that

(q1, . . . , qn, p1, . . . , pn)→ (Q1, . . . ,Qn,P1, . . . ,Pn) (3)

the initial variables are turned into others in which a new Hamiltonian is
retrieved as

K(Q,P, t) = H(q, p, t) +
∂F2(q,P, t)

∂t
, p =

∂F2

∂q
, Q =

∂F2

∂P
(4)

and the new Hamilton equations take the form

Q̇ =
∂K

∂P
, Ṗ = −∂K

∂Q
(5)

We choose a F2 such that K = 0 so the Hamilton equations become trivial

Ṗ = 0, Q̇ = 0 (6)

This means that the new coordinates are generalized constants of motion
P = α and Q = β.
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Where does the HJE derive from?
Setting F2(q, α, t) = S(q, t) + A, where A is an arbitrary constant, then the
HJE appears explicitly,

p =
∂F2

∂q
=
∂S

∂q
→ H(q, p, t) +

∂F2

∂t
= 0 (7)

and then,

H

(
q,
∂S

∂q
, t

)
+
∂S

∂t
= 0 (8)

Hamilton’s principal action and the Hamiltonian function are related to action

dS

dt
=
∑
i

∂S

∂qi
q̇i +

∂S

∂t
=
∑
i=1

pi q̇i − H = L→ (9)

S =

∫
Ldt (10)

If the Hamiltonian does not depend on time, then W = S + Et

H

(
q,
∂S

∂q
, t

)
= E (11)
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Example: The eikonal equation

The eikonal equation is a nonlinear PDE encountered in problems of wave
propagation. It provides a link between physical (wave) optics and geometric
(ray) optics. The Hamiltonian is

H(t, q, p) = −
√

n2 − p2
1 − p2

2 (12)

The HJE for this Hamiltonian is

−

√
n2 −

(
∂Φ

∂q1

)2

−
(
∂Φ

∂q2

)2

+
∂Φ

∂t
= 0 (13)

which equals (
∂Φ

∂q1

)2

+

(
∂Φ

∂q2

)2

+

(
∂Φ

∂t

)2

= n2 (14)

that is,
|∇φ|2 = n2 (15)
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Geometric Lagrangian Mechanics
Consider the triple (Q,TQ, τQ : TQ → Q) . A Lagrangian is a function
L : TQ → R, where L = L(qi , q̇i ) with (qi ) being coordinates on the manifold
Q and (q̇i ) are the corresponding velocities. We introduce the Poincaré–Cartan
1-form

θL = S∗(dL) =
∂L

∂q̇i
dqi ,

where S = ∂
∂q̇i
⊗ dqi and Poincaré–Cartan two-form is defined as ωL = −dθL

The total energy of the system corresponds with

EL = ∆(L)− L ∈ C∞(TQ),

with ∆ = q̇i ∂
∂q̇i

. We say that L(q, q̇i ) is regular if the Hessian matrix

(Wij) =

(
∂2L

∂q̇i∂q̇j

)
(16)

is invertible. From here, we recover classical expressions

ωL = dqi ∧ dpi , such that pi =
∂L

∂q̇i
, EL = q̇ipi − L.
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Geometric Euler-Lagrange equations
The Euler–Lagrange equations can be written in the symplectic way as

ιξLωL = dEL (17)

whose solution ξL is called the Euler–Lagrange vector field. If we write the
Euler–Lagrange vector field,

ξL = q̇i ∂

∂qi
+ ξi (qi , q̇i )

∂

∂q̇i
(18)

its integral curves (qi (t), q̇i (t)) are lifts of their projections q(t) on Q and are
solutions of the system of differential equations

dqi (t)

dt
= q̇i ,

dq̇i (t)

dt
= ξi ,

The curves q(t) in Q are called the solutions of ξL that correspond with the
solutions of the Euler–Lagrange equation

d

dt

(
∂L

∂q̇i

)
=

∂L

∂qi
, 1 6 i 6 n = dimQ (19)
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Geometric Hamiltonian Mechanics
The passing from the Lagrangian to the Hamiltonian setting
(Q,T ∗Q, πQ : T ∗Q → Q) is introduced by a Legendre transformation, as the
fibered mapping FL : TQ → T ∗Q such that πQ ◦ FL = τQ . The Hamiltonian is
retrieved through H = EL ◦ FL−1.
If ωQ is the canonical sympletic form on T ∗Q where (qi , pi ) are the canonical
coordinates T ∗Q. then ωQ = dqi ∧ dpi and therefore

ιXHωQ = dH (20)

and it provides the Hamiltonian vector field XH on T ∗Q such that its integral
curves (qi (t), pi (t)) satisfy the Hamilton equations

q̇i =
∂H

∂pi
,

ṗi = −∂H

∂qi

(21)

for all i = 1, . . . , n. The Legendre transformation maps solutions ξL to solutions
of XH since (FL)∗ωQ = ωL and that ξl and XH are FL-related.
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A geometric HJE
If the principal function is separable in time dependence, then we can make the
Ansatz S = W (q1, . . . , qn)− Et where E is the total energy of the system.

H

(
qi ,

∂W

∂qi

)
= E . (22)

If we find a solution W , then any solution of the Hamilton equations is
retrieved by pi = ∂W

∂qi
. Geometrically, this can be interpreted through a diagram

T ∗Q

π

��

XH // TT ∗Q

Tπ

��
Q

dW

==

XdW
H // TQ

This implies
X dW

H = Tπ ◦ XH ◦ dW (23)
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Nambu–Poisson structures

Nambu–Poisson structures (NP) arose to deal with Hamiltonian systems
equipped with two or more Hamiltonian functions.

[A,B,C ] =
∂(A,B,C)

∂(x , y , z)

with the canonical variables satisfying [x , y , z] = 1, that could be interpreted as
a bracket defined by the canonical volume form in R3. This bracket attracted a
lot of scientific attention at that time.

An extension to manifolds has been developed by L. Takhtajan. Here, the
geometric structure is provided by a contravariant tensor field Λ of order n.
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Euler equations for a rotator

This generalization was thought in terms of two Hamiltonians and three
dimensional phase space. The potential usefulness of this formalism was rooted
in the Euler equations of a rotator.

ẋ =
∂(H,G)

∂(y , z)
, ẏ =

∂(H,G)

∂(x , z)
, ż =

∂(H,G)

∂(x , y)
(24)

The evolution of a quantity F is given by

dF

dt
= ∇F (∇H ×∇G) =

∂(F .G .H)

∂(x , y , z)
(25)

and the Hamiltonians are

G =
1

2

(
L2
x

Ix
+

L2
y

Iy
+

L2
z

Iz

)
, H =

1

2
(L2

x + L2
y + L2

z) (26)
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An almost NP structure

Let us consider an almost NP, i.e., the pair (E ,Λ) where E is a differentiable
manifold of dimension m equipped with a (n, 0)-skew symmetric contravariant
tensor Λ (m > n). The tensor Λ defines the vector bundle morphism
] : Λn−1(T ∗E)→ TE by < ](α), β >= Λ(α, β), where α ∈ Λn−1(T ∗E) and
β ∈ T ∗E .

The bracket induced by Λ on C∞(E) is defined as

{f1, . . . , fn} = Λ(df1, . . . , dfn), f1, . . . , fn ∈ C∞(E) (27)

This bracket has the following properties

1. {f1, . . . , fn} = (−1)ε(σ){fσ(1), . . . , fσ(n)}, with σ ∈ Symm(n) and ε(σ) is
the parity of the permutation;

2. {f1g1, . . . , fn} = f1{g1, . . . , fn}+ g1{f1, . . . , fn},

which are the skew-symmetry and Leibnitz rule, correspondingly.
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Nambu–Poisson tensors

Consider now an almost Nambu–Poisson manifold (E ,Λ) with m ≥ n ≥ 3.
To have dynamics, we are provided with C∞(E) hamiltonian functions
f1, . . . , fn−1 : E → R whose corresponding vector field is the Hamiltonian vector
field

Xf1,...,fn−1 = ](df1 ∧ · · · ∧ dfn−1).

When all these vector fields are derivations of the algebra
C∞(E)× · · · × C∞(E), that is, the following identity, known as fundamental
identity introduced by Takhtajan, holds

Xf1,...,fn−1{g1, . . . , gn} =
n∑

i=1

{g1, . . . ,Xf1,...,fn−1 gi , . . . , gn} (28)

for all functions f1, . . . , fn−1, g1, . . . , gn ∈ C∞(E) on E , then, (E ,Λ) is called a
Nambu–Poisson manifold and Λ is a Nambu–Poisson tensor.
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Key theorem
Theorem
Let (E ,Λ) be a generalized m-dimensional almost Poisson manifold of order
n > 3.

I If Λ is an almost NP tensor, D is not involutive.

I If Λ is a NP tensor, then the distribution D is completely integrable and
defines a foliation on E st. when Λ is restricted to leaves of the foliation,
there exist induced NP structures in each leaf. The leaves are of two
kinds, for a point x ∈ E, if Λ(x) 6= 0, then the leave passing through x has
dimension n and the induced NP structure derives from a volume form.

Λ =
∂

∂x1
∧ · · · ∧ ∂

∂xn
. (29)

Associated with this tensor, there exists a volume form which can be
locally written as

Ω = dx1 ∧ · · · ∧ dxn. (30)

If Λ = 0, then the leaf reduces to a point x and the induced
Nambu–Poisson structure is trivial.
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Lagrangian submanifolds

Let (E ,Λ) be a Nambu–Poisson manifold with m > n ≥ 3, we say that a
submanifold N ⊂ E is j-Lagrangian ∀x ∈ N, 1 6 j 6 n − 1 if

]Annj(TxN) = ](Λn−1(T ∗x E)) ∩ TxN, (31)

where the annihilator is defined as

Annj(TxN) = {α ∈ Λn−1(T ∗x E)| ιv1∧···∧vjα = 0, ∀v1, . . . , vj ∈ TxN}. (32)

The following inclusions are clearly fulfilled

Ann1(TxN) ⊆ Ann2(TxN) ⊆ · · · ⊆ Annn−1(TxN). (33)
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Volume NP structures
We consider a volume manifold as a pair (E ,Ω), where Ω is a volume form on

the differentiable n dimensional manifold E . There is an associated (n, 0)-skew

symmetric tensor ΛΩ defined as

ΛΩ(df1 . . . dfn) = {f1, . . . , fn} (34)

where the bracket is defined by

{f1, . . . , fn}Ω = df1 ∧ · · · ∧ dfn. (35)

A particular example is E ' Rn with canonical coordinates {x i , i = 1, . . . , n}.
Here, the canonical volume form is written as ΩRn = dx1 ∧ · · · ∧ dxn and

{f1, . . . , fn} =

∣∣∣∣∣∣∣∣
∂f1
∂x1 . . . ∂f1

∂xn
∂f2
∂x1 . . . ∂f2

∂xn

. . . . . . . . .
∂fn
∂x1 . . . ∂fn

∂xn

∣∣∣∣∣∣∣∣ (36)
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HJE on volume NP

Theorem
Given a volume Nambu–Poisson structure (E ,Ω) of dimension n, every
submanifold of codimension 1 is (n − 1)-Lagrangian.

Given a Nambu–Poisson structure (E ,Λ), consider the map
] : Λn−1(E)→ X(E) induced by Λ. Let us choose a set of functions f1, . . . , fn−1

in C∞(E) and define the pairing

< ](df1 ∧ · · · ∧ dfn−1), dfn >= Λ(df1, . . . , dfn−1, dfn),

where df1, . . . , dfn−1, dfn ∈ Ω1(E) are one-forms in E . The characteristic
distribution in this case is Dx = ]Λn−1(T ∗x E) and the associated Hamiltonian
vector field is defined by

Xf1,...,fn−1 = ](df1 ∧ · · · ∧ dfn−1).

A geometric Hamilton–Jacobi theory and Nambu–Poisson structures



Motivation Geometric Classical Mechanics A geometric Hamilton–Jacobi equation Nambu–Poisson structures HJE on NP manifolds Examples

HJE on volume NP
In particular, we are interested in scenarios with a volume Nambu–Poisson
structure (E ,Ω) with dim E = n, whose dynamics is interpreted in terms of
(n − 1)-Hamiltonian functions H1, . . . ,Hn−1 ∈ C∞(E), in which the
Hamilton–Jacobi theory is applicable.

Here, we assume that the n-dimensional manifold E fibers over a manifold N of
dimension n − 1, say π : E → N is a fibration. Given a section γ of π, that is,
γ : N −→ E is such that π ◦ γ = IdN , then γ(N) is a submanifold of E with
codimension 1. The vector field X γ

H1,...Hn−1
is then defined as

X γ
H1,...Hn−1

= Tπ ◦ XH1,...Hn−1 ◦ γ (37)

Theorem
The vector fields XH1,...,Hn−1 and X γ

H1,...,Hn−1
are γ-related if and only if the

following equation is satisfied

d(H1 ◦ γ) ∧ · · · ∧ d(Hn−1 ◦ γ) = 0. (38)
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Geometric diagram for NP

The following diagram summarizes the above construction

(E ,Ω)

π

��

XH1,...Hn−1 // TE

Tπ

��
N

γ

==

X
γ
H1,...Hn−1 // TN
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N-coupled Riccati equations
The first-order Riccati equations appear as a system of equations containing n
copies of same Ricatti equation. This system is

ẋ ik = a0(t) + a1(t)x ik + a2(t)x ik
2
, ik = 1, . . . , n (39)

defined on O = {(x1, . . . , xn)|(x1 − x2) . . . (xn−1 − xn) 6= 0 ⊂ Rn}.
The associated t-dependent vector field with this system is

Xt =
n∑

ik=1

(
a0(t) + a1(t)x ik + a2(t)x ik

2
) ∂

∂x ik
.

A method to obtain n − 1 presymplectic forms from which to derive
Hamiltonians, is the permutation of indices. By fixing one of the coordinates,
let us say l , with l = 1, . . . , n − 1

ω[l ] =
l−1∑
k<l

dxk ∧ dx l

(xk − x l)2
+

n∑
k>l

dx l ∧ dxk

(x l − xk)2
, (40)

for a fixed l .
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N-coupled Riccati equations

Due to its own construction, these are closed forms dω[l ] = 0. Equivalently, we
can derive Hamiltonian functions associated with each ω[l ]

h[l ] = a0(t)

(
n∑

k>l

1

x l − xk
+

l−1∑
k<l

1

xk − x l

)

+
a1(t)

2

(
n∑

k>l

x l + xk

x l − xk
+

l−1∑
k<l

x l + xk

xk − x l

)

+ a2(t)

(
n∑

k>l

x lxk

x l − xk
+

l−1∑
k<l

x lxk

xk − x l

)

for every fixed l = 1, . . . , n − 1.
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N-coupled Riccati equations
According to the Nambu–Poisson theory, equations (39) must be retrived
through the computation

ẋ ik = {h[1], . . . , h[n−1], x ik }, ik = 1, . . . , n. (41)

and the n-dimensional bracket (36) takes the form

ẋ ik = {h[1], h[2], . . . , h[n−1], x ik } =

∣∣∣∣∣∣∣∣∣∣∣∣∣

∂h[1]

∂x1
∂h[1]

∂x2 . . . ∂h[1]

∂xn

. . . . . . . . . . . .
∂h[k]

∂x1
∂h[k]

∂x2 . . . ∂h[k]

∂xn

. . . . . . . . . . . .
∂h[n−1]

∂x1
∂h[n−1]

∂x2 . . . ∂h[n−1]

∂xn

∂x ik

∂x1
∂x ik

∂x2 . . . ∂x ik
∂xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
such that if we compute the determinant, we obtain

ẋ ik = (−1)ik+n
∑

σi1,...,in

(−1)

(
n(n−1)

2
+i1+···+in

)
∂h[1]

∂x i1
. . .

∂h[n−1]

∂x in
, (42)

when i1, . . . , in−1 = 1, . . . , n 6= ik and a particular ik that takes any value
1, . . . , n.
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N-coupled Riccati equations
We need to conformally transform the canonical volume form
Ω = dx1 ∧ · · · ∧ dxn associated with the former problem (39) into another
volume form Ω̄ corresponding with (42).

There exists a change of coordinates x ĵ = f̂j(x j)x j for all ĵ = 1, . . . , n through

which we derive a compatible Ω compatible with (42) that maps (42) into
(39). It takes the following form

Ω =
∏

ĵ=1,...,n

f̂jdx1 ∧ · · · ∧ dxn (43)

with

f̂j = δ
[l ]

ĵ

(
l−1∑
l>k

1

(xk − x l)2
−

n∑
k>l

1

(x l − xk)2

)
+δ̄

[l ]

ĵ

(
n∑

k>l

1

(x l − xk)2
−

l−1∑
k<l

1

(xk − x l)2

)
Therefore, the canonical n-dimensional Nambu–Poisson bracket takes the

expression

{x1, . . . , xn} =
1∏

ĵ=1,...,n f̂j
. (44)
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HJE for ND Riccati equations

If we want to apply the Hamilton–Jacobi theory to this example, we have the
diagram

E = O

π

��

X
h1...hn−1 // TE

Tπ

��
N

γ

<<

X
γ

h1...hn−1 // TN

where O = {(x1, . . . , xn)|(x1 − x2) . . . (xn−1 − xn) 6= 0 ⊂ Rn} and
N = {(x1, . . . , xn)|(x1 − x2) . . . (xn−2 − xn−1) 6= 0 ⊂ Rn−1}.

The vector field Xh1...hn−1 can be obtained by performing the calculation

Xh1...hn−1 = ](dh1 ∧ · · · ∧ dhn−1) (45)

A geometric Hamilton–Jacobi theory and Nambu–Poisson structures
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HJE for ND Riccati equations
In this way, it takes the expression

Xh1...hn−1 =]

 ∑
σi1...in

(−1)
n(n−1)

2
+11+···+in ∂h[1]

∂x i1
. . .

∂h[n−1]

∂x in

dx i1 ∧ · · · ∧ dx in

(
∏

f i1...in )i1,...,in


∑
σi1...in

(−1)
n(n−1)

2
+11+···+in ∂h[1]

∂x i1
. . .

∂h[n−1]

∂x in

δi11 . . . δ
in
n−1

(
∏

f i1...in )i1,...,in

∂

∂x ik

where i1, . . . , in 6= ik = 1, . . . , n. On the other hand, the vector field

Tγ
(
X γ

h1...hn−1

)
= ]

 ∑
σi1...in

(−1)
n(n−1)

2
+11+···+in ∂h[1]

∂x i1
. . .

∂h[n−1]

∂x in

dx i1 ∧ · · · ∧ dx in

(
∏

f i1...in )i1,...,in


∑
σi1...in

(−1)
n(n−1)

2
+11+···+in ∂h[1]

∂x i1
. . .

∂h[n−1]

∂x in

δi11 . . . δ
in
n−1

(
∏

f i1...in )i1,...,in

(
∂

∂x ik
+
∂γn

∂x ik

∂

∂xn

)

where i1, . . . , in 6= ik and ik = 1, . . . , n − 1 whilst i1, . . . , in = 1, . . . , n.

A geometric Hamilton–Jacobi theory and Nambu–Poisson structures



Motivation Geometric Classical Mechanics A geometric Hamilton–Jacobi equation Nambu–Poisson structures HJE on NP manifolds Examples

HJE for ND Riccati equations

And we have chosen γ in such a way as γ(x1, . . . , xn−1, γn(x1, . . . , xn−1)).
So, the Hamilton–Jacobi equation for this case reads

n−1∑
ik

1≤ij≤n−1∑
σi1...in

(−1)
n(n−1)

2
+i1+···+in ∂h[1]

∂x i1
. . .

∂h[n−1]

∂x in

δi11 . . . δ
in
n−1

(
∏

f i1...in )i1,...,in
γn
ik

+

1≤ij≤n∑
σi1...in

(−1)
n(n−1)

2
+i1+···+in ∂h[1]

∂x i1
. . .

∂h[n−1]

∂x in

δi11 . . . δ
in
n−1

(
∏

f i1...in )i1,...,in
= 0,

where γn
ik

means ∂γn

∂xik
.
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Thanks for your attention!

A geometric Hamilton–Jacobi theory and Nambu–Poisson structures


	Motivation
	Geometric Classical Mechanics
	A geometric Hamilton–Jacobi equation
	Nambu–Poisson structures
	HJE on NP manifolds
	Examples

