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What is a Hamilton Jacobi equation?

The Hamilton—Jacobi equation (HJE) is a differential equation in partial
derivatives used in Classical Mechanics to obtain equations of motion.

oS

ot (1)
where S is called a Hamilton’s principal function and it is a function of

S5(q1,- -, qn, t) of the n coordinates that define the configuration of the system
and time. Here H is the Hamiltonian of the system

aS oS
H<q17"'7q"787ql7"'787q17t> (2)

where the conjugate momenta correspond with the first derivatives of the
funcion S with respect to the coordinates.

] =5 =

it
N
yel
?

A geometric Hamilton—Jacobi theory and Nambu—Poisson structures

e




Motivation Geometric Classical Mechanics A geometric Hamilton—Jacobi equation Nambu—Poisson structures HJE on NP manifo

Where does the HJE derive from?

Their derivation comes from a generating type 2 function, such that

(q1,...,q,,,p1,...,p,,)—>(Q1,...,Q,,,P1,...,P,,)

the initial variables are turned into others in which a new Hamiltonian is
retrieved as

_ OF(a.Pt) 0RO
KQ.P.t)=H(g,p,t) + ——5——, p= 9q R=%5p
and the new Hamilton equations take the form
: oK : oK
Q=% =50

We choose a F, such that K = 0 so the Hamilton equations become trivial

P=0, Q=0

This means that the new coordinates are generalized constants of motion

P=aand Q =4. o @ - =

®3)

(4)

(5)

(6)
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Where does the HJE derive from?

Setting F2(q, o, t) = S(q, t) + A, where A is an arbitrary constant, then the
HJE appears explicitly,

_OFR _3S OF,

= — = — H _— =
P=%q =9q (9,p,t) + 5~ =0 (7)
and then,
oS aS
H _ —_ =
(a5t)+ 5 =0 ®)
Hamilton's principal action and the Hamiltonian function are related to action
ds aSs .; 0S
— = §' +—— = igi—H=1L
- Zaq,quat ;pq — (9)
S= /Ldt (10)
If the Hamiltonian does not depend on time, then W = S + Et
oS
H —,t)|=E 11
(551) (1)
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Example: The eikonal equation

The eikonal equation is a nonlinear PDE encountered in problems of wave
propagation. It provides a link between physical (wave) optics and geometric

(ray) optics. The Hamiltonian is

H(t7q7p):_~/ n2_p%_p§

The HJE for this Hamiltonian is
, (90N [00\® 00
—iln?2 = == [ == + — =
oqt 0q? ot
00N (00 (00N
gt 0q? ot )

Vo = n’

which equals

that is,

0

(12)

(13)

(14)

(15)
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Geometric Lagrangian Mechanics
Consider the triple (Q, TQ,7¢ : TQ — Q) . A Lagrangian is a function
L:TQ — R, where L = L(q’, ') with (g') being coordinates on the manifold
Q and (q") are the corresponding velocities. We introduce the Poincaré—Cartan

1-form oL
_ g* 1) = i i
0, = S™(dL) 05 dq',
where S = % ® dq' and Poincaré-Cartan two-form is defined as w; = —d6,

The total energy of the system corresponds with

EL=A(L)—Le C™(TQ),

with A = ¢' 8?.7,.. We say that L(q, ') is regular if the Hessian matrix

W)= (o) (16)

is invertible. From here, we recover classical expressions

wL = dqi A dpi, such that p; = ng;i’ E = c';fp; — L.

o [ =
, ,
A geometric Hamilton—Jacobi theory and Nambu—Poisson structures

e




Motivation Geometric Classical Mechanics A geometric Hamilton—Jacobi equation Nambu—Poisson structures HJE on NP manifo
:

Geometric Euler-Lagrange equations
The Euler-Lagrange equations can be written in the symplectic way as
L, wL = dE; (17)

whose solution &, is called the Euler—Lagrange vector field. |If we write the
Euler-Lagrange vector field,

NN
§o=4 55 +6(a.4) 5 (18)

its integral curves (g'(t), §'(t)) are lifts of their projections g(t) on Q and are
solutions of the system of differential equations

dg'(t) _ i d4'(t) _¢
dt ’ dt ’

The curves g(t) in Q are called the solutions of &, that correspond with the
solutions of the Euler-Lagrange equation

d (0L oL . .
— = <i<n=
" (8(’7") oq 1<i<n=dmQ (19)
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Geometric Hamiltonian Mechanics

The passing from the Lagrangian to the Hamiltonian setting

(Q, T Q,mq: T"Q — Q) is introduced by a Legendre transformation, as the
fibered mapping FL: TQ — T*Q such that mg o FL = 7¢. The Hamiltonian is
retrieved through H = E, o FL™.

If wg is the canonical sympletic form on T*Q where (g', p;) are the canonical
coordinates T*Q. then wg = dq' A dp; and therefore

1x,wq = dH (20)

and it prqvides the Hamiltonian vector field Xy on T*@Q such that its integral
curves (g'(t), pi(t)) satisfy the Hamilton equations

i = oH
= o
21
 oH (21)
pl - aq,
forall i =1,...,n The Legendre transformation maps solutions &, to solutions

of Xy since (FL)*wq = w. and that § and X are FL-related. 7
: :
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A geometric HJE

If the principal function is separable in time dependence, then we can make the
Ansatz S = W(q',...,q") — Et where E is the total energy of the system.

i oW
H ! -ears = E. 22
(4.5 (22)
If we find a solution W, then any solution of the Hamilton equations is
retrieved by p; = g:‘f. Geometrically, this can be interpreted through a diagram
Xu
T"Q TT"Q
aw w T
XdW
Q . TQ
This implies
aw __
Xg" =TmoXuyodW = L (22) -
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Nambu—Poisson structures

Nambu—Poisson structures (NP) arose to deal with Hamiltonian systems
equipped with two or more Hamiltonian functions.

9(A, B, C)
9(x,y,2)
with the canonical variables satisfying [x, y, z] = 1, that could be interpreted as

a bracket defined by the canonical volume form in R3. This bracket attracted a
lot of scientific attention at that time.

[A, B, C] =

An extension to manifolds has been developed by L. Takhtajan. Here, the
geometric structure is provided by a contravariant tensor field A of order n.
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Euler equations for a rotator

This generalization was thought in terms of two Hamiltonians and three
dimensional phase space. The potential usefulness of this formalism was rooted
in the Euler equations of a rotator.

 _OHG) . _OHG) . _ IH,G)
=) YT k) CT axy) (24)

The evolution of a quantity F is given by

dF A(F.G.H)
— =VF(VH = 7 2
it VF(VH x VG) oy 2) (25)
and the Hamiltonians are
/12 L2 12 1,5 2 o
G_§<f+f+f>’ H=3(L+ L +L) (26)
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An almost NP structure

Let us consider an almost NP, i.e., the pair (E,A) where E is a differentiable
manifold of dimension m equipped with a (n,0)-skew symmetric contravariant
tensor A (m = n). The tensor A defines the vector bundle morphism
t:A"YT*E) — TE by < #(a), 8 >= N(e, B), where « € A" }(T*E) and
Be T E.

The bracket induced by A on C*°(E) is defined as
{f,...,fa} = N(df, ..., df), fi,....fa€ CZ(E) (27)

This bracket has the following properties

1. {fA,....fi}t= (—1)6(”){)‘;(1), ..y fo(m}, with o € Symm(n) and ¢(o) is
the parity of the permutation;

2. {figr,e.. fo} = fifgr,..o o} +&ilfi. .o, o,

which are the skew-symmetry and Leibnitz rule, correspondingly.

] =5 =
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Nambu—Poisson tensors

Consider now an almost Nambu—Poisson manifold (E,A) with m > n > 3.
To have dynamics, we are provided with C°°(E) hamiltonian functions

fi,...,fa—1: E — R whose corresponding vector field is the Hamiltonian vector
field

Xa,oof o = (dfi A A df1).

When all these vector fields are derivations of the algebra
C*®(E) x -+ x C*=(E), that is, the following identity, known as fundamental
identity introduced by Takhtajan, holds

n
Xfl,.‘.,f,,,l{gl,-u,gn} = Z{g17~--7xf1 ~~~~~ fn71gf7'--7g"} (28)
i=1

for all functions fi,...,fi—1,81,...,82 € C(E) on E, then, (E,N) is called a
Nambu—Poisson manifold and A is a Nambu—Poisson tensor.
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Key theorem

Theorem
Let (E,N) be a generalized m-dimensional almost Poisson manifold of order
n>3.

» [f A\ is an almost NP tensor, D is not involutive.

» If \ is a NP tensor, then the distribution D is completely integrable and
defines a foliation on E st. when N is restricted to leaves of the foliation,
there exist induced NP structures in each leaf. The leaves are of two
kinds, for a point x € E, if N(x) # 0, then the leave passing through x has
dimension n and the induced NP structure derives from a volume form.

T ooxt oOxn’

Associated with this tensor, there exists a volume form which can be

locally written as

A

(29)

Q=dx' A---Adx". (30)
If A =0, then the leaf reduces to a point x and the induced
Nambu—Poisson structure is trivial. = & = = = 9
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Lagrangian submanifolds

Let (E,\) be a Nambu—Poisson manifold with m > n > 3, we say that a
submanifold N C E is j-Lagrangian Vx € N,1<j<n—1if

AN (T N) = #(A" (T E)) N TuN,
where the annihilator is defined as
Ant/(TuN) = {a € A" (TSE)| tynnye=0,Yvi,...,v; € TN}
The following inclusions are clearly fulfilled

Ann'(TN) C Ann*(TN) C --- C Ann" (T N).

(31)

(32)

(33)
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Volume NP structures
We consider a volume manifold as a pair (E,Q2), where Q is a volume form on
the differentiable n dimensional manifold E. There is an associated (n, 0)-skew

symmetric tensor Aq defined as

Aa(dfi...df) = {f,....f.)} (34)
where the bracket is defined by
{fio EXQ=df A Adfy (35)
A particular example is E ~ R” with canonical coordinates {x',i =1,...,n}.
Here, the canonical volume form is written as Qrn = dx* A --- A dx” and
of of
y e Oxh
Rilry ot
{f,... o= O 7 ox (36)
Ofy a}"
Oxt ot Ox?
ERT- = = z 9ac
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HJE on volume NP

Theorem
Given a volume Nambu—Poisson structure (E, Q) of dimension n, every
submanifold of codimension 1 is (n — 1)-Lagrangian.

Given a Nambu—Poisson structure (E, A), consider the map
f:A""Y(E) — X(E) induced by A. Let us choose a set of functions fi, ..., f,_1
in C*°(E) and define the pairing

<H(dR A - Adfy_r), df, >= N(df,. .., df,_1, df),

where dfi, ..., df,_1, df, € Q'(E) are one-forms in E. The characteristic
distribution in this case is Dx = #A""*( T E) and the associated Hamiltonian
vector field is defined by

Xa,.ofoey = B(dfi A= A dfy1).
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HJE on volume NP

In particular, we are interested in scenarios with a volume Nambu—Poisson
structure (E, Q) with dim E = n, whose dynamics is interpreted in terms of
(n — 1)-Hamiltonian functions Hi, ..., H,—1 € C*°(E), in which the
Hamilton—Jacobi theory is applicable.

Here, we assume that the n-dimensional manifold E fibers over a manifold N of
dimension n — 1, say 7w : E — N is a fibration. Given a section 7 of 7, that is,
~v: N — E is such that 7 o v = Idy, then v(N) is a submanifold of E with
codimension 1. The vector field X, ,,  is then defined as

XI:IYI,...H,,_I = TrmoXu,.H,_1 0 (37)

Theorem
The vector fields X,.....H, , and Xjj are y-related if and only if the
following equation is satisfied

d(Hyoy) A+ Ad(Hy107) =0.
(=] = =
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Geometric diagram for NP

The following diagram summarizes the above construction

XHy,.. Hp_q
(E,Q) TE
Y ™ Tr
¥
Xy, Hy_q
N TN
o = = E E 9ac
:
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N-coupled Riccati equations

The first-order Riccati equations appear as a system of equations containing n
copies of same Ricatti equation. This system is

K% = ao(t) + a1 (t)x* + a(t)x*,  ie=1,....n (39)

defined on O = {(x1,...,%n)|(x1 — x2) ... (Xn—1 — xn) Z0 C R"}.
The associated t-dependent vector field with this system is

Xe= 3 (a0l0) + a (0965 + an(e)xt”) 2

Oxik
=1

A method to obtain n — 1 presymplectic forms from which to derive
Hamiltonians, is the permutation of indices. By fixing one of the coordinates,

let ussay /, with /=1,...,n—1
dx* A dx dx' A dx*
S SECE S ot s ()
k<l k>1
for a fixed /.

o
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N-coupled Riccati equations

Due to its own construction, these are closed forms dw!! = 0. Equivalently, we
can derive Hamiltonian functions associated with each w!’

n /-1

h[/] = ao(t) Z x! ixk + Z -

k !
X X
k>1 k<l

for every fixed [ =1,...,n— 1.

x! + xk
xk — x!
/
n /-1
S e
x! — xk xk — x!

it
N)
yel
o)

A geometric Hamilton—Jacobi theory and Nambu—Poisson structures




Motivation Geometric Classical Mechanics A geometric Hamilton—Jacobi equation Nambu—Poisson structures HJE on NP manifo

N-coupled Riccati equations

According to the Nambu—Poisson theory, equations (39) must be retrived
through the computation

)= (AW Rt ey =1, . (41)
and the n-dimensional bracket (36) takes the form
onltl onlll onlll
Ix1 x2 e oxn
; . o oM g
X = {hll], h[2], e h["*1]’xlk} — axT 52 s DX
an—1 gpln—1l ahln—11
Ox1 Ox2 t Ox"
Ix'k Ix'k Ix'k
oxt ax? e oxn
such that if we compute the determinant, we obtain
. . =1 ) 9plll ghln—1
Lik _ (__1\iktn _ ( > +in+ +/n)
)= (=1)km N (-1) SRR B C2)

Tits..osin

when i1, ..., ipn—1 =1,...,n % ix and a particular i, that takes any value
1,...,n. D = =

£ DA
;
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N-coupled Riccati equations
We need to conformally transform the canonical volume form
Q = dx' A -+ A dx" associated with the former problem (39) into another
volume form Q corresponding with (42).

There exists a change of coordinates X/ = f}(xj)xj forall j=1,...,n through

which we derive a compatible Q compatible with (42) that maps (42) into
(39). It takes the following form

Q= J] fax'A-ndx (43)
]:1, ,n
with
-1 1 n 1 n 1 I—1 1
_ 4l 51
5=5 (Z (CEr Py M)”f <Z GRS >>
1>k k>1 k>1 k<I

Therefore, the canonical n-dimensional Nambu—Poisson bracket takes the

expression
1

H}:l,...,nfj’ . = _

: :
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HJE for ND Riccati equations

If we want to apply the Hamilton—Jacobi theory to this example, we have the

diagram
Xyt pn—1
E=0 TE
Y ‘(ﬂ' Tr
XY
N hl...an—1 N

where O = {(x1,...,%n)|(x1 — x2) ... (Xn—1 — Xn) # 0 C R"} and
N={(xt,...,5x)|(x1 —x2) ... (Xn—2 — Xo—1) # 0 C R™ 1},

The vector field X1 ,n—1 can be obtained by performing the calculation

Xyt g1 = #(dh* A - AdR"Y) (45)

it
N)
yel
o)
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HJE for ND Riccati equations

In this way, it takes the expression

_ P 1yt ontt AR dxt AL A dx?
X por =1 Z (=1) Ox T Oxin (] fire )1
Tiy...in -

Z (_ )"" 1)+11-%— ~+in 8h[] ah[n_ll 511 "'6;';,71 0
Oxii """ Oxin (Hf"l-"""),.l,._.’,.n Oxik

where i1,...,in # ix = 1,..., n. On the other hand, the vector field

T, (X:l...h"—l) =4 Z (= 1)

Dy, @A AR dxt A A dx
Oxin T Oxin ([ Fiin),

o01) g4, OB aplnl st s 0 N" o
z (_1) 2 1 n

Oxh T axin (][] f"l---""),.1 i \Oxik  Oxik Oxn
Tiy..ip v
wherell,...,l,,aélkandlk:1,...,n—1wh||st11,...&'1,,:5211,...Ln. ,: -
: :
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HJE for ND Riccati equations

And we have chosen v in such a way as y(x*,...,x"" 1 4"(x, ..., x"71)).
So, the Hamilton—Jacobi equation for this case reads

n—11<ij<n-1

ZZ(—

LR G B Y .
axn T oxin ([] f‘il...i,,)il’“ — Vi

1<i;<n i in
+ i T ik ah[.l] ah["._ll UAERL S N
oxn T oxn ([[Fn),

oy"
where v means 2.
Fy’k Bx,-k

o =
:
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Thanks for your attention!

[=] = DA
:

A geometric Hamilton—Jacobi theory and Nambu—Poisson structures
e




	Motivation
	Geometric Classical Mechanics
	A geometric Hamilton–Jacobi equation
	Nambu–Poisson structures
	HJE on NP manifolds
	Examples

