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Graded geometry in physics and mechanics

• Graded geometry and generalized geometry:
Q-manifolds/bundles,
(twisted) Poisson manifolds, Dirac structures

• Application to sigma models:
gauging via equivariant Q-cohomology; supersymmetry
(j/w Thomas Strobl – Lyon, Alexei Kotov – Curitiba,
Jean-Philippe Michel – Louvain)

• Application to mechanics:
port-Hamiltonian systems and Dirac structures
(in progress, j/w Aziz Hamdouni – La Rochelle)



Graded manifolds – example

Consider functions on T [1]Σ.

σ1, . . . , σd – coordinates on Σ:
deg(σµ) = 0, σµ1σµ2 = σµ2σµ1 .
deg(h(σ1, . . . , σd)) = 0.

θ1, . . . , θd – fiber linear coordinates:
deg(θµ) := 1, θµ1θµ2 = −θµ2θµ1

Arbitrary homogeneous function on T [1]Σ of deg = p:
f = fµ1...µp(σ1, . . . , σd)θµ1 . . . θµp .

Graded commutative product: f · g = (−1)deg(f )deg(g)g · f

f ↔ ω = fµ1...µpdσ
µ1 ∧ · · · ∧ dσµp ∈ Ω(Σ)

→ “Definition” of a graded manifold
– manifold with a (Z-)grading defined on the sheaf of functions.



Graded manifolds/Q-manifolds (DG-manifolds)

D. Roytenberg: “...graded manifolds are just manifolds with a few
bells and whistles...”

T [1]Σ, deg(σµ) = 0, deg(θµ) = 1, fµ1...µp(σ1, . . . , σd)θµ1 . . . θµp

Consider a vector field Q = θµ ∂
∂σµ

degQ = 1

Q(f · g) = (Qf ) · g + (−1)1·deg(f )f · (Qg)

[Q,Q] ≡ 2Q2 = 0

 ← dde Rham

→ Definition of a Q-structure: a vector field on a graded manifold,
which is of degree 1 and squaring to zero.

Remark. Gradings can be encoded in the Euler vector field
ε = deg(qα)qα ∂

∂qα (can be a “definition”).

Remark. (Ask J. Grabowski for details ;)) Gradings can be
encoded in the homogeneity structure h : R+ ×M→M such that

(q1, . . . , qN) 7→ ht(q
1, . . . , qN) ≡ (tdeg(q1)q1, . . . , tdeg(qN)qN).



Poisson manifold → (T ∗[1]M ,Qπ)
Consider a Poisson manifold M,
{·, ·} : C∞(M)× C∞(M)→ C∞(M).

A Poisson bracket can be written as {f , g} = π(df , dg), where
π ∈ Γ(Λ2TM) is a bivector field. πij(x) = {x i , x j}.

Consider T ∗[1]M (coords. x i (0), pi (1)), with a degree 1 vector
field

Qπ =

{
1

2
πijpipj , ·

}
T∗M

= πij(x)pj
∂

∂x i
− 1

2

∂πjk

∂x i
pjpk

∂

∂pi

Jacobi identity:

{f , {g , h}}+ {g , {h, f }}+ {h, {f , g}} = 0
⇔ [π, π]SN = 0 ⇔ Q2

π = 0

Remark. For H ∈ Ω3
cl(M), one can twist the picture to

[π, π]SN =< H, π ⊗ π ⊗ π >⇔ Q2
π,H = 0



Courant algebroids, Dirac structures

Let us construct on E = TM ⊕ T ∗M a twisted exact Courant
algebroid structure, governed by a closed 3-form H on M.
The symmetric pairing: < v ⊕ η, v ′ ⊕ η′ >= η(v ′) + η′(v),
the anchor: ρ(v ⊕ η) = v
the H-twisted bracket (Dorfman):

[v ⊕ η, v ′ ⊕ η′] = [v , v ′]Lie ⊕ (Lvη′ − ιv ′dη + ιv ιv ′H). (1)

A Dirac structure D is a maximally isotropic (Lagrangian)
subbundle of an exact Courant algebroid E closed with respect to
the bracket (1).

Trivial example: D = TM for H = 0.



Dirac structures: Poisson example.

Example. D = graph(Π])

Isotropy ⇔
πij antisymmetric.

Involutivity ⇔
Π (twisted) Poisson.

T*M

TM

Π
#

DΠ

v=Π
#( )

D

DΠ = {(Π]α, α)}



Dirac structures: symplectic example.

Example. D = graph(ω)

Isotropy ⇔
ωij antisymmetric.

Involutivity ⇔
ω closed.

Dω = {(v , ιvω)}



Dirac structures: general

Choose a metric on M ⇒ TM ⊕ T ∗M ∼= TM ⊕ TM,
Introduce the eigenvalue subbundles E± = {v ⊕±v}
of the involution (v , α) 7→ (α, v). Clearly, E+

∼= E− ∼= TM.
T*M

DE+
E-𝒪

TM

≅TM
≅TM

(Almost) Dirac structure – a graph of an
orthogonal operator O ∈ Γ(End(TM)):
(v , α) = ((id−O)w , g((id +O)w , ·))
Dirac structure – a graph of an orthogonal
operator O ∈ Γ(End(TM)) subject to the
(twisted Jacobi-type) integrability condition

g
(
O−1∇(id−O)ξ1

(O)ξ2, ξ3

)
+ cycl(1, 2, 3) =

1

2
H((id−O)ξ1, (id−O)ξ2, (id−O)ξ3).

Remark. If the operator (id +O) is invertible, one recovers DΠ with

Π = id−O
id +O (Cayley transform), integrability ⇔ [Π,Π]SN = 〈H,Π⊗3〉.

Remark (!) Any D[1] can be equipped with a Q-structure
⇔ Lie algebroid structure on TM inherited from the symplectic
realization of the Courant algebroid.



Q-morphisms

Given two Q-manifolds (M1,Q1), (M2,Q2), a degree preserving
map f :M1 →M2, is a Q-morphism iff Q1f

∗ − f ∗Q2 = 0.

Proposition Given a degree preserving map between Q-manifolds
(M1,Q1) and (M,Q), there exists a Q-morphism between the
Q-manifolds (M1,Q1) and (M2,Q2) = (T [1]M, dDR + LQ)

T [1]M

��
M1

f

<<

a //M



Application 1: Sigma models, gauging

T*M

TM

Ai

D

Vi

A

World-sheet 7→ Target
(space-time)

Simple examples
B ∈ Ω2(M) or H ∈ Ω3(M)

S =

∫
Σ
X ∗B S =

∫
Σ3

X ∗H



Application 1: Sigma models, gauging

T*M

TM

Ai

D

Vi

A

World-sheet 7→ Target
(space-time)

Dirac sigma model (A.Kotov, P.Schaller, T.Strobl – 2005)
Functional on vector bundle morphisms from TΣ to D.

S0
DSM =

∫
Σ
Ai ∧ dX i − 1

2
Ai ∧ V i +

∫
Σ3

H.



Gauge transformations of the DSM

Theorem (V.S., T.Strobl) Any smooth map from Σ to the space
Γ(D) of sections of the Dirac structure D ⊂ TM ⊕T ∗M defines an
infinitesimal gauge transformation of the (metric independent part
of the) Dirac sigma model governed by D if and only if for any
point σ ∈ Σ the section v ⊕ η ∈ Γ(D) satisfies

dη − ιvH = 0,

where d is the de Rham differential on M.

Remark. H non-degenerate – 2-plectic geometry.



DSM from gauging, extension of the algebra

Consider an algebra G̃ of degree −1 vector fields on T [1]D[1]

(+ some technical assumptions) and a subalgebra G̃T ⊂ G̃ defined
by dη − ιvH = 0, extended by symmetric 2-tensors

Theorem (V.S., T.Strobl). Let H be a closed 3-form on M and
D a Dirac structure on (TM ⊕T ∗M)H such that the pullback of H
to a dense set of orbits of D is non-zero. Then the
G̃T -equivariantly closed extension of H is unique and yields the
(metric-independent part of) the Dirac sigma model on Σ = ∂Σ3.

V.S., T.S., “Dirac Sigma Models from Gauging”, Journal of High
Energy Physics, 11(2013)110.
V.S. “Graded geometry in gauge theories and beyond”, Journal of
Geometry and Physics, Volume 87, 2015.



Tool to prove: equivariant cohomology for Q-manifolds

Let (M,Q) be a Q-manifold, and let G be a subalgebra of degree
−1 vector fields ε on M closed w.r.t. the Q-derived bracket:
[ε, ε′]Q = [ε, [Q, ε′]].

Definition. Call a differential form (superfunction) ω on M
G-horizontal if εω = 0, for any ε ∈ G.

Definition. Call a differential form (superfunction) ω on M
G-equivariant if (adQε)ω := [Q, ε]ω = 0 , for any ε ∈ G.

Definition. Call a differential form (superfunction) ω on M
G-basic if it is G-horizontal and G-equivariant.

Remark. For Q-closed superfunctions G-horizontal ⇔ G-basic

Key idea to apply to gauge theories:
Replace “gauge invariant” by “equivariantly Q-closed”.



Q-morphisms for sigma models

(M1 × M̃) 	 Q̂

pr1

vv ��
Q1 �M1

f̂

66

â //M1 ×M2

where M̃ = T [1]M2,
Q̂ = Q1 + Q̃ = Q1 + d + LQ2 – Q-structure on M1 × M̃

Gauge transformations: δεf̂
∗(·) = f̂ ∗(Vε·) = f̂ ∗([Q̂, ε̂]·),

where ε̂ – degree −1 vector field on M1 × M̃, vertical w.r.t. pr1.

Gauge invariance of S =
∫

Σ̃ f̂ ∗(•) ⇔ [Q̂, ε̂]• = 0

⇔ • is equivariantly Q̃-closed (on M̃ !)

Extension of A. Kotov, T. Strobl, 2007.



Generality of the DSM in dim = 2.

Theorem (A.Kotov, V.S., T.Strobl), Gauging of
a Wess-Zumino term

∫
Σ3 H is not obstructed iff (under weak

technical assumptions) the result is a Dirac Sigma model.

T*M

TM

Ai

D

Vi

Aa

A.K., V.S., T.S, “2d Gauge theories and generalized geometry”,
Journal of High Energy Physics, 08(2014)021.



Application 1.5: Supersymmetrization

T*M

TM

Ai

D

Vi

A

Space–time 7→ Target

Graded Poisson sigma model (M. Ertl, W. Kummer, T. Strobl
∼2000, to describe supergravity). Functional on vector bundle
morphisms from TΣ to T ∗M, M – super Poisson

S0
sPSM =

∫
Σ
dX iAi +

1

2
πjiAiAj



Alexandrov–Kontsevich–Schwarz–Zaboronsky procedure

Theorem (AKSZ).
Consider two graded manifolds X (source) and Y (target).
Let the source X be equipped with a Q-structure D and a
D-invariant homogeneous (degree −(n + 1)) non-degenerate
measure µ;
the target Y equipped with a Q-structure Q, compatible with the
symplectic structure ω, such that deg(ω) = n and the parity is
opposite to the parity of µ.
Then the space of graded maps Y X can be equipped with a
QP-structure. Moreover if ω is exact one can define a functional
on Y X satisfying the classical master equation.



Multigraded AKSZ
Multigraded = several gradings on the sheaf of functions
⇔ commuting homogeneity structures
⇔ commuting Euler vector fields. (Ask J. Grabowski again ;))

Theorem.
Consider two multigraded manifolds X (source) and Y (target).
Let the source X be equipped with a Q-structure D and a
D-invariant homogeneous (gh-degree −(n + 1)) non-degenerate
measure µ;
the target Y equipped with a Q-structure Q, compatible with the
symplectic structure ω, such that gh(ω) = n and the total parity is
opposite to the parity of µ.
Then the space of multigraded maps Y X can be equipped with a
QP-structure. Moreover if ω is exact one can define a functional
on Y X satisfying the classical master equation.

Remark. The condition on µ is now rather restrictive.

Details: V.S., arXiv:1608.07457.



Multigraded Q-bundles

Theorem (M. Bojowald, A. Kotov and T. Strobl, 2005).
Solutions of the field equations of the PSM = morphisms of Lie
algebroids; gauge transformations = Lie algebroid homotopies.

Remark. Equivalently: Q-morphisms / Q-homotopies ⇒
multigraded generalization.

Prop. The theory resulting from the source supersymmetrization
of the PSM is on-shell equivalent to the original
(non-supersymmetric) one.

Prop. The source supersymmetrized Chern–Simons theory can be
reformulated as the target-supersymmetrized theory with an
extended algebra.

Details: V.S., arXiv:1608.07457.



Application 2. Port-Hamiltonian systems.
Example: Electric circuit ( L1, L2, C ) with a controlled port u Q̇ = ϕ1/L1 − ϕ2/L2

ϕ̇1 = −Q/C+u
ϕ̇2 = Q/C .

H =
ϕ2

1

2L1
+

ϕ2
2

2L2
+

Q2

2C
Port: input u, output e = ϕ1/L1.

Port-Hamiltonian system: ẋ = J(x)∂H∂x +g(x)f with

x =

Q
ϕ1

ϕ2

 J =

 0 1 −1
−1 0 0
1 0 0

 g =

0
1
0

 f = u
e = ϕ1/L1

fs := −ẋ, es :=

pQ
pϕ1

pϕ2

 ≡
 Q/C
ϕ1/L1

ϕ2/L2

 .
Ḣ ≡ −eTs fs= uϕ1/L1 ⇔

eTs fs+ef = 0
⇒ Almost Dirac



Port-hamiltonian → Dirac → . . .

A. van der Schaft, ‘Port-Hamiltonian systems...’ ICM Madrid, ’06.

Geometry of port-Hamiltonian systems:
J.I. Neimark, N.A. Fufaev, H. Yoshimura, J.E. Marsden,
T.S. Ratiu, B.M. Maschke ... Talk by F. Gay-Balmaz tomorrow.

My motivation:

Classical (ODE)
classical
mechanics

Poisson
symplectic
(almost) Dirac

Q-struct.

Modern (PDE)
classical
mechanics

multi-symplectic
Stokes–Dirac ?

???

Gauge theories
Sigma models

Dirac in 2d Q-struct.

T*M

TM

Ai

D

Vi

A



Thank you for your attention!


