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The restricted 3-body problem (joint with Delshams)

Simplified version of the general 3-body problem. One of the bodies has
negligible mass.
The other two bodies move independently of it following Kepler’s laws for
the 2-body problem on elliptic orbits with eccentricity e.

Figure: Circular 3-body problem
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Planar restricted 3-body problem

By Newton’s law of universal gravitation

d2q

dt2
= (1− µ) q1 − q

|q1 − q|3
+ µ

q2 − q
|q2 − q|3

(1)

with q1 = q1(t) the position of the planet with mass 1− µ at time t and
q2 = q2(t) the position of the one with mass µ.
Introducing the momentum p = dq/dt and the time-dependent self-potential
of the small body U(q, t) = 1−µ

|q−q1| + µ
|q−q2|Equation (1) can be rewritten as

a Hamiltonian system with Hamiltonian
H(q, p, t) = p2/2− U(q, t), (q, p) ∈ R2 ×R2,.
The primaries move around their center of mass on ellipses and it is useful to
introduce polar coordinates for q = (X,Y ) ∈ R2 \ {0},
X = r cosα, Y = r sinα, (r, α) ∈ R+ × T

The momenta p = (PX , PY ) are transformed in such a way that the total
change of coordinates (X,Y, PX , PY ) 7→ (r, α, Pr =: y, Pα =: G) is
canonical, i.e. the symplectic structure remains the same.
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Planar restricted 3-body problem

To study the behaviour at r =∞, we introduce McGehee coordinates
(x, α, y,G), where

r = 2
x2 , x ∈ R+.

This transformation is non-canonical i.e. the symplectic structure changes:
for x > 0 it is given by

− 4
x3 dx ∧ dy + dα ∧ dG.

which extends to a b3-symplectic structure on R × T× R2.

The Poisson bracket is

{f, g} = −x
3

4

(
∂f

∂g

∂g

∂y
− ∂f

∂y

∂g

∂x

)
+ ∂f

∂α

∂g

∂G
− ∂f

∂G

∂g

∂α

The integrable 2-body problem for µ = 0 is integrable with respect to the
singular ω.
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Model for these systems

ω = 1
xn

1
dx1 ∧ dy1 +

∑
i≥2

dxi ∧ dyi

Close to x1 = 0, the systems behave like,

and not like,
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The 3-body problem

Consider the system of three bodies with masses m1,m2,m3 and positions
q1 = (q1, q2, q3),q2 = (q4, q5, q6),q3 = (q7, q8, q9) ∈ R3.

Define the 9× 9 matrix M := diag(m1,m1,m1,m2,m2,m2,m3,m3,m3).

Assume central coordinates (m1q1 +m2q2 +m3q3 = 0).

Introduce the following “McGehee”-coordinates:

r :=
√
qTMq, s := q

r
, z := p

√
r. (2)

r = 0 corresponds to triple collisions. Essentially, these are spherical
coordinates since s lies on the unit-sphere in R9 with respect to the metric
given by M .
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The 3-body problem

The standard symplectic form
∑9
i=1 dqi ∧ dpi becomes in the new

coordinates (r, s1, . . . , s8, z1, . . . , z9).

8∑
i=1

(
si√
r
dr ∧ dzi +

√
rdsi ∧ dzi −

zi
2
√
r
dsi ∧ dr

)
+

+ 1√
m9rµ

(
µdr ∧ dz9 − r

8∑
i=1

misidsi ∧ dz9 + z9

2

8∑
i=1

misidsi ∧ dr

)
,

with µ := 1−
∑8
i=1 s

2
imi.

9∧
i=1

dqi ∧ dpi =

√
µr7

m9
ds1 ∧ dz1 ∧ ds2 ∧ dz2 ∧ . . . ∧ ds8 ∧ dz8 ∧ dr ∧ dz9,

It is a 7
2 -folded symplectic structure. (In the n-body problem m-folded

symplectic for a certain m).
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Other examples

Kustaanheimo-Stiefel regularization for n-body problem (useful for binary
collisions)  folded-type symplectic structures with hyperbolic singularities

two fixed-center problem via Appell’s transformation  combination of
folded-type and bm-symplectic structures  Dirac structures.
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b-Symplectic/b-Poisson structures

Definition

Let (M2n,Π) be an (oriented) Poisson manifold such that the map

p ∈M 7→ (Π(p))n ∈ Λ2n(TM)

is transverse to the zero section, then Z = {p ∈M |(Π(p))n = 0} is a
hypersurface called the critical hypersurface and we say that Π is a
Poisson b-structure on (M,Z).

Symplectic foliation of a b-Poisson manifold
The symplectic foliation has dense symplectic leaves and codimension 2
symplectic leaves whose union is Z.
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Darboux normal forms

Theorem (Guillemin-M.-Pires)
For all p ∈ Z, there exists a Darboux coordinate system x1, y1, . . . , xn, yn
centered at p such that Z is defined by x1 = 0 and

Π = x1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi

Darboux for bn-symplectic structures

Π = xn1
∂

∂x1
∧ ∂

∂y1
+

n∑
i=2

∂

∂xi
∧ ∂

∂yi

or dually

ω = 1
xn1

dx1 ∧ dy1 +
n∑
i=2

dxi ∧ dyi
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Dimension 2

Radko classified b-Poisson structures on compact oriented surfaces:

Geometrical invariants: The topology of S and the curves γi where Π
vanishes.

Dynamical invariants: The periods of the “modular vector field” along γi.

Measure: The regularized Liouville volume of S, V εh (Π) =
∫
|h|>ε ωΠ for h a

function vanishing linearly on the curves γ1, . . . , γn and ωΠ the “dual ”form
to the Poisson structure.

Other classification schemes: For bn-symplectic structures (not necessarily
oriented)  Scott, M.-Planas.
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Higher dimensions: Some compact examples.

The product of (R, πR) a Radko compact surface with a compact
symplectic manifold (S, ω) is a b-Poisson manifold.
corank 1 Poisson manifold (N, π) and X Poisson vector field ⇒
(S1 ×N, f(θ) ∂∂θ ∧X + π) is a b-Poisson manifold if,

1 f vanishes linearly.
2 X is transverse to the symplectic leaves of N .

We then have as many copies of N as zeroes of f .
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Poisson Geometry of the critical hypersurface

This last example is semilocally the canonical picture of a b-Poisson
structure .

1 The critical hypersurface Z has an induced regular Poisson structure
of corank 1.

2 There exists a Poisson vector field transverse to the symplectic
foliation induced on Z.
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The singular hypersurface

Theorem (Guillemin-M.-Pires)
If L contains a compact leaf L, then Z is the mapping torus of the
symplectomorphism φ : L→ L determined by the flow of a Poisson vector
field v transverse to the symplectic foliation.

This description also works for bn-symplectic structures.
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A dual approach...

b-Poisson structures can be seen as symplectic structures modeled
over a Lie algebroid (the b-tangent bundle).
A vector field v is a b-vector field if vp ∈ TpZ for all p ∈ Z. The
b-tangent bundle bTM is defined by

Γ(U, bTM) =
{

b-vector fields
on (U,U ∩ Z)

}
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b-forms

The b-cotangent bundle bT ∗M is (bTM)∗. Sections of Λp(bT ∗M)
are b-forms, bΩp(M).The standard differential extends to

d : bΩp(M)→ bΩp+1(M)

A b-symplectic form is a closed, nondegenerate, b-form of degree 2.
This dual point of view, allows to prove a b-Darboux theorem and
semilocal forms via an adaptation of Moser’s path method because
we can play the same tricks as in the symplectic case.

What else?
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b-integrable systems

Definition
b-integrable system A set of b-functionsa f1, . . . , fn on (M2n, ω) such that

f1, . . . , fn Poisson commute.

df1 ∧ · · · ∧ dfn 6= 0 as a section of Λn(bT ∗(M)) on a dense subset of M and
on a dense subset of Z

ac log |x| + g

Example
The symplectic form 1

hdh ∧ dθ defined on the interior of the upper hemisphere
H+ of S2 extends to a b-symplectic form ω on the double of H+ which is S2.
The triple (S2, ω, log|h|) is a b-integrable system.

Example
If (f1, . . . , fn) is an integrable system on M , then (log |h|, f1, . . . , fn) on
H+ ×M extends to a b-integrable on S2 ×M .
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Action-angle coordinates for b-integrable systems
The compact regular level sets of a b-integrable system are (Liouville) tori.

Theorem (Kiesenhofer-M.-Scott)
Around a Liouville torus there exist coordinates
(p1, . . . , pn, θ1, . . . , θn) : U → Bn ×Tn such that

ω|U = c

p1
dp1 ∧ dθ1 +

n∑
i=2

dpi ∧ dθi, (3)

and the level sets of the coordinates p1, . . . , pn correspond to the Liouville
tori of the system.

Reformulation of the result
Integrable systems semilocally ! twisted cotangent lifta of a Tn action
by translations on itself to (T ∗Tn).

aWe replace the Liouville form by c log |p1|dθ1 +
∑n

i=2 pidθi.
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Intermezzo on twisted b-cotangent lifts
Consider G := S1 ×R+ × S1 acting on M := S1 ×R2:
(ϕ, a, α) · (θ, x1, x2) := (θ + ϕ, aRα(x1, x2)), with Rα rotation.
Its twisted b-cotangent lift gives focus-focus singularities on b-symplectic
manifolds.
The logarithmic Liouville one-form is λ := log |p|dθ + y1dx1 + y2dx2 and the
moment map is µ := (f1, f2, f3) with

f1 = 〈λ,X#
1 〉 = log |p|,

f2 = 〈λ,X#
2 〉 = x1y1 + x2y2,

f3 = 〈λ,X#
3 〉 = x1y2 − y1x2.
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Proof

1 Topology of the foliation. In a neighbourhood of a compact connected fiber
the b-integrable system F is diffeomorphic to the b-integrable system on
W := Tn ×Bn given by the projections p1, . . . , pn−1 and log |pn|.

2 Uniformization of periods: We want to define integrals whose
(b-)Hamiltonian vector fields induce a Tn action. Start with Rn-action:

Φ : Rn × (Tn ×Bn) → Tn ×Bn

((t1, . . . , tn),m) 7→ Φ(1)
t1 ◦ · · · ◦ Φ(n)

tn (m).

Uniformize to get a Tn action with fundamental vector fields Yi.
3 The vector fields Yi are Poisson vector fields (check LYi

LYi
ω = 0).

4 The vector fields Yi are Hamiltonian with primitives σ1, . . . , σn ∈bC∞(W ).
In this step the properties of b-cohomology are essential.Use this action to
drag a local normal form (Darboux-Carathéodory) in a whole
neighbourhood.
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A picture...

Figure: Fibration by Liouville tori

Applications to KAM theory (surviving torus under perturbations ) on
b-symplectic manifolds (Kiesenhofer-M.-Scott).
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KAM for b-symplectic manifolds

Theorem (Kiesenhofer-M.-Scott)
Consider Tn ×Bnr with the standard b-symplectic structure and consider the
b-function H = k log |y1|+ h(y) with h analytic. If the frequency map has a
Diophantine value and is non-degenerate, then a Liouville torus on Z persists
under sufficiently small perturbations of H. More precisely, if |ε| is sufficiently
small, then the perturbed system

Hε = H + εP

(with P (ϕ, y) = log |y1|+ f1(ϕ̃, y) + y1f2(ϕ, y) + f3(ϕ1, y1)) admits an
invariant torus T .
Moreover, there exists a diffeomorphism Tn → T close to the identity taking the
flow γt of the perturbed system on T to the linear flow on Tn with frequency
vector (k+εk′

c , ω̃).
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Global classification

Circle actions on b-surfaces:
m1

m2

m3

m4

m5m1

m2

m3

m4

m5m1

m2

m3

m4

m5m1

m2

m3

m4

m5m1

m2

m3

m4

m5m1

m2

m3

m4

m5m1

m2

m3

m4

m5m1

m2

m3

m4

m5m1

m2

m3

m4

m5m1
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m3
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m5m1

m2

m3

m4

m5m1
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m1
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Further results on b-manifolds

Delzant theorem and convexity for Tk-actions (Guillemin-
M.-Pires-Scott).
Symplectic topological aspects (Frejlich-Mart́ınez-M).
Quantization of b-symplectic manifolds (Guillemin- M.-Weitsman).
What about bn-symplectic manifolds? Guillemin-M.-Weitsman

bn -symplectic  

Symplectic 

Folded symplectic 
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Desingularizing bm-symplectic structures

Theorem (Guillemin-M.-Weitsman)
Given a bm-symplectic structure ω on a compact manifold (M2n, Z):

If m = 2k, there exists a family of symplectic forms ωε which coincide
with the bm-symplectic form ω outside an ε-neighbourhood of Z and
for which the family of bivector fields (ωε)−1 converges in the
C2k−1-topology to the Poisson structure ω−1 as ε→ 0 .
If m = 2k + 1, there exists a family of folded symplectic forms ωε
which coincide with the bm-symplectic form ω outside an
ε-neighbourhood of Z.
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Deblogging b2k-symplectic structures

ω = dx

x2k ∧ (
2k−1∑
i=0

αix
i) + β (4)

Let f ∈ C∞(R) be an odd smooth function satisfying f ′(x) > 0 for all
x ∈ [−1, 1],

0-1
1

and satisfying

f(x) =
{

−1
(2k−1)x2k−1 − 2 for x < −1

−1
(2k−1)x2k−1 + 2 for x > 1

outside [−1, 1].Eva Miranda (UPC) b-Symplectic manifolds Semptember, 2016 25 / 27



Deblogging b2k-symplectic structures

Scaling:
fε(x) := 1

ε2k−1 f
(x
ε

)
. (5)

Outside the interval [−ε, ε] ,

fε(x) =
{

−1
(2k−1)x2k−1 − 2

ε2k−1 for x < −ε
−1

(2k−1)x2k−1 + 2
ε2k−1 for x > ε

Replace dx
x2k by dfε to obtain

ωε = dfε ∧ (
2k−1∑
i=0

αix
i) + β

which is symplectic.

Eva Miranda (UPC) b-Symplectic manifolds Semptember, 2016 26 / 27



Applications of deblogging

Convexity for Tk-actions.

Delzant theorem and Delzant-type theorem for semitoric systems
(bolytopes).
Applications to KAM.
Periodic orbits of problems in celestial mechanics and applications to
stability (joint with Roisin Braddell, Amadeu Delshams, Cédric Oms
and Arnau Planas) .
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