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The classification in space forms

Theorem [Cartan, Segre (1938)]

Let M be a hypersurface in a real space form M̄ ∈ {Rn,RHn, Sn}. Then:

M is isoparametric ⇔ M has constant principal curvatures

If M̄ ∈ {Rn,RHn}, M is isoparametric ⇔ M is homogeneous

Classification in spheres Sn

The number of principal curvatures is g ∈ {1, 2, 3, 4, 6} [Münzner]

Homogeneous hypersurfaces are classified [Hsiang, Lawson]

Hypersurfaces with g ∈ {1, 2, 3} are homogeneous [Cartan]

There are inhomogeneous examples with g = 4 [Ferus, Karcher,
Münzner]

All isoparametric hypersurfaces are homogeneous or of FKM-type
[Takagi; Ozeki, Takeuchi; Stolz; Cecil, Chi, Jensen; Immervoll; Chi;
Abresch; Dorfmeister, Neher; Miyaoka]
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Isoparametric submanifolds

M submanifold in a Riemannian manifold M̄

Definition [Heintze, Liu, Olmos (2006)]

M is isoparametric if

M has flat normal bundle

Nearby parallel submanifolds to M have CMC in radial directions

M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ
intersecting M at p orthogonally and with dim Σ = codim M)

Isoparametric submanifolds in Rn, RHn, Sn

M extends to a complete isoparametric submanifold, which is a leaf of
a global isoparametric foliation [Terng, J. Differential Geom. (1985)]

The classification problem is reduced to Sn [Wu, TAMS (1992)]

If M ⊂ Sn is an (irreducible, full) isoparametric submanifold of
codim M ≥ 2, then M is an orbit of the isotropy representation of a
symmetric space G/K [Thorbergsson, Ann. of Math. (1991)]
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Complex space forms

Complex space forms

Simply connected, complete Kähler manifolds of constant holomorphic
sectional curvature c:

complex Euclidean spaces Cn, if c = 0

complex projective spaces CPn, if c > 0

complex hyperbolic spaces CHn, if c < 0

(
Cn+1, 〈·, ·〉

)
〈z ,w〉 = Re (−z0w̄0 +

∑n
k=1 zk w̄k) , z ,w ∈ Cn+1

AdS2n+1 = {z ∈ Cn+1 | 〈z , z〉 = −1} ←− anti-De Sitter space

CHn = AdS2n+1/ ∼, z ∼ λz , λ ∈ S1

The Hopf map π : AdS2n+1 −→ CHn is a semi-Riemannian
submersion with S1-fibers
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Isoparametric submanifolds in CPn

Idea of the approach [DV., Trans. Amer. Math. Soc. (2016)]

An isoparametric submanifold in CPn extends to a global
isoparametric foliation on CPn

Given a (singular Riemannian) foliation G on CPn, G is isoparametric
if and only if π−1G is isoparametric on S2n+1

Isoparametric foliations on spheres have been classified

Main difficulty: there are noncongruent foliations on CPn that
pullback to congruent foliations on S2n+1

Classification is complete, except for codim 1 in CP15
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The classification

Theorem [D́ıaz-Ramos, DV., Sanmart́ın-López, arXiv:1509.02498]

A connected hypersurface M in the complex hyperbolic space CHn is
isoparametric if and only if it is an open part of:

1 A tube around a totally geodesic complex hyperbolic space CHk

2 A tube around a totally geodesic real hyperbolic space RHn

3 A horosphere

4 A tube around a ruled homogeneous minimal submanifold Ww, for
some proper real subspace w ⊂ gα
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CHn as a Lie group

G = SU(1, n) isometry group of CHn

g = su(1, n) Lie algebra of G

K = S(U(1)U(n)) isotropy group at o ∈ CHn

Iwasawa decomposition of g

g = k⊕ a⊕ n = k⊕ a⊕ gα ⊕ g2α

gα ≡ Cn−1 , g2α ≡ R

k maximal compact in g

a ∼= R abelian

n nilpotent

a⊕ n ; AN Lie subgroup of G

φ : AN × CHn → CHn free and transitive action

The complex hyperbolic space as a Lie group

(CHn, 〈·, ·〉) ≡ (AN, φ∗o〈·, ·〉)
Solvable

Left invariant metric
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The examples of the classification

Examples

Examples of the Montiel’s list [J. Math. Soc. Japan (1985)]

tubes around a totally geodesic CHk , k ∈ {0, . . . , n − 1}
tubes around a totally geodesic RHn

horospheres

New examples [D́ıaz-Ramos, DV., Math. Z. (2012)]

tubes around a ruled homogeneous minimal submanifold Ww, for some
proper real subspace w ⊂ gα

New examples

Recall that a⊕ n = a⊕ gα ⊕ g2α and AN ∼= CHn.
Take w ( gα a subspace. Consider the Lie algebra sw = a⊕w⊕ g2α and
its associated subgroup Sw of AN

Ww = Sw · o is a ruled homogeneous
submanifold, o ∈ CHn

The tubes around Ww are isoparametric, but
generically inhomogeneous
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M isoparametric hypersurface in CHn, ξ unit normal to M
SX = −∇̄X ξ the shape operator of M
J complex structure of CHn

The importance of the Hopf fibration
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We calculate the shape operator S̃ t of the
equidistant hypersurfaces M̃t

There exists an r ∈ R such that M̃ r is a focal
submanifold

M̃t

M̃

There exists a common eigenvector E1 to all shape operators of M̃ r

Z := π∗E1 and JZ are tangent to the focal submanifold
π(M̃ r ) = M r ⊂ CHn

The second fundamental form of M r coincides with that of the
examples

B = −JZ is a geodesic vector field ; determines x ∈ CHn(∞)

o ∈ M r and x ∈ CHn(∞) induce an Iwasawa decomposition of g

Maximal complex distribution in M r ; M r ruled by tot. geod. CHk

The horocycles determined by (Jξ)> and x are contained in M r , for
each ξ normal to M r
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Isoparametric submanifolds in CH2

Theorem [D́ıaz-Ramos, DV., Vidal-Castiñeira, arXiv:1604.01237]

An isoparametric submanifold of CH2 is an open part of an orbit of
maximal dimension of a polar action on CH2.

Definition [Dadok, TAMS (1985) & Palais, Terng, TAMS (1987)]

A polar action is an action H × M̄ → M̄ of a Lie group H of isometries of
a Riemannian manifold M̄ such that there exists a totally geodesic
submanifold Σ of M̄ that intersects all the orbits and always orthogonally.

Polar actions on CH2 have been classified [Berndt, D́ıaz-Ramos, Ann.
Global Anal. Geom. (2013)]. There are five different examples of
cohomogeneity 1, and four of cohomogeneity 2.
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Theorem [D́ıaz-Ramos, DV., Vidal-Castiñeira, arXiv:1604.01237]

An isoparametric submanifold of CH2 is an open part of an orbit of
maximal dimension of a polar action on CH2.

Sketch of the proof

Sections of an isoparametric submanifold M are geodesics
(iff codim M = 1) or totally geodesic RH2 (iff codim M = 2)

If codim M = 1, M is an isoparametric hypersurface, and hence an
orbit of a polar action of cohomogeneity 1 (by the previous
classification)

If codim M = 2, M is a Lagrangian flat surface with parallel mean
curvature in CH2. Then, M is an orbit of maximal dimension of a
polar action of cohomogeneity 2 [D́ıaz-Ramos, DV., Vidal-Castiñeira,
J. Geom. Anal. (2016)]
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Some open problems

Conclude the classification of isoparametric hypersurfaces in CP15

Construct inhomogeneous examples of isoparametric submanifolds of
codim ≥ 2 in CHn

Extend the nonclassical construction of isoparametric hypersurfaces in
CHn to other noncompact symmetric spaces (the rank one case was
done in [D́ıaz-Ramos, DV., Adv. Math. (2013)], and a partial
extension to higher rank in [DV., Int. Math. Res. Not. (2015)])


