Isoparametric submanifolds of complex space forms

Miguel Domínguez Vázquez

Instituto de Ciencias Matemáticas (ICMAT-CSIC)

Supported by projects EM2014/009, and MTM2013-41335-P with FEDER funds (Spain).

XXV IFWGP - Madrid 2016

Introduction

- Isoparametric hypersurfaces
- Isoparametric submanifolds
- Omplex space forms
- ② The classification problem in complex projective spaces
- O The classification problem in complex hyperbolic spaces
 - The codimension one case
 - O The classification in the plane
- Open problems

Introduction

- Isoparametric hypersurfaces
- Isoparametric submanifolds
- 6 Complex space forms
- ② The classification problem in complex projective spaces
- O The classification problem in complex hyperbolic spaces
 - The codimension one case
 - O The classification in the plane
- Open problems

Motivation from Geometric Optics

Stationary wave with parallel wavefronts \rightsquigarrow isoparametric family

Motivation from Geometric Optics

Stationary wave with parallel wavefronts \rightsquigarrow isoparametric family

M hypersurface in a Riemannian manifold \overline{M}

Definition

 ${\it M}$ is an isoparametric hypersurface if it and its nearby equidistant hypersurfaces have constant mean curvature

Motivation from Geometric Optics

Stationary wave with parallel wavefronts \rightsquigarrow isoparametric family

M hypersurface in a Riemannian manifold \overline{M}

Definition

 ${\it M}$ is an isoparametric hypersurface if it and its nearby equidistant hypersurfaces have constant mean curvature

M submanifold in a Riemannian manifold \bar{M}

Definition

M is an (extrinsically) homogeneous submanifold if it is an orbit of an isometric action on \overline{M} , i.e. $M = H \cdot p$, where $p \in \overline{M}$, $H \times \overline{M} \to \overline{M}$ action with $H \subset \text{Isom}(\overline{M})$

Motivation from Geometric Optics

Stationary wave with parallel wavefronts \rightsquigarrow isoparametric family

M hypersurface in a Riemannian manifold \overline{M}

Definition

 ${\it M}$ is an isoparametric hypersurface if it and its nearby equidistant hypersurfaces have constant mean curvature

M submanifold in a Riemannian manifold \bar{M}

Definition

M is an (extrinsically) homogeneous submanifold if it is an orbit of an isometric action on \overline{M} , i.e. $M = H \cdot p$, where $p \in \overline{M}$, $H \times \overline{M} \to \overline{M}$ action with $H \subset \text{Isom}(\overline{M})$

M homogeneous hypersurface $\Rightarrow M$ isoparametric hypersurface

Let *M* be a hypersurface in a real space form $\overline{M} \in \{\mathbb{R}^n, \mathbb{R}H^n, \mathbb{S}^n\}$. Then:

- M is isoparametric ⇔ M has constant principal curvatures
- If $\overline{M} \in \{\mathbb{R}^n, \mathbb{R}H^n\}$, M is isoparametric \Leftrightarrow M is homogeneous

Let *M* be a hypersurface in a real space form $\overline{M} \in \{\mathbb{R}^n, \mathbb{R}H^n, \mathbb{S}^n\}$. Then:

- M is isoparametric ⇔ M has constant principal curvatures
- If $\overline{M} \in \{\mathbb{R}^n, \mathbb{R}H^n\}$, M is isoparametric $\Leftrightarrow M$ is homogeneous

Classification in the Euclidean space \mathbb{R}^n [Segre]

Let *M* be a hypersurface in a real space form $\overline{M} \in \{\mathbb{R}^n, \mathbb{R}H^n, \mathbb{S}^n\}$. Then:

- M is isoparametric ⇔ M has constant principal curvatures
- If $\overline{M} \in \{\mathbb{R}^n, \mathbb{R}H^n\}$, M is isoparametric $\Leftrightarrow M$ is homogeneous

Classification in the real hyperbolic space $\mathbb{R}H^n$ [Cartan]

Let *M* be a hypersurface in a real space form $\overline{M} \in \{\mathbb{R}^n, \mathbb{R}H^n, \mathbb{S}^n\}$. Then:

- M is isoparametric ⇔ M has constant principal curvatures
- If $\overline{M} \in \{\mathbb{R}^n, \mathbb{R}H^n\}$, M is isoparametric $\Leftrightarrow M$ is homogeneous

Classification in spheres \mathbb{S}^n

- The number of principal curvatures is $g \in \{1, 2, 3, 4, 6\}$ [Münzner]
- Homogeneous hypersurfaces are classified [Hsiang, Lawson]
- Hypersurfaces with $g \in \{1,2,3\}$ are homogeneous [Cartan]
- There are inhomogeneous examples with g = 4 [Ferus, Karcher, Münzner]
- All isoparametric hypersurfaces are homogeneous or of FKM-type [Takagi; Ozeki, Takeuchi; Stolz; Cecil, Chi, Jensen; Immervoll; Chi; Abresch; Dorfmeister, Neher; Miyaoka]

Introduction

- Isoparametric hypersurfaces
- Isoparametric submanifolds
- Omplex space forms
- ② The classification problem in complex projective spaces
- The classification problem in complex hyperbolic spaces
 - The codimension one case
 - O The classification in the plane
- Open problems

M submanifold in a Riemannian manifold $ar{M}$

Definition [Heintze, Liu, Olmos (2006)]

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

M submanifold in a Riemannian manifold $ar{M}$

Definition [Heintze, Liu, Olmos (2006)]

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

M submanifold in a Riemannian manifold $ar{M}$

Definition [Heintze, Liu, Olmos (2006)]

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

M submanifold in a Riemannian manifold $ar{M}$

Definition [Heintze, Liu, Olmos (2006)]

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

M submanifold in a Riemannian manifold $ar{M}$

Definition [Heintze, Liu, Olmos (2006)]

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

M submanifold in a Riemannian manifold $ar{M}$

Definition [Heintze, Liu, Olmos (2006)]

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

M submanifold in a Riemannian manifold $ar{M}$

Definition [Heintze, Liu, Olmos (2006)]

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

M submanifold in a Riemannian manifold \bar{M}

Definition [Heintze, Liu, Olmos (2006)]

M is isoparametric if

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

Isoparametric submanifolds in \mathbb{R}^n , $\mathbb{R}H^n$, \mathbb{S}^n

- *M* extends to a complete isoparametric submanifold, which is a leaf of a global isoparametric foliation [Terng, *J. Differential Geom.* (1985)]
- The classification problem is reduced to Sⁿ [Wu, TAMS (1992)]

M submanifold in a Riemannian manifold \bar{M}

Definition [Heintze, Liu, Olmos (2006)]

M is isoparametric if

- *M* has flat normal bundle
- Nearby parallel submanifolds to *M* have CMC in radial directions
- M admits sections (i.e. ∀p ∈ M, ∃ a totally geodesic submanifold Σ intersecting M at p orthogonally and with dim Σ = codim M)

Isoparametric submanifolds in \mathbb{R}^n , $\mathbb{R}H^n$, \mathbb{S}^n

- *M* extends to a complete isoparametric submanifold, which is a leaf of a global isoparametric foliation [Terng, *J. Differential Geom.* (1985)]
- The classification problem is reduced to Sⁿ [Wu, TAMS (1992)]
- If M ⊂ Sⁿ is an (irreducible, full) isoparametric submanifold of codim M ≥ 2, then M is an orbit of the isotropy representation of a symmetric space G/K [Thorbergsson, Ann. of Math. (1991)]

Introduction

- Isoparametric hypersurfaces
- Isoparametric submanifolds
- Complex space forms
- ② The classification problem in complex projective spaces
- The classification problem in complex hyperbolic spaces
 - The codimension one case
 - O The classification in the plane
- Open problems

Complex space forms

Simply connected, complete Kähler manifolds of constant holomorphic sectional curvature *c*:

- complex Euclidean spaces \mathbb{C}^n , if c = 0
- complex projective spaces $\mathbb{C}P^n$, if c > 0
- complex hyperbolic spaces $\mathbb{C}H^n$, if c < 0

Complex space forms

Simply connected, complete Kähler manifolds of constant holomorphic sectional curvature *c*:

- complex Euclidean spaces \mathbb{C}^n , if c = 0
- complex projective spaces $\mathbb{C}P^n$, if c > 0
- complex hyperbolic spaces $\mathbb{C}H^n$, if c < 0

$$(\mathbb{C}^{n+1}, \langle \cdot, \cdot \rangle) \quad \langle z, w \rangle = \operatorname{\mathsf{Re}}\left(-z_0 \bar{w_0} + \sum_{k=1}^n z_k \bar{w_k}\right), \qquad z, w \in \mathbb{C}^{n+1}$$

Complex space forms

Simply connected, complete Kähler manifolds of constant holomorphic sectional curvature *c*:

- complex Euclidean spaces \mathbb{C}^n , if c = 0
- complex projective spaces $\mathbb{C}P^n$, if c > 0
- complex hyperbolic spaces $\mathbb{C}H^n$, if c < 0

$$(\mathbb{C}^{n+1}, \langle \cdot, \cdot \rangle) \quad \langle z, w \rangle = \operatorname{\mathsf{Re}}\left(-z_0 \bar{w_0} + \sum_{k=1}^n z_k \bar{w_k}\right), \qquad z, w \in \mathbb{C}^{n+1}$$

•
$$\operatorname{AdS}^{2n+1} = \{z \in \mathbb{C}^{n+1} \mid \langle z, z \rangle = -1\} \longleftarrow$$
 anti-De Sitter space

Complex space forms

Simply connected, complete Kähler manifolds of constant holomorphic sectional curvature *c*:

- complex Euclidean spaces \mathbb{C}^n , if c = 0
- complex projective spaces $\mathbb{C}P^n$, if c > 0
- complex hyperbolic spaces $\mathbb{C}H^n$, if c < 0

$$(\mathbb{C}^{n+1}, \langle \cdot, \cdot \rangle) \quad \langle z, w \rangle = \operatorname{\mathsf{Re}}\left(-z_0 \bar{w_0} + \sum_{k=1}^n z_k \bar{w_k}\right), \qquad z, w \in \mathbb{C}^{n+1}$$

• $AdS^{2n+1} = \{z \in \mathbb{C}^{n+1} \mid \langle z, z \rangle = -1\} \longleftarrow$ anti-De Sitter space

•
$$\mathbb{C}H^n = \mathrm{AdS}^{2n+1} / \sim$$
, $z \sim \lambda z$, $\lambda \in \mathbb{S}^1$

Complex space forms

Simply connected, complete Kähler manifolds of constant holomorphic sectional curvature *c*:

- complex Euclidean spaces \mathbb{C}^n , if c = 0
- complex projective spaces $\mathbb{C}P^n$, if c > 0
- complex hyperbolic spaces $\mathbb{C}H^n$, if c < 0

$$(\mathbb{C}^{n+1}, \langle \cdot, \cdot \rangle) \quad \langle z, w \rangle = \operatorname{\mathsf{Re}}\left(-z_0 \bar{w_0} + \sum_{k=1}^n z_k \bar{w_k}\right), \qquad z, w \in \mathbb{C}^{n+1}$$

• $AdS^{2n+1} = \{z \in \mathbb{C}^{n+1} \mid \langle z, z \rangle = -1\} \longleftarrow$ anti-De Sitter space

•
$$\mathbb{C}H^n = \mathrm{AdS}^{2n+1}/\sim$$
, $z \sim \lambda z$, $\lambda \in \mathbb{S}^1$

• The Hopf map $\pi: AdS^{2n+1} \longrightarrow \mathbb{C}H^n$ is a semi-Riemannian submersion with \mathbb{S}^1 -fibers

Introduction

- Isoparametric hypersurfaces
- Isoparametric submanifolds
- Omplex space forms
- O The classification problem in complex projective spaces
- The classification problem in complex hyperbolic spaces
 - The codimension one case
 - 2 The classification in the plane

Open problems

Idea of the approach [DV., Trans. Amer. Math. Soc. (2016)]

 An isoparametric submanifold in CPⁿ extends to a global isoparametric foliation on CPⁿ

- An isoparametric submanifold in CPⁿ extends to a global isoparametric foliation on CPⁿ
- Given a (singular Riemannian) foliation G on CPⁿ, G is isoparametric if and only if π⁻¹G is isoparametric on S²ⁿ⁺¹

- An isoparametric submanifold in CPⁿ extends to a global isoparametric foliation on CPⁿ
- Given a (singular Riemannian) foliation G on CPⁿ, G is isoparametric if and only if π⁻¹G is isoparametric on S²ⁿ⁺¹
- Isoparametric foliations on spheres have been classified

- An isoparametric submanifold in CPⁿ extends to a global isoparametric foliation on CPⁿ
- Given a (singular Riemannian) foliation \mathcal{G} on $\mathbb{C}P^n$, \mathcal{G} is isoparametric if and only if $\pi^{-1}\mathcal{G}$ is isoparametric on \mathbb{S}^{2n+1}
- Isoparametric foliations on spheres have been classified
- Main difficulty: there are noncongruent foliations on CPⁿ that pullback to congruent foliations on S²ⁿ⁺¹

- An isoparametric submanifold in CPⁿ extends to a global isoparametric foliation on CPⁿ
- Given a (singular Riemannian) foliation \mathcal{G} on $\mathbb{C}P^n$, \mathcal{G} is isoparametric if and only if $\pi^{-1}\mathcal{G}$ is isoparametric on \mathbb{S}^{2n+1}
- Isoparametric foliations on spheres have been classified
- Main difficulty: there are noncongruent foliations on CPⁿ that pullback to congruent foliations on S²ⁿ⁺¹
- $\bullet\,$ Classification is complete, except for codim 1 in $\mathbb{C}P^{15}$

Idea of the approach [DV., Trans. Amer. Math. Soc. (2016)]

- An isoparametric submanifold in CPⁿ extends to a global isoparametric foliation on CPⁿ
- Given a (singular Riemannian) foliation \mathcal{G} on $\mathbb{C}P^n$, \mathcal{G} is isoparametric if and only if $\pi^{-1}\mathcal{G}$ is isoparametric on \mathbb{S}^{2n+1}
- Isoparametric foliations on spheres have been classified
- Main difficulty: there are noncongruent foliations on CPⁿ that pullback to congruent foliations on S²ⁿ⁺¹
- \bullet Classification is complete, except for codim 1 in $\mathbb{C}P^{15}$

Consequences

• Construction of the first inhomogeneous isoparametric foliations of codim \geq 2 known in any symmetric space

Idea of the approach [DV., Trans. Amer. Math. Soc. (2016)]

- An isoparametric submanifold in CPⁿ extends to a global isoparametric foliation on CPⁿ
- Given a (singular Riemannian) foliation \mathcal{G} on $\mathbb{C}P^n$, \mathcal{G} is isoparametric if and only if $\pi^{-1}\mathcal{G}$ is isoparametric on \mathbb{S}^{2n+1}
- Isoparametric foliations on spheres have been classified
- Main difficulty: there are noncongruent foliations on CPⁿ that pullback to congruent foliations on S²ⁿ⁺¹
- Classification is complete, except for codim 1 in $\mathbb{C}P^{15}$

Consequences

- Construction of the first inhomogeneous isoparametric foliations of codim ≥ 2 known in any symmetric space
- Every irreducible isoparametric foliation on CPⁿ is homogeneous if and only if n + 1 is a prime number

Introduction

- Isoparametric hypersurfaces
- Isoparametric submanifolds
- Omplex space forms
- ② The classification problem in complex projective spaces
- The classification problem in complex hyperbolic spaces
 - The codimension one case
 - 2 The classification in the plane
- Open problems
Theorem [Díaz-Ramos, DV., Sanmartín-López, arXiv:1509.02498]

A connected hypersurface M in the complex hyperbolic space $\mathbb{C}H^n$ is isoparametric if and only if it is an open part of:

Theorem [Díaz-Ramos, DV., Sanmartín-López, arXiv:1509.02498]

A connected hypersurface M in the complex hyperbolic space $\mathbb{C}H^n$ is isoparametric if and only if it is an open part of:

- **()** A tube around a totally geodesic complex hyperbolic space $\mathbb{C}H^k$
- **2** A tube around a totally geodesic real hyperbolic space $\mathbb{R}H^n$
- 3 A horosphere

Theorem [Díaz-Ramos, DV., Sanmartín-López, arXiv:1509.02498]

A connected hypersurface M in the complex hyperbolic space $\mathbb{C}H^n$ is isoparametric if and only if it is an open part of:

- **()** A tube around a totally geodesic complex hyperbolic space $\mathbb{C}H^k$
- **2** A tube around a totally geodesic real hyperbolic space $\mathbb{R}H^n$
- 3 A horosphere
- A tube around a ruled homogeneous minimal submanifold W_w, for some proper real subspace w ⊂ g_α

- G = SU(1, n) isometry group of $\mathbb{C}H^n$
- $\mathfrak{g} = \mathfrak{su}(1, n)$ Lie algebra of G
- K = S(U(1)U(n)) isotropy group at $o \in \mathbb{C}H^n$

- G = SU(1, n) isometry group of $\mathbb{C}H^n$
- $\mathfrak{g} = \mathfrak{su}(1, n)$ Lie algebra of G
- K = S(U(1)U(n)) isotropy group at $o \in \mathbb{C}H^n$

Iwasawa decomposition of g $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$ • \mathfrak{k} maximal compact in g $\mathfrak{g}_{\alpha} \equiv \mathbb{C}^{n-1}$, $\mathfrak{g}_{2\alpha} \equiv \mathbb{R}$ • \mathfrak{k} maximal compact in g• $\mathfrak{a} \cong \mathbb{R}$ abelian• \mathfrak{n} nilpotent

- G = SU(1, n) isometry group of $\mathbb{C}H^n$
- $\mathfrak{g} = \mathfrak{su}(1, n)$ Lie algebra of G
- K = S(U(1)U(n)) isotropy group at $o \in \mathbb{C}H^n$

lwasawa decomposition of $\mathfrak g$	
$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{n}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{g}_{lpha}\oplus\mathfrak{g}_{2lpha}$	• \mathfrak{k} maximal compact in \mathfrak{g}
$\mathfrak{g}_lpha\equiv\mathbb{C}^{n-1}$, $\mathfrak{g}_{2lpha}\equiv\mathbb{R}$	• $\mathfrak{a}\cong\mathbb{R}$ abelian
	 n nilpotent

• $\mathfrak{a} \oplus \mathfrak{n} \rightsquigarrow AN$ Lie subgroup of G

- G = SU(1, n) isometry group of $\mathbb{C}H^n$
- $\mathfrak{g} = \mathfrak{su}(1, n)$ Lie algebra of G
- K = S(U(1)U(n)) isotropy group at $o \in \mathbb{C}H^n$

lwasawa decomposition of ${\mathfrak g}$	
$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{n}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{g}_{lpha}\oplus\mathfrak{g}_{2lpha}$	• \mathfrak{k} maximal compact in \mathfrak{g}
$\mathfrak{g}_lpha\equiv\mathbb{C}^{n-1}$, $\mathfrak{g}_{2lpha}\equiv\mathbb{R}$	• $\mathfrak{a}\cong\mathbb{R}$ abelian
	 n nilpotent

- $\mathfrak{a} \oplus \mathfrak{n} \rightsquigarrow AN$ Lie subgroup of G
- $\phi: AN \times \mathbb{C}H^n \to \mathbb{C}H^n$ free and transitive action

- G = SU(1, n) isometry group of $\mathbb{C}H^n$
- $\mathfrak{g} = \mathfrak{su}(1, n)$ Lie algebra of G
- K = S(U(1)U(n)) isotropy group at $o \in \mathbb{C}H^n$

lwasawa decomposition of ${\mathfrak g}$	
$\mathfrak{g}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{n}=\mathfrak{k}\oplus\mathfrak{a}\oplus\mathfrak{g}_{lpha}\oplus\mathfrak{g}_{2lpha}$	• ŧ maximal compact in g
$\mathfrak{g}_lpha\equiv\mathbb{C}^{n-1}$, $\mathfrak{g}_{2lpha}\equiv\mathbb{R}$	• $\mathfrak{a}\cong\mathbb{R}$ abelian
	• n nilpotent

- $\mathfrak{a} \oplus \mathfrak{n} \rightsquigarrow AN$ Lie subgroup of G
- $\phi: AN \times \mathbb{C}H^n \to \mathbb{C}H^n$ free and transitive action

The complex hyperbolic space as a Lie group

$$(\mathbb{C}H^n, \langle \cdot, \cdot \rangle) \equiv (AN, \phi_o^* \langle \cdot, \cdot \rangle)$$

- Solvable
- Left invariant metric

Examples

• Examples of the Montiel's list [J. Math. Soc. Japan (1985)]

• New examples [Díaz-Ramos, DV., Math. Z. (2012)]

Examples

- Examples of the Montiel's list [J. Math. Soc. Japan (1985)]
 - tubes around a totally geodesic $\mathbb{C}H^k$, $k\in\{0,\ldots,n-1\}$
 - tubes around a totally geodesic $\mathbb{R}H^n$
 - horospheres
- New examples [Díaz-Ramos, DV., Math. Z. (2012)]

Examples

- Examples of the Montiel's list [J. Math. Soc. Japan (1985)]
 - tubes around a totally geodesic $\mathbb{C}H^k$, $k\in\{0,\ldots,n-1\}$
 - tubes around a totally geodesic $\mathbb{R}H^n$
 - horospheres
- New examples [Díaz-Ramos, DV., Math. Z. (2012)]
 - tubes around a ruled homogeneous minimal submanifold $W_{\mathfrak{w}}$, for some proper real subspace $\mathfrak{w} \subset \mathfrak{g}_{\alpha}$

New examples

Recall that $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$ and $AN \cong \mathbb{C}H^n$.

Take $\mathfrak{w} \subsetneq \mathfrak{g}_{\alpha}$ a subspace. Consider the Lie algebra $\mathfrak{s}_{\mathfrak{w}} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha}$ and its associated subgroup $S_{\mathfrak{w}}$ of AN

Examples

- Examples of the Montiel's list [J. Math. Soc. Japan (1985)]
 - tubes around a totally geodesic $\mathbb{C}H^k$, $k\in\{0,\ldots,n-1\}$
 - tubes around a totally geodesic $\mathbb{R}H^n$
 - horospheres
- New examples [Díaz-Ramos, DV., Math. Z. (2012)]
 - tubes around a ruled homogeneous minimal submanifold $W_{\mathfrak{w}}$, for some proper real subspace $\mathfrak{w} \subset \mathfrak{g}_{\alpha}$

New examples

Recall that $\mathfrak{a} \oplus \mathfrak{n} = \mathfrak{a} \oplus \mathfrak{g}_{\alpha} \oplus \mathfrak{g}_{2\alpha}$ and $AN \cong \mathbb{C}H^n$.

Take $\mathfrak{w} \subsetneq \mathfrak{g}_{\alpha}$ a subspace. Consider the Lie algebra $\mathfrak{s}_{\mathfrak{w}} = \mathfrak{a} \oplus \mathfrak{w} \oplus \mathfrak{g}_{2\alpha}$ and its associated subgroup $S_{\mathfrak{w}}$ of AN

- *W*_w = *S*_w · *o* is a ruled homogeneous submanifold, *o* ∈ ℂ*Hⁿ*
- The tubes around W_w are isoparametric, but generically inhomogeneous

- M isoparametric hypersurface in $\mathbb{C}H^n$, ξ unit normal to M
- $SX = -\bar{\nabla}_X \xi$ the shape operator of M
- J complex structure of $\mathbb{C}H^n$

- M isoparametric hypersurface in $\mathbb{C}H^n,\,\xi$ unit normal to M
- $SX = -\bar{\nabla}_X \xi$ the shape operator of M
- J complex structure of $\mathbb{C}H^n$

- M isoparametric hypersurface in $\mathbb{C}H^n$, ξ unit normal to M
- $SX = -\bar{\nabla}_X \xi$ the shape operator of M
- J complex structure of $\mathbb{C}H^n$

- *M* isoparametric hypersurface in $\mathbb{C}H^n$, ξ unit normal to *M*
- $SX = -\bar{\nabla}_X \xi$ the shape operator of M
- J complex structure of $\mathbb{C}H^n$

With respect to the basis $\{X_1^L, \ldots, X_{2n-1}^L, V\}$, \widetilde{S} is given by

 $\begin{pmatrix} \lambda_1 & 0 & -\frac{b_1}{2} \\ & \ddots & & \vdots \\ 0 & \lambda_{2n-1} & -\frac{b_{2n-1}}{2} \\ \frac{b_1}{2} & \cdots & \frac{b_{2n-1}}{2} & 0 \end{pmatrix}$

• X_1, \ldots, X_{2n-1} eigenvectors of *S*

•
$$b_i = \langle J\xi, X_i \rangle$$

• λ_i eigenvalues of S

- *M* isoparametric hypersurface in $\mathbb{C}H^n$, ξ unit normal to *M*
- $SX = -\bar{\nabla}_X \xi$ the shape operator of M
- J complex structure of $\mathbb{C}H^n$

With respect to the basis $\{X_1^L, \ldots, X_{2n-1}^L, V\}$, \widetilde{S} is given by

 $\begin{pmatrix} \lambda_1 & 0 & -\frac{b_1}{2} \\ & \ddots & & \vdots \\ 0 & \lambda_{2n-1} & -\frac{b_{2n-1}}{2} \\ & \frac{b_1}{2} & \cdots & \frac{b_{2n-1}}{2} & 0 \end{pmatrix} \qquad \bullet X_1, \dots, X_{2n-1}$ eigenvectors of S $\bullet b_i = \langle J\xi, X_i \rangle$ $\bullet \lambda_i$ eigenvalues of S

M isoparametric $\Leftrightarrow \widetilde{M}$ isoparametric

Possibilities for the shape operator of \widetilde{M} :

Type III

 $\left(\begin{array}{cccc} \lambda_1 & 0 & 1 \\ 0 & \lambda_1 & 0 \\ 0 & 1 & \lambda_1 \end{array}
ight)$

Type IV
$$\begin{pmatrix} a & b & & \\ -b & a & & \\ & & \ddots & \\ & & & & \lambda_{2n} \end{pmatrix}$$

 \ddots λ_{n-2}

Type III

$$\begin{pmatrix}
\lambda_{1} & 0 & 1 & & \\
0 & \lambda_{1} & 0 & & \\
0 & 1 & \lambda_{1} & & \\
& & & \ddots & \\
& & & & & \lambda_{n-2}
\end{pmatrix}$$

Tube around
$$\mathbb{R}H^n$$
 $\begin{pmatrix} a & b \\ -b & a \\ & \ddots \\ & & \ddots \\ & & & \lambda_{2n} \end{pmatrix}$

Tube around
$$\mathbb{R}H^n$$
 $\begin{pmatrix} a & b \\ -b & a \\ & \ddots \\ & & \ddots \\ & & & \lambda_{2n} \end{pmatrix}$

Tube around <i>b</i>	$V_{\mathfrak{w}}$
$\left(\begin{array}{ccccc} \lambda_1 & 0 & 1 & & \\ 0 & \lambda_1 & 0 & & \\ 0 & 1 & \lambda_1 & & \\ & & & \ddots \end{array}\right)$	λ_{n-2}

• We calculate the shape operator \tilde{S}^t of the equidistant hypersurfaces \tilde{M}^t

- We calculate the shape operator \tilde{S}^t of the equidistant hypersurfaces \tilde{M}^t
- There exists an $r \in \mathbb{R}$ such that \widetilde{M}^r is a focal submanifold

- We calculate the shape operator \widetilde{S}^t of the equidistant hypersurfaces \widetilde{M}^t
- There exists an $r \in \mathbb{R}$ such that \widetilde{M}^r is a focal submanifold

• There exists a common eigenvector E_1 to all shape operators of M^r

- We calculate the shape operator \widetilde{S}^t of the equidistant hypersurfaces \widetilde{M}^t
- There exists an $r \in \mathbb{R}$ such that \widetilde{M}^r is a focal submanifold

- There exists a common eigenvector E_1 to all shape operators of M^r
- $Z := \pi_* E_1$ and JZ are tangent to the focal submanifold $\pi(\widetilde{M}^r) = M^r \subset \mathbb{C}H^n$

- We calculate the shape operator \widetilde{S}^t of the equidistant hypersurfaces \widetilde{M}^t
- There exists an $r \in \mathbb{R}$ such that \widetilde{M}^r is a focal submanifold

- There exists a common eigenvector E_1 to all shape operators of M^r
- $Z := \pi_* E_1$ and JZ are tangent to the focal submanifold $\pi(\widetilde{M}^r) = M^r \subset \mathbb{C}H^n$
- The second fundamental form of M^r coincides with that of the examples

- We calculate the shape operator \widetilde{S}^t of the equidistant hypersurfaces \widetilde{M}^t
- There exists an $r \in \mathbb{R}$ such that \widetilde{M}^r is a focal submanifold

- There exists a common eigenvector E_1 to all shape operators of M^r
- $Z := \pi_* E_1$ and JZ are tangent to the focal submanifold $\pi(\widetilde{M}^r) = M^r \subset \mathbb{C}H^n$
- The second fundamental form of M^r coincides with that of the examples
- B = -JZ is a geodesic vector field \rightsquigarrow determines $x \in \mathbb{C}H^n(\infty)$

- We calculate the shape operator \widetilde{S}^t of the equidistant hypersurfaces \widetilde{M}^t
- There exists an $r \in \mathbb{R}$ such that \widetilde{M}^r is a focal submanifold

- There exists a common eigenvector E_1 to all shape operators of M^r
- $Z := \pi_* E_1$ and JZ are tangent to the focal submanifold $\pi(\widetilde{M}^r) = M^r \subset \mathbb{C}H^n$
- The second fundamental form of M^r coincides with that of the examples
- B = -JZ is a geodesic vector field \rightsquigarrow determines $x \in \mathbb{C}H^n(\infty)$
- $o \in M^r$ and $x \in \mathbb{C}H^n(\infty)$ induce an Iwasawa decomposition of \mathfrak{g}

- We calculate the shape operator \widetilde{S}^t of the equidistant hypersurfaces \widetilde{M}^t
- There exists an $r \in \mathbb{R}$ such that \widetilde{M}^r is a focal submanifold

- There exists a common eigenvector E_1 to all shape operators of M^r
- $Z := \pi_* E_1$ and JZ are tangent to the focal submanifold $\pi(\widetilde{M}^r) = M^r \subset \mathbb{C}H^n$
- The second fundamental form of M^r coincides with that of the examples
- B = -JZ is a geodesic vector field \rightsquigarrow determines $x \in \mathbb{C}H^n(\infty)$
- $o \in M^r$ and $x \in \mathbb{C}H^n(\infty)$ induce an Iwasawa decomposition of \mathfrak{g}
- Maximal complex distribution in $M^r \rightsquigarrow M^r$ ruled by tot. geod. $\mathbb{C}H^k$

- We calculate the shape operator \widetilde{S}^t of the equidistant hypersurfaces \widetilde{M}^t
- There exists an $r \in \mathbb{R}$ such that \widetilde{M}^r is a focal submanifold

- There exists a common eigenvector E_1 to all shape operators of M^r
- $Z := \pi_* E_1$ and JZ are tangent to the focal submanifold $\pi(\widetilde{M}^r) = M^r \subset \mathbb{C}H^n$
- The second fundamental form of M^r coincides with that of the examples
- B = -JZ is a geodesic vector field \rightsquigarrow determines $x \in \mathbb{C}H^n(\infty)$
- $o \in M^r$ and $x \in \mathbb{C}H^n(\infty)$ induce an Iwasawa decomposition of \mathfrak{g}
- Maximal complex distribution in $M^r \rightsquigarrow M^r$ ruled by tot. geod. $\mathbb{C}H^k$
- The horocycles determined by $(J\xi)^{\top}$ and x are contained in M^r , for each ξ normal to M^r

Introduction

- Isoparametric hypersurfaces
- Isoparametric submanifolds
- Omplex space forms
- ② The classification problem in complex projective spaces
- The classification problem in complex hyperbolic spaces
 - The codimension one case
 - O The classification in the plane
- Open problems

Theorem [Díaz-Ramos, DV., Vidal-Castiñeira, arXiv:1604.01237]

An isoparametric submanifold of $\mathbb{C}H^2$ is an open part of an orbit of maximal dimension of a polar action on $\mathbb{C}H^2$.

Definition [Dadok, TAMS (1985) & Palais, Terng, TAMS (1987)]

A polar action is an action $H \times \overline{M} \to \overline{M}$ of a Lie group H of isometries of a Riemannian manifold \overline{M} such that there exists a totally geodesic submanifold Σ of \overline{M} that intersects all the orbits and always orthogonally.

Polar actions on $\mathbb{C}H^2$ have been classified [Berndt, Díaz-Ramos, Ann. Global Anal. Geom. (2013)]. There are five different examples of cohomogeneity 1, and four of cohomogeneity 2.

Theorem [Díaz-Ramos, DV., Vidal-Castiñeira, arXiv:1604.01237]

An isoparametric submanifold of $\mathbb{C}H^2$ is an open part of an orbit of maximal dimension of a polar action on $\mathbb{C}H^2$.

Sketch of the proof

 Sections of an isoparametric submanifold M are geodesics (iff codim M = 1) or totally geodesic RH² (iff codim M = 2)

Theorem [Díaz-Ramos, DV., Vidal-Castiñeira, arXiv:1604.01237]

An isoparametric submanifold of $\mathbb{C}H^2$ is an open part of an orbit of maximal dimension of a polar action on $\mathbb{C}H^2$.

- Sections of an isoparametric submanifold *M* are geodesics (iff codim *M* = 1) or totally geodesic ℝ*H*² (iff codim *M* = 2)
- If codim M = 1, M is an isoparametric hypersurface, and hence an orbit of a polar action of cohomogeneity 1 (by the previous classification)
Theorem [Díaz-Ramos, DV., Vidal-Castiñeira, arXiv:1604.01237]

An isoparametric submanifold of $\mathbb{C}H^2$ is an open part of an orbit of maximal dimension of a polar action on $\mathbb{C}H^2$.

Sketch of the proof

- Sections of an isoparametric submanifold M are geodesics (iff codim M = 1) or totally geodesic RH² (iff codim M = 2)
- If codim M = 1, M is an isoparametric hypersurface, and hence an orbit of a polar action of cohomogeneity 1 (by the previous classification)
- If codim M = 2, M is a Lagrangian flat surface with parallel mean curvature in CH². Then, M is an orbit of maximal dimension of a polar action of cohomogeneity 2 [Díaz-Ramos, DV., Vidal-Castiñeira, J. Geom. Anal. (2016)]

Introduction

- Isoparametric hypersurfaces
- Isoparametric submanifolds
- Omplex space forms
- ② The classification problem in complex projective spaces
- The classification problem in complex hyperbolic spaces
 - The codimension one case
 - O The classification in the plane

Open problems

- Conclude the classification of isoparametric hypersurfaces in $\mathbb{C}P^{15}$
- Construct inhomogeneous examples of isoparametric submanifolds of codim ≥ 2 in CHⁿ
- Extend the nonclassical construction of isoparametric hypersurfaces in $\mathbb{C}H^n$ to other noncompact symmetric spaces (the rank one case was done in [Díaz-Ramos, DV., *Adv. Math.* (2013)], and a partial extension to higher rank in [DV., *Int. Math. Res. Not.* (2015)])