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M hypersurface in a Riemannian manifold M

Definition

M is an isoparametric hypersurface if it and its nearby equidistant
hypersurfaces have constant mean curvature

M submanifold in a Riemannian manifold M

Definition

M is an (extr|n5|ca||y) homogeneous submanifold if it is an orbit of an
isometric action on M, i.e. M = H - p, where p € M, H x M — M action
with H C Isom(M)

M homogeneous hypersurface = M isoparametric hypersurface
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The classification in space forms

Theorem [Cartan, Segre (1938)]

Let M be a hypersurface in a real space form M € {R",RH",S"}. Then:
@ M is isoparametric < M has constant principal curvatures
o If M € {R",RH"}, M is isoparametric <> M is homogeneous

Classification in spheres S”

@ The number of principal curvatures is g € {1,2,3,4,6} [Miinzner|

@ Homogeneous hypersurfaces are classified [Hsiang, Lawson]
@ Hypersurfaces with g € {1,2,3} are homogeneous [Cartan]
°

There are inhomogeneous examples with g = 4 [Ferus, Karcher,
Miinzner]

@ All isoparametric hypersurfaces are homogeneous or of FKM-type
[Takagi; Ozeki, Takeuchi; Stolz; Cecil, Chi, Jensen; Immervoll; Chi;
Abresch; Dorfmeister, Neher; Miyaoka]
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M submanifold in a Riemannian manifold M

Definition [Heintze, Liu, Olmos (2006)]

M is isoparametric if
@ M has flat normal bundle
@ Nearby parallel submanifolds to M have CMC in radial directions

@ M admits sections (i.e. Vp € M, 3 a totally geodesic submanifold ¥
intersecting M at p orthogonally and with dim X = codim M)

v

Isoparametric submanifolds in R”, RH", S"

@ M extends to a complete isoparametric submanifold, which is a leaf of
a global isoparametric foliation [Terng, J. Differential Geom. (1985)]

@ The classification problem is reduced to S” [Wu, TAMS (1992)]
e If M C S" is an (irreducible, full) isoparametric submanifold of

codim M > 2, then M is an orbit of the isotropy representation of a
symmetric space G/K [Thorbergsson, Ann. of Math. (1991)]
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Complex space forms

Complex space forms

Simply connected, complete Kihler manifolds of constant holomorphic
sectional curvature c:

@ complex Euclidean spaces C”, if c =0
@ complex projective spaces CP", if ¢ > 0

@ complex hyperbolic spaces CH", if c < 0

((C"‘H, (-, >) (z,w) = Re(—zoWo + Y51 ZkWk) z,w e Ctt

o AdS?™! = {7z e C"™1 | (z,z) = —1} <— anti-De Sitter space
@ CH"=AdS>""/~, z~ Az, AeSt

@ The Hopf map 7: AdS?™*1 — CH" is a semi-Riemannian
submersion with S'-fibers
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|dea of the approach [DV., Trans. Amer. Math. Soc. (2016)]

@ An isoparametric submanifold in CP" extends to a global
isoparametric foliation on CP”"

@ Given a (singular Riemannian) foliation G on CP", G is isoparametric
if and only if 771G is isoparametric on S>"t1

@ Isoparametric foliations on spheres have been classified

e Main difficulty: there are noncongruent foliations on CP" that
pullback to congruent foliations on S27+1

o Classification is complete, except for codim 1 in CP®

|

Consequences

@ Construction of the first inhomogeneous isoparametric foliations of
codim > 2 known in any symmetric space

@ Every irreducible isoparametric foliation on CP"” is homogeneous if
and only if n4 1 is a prime number
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The classification

Theorem [Diaz-Ramos, DV., Sanmartin-Lépez, arXiv:1509.02498]

A connected hypersurface M in the complex hyperbolic space CH" is
isoparametric if and only if it is an open part of:

@ A tube around a totally geodesic complex hyperbolic space CH*
@ A tube around a totally geodesic real hyperbolic space RH"
© A horosphere

@ A tube around a ruled homogeneous minimal submanifold W,,, for
some proper real subspace to C g,
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CH™ as a Lie group

e G = SU(1, n) isometry group of CH"
e g =su(l, n) Lie algebra of G
e K = S(U(1)U(n)) isotropy group at o € CH"

Iwasawa decomposition of g

g=tPadn=tBa® gy P 920 @ t maximal compact in g
@ a = R abelian

gaE(C"_l =R _
@ n nilpotent

@ a®n~ AN Lie subgroup of G
@ ¢: AN x CH" — CH" free and transitive action

The complex hyperbolic space as a Lie group

(CH™, (-, ) = (AN, ¢5(-, ) © >olvable |
o Left invariant metric
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Examples

e Examples of the Montiel's list [J. Math. Soc. Japan (1985)]
o tubes around a totally geodesic CHX, k € {0,...,n— 1}
o tubes around a totally geodesic RH"
e horospheres

o New examples [Diaz-Ramos, DV., Math. Z. (2012)]

e tubes around a ruled homogeneous minimal submanifold W,,, for some
proper real subspace 1o C g,

v

New examples
Recall that a@n =a® go @ goo and AN = CH".
Take v C g, a subspace. Consider the Lie algebra s,, = a @ to @ g, and
its associated subgroup Sy, of AN
@ Wy = Sy - 0 is a ruled homogeneous
submanifold, o € CH"

@ The tubes around W, are isoparametric, but " (Wio)
generically inhomogeneous )

Wio
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Sketch of the proof

@ M isoparametric hypersurface in CH", £ unit normal to M
@ S5X = —Vx& the shape operator of M
@ J complex structure of CH"

The importance of the Hopf fibration
Ads?m+1 M = 7=1(M)

o M Lorentzian hypersurface in AdS2"+!

L” l” @ V timelike unit vector field tangent to
CH" M the fibers

With respect to the basis {X},..., Xt | V}, S is given by

)\1 0 —% o X1,...,X2n_1

) . eigenvectors of S
0 )\2n—1 _b2371 L b,’ = <J§,X,>
LA b2';1 0 @ )\, eigenvalues of S

M isoparametric < M isoparametric
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Possibilities for the shape operator of M:

Tube around W,

Tube around CH*

A1 O
e )\1

>\2n
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Sketch of the proof

M

We calculate the shape operator St of the
equidistant hypersurfaces Mt

There exists an r € R such that M is a focal
submanifold 4
There exists a common eigenvector E; to all shape operators of M’

Z = m«E1 and JZ are tangent to the focal submanifold

7(M") = M" C CH"

The second fundamental form of M" coincides with that of the
examples

B = —JZ is a geodesic vector field ~ determines x € CH"(c0)

0 € M" and x € CH"(c0) induce an lwasawa decomposition of g
Maximal complex distribution in M" ~» M" ruled by tot. geod. CH*

The horocycles determined by (J¢)T and x are contained in M", for
each £ normal to M"
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Isoparametric submanifolds in CH?

Theorem [Diaz-Ramos, DV., Vidal-Castifieira, arXiv:1604.01237]

An isoparametric submanifold of CH? is an open part of an orbit of
maximal dimension of a polar action on CH?.

Definition [Dadok, TAMS (1985) & Palais, Terng, TAMS (1987)]

A polar action is an action H x M — M of a Lie group H of isometries of
a Riemannian manifold M such that there exists a totally geodesic
submanifold ¥ of M that intersects all the orbits and always orthogonally.

Polar actions on CH? have been classified [Berndt, Diaz-Ramos, Ann.
Global Anal. Geom. (2013)]. There are five different examples of
cohomogeneity 1, and four of cohomogeneity 2.
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Theorem [Diaz-Ramos, DV., Vidal-Castifieira, arXiv:1604.01237]

An isoparametric submanifold of CH? is an open part of an orbit of
maximal dimension of a polar action on CH?.

Sketch of the proof

@ Sections of an isoparametric submanifold M are geodesics
(iff codim M = 1) or totally geodesic RH? (iff codim M = 2)
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Theorem [Diaz-Ramos, DV., Vidal-Castifieira, arXiv:1604.01237]

An isoparametric submanifold of CH? is an open part of an orbit of
maximal dimension of a polar action on CH?.

Sketch of the proof

@ Sections of an isoparametric submanifold M are geodesics
(iff codim M = 1) or totally geodesic RH? (iff codim M = 2)

@ If codim M =1, M is an isoparametric hypersurface, and hence an
orbit of a polar action of cohomogeneity 1 (by the previous
classification)

o If codim M =2, M is a Lagrangian flat surface with parallel mean
curvature in CH2. Then, M is an orbit of maximal dimension of a
polar action of cohomogeneity 2 [Diaz-Ramos, DV., Vidal-Castifieira,
J. Geom. Anal. (2016)]




Isoparametric submanifolds in complex space forms

@ Introduction

O Isoparametric hypersurfaces

@ lIsoparametric submanifolds

©® Complex space forms
@ The classification problem in complex projective spaces
© The classification problem in complex hyperbolic spaces

@ The codimension one case
@ The classification in the plane

@ Open problems




Some open problems

e Conclude the classification of isoparametric hypersurfaces in CP1®

@ Construct inhomogeneous examples of isoparametric submanifolds of
codim > 2 in CH"

@ Extend the nonclassical construction of isoparametric hypersurfaces in
CH"™ to other noncompact symmetric spaces (the rank one case was
done in [Diaz-Ramos, DV., Adv. Math. (2013)], and a partial
extension to higher rank in [DV., Int. Math. Res. Not. (2015)])



