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Basic properties of Killing submersions

Definition
A Killing submersion is a Riemannian submersion π : E→ M, where
E and M are orientable and connected, such that the fibers of π are
the integral curves of a Killing vector field ξ with no zeroes.
→ π is Riemannian (resp. Lorentzian) if ξ is spacelike (resp. timelike).

I ξ is determined up to a nonzero multiplicative constant.
I Fibres are not geodesics in general.
I If a fibre has finite length, then all fibres have finite length.
I In any of the following situations, π admits a global section:

I The base M is not compact.
I The fibers of π have infinite length.

Classification criterion
Two Killing submersions π1 : E1 → M and π2 : E2 → M are isomorphic
if there exists an isometry T : E1 → E2 such that π2 ◦ T = π1.
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Classification elements

Goal: To classify Killing submersions π : E→ M up to isomorphism.

Ingredients:
1. The base surface M.
2. The Killing length µ = ‖ξ‖

I It is constant along the fibers µ ∈ C∞(M).

3. The bundle curvature τ .

ξ Killing ⇔ 〈∇X ξ,Y 〉+ 〈∇Y ξ,X 〉 = 0 for all X ,Y ∈ X(M)

⇔ ω(X ,Y ) = 〈∇X ξ,Y 〉 is skew-symmetric

We define τ(p) = 1
‖ξ‖ω(e1,e2), where {e1,e2} positive

orthonormal basis of ker(dπ)⊥ (horizontal distribution).
I It is constant along the fibers τ ∈ C∞(M).
I It does not depend on the choice of ξ.
I Horizontal distribution integrable⇔ τ ≡ 0.
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Examples

Simply-connected homogeneous Riemannian 3-manifolds N

I dim(Iso(N)) = 6 space-forms R3, H3 y S3.
I dim(Iso(N)) = 4 E(κ, τ)-spaces, κ− 4τ2 6= 0

I Product spaces H2(κ)× R and S2(κ)× R,
I Heisenberg group Nil3,
I Berger spheres S3

b, and
I Universal cover of Sl2(R) with a left-invariant metric.

I dim(Iso(N)) = 3 metric Lie groups isometric to
I Semi-direct products R2 nA R, for some A ∈M2(R).
I SU(2).

Warped products M ×f R, endowed with the metric

π∗M(ds2
M)± (f ◦ πM)π∗R(dt2),

where f is a function defined on M (1-dimensional fibers).
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Existence and uniqueness

Theorem
Let M be a simply-connected surface and τ, µ ∈ C∞(M), µ > 0. Then
there exists a Killing submersion π : E→ M such that
(a) The bundle curvature is τ .
(b) The Killing length is µ.
(c) E is simply-connected.

Moreover, π is unique up to isomorphism.

I If M is a disk, then π ∼ π1 : D× R→ D.
I E(M, τ, µ) =

(
D× R, λ2(dx2 + dy2) + µ2(dz + η(ydx − xdy)

)
I L(M, τ, µ) =

(
D× R, λ2(dx2 + dy2)− µ2(dz − η(ydx − xdy)

)
η(x , y) =

∫ 1
0

2s τ(xs,ys)λ(xs,ys)2

µ(xs,ys) ds.

I If M is a sphere, then
I If

∫
M
τ
µ

= 0, then π ∼ π1 : S2 × R→ S2.
I If

∫
M
τ
µ
6= 0, then π ∼ πHopf : S3 → S2.
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The non-simply-connected case
An isometry f : E1 → E2 is called a Killing isometry if it
preserves the vertical direction. In particular,

π2 ◦ f = h ◦ π1.

E1
f //

π1

��

E2

π2

��
M1

h // M2

Lifting isometries
Assume M1,M2,E1,E2 are simply-connected, h : M1 → M2 is an isometry
and p1 ∈ E1, p2 ∈ E2 are such that h(π1(p1)) = h(π2(p2)).

I If τ2 ◦ h = τ1 and µ2 ◦ h = µ1, then there exists a unique orientation-
preserving Killing isometry f : E1 → E2 such that f (p1) = p2.

Theorem
Let π : E→ M be a Killing submersion, and let ρ : M̃ → M and σ : Ẽ→ E be
the universal Riemannian covering maps of M and E, respectively.

I There is a Killing submersion π̃ : Ẽ→ M̃.
I There exists a group G of Killing isometries acting properly

discontinuously on Ẽ such that E = Ẽ/G.
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The mean curvature equation

Let π : E→ M be a Killing submersion
I A Killing graph over Ω ⊂ M is a smooth section F : Ω→ π−1(Ω) ⊂ E.
I If Ω = M, the graph is called entire.

Let Ω ⊂ M be such that there is a smooth section F0 : Ω→ E, then any
smooth graph over Ω can be expressed as

Fu : Ω→ E, Fu(p) = φu(p)(F0(p)),

for some u ∈ C∞(Ω).
I Fu defines a spacelike surface⇔ µ−2 + ε ‖Gu‖2 > 0,

where Gu = ∇u − Z , for some Z ∈ X(M) not depending on u.
I The mean curvature H of Fu is given by

2Hµ = divM (µπ∗N) = divM

(
µGu√

µ−2 + ε ‖Gu‖2

)
.

I The vector field Z satisfies div(JZ ) = −2ετ
µ

.

If M is compact, then π admits a global section⇔
∫

M
τ
µ

= 0.
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Calabi-type correspondence
Let π : E→ M be a Riemannian Killing submersion with simply-connected M
and fibers of infinite length and let u ∈ C∞(M) such that Σu = Fu(M) has
mean curvature H.

Then:

div

(
µGu√

µ−2 + ‖Gu‖2

)
= 2Hµ⇐⇒ div

(
µGu√

µ−2 + ‖Gu‖2
− JZ ′

)
= 0

⇐⇒ µGu√
µ−2 + ‖Gu‖2

− JZ ′ = −J∇v

We set G′v = ∇v − Z ′ and manipulate to obtain ‖G′v‖2 < µ2 and

Gu =
−JG′v

µ
√
µ2 − ‖G′v‖2

=⇒ div

(
G′v

µ
√
µ2 − ‖G′v‖2

)
= div(JGu) =

2τ
µ
.

Theorem
There is a one-to-one conformal correspondence between

(a) Graphs in E(M, τ, µ) with mean curvature H.
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Killing submersions

Graphs in Killing submersions

Some applications



Application 1: Complete spacelike surfaces (Lorentz.)
Let π : E→ M be a Riemmannian Killing submersion. Assume that M is not
compact, and Σu satisfies H ≥ c.

Given a regular domain Ω ⊂⊂ M,

2c
∫

Ω

µ ≤
∫

Ω

2Hµ =

∫
∂Ω

〈
µGu√

µ−2 + ‖Gu‖2
, η

〉
≤
∫
∂Ω

µ.

Hence,

c ≤ 1
2

inf
{∫

∂Ω
µ∫

Ω
µ

: Ω ⊂⊂ M regular
}

=
1
2

Ch(M, µ).

Theorem
(a) If H ∈ C∞(M) is such that |H| ≥ c > 1

2 Ch(M, µ), then a Riemannian
Killing submersion over M with Killing length µ does not admit entire
graphs with prescribed mean curvature H.

(b) If τ ∈ C∞(M) is such that |τ | ≥ c > 1
2 Ch(M, µ), then a Lorentzian

Killing submersion over M with Killing length µ does not admit complete
spacelike surfaces or entire spacelike graphs.

I In particular, a spacetime satisfying (b) is not distinguishable.
I Example: Lorentzian Heisenberg group Nil13(τ) = L(R2, τ, 1).
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Application 2: Entire minimal graphs (Riem.)

Theorem
Consider π : E→ M, M compact, bundle curvature τ and Kiling length µ.

I If
∫

M
τ
µ

= 0, then E admits an entire minimal graph.

I If
∫

M
τ
µ
6= 0, then E admits no entire section (like in Hopf fibration).

I The entire minimal graph is unique up to vertical translations.
I Plateau problem. The entire minimal graph is area-minimizing. It is an

absolute minimum of the functional

A(u) =

∫
M

√
µ−2 + ‖Gu‖2 ∼

∫
M

√
f 2 + ‖∇u + X‖2.

I Bernstein problem. The entire minimal graph is the only complete
surfaces in E transversal to the Killing direction and whose mean
curvature does not change sign.

Existence uses (Meeks-Simon-Yau, 1982) and (Gerhardt, 1985).
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Application 3: Compact stable CMC surfaces (Riem.)

Let π : E→ M be a Riemannian Killing submersion, and Σ an immersed
compact orientable surface in E with constant mean curvature

, i.e., a critical
point of the functional

J = Area− 2H ·Vol.

Then Σ is stable⇔ J ′′ ≥ 0 for all smooth variations of Σ.
If Σ is stable then the angle function ν = 〈N, ξ〉 satisfies either ν ≡ 0 or ν > 0
(ν lies in the kernel of the stability operator).

Theorem
If Σ a compact stable orientable surface immersed in E with constant mean
curvature, then one of the following holds:

I M is compact and Σ is an entire minimal graph.
I the fibers of π are compact and Σ is everywhere tangent to the Killing

direction.
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