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Classification criterion

Two Killing submersions 71 : E1 — M and 7 : E; — M are isomorphic
if there exists an isometry T : E; — E, such that o o T = 7.
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Classification elements

Goal: To classify Killing submersions 7 : E — M up to isomorphism.

Ingredients:
1. The base surface M.
2. The Killing length p = ||€]|
> Itis constant along the fibers ~ p € C*(M).
3. The bundle curvature 7.

EKiling < (V& Y)+(VyE, X) =0forall X, Y € X(M)
= w(X,Y) = (Vx¢, Y) is skew-symmetric

We define 7(p) = “;—Hw(eh e2), where {ey, e>} positive
orthonormal basis of ker(dx)* (horizontal distribution).

> ltis constant along the fibers ~~ 7 € C*(M).
> |t does not depend on the choice of &.
» Horizontal distribution integrable < 7 = 0.
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» dim(Iso(N)) = 6 ~ space-forms R3, H3 y S3.
» dim(Iso(N)) = 4 ~» E(x, 7)-spaces, k — 4712 £ 0
» Product spaces H?(k) x R and S?(x) x R,
» Heisenberg group Nils,

» Berger spheres S, and
> Universal cover of Sl>(R) with a left-invariant metric.

» dim(Iso(N)) = 3 ~» metric Lie groups isometric to
» Semi-direct products R? x 4 R, for some A € M (R).

> SU(2).
Warped products M x¢ R, endowed with the metric
mi(dsdy) £ (f o ) m (dt2),

where f is a function defined on M (1-dimensional fibers).
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The non-simply-connected case

An isometry f : Ey — E, is called a Killing isometry if it Eq _fs E,
preserves the vertical direction. In particular, L l
™ T
moof=hom.

My —— M,

Lifting isometries
Assume M;, M, Eq, E, are simply-connected, h: My — M. is an isometry
and ps € Eq, p2 € E; are such that h(m1(p1)) = h(m2(p2)).

» If o 0 h= 74 and u2 o h = 1, then there exists a unique orientation-
preserving Killing isometry f : E; — E, such that f(p1) = pe.

Theorem
Letn : E — M be a Killing submersion, and let p : M — Mando :E — E be
the universal Riemannian covering maps of M and E, respectively.

» There is a Killing submersion 7 : E — M.

» There exists a group G of Killing isometries acting properly
discontinuously on E such that E = E/G.
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Let 7 : E — M be a Killing submersion
» A Killing graph over Q ¢ M is a smooth section F: Q — 7~ '(Q) C E.
> If Q = M, the graph is called entire.

Let Q C M be such that there is a smooth section Fp : Q — E, then any
smooth graph over € can be expressed as

F,:Q—E, Fu(p) = ¢u(p)(F0(p))’

for some u € C*(Q).

> F, defines a spacelike surface < p 2+ ¢||Gul||® > 0,
where Gu = Vu — Z, for some Z € X(M) not depending on u.

» The mean curvature H of F, is given by

2Hu = divy(pmeN) = divy <MGU> .

V2 +el|Gul?

> The vector field Z satisfies div(JZ) = =2.

If M is compact, then 7 admits a global section « [, = = 0.
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Calabi-type correspondence

Let 7 : E — M be a Riemannian Killing submersion with simply-connected M
and fibers of infinite length and let u € C>°(M) such that X, = F,(M) has
mean curvature H. Then:

div (18 ) _opy e[ PG yz) -0
n=2+|Gull? VuTE+[|Gul]?
kG gz vy
n=2+ (| Gull?
We set G'v = Vv — Z’ and manipulate to obtain |G'v||* < 2 and

2T

Gu = ) = div(JGu) = =~
n

/ —JG'v . G'v
p/p2 = [|GV|]2 p

w2 =G|
Theorem
There is a one-to-one conformal correspondence between

(a) Graphs in E(M, 7, 1) with mean curvature H.
(b) Spacelike graphs in L(M, H, .~ ') with mean curvature 7.
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Application 1: Complete spacelike surfaces

Let 7 : E — M be a Riemmannian Killing submersion. Assume that M is not
compact, and X, satisfies H > c.Given a regular domain Q CcC M,

Gu
20/ §/2H=/ = S/.
P Sl aﬂ<\/u_2+||GU||2 1= "

c< Ling {M :Qccm regular} = 1Ch(M,u).
Jon 2

Hence,

N

Theorem

(a) IfH € C>(M) is such that |H| > ¢ > 1Ch(M, 1), then a Riemannian
Killing submersion over M with Killing length 1. does not admit entire
graphs with prescribed mean curvature H.

(b) Ifr € C>*(M) is such that|r| > ¢ > ;Ch(M, 1), then a Lorentzian
Killing submersion over M with Killing length u. does not admit complete
spacelike surfaces or entire spacelike graphs.

» In particular, a spacetime satisfying (b) is not distinguishable.
» Example: Lorentzian Heisenberg group Nil}(7) = L(R?, 7, 1).
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Application 2: Entire minimal graphs (Riem.)

Theorem
Consider 7 : E — M, M compact, bundle curvature = and Kiling length 1.
> If [, 5 = 0, then E admits an entire minimal graph.

> If [, 1. 7 0, then E admits no entire section (like in Hopf fibration).

» The entire minimal graph is unique up to vertical translations.

» Plateau problem. The entire minimal graph is area-minimizing. It is an
absolute minimum of the functional

A(u)z/ ,/,r?+||eu||2~/ 2 4 |Vu+ X2,
M M

» Bernstein problem. The entire minimal graph is the only complete
surfaces in E transversal to the Killing direction and whose mean
curvature does not change sign.

Existence uses (Meeks-Simon-Yau, 1982) and (Gerhardt, 1985).
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Application 3: Compact stable cmc surfaces (Riem.)

Let 7 : E — M be a Riemannian Killing submersion, and ¥ an immersed
compact orientable surface in E with constant mean curvature, i.e., a critical
point of the functional

J = Area — 2H - Vol.
Then X is stable < J"” > 0 for all smooth variations of .
If X is stable then the angle function v = (N, £) satisfies eitherv =0orv > 0
(v lies in the kernel of the stability operator).

Theorem

If X a compact stable orientable surface immersed in E with constant mean
curvature, then one of the following holds:

» M is compact and X is an entire minimal graph.

» the fibers of 7 are compact and X is everywhere tangent to the Killing
direction.
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