Surfaces in Riemannian and Lorentzian 3-manifolds admitting a Killing vector field

Ana M. Lerma and José M. Manzano

XXV International Fall Workshop on Geometry and Physics

September 2nd, 2016

Research supported by MEC-Feder research project MTM2014-52368-P and EPSRC grant EP/M024512/1. Killing submersions

Graphs in Killing submersions

Some applications

Killing submersions

craphs in Killing submersions

Some applications

Definition

A Killing submersion is a Riemannian submersion $\pi : \mathbb{E} \to M$, where \mathbb{E} and M are orientable and connected, such that the fibers of π are the integral curves of a Killing vector field ξ with no zeroes.

 $\rightarrow \pi$ is Riemannian (resp. Lorentzian) if ξ is spacelike (resp. timelike).

Definition

A Killing submersion is a Riemannian submersion $\pi : \mathbb{E} \to M$, where \mathbb{E} and M are orientable and connected, such that the fibers of π are the integral curves of a Killing vector field ξ with no zeroes.

- $\rightarrow \pi$ is Riemannian (resp. Lorentzian) if ξ is spacelike (resp. timelike).
- \triangleright ξ is determined up to a nonzero multiplicative constant.
- Fibres are not geodesics in general.
 - If a fibre has finite length, then all fibres have finite length.

Definition

A Killing submersion is a Riemannian submersion $\pi : \mathbb{E} \to M$, where \mathbb{E} and M are orientable and connected, such that the fibers of π are the integral curves of a Killing vector field ξ with no zeroes.

- $\rightarrow \pi$ is Riemannian (resp. Lorentzian) if ξ is spacelike (resp. timelike).
- \triangleright ξ is determined up to a nonzero multiplicative constant.
- Fibres are not geodesics in general.
 - If a fibre has finite length, then all fibres have finite length.
 - In any of the following situations, π admits a global section:
 - The base M is not compact.
 - The fibers of π have infinite length.

Definition

A Killing submersion is a Riemannian submersion $\pi : \mathbb{E} \to M$, where \mathbb{E} and M are orientable and connected, such that the fibers of π are the integral curves of a Killing vector field ξ with no zeroes.

- $\rightarrow \pi$ is Riemannian (resp. Lorentzian) if ξ is spacelike (resp. timelike).
- \triangleright ξ is determined up to a nonzero multiplicative constant.
- Fibres are not geodesics in general.
 - If a fibre has finite length, then all fibres have finite length.
- In any of the following situations, π admits a global section:
 - The base M is not compact.
 - > The fibers of π have infinite length.

Classification criterion

Two Killing submersions $\pi_1 : \mathbb{E}_1 \to M$ and $\pi_2 : \mathbb{E}_2 \to M$ are isomorphic if there exists an isometry $T : \mathbb{E}_1 \to \mathbb{E}_2$ such that $\pi_2 \circ T = \pi_1$.

Classification elements

Goal: To classify Killing submersions $\pi : \mathbb{E} \to M$ up to isomorphism.

Classification elements

Goal: To classify Killing submersions $\pi : \mathbb{E} \to M$ up to isomorphism. Ingredients:

1. The base surface *M*.

Goal: To classify Killing submersions $\pi : \mathbb{E} \to M$ up to isomorphism. Ingredients:

- 1. The base surface M.
- 2. The Killing length $\mu = \|\xi\|$
 - ▶ It is constant along the fibers $\rightsquigarrow \mu \in C^{\infty}(M)$.

Goal: To classify Killing submersions $\pi : \mathbb{E} \to M$ up to isomorphism. Ingredients:

- 1. The base surface *M*.
- 2. The Killing length $\mu = \|\xi\|$
 - ▶ It is constant along the fibers $\rightsquigarrow \mu \in C^{\infty}(M)$.
- 3. The bundle curvature τ .

$$\begin{aligned} \xi \text{ Killing } & \Leftrightarrow \quad \langle \overline{\nabla}_X \xi, Y \rangle + \langle \overline{\nabla}_Y \xi, X \rangle = 0 \text{ for all } X, Y \in \mathfrak{X}(M) \\ & \Leftrightarrow \quad \omega(X, Y) = \langle \overline{\nabla}_X \xi, Y \rangle \text{ is skew-symmetric} \end{aligned}$$

We define $\tau(p) = \frac{1}{\|\xi\|} \omega(e_1, e_2)$, where $\{e_1, e_2\}$ positive orthonormal basis of ker $(d\pi)^{\perp}$ (horizontal distribution).

Goal: To classify Killing submersions $\pi : \mathbb{E} \to M$ up to isomorphism. Ingredients:

- 1. The base surface *M*.
- 2. The Killing length $\mu = \|\xi\|$
 - ▶ It is constant along the fibers $\rightsquigarrow \mu \in C^{\infty}(M)$.
- 3. The bundle curvature τ .

$$\begin{aligned} \xi \text{ Killing} & \Leftrightarrow \quad \langle \overline{\nabla}_X \xi, Y \rangle + \langle \overline{\nabla}_Y \xi, X \rangle = 0 \text{ for all } X, Y \in \mathfrak{X}(M) \\ & \Leftrightarrow \quad \omega(X, Y) = \langle \overline{\nabla}_X \xi, Y \rangle \text{ is skew-symmetric} \end{aligned}$$

We define $\tau(p) = \frac{1}{\|\xi\|} \omega(e_1, e_2)$, where $\{e_1, e_2\}$ positive orthonormal basis of ker $(d\pi)^{\perp}$ (horizontal distribution).

- It is constant along the fibers $\rightsquigarrow \tau \in C^{\infty}(M)$.
- It does not depend on the choice of ξ .
- Horizontal distribution integrable $\Leftrightarrow \tau \equiv 0$.

Simply-connected homogeneous Riemannian 3-manifolds N

Simply-connected homogeneous Riemannian 3-manifolds N

• $\dim(\operatorname{Iso}(N)) = 6 \rightsquigarrow$ space-forms \mathbb{R}^3 , \mathbb{H}^3 y \mathbb{S}^3 .

Simply-connected homogeneous Riemannian 3-manifolds N

- $\dim(\operatorname{Iso}(N)) = 6 \rightsquigarrow$ space-forms \mathbb{R}^3 , \mathbb{H}^3 y \mathbb{S}^3 .
- dim(Iso(N)) = 4 $\rightsquigarrow \mathbb{E}(\kappa, \tau)$ -spaces, $\kappa 4\tau^2 \neq 0$
 - Product spaces $\mathbb{H}^2(\kappa) \times \mathbb{R}$ and $\mathbb{S}^2(\kappa) \times \mathbb{R}$,
 - Heisenberg group Nil₃,
 - Berger spheres S³_b, and
 - Universal cover of $Sl_2(\mathbb{R})$ with a left-invariant metric.

Simply-connected homogeneous Riemannian 3-manifolds N

- $\dim(\operatorname{Iso}(N)) = 6 \rightsquigarrow$ space-forms \mathbb{R}^3 , \mathbb{H}^3 y \mathbb{S}^3 .
- dim(Iso(N)) = 4 $\rightsquigarrow \mathbb{E}(\kappa, \tau)$ -spaces, $\kappa 4\tau^2 \neq 0$
 - Product spaces $\mathbb{H}^2(\kappa) \times \mathbb{R}$ and $\mathbb{S}^2(\kappa) \times \mathbb{R}$,
 - Heisenberg group Nil₃,
 - Berger spheres S³_b, and
 - Universal cover of $Sl_2(\mathbb{R})$ with a left-invariant metric.
- $\dim(Iso(N)) = 3 \rightarrow metric Lie groups isometric to$
 - Semi-direct products $\mathbb{R}^2 \ltimes_A \mathbb{R}$, for some $A \in \mathcal{M}_2(\mathbb{R})$.
 - SU(2).

Simply-connected homogeneous Riemannian 3-manifolds N

- $\dim(\operatorname{Iso}(N)) = 6 \rightsquigarrow$ space-forms \mathbb{R}^3 , \mathbb{H}^3 y \mathbb{S}^3 .
- dim(Iso(N)) = 4 $\rightsquigarrow \mathbb{E}(\kappa, \tau)$ -spaces, $\kappa 4\tau^2 \neq 0$
 - Product spaces $\mathbb{H}^2(\kappa) \times \mathbb{R}$ and $\mathbb{S}^2(\kappa) \times \mathbb{R}$,
 - Heisenberg group Nil₃,
 - Berger spheres \mathbb{S}_b^3 , and
 - Universal cover of $Sl_2(\mathbb{R})$ with a left-invariant metric.
- $\dim(Iso(N)) = 3 \rightarrow$ metric Lie groups isometric to
 - Semi-direct products $\mathbb{R}^2 \ltimes_A \mathbb{R}$, for some $A \in \mathcal{M}_2(\mathbb{R})$.
 - SU(2).

Warped products $M \times_f \mathbb{R}$, endowed with the metric

$$\pi_M^*(\mathrm{d} s_M^2) \pm (f \circ \pi_M) \pi_\mathbb{R}^*(\mathrm{d} t^2),$$

where f is a function defined on M (1-dimensional fibers).

Theorem

Let *M* be a simply-connected surface and $\tau, \mu \in C^{\infty}(M)$, $\mu > 0$. Then there exists a Killing submersion $\pi : \mathbb{E} \to M$ such that

- (a) The bundle curvature is τ .
- (b) The Killing length is μ .
- (c) \mathbb{E} is simply-connected.

Moreover, π is unique up to isomorphism.

Theorem

Let *M* be a simply-connected surface and $\tau, \mu \in C^{\infty}(M)$, $\mu > 0$. Then there exists a Killing submersion $\pi : \mathbb{E} \to M$ such that

- (a) The bundle curvature is τ .
- (b) The Killing length is μ .
- (c) \mathbb{E} is simply-connected.

Moreover, π is unique up to isomorphism.

If *M* is a disk, then $\pi \sim \pi_1 : \mathbb{D} \times \mathbb{R} \to \mathbb{D}$.

Theorem

Let *M* be a simply-connected surface and $\tau, \mu \in C^{\infty}(M)$, $\mu > 0$. Then there exists a Killing submersion $\pi : \mathbb{E} \to M$ such that

- (a) The bundle curvature is τ .
- (b) The Killing length is μ .
- (c) \mathbb{E} is simply-connected.

Moreover, π is unique up to isomorphism.

If *M* is a disk, then
$$\pi \sim \pi_1 : \mathbb{D} \times \mathbb{R} \to \mathbb{D}$$
.
• $\mathbb{E}(M, \tau, \mu) = (\mathbb{D} \times \mathbb{R}, \lambda^2 (\mathrm{d}x^2 + \mathrm{d}y^2) + \mu^2 (\mathrm{d}z + \eta(y\mathrm{d}x - x\mathrm{d}y))$
• $\mathbb{L}(M, \tau, \mu) = (\mathbb{D} \times \mathbb{R}, \lambda^2 (\mathrm{d}x^2 + \mathrm{d}y^2) - \mu^2 (\mathrm{d}z - \eta(y\mathrm{d}x - x\mathrm{d}y))$
 $\eta(x, y) = \int_0^1 \frac{2s \tau(xs, ys)\lambda(xs, ys)^2}{\mu(xs, ys)} \mathrm{d}s.$

If M is a sphere, then

Theorem

Let *M* be a simply-connected surface and $\tau, \mu \in C^{\infty}(M)$, $\mu > 0$. Then there exists a Killing submersion $\pi : \mathbb{E} \to M$ such that

- (a) The bundle curvature is τ .
- (b) The Killing length is μ .
- (c) \mathbb{E} is simply-connected.

Moreover, π is unique up to isomorphism.

If
$$M$$
 is a disk, then $\pi \sim \pi_1 : \mathbb{D} \times \mathbb{R} \to \mathbb{D}$.
• $\mathbb{E}(M, \tau, \mu) = (\mathbb{D} \times \mathbb{R}, \lambda^2 (\mathrm{d}x^2 + \mathrm{d}y^2) + \mu^2 (\mathrm{d}z + \eta(y\mathrm{d}x - x\mathrm{d}y)))$
• $\mathbb{L}(M, \tau, \mu) = (\mathbb{D} \times \mathbb{R}, \lambda^2 (\mathrm{d}x^2 + \mathrm{d}y^2) - \mu^2 (\mathrm{d}z - \eta(y\mathrm{d}x - x\mathrm{d}y)))$
 $\eta(x, y) = \int_0^1 \frac{2s \tau(xs, ys)\lambda(xs, ys)^2}{\mu(xs, ys)} \mathrm{d}s.$

If M is a sphere, then

If $\int_M \frac{\tau}{\mu} = 0$, then $\pi \sim \pi_1 : \mathbb{S}^2 \times \mathbb{R} \to \mathbb{S}^2$.

Theorem

Let *M* be a simply-connected surface and $\tau, \mu \in C^{\infty}(M)$, $\mu > 0$. Then there exists a Killing submersion $\pi : \mathbb{E} \to M$ such that

- (a) The bundle curvature is τ .
- (b) The Killing length is μ .
- (c) \mathbb{E} is simply-connected.

Moreover, π is unique up to isomorphism.

If *M* is a disk, then
$$\pi \sim \pi_1 : \mathbb{D} \times \mathbb{R} \to \mathbb{D}$$
.
• $\mathbb{E}(M, \tau, \mu) = (\mathbb{D} \times \mathbb{R}, \lambda^2 (\mathrm{d}x^2 + \mathrm{d}y^2) + \mu^2 (\mathrm{d}z + \eta(y\mathrm{d}x - x\mathrm{d}y)))$
• $\mathbb{L}(M, \tau, \mu) = (\mathbb{D} \times \mathbb{R}, \lambda^2 (\mathrm{d}x^2 + \mathrm{d}y^2) - \mu^2 (\mathrm{d}z - \eta(y\mathrm{d}x - x\mathrm{d}y)))$
 $\eta(x, y) = \int_0^1 \frac{2s \tau(xs, ys)\lambda(xs, ys)^2}{\mu(xs, ys)} \mathrm{d}s.$

If M is a sphere, then

- If $\int_M \frac{\tau}{\mu} = 0$, then $\pi \sim \pi_1 : \mathbb{S}^2 \times \mathbb{R} \to \mathbb{S}^2$.
- If $\int_M \frac{\tau}{\mu} \neq 0$, then $\pi \sim \pi_{\text{Hopf}} : \mathbb{S}^3 \to \mathbb{S}^2$.

Theorem

Let *M* be a simply-connected surface and $\tau, \mu \in C^{\infty}(M)$, $\mu > 0$. Then there exists a Killing submersion $\pi : \mathbb{E} \to M$ such that

- (a) The bundle curvature is τ .
- (b) The Killing length is μ .
- (c) \mathbb{E} is simply-connected.

Moreover, π is unique up to isomorphism.

If *M* is a disk, then
$$\pi \sim \pi_1 : \mathbb{D} \times \mathbb{R} \to \mathbb{D}$$
.
• $\mathbb{E}(M, \tau, \mu) = (\mathbb{D} \times \mathbb{R}, \lambda^2 (\mathrm{d}x^2 + \mathrm{d}y^2) + \mu^2 (\mathrm{d}z + \eta(y\mathrm{d}x - x\mathrm{d}y)))$
• $\mathbb{L}(M, \tau, \mu) = (\mathbb{D} \times \mathbb{R}, \lambda^2 (\mathrm{d}x^2 + \mathrm{d}y^2) - \mu^2 (\mathrm{d}z - \eta(y\mathrm{d}x - x\mathrm{d}y)))$
 $\eta(x, y) = \int_0^1 \frac{2s \tau(xs, ys)\lambda(xs, ys)^2}{\mu(xs, ys)} \mathrm{d}s.$

If M is a sphere, then

- If $\int_M \frac{\tau}{\mu} = 0$, then $\pi \sim \pi_1 : \mathbb{S}^2 \times \mathbb{R} \to \mathbb{S}^2$.
- If $\int_M \frac{\tau}{\mu} \neq 0$, then $\pi \sim \pi_{\text{Hopf}} : \mathbb{S}^3 \to \mathbb{S}^2$.

The non-simply-connected case

An isometry $f : \mathbb{E}_1 \to \mathbb{E}_2$ is called a Killing isometry if it preserves the vertical direction. In particular,

 $\pi_2 \circ f = h \circ \pi_1.$

The non-simply-connected case

An isometry $f : \mathbb{E}_1 \to \mathbb{E}_2$ is called a Killing isometry if it preserves the vertical direction. In particular,

 $\pi_2 \circ f = h \circ \pi_1.$

Lifting isometries

Assume $M_1, M_2, \mathbb{E}_1, \mathbb{E}_2$ are simply-connected, $h : M_1 \to M_2$ is an isometry and $p_1 \in \mathbb{E}_1, p_2 \in \mathbb{E}_2$ are such that $h(\pi_1(p_1)) = h(\pi_2(p_2))$.

If τ₂ ◦ h = τ₁ and μ₂ ◦ h = μ₁, then there exists a unique orientationpreserving Killing isometry f : E₁ → E₂ such that f(p₁) = p₂.

The non-simply-connected case

An isometry $f : \mathbb{E}_1 \to \mathbb{E}_2$ is called a Killing isometry if it preserves the vertical direction. In particular,

 $\pi_2 \circ f = h \circ \pi_1.$

Lifting isometries

Assume $M_1, M_2, \mathbb{E}_1, \mathbb{E}_2$ are simply-connected, $h : M_1 \to M_2$ is an isometry and $p_1 \in \mathbb{E}_1, p_2 \in \mathbb{E}_2$ are such that $h(\pi_1(p_1)) = h(\pi_2(p_2))$.

If τ₂ ◦ h = τ₁ and μ₂ ◦ h = μ₁, then there exists a unique orientationpreserving Killing isometry f : E₁ → E₂ such that f(p₁) = p₂.

Theorem

Let $\pi : \mathbb{E} \to M$ be a Killing submersion, and let $\rho : \widetilde{M} \to M$ and $\sigma : \widetilde{\mathbb{E}} \to \mathbb{E}$ be the universal Riemannian covering maps of M and \mathbb{E} , respectively.

- There is a Killing submersion $\widetilde{\pi}: \widetilde{\mathbb{E}} \to \widetilde{M}$.
- ► There exists a group G of Killing isometries acting properly discontinuously on Ẽ such that E = Ẽ/G.

Graphs in Killing submersions

Some applications

Let $\pi:\mathbb{E} \to M$ be a Killing submersion

- A Killing graph over $\Omega \subset M$ is a smooth section $F : \Omega \to \pi^{-1}(\Omega) \subset \mathbb{E}$.
- If $\Omega = M$, the graph is called entire.

Let $\pi:\mathbb{E} \to M$ be a Killing submersion

- A Killing graph over $\Omega \subset M$ is a smooth section $F : \Omega \to \pi^{-1}(\Omega) \subset \mathbb{E}$.
- If $\Omega = M$, the graph is called entire.

Let $\Omega \subset M$ be such that there is a smooth section $F_0 : \Omega \to \mathbb{E}$, then any smooth graph over Ω can be expressed as

 $F_u: \Omega \to \mathbb{E}, \qquad F_u(p) = \phi_{u(p)}(F_0(p)),$

for some $u \in C^{\infty}(\Omega)$.

Let $\pi:\mathbb{E} \to M$ be a Killing submersion

- A Killing graph over $\Omega \subset M$ is a smooth section $F : \Omega \to \pi^{-1}(\Omega) \subset \mathbb{E}$.
- If $\Omega = M$, the graph is called entire.

Let $\Omega \subset M$ be such that there is a smooth section $F_0 : \Omega \to \mathbb{E}$, then any smooth graph over Ω can be expressed as

 $F_u: \Omega \to \mathbb{E}, \qquad F_u(p) = \phi_{u(p)}(F_0(p)),$

for some $u \in C^{\infty}(\Omega)$.

 F_u defines a spacelike surface $\Leftrightarrow \mu^{-2} + \epsilon ||Gu||^2 > 0$, where $Gu = \nabla u - Z$, for some $Z \in \mathfrak{X}(M)$ not depending on u.

Let $\pi:\mathbb{E} \to M$ be a Killing submersion

- A Killing graph over $\Omega \subset M$ is a smooth section $F : \Omega \to \pi^{-1}(\Omega) \subset \mathbb{E}$.
- If $\Omega = M$, the graph is called entire.

Let $\Omega \subset M$ be such that there is a smooth section $F_0 : \Omega \to \mathbb{E}$, then any smooth graph over Ω can be expressed as

 $F_u: \Omega \to \mathbb{E}, \qquad F_u(p) = \phi_{u(p)}(F_0(p)),$

for some $u \in C^{\infty}(\Omega)$.

 F_u defines a spacelike surface $\Leftrightarrow \mu^{-2} + \epsilon ||Gu||^2 > 0$, where $Gu = \nabla u - Z$, for some $Z \in \mathfrak{X}(M)$ not depending on u.

The mean curvature H of F_u is given by

$$2H\mu = \operatorname{div}_{M}(\mu \, \pi_{*}N) = \operatorname{div}_{M}\left(\frac{\mu \, Gu}{\sqrt{\mu^{-2} + \epsilon \, \|Gu\|^{2}}}\right)$$

Let $\pi:\mathbb{E} \to M$ be a Killing submersion

- A Killing graph over $\Omega \subset M$ is a smooth section $F : \Omega \to \pi^{-1}(\Omega) \subset \mathbb{E}$.
- If $\Omega = M$, the graph is called entire.

Let $\Omega \subset M$ be such that there is a smooth section $F_0 : \Omega \to \mathbb{E}$, then any smooth graph over Ω can be expressed as

 $F_u: \Omega \to \mathbb{E}, \qquad F_u(p) = \phi_{u(p)}(F_0(p)),$

for some $u \in C^{\infty}(\Omega)$.

F_u defines a spacelike surface $\Leftrightarrow \mu^{-2} + \epsilon ||Gu||^2 > 0$, where $Gu = \nabla u - Z$, for some $Z \in \mathfrak{X}(M)$ not depending on u.

• The mean curvature H of F_u is given by

$$2H\mu = \operatorname{div}_M(\mu \, \pi_* N) = \operatorname{div}_M\left(\frac{\mu \, Gu}{\sqrt{\mu^{-2} + \epsilon \, \|Gu\|^2}}\right)$$

The vector field Z satisfies $\operatorname{div}(JZ) = \frac{-2\epsilon\tau}{\mu}$.

If *M* is compact, then π admits a global section $\Leftrightarrow \int_M \frac{\tau}{\mu} = 0$.

Let $\pi : \mathbb{E} \to M$ be a Riemannian Killing submersion with simply-connected M and fibers of infinite length and let $u \in C^{\infty}(M)$ such that $\Sigma_u = F_u(M)$ has mean curvature H.

Let $\pi : \mathbb{E} \to M$ be a Riemannian Killing submersion with simply-connected M and fibers of infinite length and let $u \in C^{\infty}(M)$ such that $\Sigma_u = F_u(M)$ has mean curvature H. Then:

$$\operatorname{div}\left(\frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}}\right) = 2H\mu \Longleftrightarrow \operatorname{div}\left(\frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}} - JZ'\right) = 0$$
$$\Leftrightarrow \frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}} - JZ' = -J\nabla v$$

We set $G'v = \nabla v - Z'$ and manipulate to obtain $||G'v||^2 < \mu^2$ and

$$Gu = \frac{-JG'v}{\mu\sqrt{\mu^2 - ||G'v||^2}}$$

Let $\pi : \mathbb{E} \to M$ be a Riemannian Killing submersion with simply-connected M and fibers of infinite length and let $u \in C^{\infty}(M)$ such that $\Sigma_u = F_u(M)$ has mean curvature H. Then:

$$\operatorname{div}\left(\frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}}\right) = 2H\mu \Longleftrightarrow \operatorname{div}\left(\frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}} - JZ'\right) = 0$$
$$\iff \frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}} - JZ' = -J\nabla v$$

We set $G'v = \nabla v - Z'$ and manipulate to obtain $||G'v||^2 < \mu^2$ and

$$Gu = \frac{-JG'v}{\mu\sqrt{\mu^2 - \|G'v\|^2}} \implies \operatorname{div}\left(\frac{G'v}{\mu\sqrt{\mu^2 - \|G'v\|^2}}\right) = \operatorname{div}(JGu) = \frac{2\tau}{\mu}.$$

Let $\pi : \mathbb{E} \to M$ be a Riemannian Killing submersion with simply-connected M and fibers of infinite length and let $u \in C^{\infty}(M)$ such that $\Sigma_u = F_u(M)$ has mean curvature H. Then:

$$\operatorname{div}\left(\frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}}\right) = 2H\mu \Longleftrightarrow \operatorname{div}\left(\frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}} - JZ'\right) = 0$$
$$\Leftrightarrow \frac{\mu \, Gu}{\sqrt{\mu^{-2} + \|Gu\|^2}} - JZ' = -J\nabla v$$

We set $G'v = \nabla v - Z'$ and manipulate to obtain $||G'v||^2 < \mu^2$ and

$$Gu = \frac{-JG'v}{\mu\sqrt{\mu^2 - \|G'v\|^2}} \implies \operatorname{div}\left(\frac{G'v}{\mu\sqrt{\mu^2 - \|G'v\|^2}}\right) = \operatorname{div}(JGu) = \frac{2\tau}{\mu}.$$

Theorem

There is a one-to-one conformal correspondence between

- (a) Graphs in $\mathbb{E}(M, \tau, \mu)$ with mean curvature *H*.
- (b) Spacelike graphs in $\mathbb{L}(M, H, \mu^{-1})$ with mean curvature τ .

Some applications

Let $\pi : \mathbb{E} \to M$ be a Riemmannian Killing submersion. Assume that M is not compact, and Σ_u satisfies $H \ge c$.

Let $\pi : \mathbb{E} \to M$ be a Riemmannian Killing submersion. Assume that *M* is not compact, and Σ_u satisfies $H \ge c$. Given a regular domain $\Omega \subset \subset M$,

$$2c\int_{\Omega}\mu\leq\int_{\Omega}2H\mu=\int_{\partial\Omega}\left\langle\frac{\mu\,Gu}{\sqrt{\mu^{-2}+\|Gu\|^{2}}},\eta\right\rangle\leq\int_{\partial\Omega}\mu.$$

Let $\pi : \mathbb{E} \to M$ be a Riemmannian Killing submersion. Assume that M is not compact, and Σ_u satisfies $H \ge c$. Given a regular domain $\Omega \subset \subset M$,

$$2c\int_{\Omega}\mu\leq\int_{\Omega}2H\mu=\int_{\partial\Omega}\left\langle\frac{\mu\,Gu}{\sqrt{\mu^{-2}+\|Gu\|^{2}}},\eta\right\rangle\leq\int_{\partial\Omega}\mu$$

Hence,

$$c \leq rac{1}{2} \mathrm{inf} \left\{ rac{\int_{\partial\Omega} \mu}{\int_{\Omega} \mu} : \Omega \subset \subset M ext{ regular}
ight\} = rac{1}{2} \mathrm{Ch}(M,\mu).$$

Let $\pi : \mathbb{E} \to M$ be a Riemmannian Killing submersion. Assume that M is not compact, and Σ_u satisfies $H \ge c$. Given a regular domain $\Omega \subset \subset M$,

$$2c\int_{\Omega}\mu\leq\int_{\Omega}2H\mu=\int_{\partial\Omega}\left\langle\frac{\mu\,Gu}{\sqrt{\mu^{-2}+\|Gu\|^{2}}},\eta\right\rangle\leq\int_{\partial\Omega}\mu$$

Hence,

$$c \leq rac{1}{2} \inf \left\{ rac{\int_{\partial\Omega} \mu}{\int_{\Omega} \mu} : \Omega \subset \subset M ext{ regular}
ight\} = rac{1}{2} \mathrm{Ch}(M,\mu).$$

Theorem

(a) If H ∈ C[∞](M) is such that |H| ≥ c > ½Ch(M, μ), then a Riemannian Killing submersion over M with Killing length μ does not admit entire graphs with prescribed mean curvature H.

Let $\pi : \mathbb{E} \to M$ be a Riemmannian Killing submersion. Assume that M is not compact, and Σ_u satisfies $H \ge c$. Given a regular domain $\Omega \subset \subset M$,

$$2c\int_{\Omega}\mu\leq\int_{\Omega}2H\mu=\int_{\partial\Omega}\left\langle \frac{\mu\,Gu}{\sqrt{\mu^{-2}+\|Gu\|^{2}}},\eta\right\rangle\leq\int_{\partial\Omega}\mu$$

Hence,

$$c \leq rac{1}{2} \mathrm{inf} \left\{ rac{\int_{\partial\Omega} \mu}{\int_{\Omega} \mu} : \Omega \subset \subset M ext{ regular}
ight\} = rac{1}{2} \mathrm{Ch}(M,\mu).$$

Theorem

- (a) If H ∈ C[∞](M) is such that |H| ≥ c > ½Ch(M, μ), then a Riemannian Killing submersion over M with Killing length μ does not admit entire graphs with prescribed mean curvature H.
- (b) If τ ∈ C[∞](M) is such that |τ| ≥ c > ½Ch(M, μ), then a Lorentzian Killing submersion over M with Killing length μ does not admit complete spacelike surfaces or entire spacelike graphs.

Let $\pi : \mathbb{E} \to M$ be a Riemmannian Killing submersion. Assume that M is not compact, and Σ_u satisfies $H \ge c$. Given a regular domain $\Omega \subset \subset M$,

$$2c\int_{\Omega}\mu\leq\int_{\Omega}2H\mu=\int_{\partial\Omega}\left\langle\frac{\mu\,Gu}{\sqrt{\mu^{-2}+\|Gu\|^{2}}},\eta\right\rangle\leq\int_{\partial\Omega}\mu$$

Hence,

$$c \leq rac{1}{2} \inf \left\{ rac{\int_{\partial\Omega} \mu}{\int_{\Omega} \mu} : \Omega \subset \subset M ext{ regular}
ight\} = rac{1}{2} \mathrm{Ch}(M,\mu).$$

Theorem

- (a) If H ∈ C[∞](M) is such that |H| ≥ c > ½Ch(M, μ), then a Riemannian Killing submersion over M with Killing length μ does not admit entire graphs with prescribed mean curvature H.
- (b) If τ ∈ C[∞](M) is such that |τ| ≥ c > ½Ch(M, μ), then a Lorentzian Killing submersion over M with Killing length μ does not admit complete spacelike surfaces or entire spacelike graphs.

In particular, a spacetime satisfying (b) is not distinguishable.

Let $\pi : \mathbb{E} \to M$ be a Riemmannian Killing submersion. Assume that M is not compact, and Σ_u satisfies $H \ge c$. Given a regular domain $\Omega \subset \subset M$,

$$2c\int_{\Omega}\mu\leq\int_{\Omega}2H\mu=\int_{\partial\Omega}\left\langle \frac{\mu\,Gu}{\sqrt{\mu^{-2}+\|Gu\|^{2}}},\eta\right\rangle\leq\int_{\partial\Omega}\mu$$

Hence,

$$c \leq rac{1}{2} \mathrm{inf} \left\{ rac{\int_{\partial\Omega} \mu}{\int_{\Omega} \mu} : \Omega \subset \subset M ext{ regular}
ight\} = rac{1}{2} \mathrm{Ch}(M,\mu).$$

Theorem

- (a) If H ∈ C[∞](M) is such that |H| ≥ c > ½Ch(M, μ), then a Riemannian Killing submersion over M with Killing length μ does not admit entire graphs with prescribed mean curvature H.
- (b) If τ ∈ C[∞](M) is such that |τ| ≥ c > ½Ch(M, μ), then a Lorentzian Killing submersion over M with Killing length μ does not admit complete spacelike surfaces or entire spacelike graphs.

In particular, a spacetime satisfying (b) is not distinguishable.
 Example: Lorentzian Heisenberg group Nil¹₃(τ) = L(R², τ, 1).

Theorem

Consider $\pi : \mathbb{E} \to M$, *M* compact, bundle curvature τ and Kiling length μ .

• If $\int_M \frac{\tau}{\mu} = 0$, then \mathbb{E} admits an entire minimal graph.

Theorem

- If $\int_M \frac{\tau}{\mu} = 0$, then \mathbb{E} admits an entire minimal graph.
- If $\int_M \frac{\tau}{\mu} \neq 0$, then \mathbb{E} admits no entire section (like in Hopf fibration).

Theorem

- If $\int_M \frac{\tau}{\mu} = 0$, then \mathbb{E} admits an entire minimal graph.
- If $\int_M \frac{\tau}{\mu} \neq 0$, then \mathbb{E} admits no entire section (like in Hopf fibration).
- The entire minimal graph is unique up to vertical translations.

Theorem

- If $\int_M \frac{\tau}{\mu} = 0$, then \mathbb{E} admits an entire minimal graph.
- If $\int_M \frac{\tau}{\mu} \neq 0$, then \mathbb{E} admits no entire section (like in Hopf fibration).
- The entire minimal graph is unique up to vertical translations.
- Plateau problem. The entire minimal graph is area-minimizing. It is an absolute minimum of the functional

$$\mathcal{A}(u) = \int_{M} \sqrt{\mu^{-2} + \|Gu\|^2}$$

Theorem

- If $\int_M \frac{\tau}{\mu} = 0$, then \mathbb{E} admits an entire minimal graph.
- If $\int_M \frac{\tau}{\mu} \neq 0$, then \mathbb{E} admits no entire section (like in Hopf fibration).
- The entire minimal graph is unique up to vertical translations.
- Plateau problem. The entire minimal graph is area-minimizing. It is an absolute minimum of the functional

$$\mathcal{A}(u) = \int_M \sqrt{\mu^{-2} + \|Gu\|^2} \sim \int_M \sqrt{f^2 + \|\nabla u + X\|^2}.$$

Theorem

Consider $\pi : \mathbb{E} \to M$, *M* compact, bundle curvature τ and Kiling length μ .

- If $\int_M \frac{\tau}{\mu} = 0$, then \mathbb{E} admits an entire minimal graph.
- If $\int_M \frac{\tau}{\mu} \neq 0$, then \mathbb{E} admits no entire section (like in Hopf fibration).
- The entire minimal graph is unique up to vertical translations.
- Plateau problem. The entire minimal graph is area-minimizing. It is an absolute minimum of the functional

$$\mathcal{A}(u) = \int_M \sqrt{\mu^{-2} + \|Gu\|^2} \sim \int_M \sqrt{f^2 + \|\nabla u + X\|^2}.$$

Bernstein problem. The entire minimal graph is the only complete surfaces in E transversal to the Killing direction and whose mean curvature does not change sign.

Theorem

Consider $\pi : \mathbb{E} \to M$, *M* compact, bundle curvature τ and Kiling length μ .

- If $\int_M \frac{\tau}{\mu} = 0$, then \mathbb{E} admits an entire minimal graph.
- If $\int_M \frac{\tau}{\mu} \neq 0$, then \mathbb{E} admits no entire section (like in Hopf fibration).
- The entire minimal graph is unique up to vertical translations.
- Plateau problem. The entire minimal graph is area-minimizing. It is an absolute minimum of the functional

$$\mathcal{A}(u) = \int_M \sqrt{\mu^{-2} + \|Gu\|^2} \sim \int_M \sqrt{f^2 + \|\nabla u + X\|^2}.$$

Bernstein problem. The entire minimal graph is the only complete surfaces in E transversal to the Killing direction and whose mean curvature does not change sign.

Existence uses (Meeks-Simon-Yau, 1982) and (Gerhardt, 1985).

Application 3: Compact stable CMC surfaces (Riem.)

Let $\pi : \mathbb{E} \to M$ be a Riemannian Killing submersion, and Σ an immersed compact orientable surface in \mathbb{E} with constant mean curvature

Let $\pi : \mathbb{E} \to M$ be a Riemannian Killing submersion, and Σ an immersed compact orientable surface in \mathbb{E} with constant mean curvature, i.e., a critical point of the functional

 $\mathcal{J} = \operatorname{Area} - 2H \cdot \operatorname{Vol}.$

Let $\pi : \mathbb{E} \to M$ be a Riemannian Killing submersion, and Σ an immersed compact orientable surface in \mathbb{E} with constant mean curvature, i.e., a critical point of the functional

$$\mathcal{J} = \operatorname{Area} - 2H \cdot \operatorname{Vol}.$$

Then Σ is stable $\Leftrightarrow \mathcal{J}'' \geq 0$ for all smooth variations of Σ .

Let $\pi : \mathbb{E} \to M$ be a Riemannian Killing submersion, and Σ an immersed compact orientable surface in \mathbb{E} with constant mean curvature, i.e., a critical point of the functional

$$\mathcal{J} = \text{Area} - 2H \cdot \text{Vol.}$$

Then Σ is stable $\Leftrightarrow \mathcal{J}'' \ge 0$ for all smooth variations of Σ . If Σ is stable then the angle function $\nu = \langle N, \xi \rangle$ satisfies either $\nu \equiv 0$ or $\nu > 0$ (ν lies in the kernel of the stability operator).

Theorem

If Σ a compact stable orientable surface immersed in $\mathbb E$ with constant mean curvature, then one of the following holds:

- *M* is compact and Σ is an entire minimal graph.
- the fibers of π are compact and Σ is everywhere tangent to the Killing direction.