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The idea

I The notion of material groupoid was first introduced in our
article: M.E. and M. de L. (1998), Geometrical Theory of
Uniform Cosserat Media, Journal of Geometry and Physics
26, 127-180.

I Since it is one of the most intuitive ideas that one can think
of in relation to the properties of material bodies, one may ask
the following two questions:

1 Why did it take that long to be identified?
2 Why is it not in more widespread use?



A poetic answer

“... as beautiful as ... the chance encounter of a sewing
machine and an umbrella on an operating table.”

Chants de Maldoror, Comte de Lautréamont (1846-1870)



This presentation

I Basic engineering level

I For more details ...
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Naive picture

I Given a material body B and considering some material property, we ask
the following question: Do two points X ,Y ∈ B share this particular
material property?

I To answer this question we need to establish a means of comparison.
This may consist, for instance, of a local diffeomorphism between
neighborhoods of X and Y .

I Moreover, we need to establish a means of evaluating whether or not the
comparison has been successful. If it has, we draw and arrow from X to
Y . Otherwise, no arrow is drawn.

I Since ‘having the same property’ is surely an equivalence relation,
every point X ∈ B should be assigned at least one loop-shaped
arrow. Moreover, for every arrow drawn from X to Y there should
also be an arrow drawn from Y to X . Finally, if there is an arrow
from X to Y and another arrow from Y to Z , there should also be
an arrow from X to Z . The set Z of all these arrows constitutes the
material groupoid associated with the chosen material property. The
body B is the base of the material groupoid.



Intuitive picture

A collection (Z) of arrows joining some points of a set (M).
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Intuitive picture
Some points of M may be connected.
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Intuitive picture
Compositions must be included.
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Intuitive picture
Inverses must be included.



Intuitive picture
Self connections form local groups and imply further connections.
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Terminology

I As a collection of arrows, the groupoid is undoubtedly a concrete
geometric realization of the constitutive nature of a material body. We
need, therefore, to reconcile and interpret the mathematical terminology
with its mechanics counterpart.

I If every pair of points is joined by an arrow, the body is uniform with
respect to the chosen property. In the mathematical terminology, we
speak of a transitive groupoid. At the other extreme, if no two different
points are connected by an arrow (so that the only surviving arrows are
the loops), we have a totally intransitive groupoid.

I A uniform body is smoothly uniform if each point X has a neighborhood
in which one can choose the comparison maps between X and all the
points in the neighborhood to vary smoothly (in some sense).
Mathematically, this situation corresponds to a transitive Lie groupoid.

I The question of homogeneity of a uniform body can be formulated in
terms of the material algebroid associated with the material groupoid.



Formal definition of a groupoid

Just like a group, a groupoid is a set Z with two operations, also
called inverse and product. There is, however, an essential
difference in respect of the product operation, namely, the product
in a groupoid is not defined for all pairs of elements of Z. In other
words, given two elements x , y ∈ Z, the product xy may or may
not exist. The operations must satisfy

1. Associativity

∃ xy , yz ⇔ ∃ x(yz)⇔ ∃ (xy)z ⇒ (xy)z = x(yz). (1)

2. Inversion

∀ x ∈ Z ∃ x−1, x−1x , xx−1 ∈ Z. (2)

3. Units or identities

∃ xy ⇒ xyy−1 = x , x−1xy = y . (3)



Alternative (more benign) definition of a groupoid
A groupoid consists of

1. A total set Z and a base set M
2. Two (projection) surjective maps

α : Z →M and β : Z →M (4)

called, respectively, the source and the target maps

3. A binary associative operation zy (composition) defined only
for those ordered pairs (y , z) ∈ Z × Z such that

α(z) = β(y). (5)

Moreover,
α(zy) = α(y), β(zy) = β(z). (6)

4. An identity idm at each point m ∈M, satisfying z idm = z
whenever α(z) = m, and idm z = z whenever β(z) = m

5. For each z ∈ Z there exists a (unique) inverse z−1 such that
zz−1 = idβ(z) and z−1z = idα(z)



Transitive groupoids

1. A groupoid is said to be transitive if for each pair of points
a, b ∈M there exists at least one element of the total set
with a and b as the source and target points, respectively.

2. Denoting Zab = {z ∈ Z | β(z) = b, α(z) = a}, we may say
that a groupoid is transitive if, and only if, Zab 6= ∅ for all
(a, b) ∈M×M. In a transitive groupoid all the local groups
Zbb are mutually conjugate. In this case, we can consider any
of the local groups as the typical group of the transitive
groupoid.



Depicting a transitive groupoid

Local group Zaa

distant symmetries Zbc



The Lie algebroid of a Lie groupoid
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Thinking in a Lie algebra (left) and in a Lie algebroid (right)



A spider colony

M

The α-bundle ZM as a spider colony



The Lie algebroid as a vector bundle

canonical section

(object inclusion)

M

The algebroid vector bundle (indicated with thicker lines) AZ →M as a
particular sub-bundle of the tangent bundle TZM, selecting out of each
fibre (‘spider’) of ZM the tangent space (to the fibre) at the identity.



Groupoids in Continuum Mechanics

The notion of material groupoid arises quite naturally in
Continuum Mechanics in the context of the constitutive theory as
a result of the possible answers to the following question:

In a material body B, given two material points, X1 and X2, and
two instants of time, t1 and t2, what basis of comparison can be
established between the corresponding material responses?

There are two meaningfully different answers to this question,
giving rise to

1. The material groupoid

2. The material-type groupoid
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The material groupoid (I)

Consider a constitutive function ψ = ψ(F) pertaining to a certain
physical property of a simple material. As the general linear group
GL(3;R) acts to the right on this function, we obtain the orbit

Oψ = {φ | φ(F) = ψ(FP)},

with F,P ∈ GL(3;R).

Clearly, all the constitutive functions in this orbit represent the
same material response. They differ only by the choice of local
reference configuration. From the ‘chemical’ point of view, it
would be impossible to distinguish between them!



The material groupoid (II)

Let ψ = ψ(F;X ) with X ∈ B be (for now) a time-independent
constitutive response for a body B.

We declare X1,X2 ∈ B to be materially isomorphic1 if ψ(F;X1) and
ψ(F;X2) belong to the same constitutive orbit, as defined above.
In other words, the two points are materially isomorphic if there is a
linear map P12 (called a material isomorphism) such that, for all F,

ψ(F;X2) = ψ(FP12;X1).

Note that a material automorphism is the same as a material
symmetry in the usual sense.

If we use an arrow between two points for every material
isomorphism, we obtain our first material groupoid. The material
groupoid is transitive if, and only if, the body is materially uniform.

1Noll, 1967.



Pictorial representation

·

·
B

The arrow (an element of the material groupoid) represents a
material isomorphism, that is, a non-singular linear map between
the tangent spaces of two body points that satisfies the
constitutive condition described above.



The temporal dimension

A body is said to undergo a process of material evolution if its
constitutive descriptor is of the form

ψ = ψ(F;X , t − t0).

Accordingly, we can introduce the body-time manifoldM = R×B
and build upon it the body-time material groupoid just as before.
Fixing attention on a particular point X ∈ B and letting time t
run, we ask: What is the physical meaning of the successive
responses remaining always in the same constitutive orbit?



Pictorial representation in the body-time manifold
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R

R× B

A few arrows representing elements of a body-time material
groupoid



Remodeling

The temporal counterpart of uniformity is a special kind of
material evolution, whereby a material point remains materially
isomorphic to a reference material point with the passage of time.
We call this special type of material evolution remodeling, with or
without growth. Any other kind of evolution we call aging.

If we consider a transitive body-time material groupoid, its physical
meaning is a body that is initially materially uniform and that
evolves by pure remodeling (with no aging). In particular, it
remains always materially uniform. Classical plastic (or anelastic)
evolution belongs to this material class and so does the model of
tissue growth pioneered by Rodriguez et al. (1994)



Remark

Whether or not one agrees with the naming of this kind of
evolution as ‘remodeling’ is not at issue. What is important is to
recognize that the mathematics itself forces us to single out this
particular type as worthy of special consideration.

The question that arises now is the following: Given an arbitrary
process of material evolution, is it possible to canonically resolve it
into a part attributable to remodeling and a part attributable to
aging? Clearly, the answer to this question has a bearing on the
construction of physical models that account for physically and
chemically based cause-effect relations.

This remark leads us to the introduction of a second kind of
material groupoid.



Functionally graded materials (FGM)

By their very definition, FGMs are not uniform bodies. Their usual
process of fabrication, however, entails a preservation of the
symmetry type (isotropy, orthotropy) from point to point in the
body. Using this feature as a hint, we will declare two points of a
material body to be materially isosymmetric if their constitutive
responses have conjugate symmetry groups. Clearly, material
isomorphism implies material isosymmetry, but not vice versa.



The material-type groupoid

If we assign an arrow to every possible conjugation between the
symmetry groups at different pairs of points in the body B, we
obtain the material-type groupoid of the body.

If the material-type groupoid is transitive, we obtain a body like an
FGM, which we call a unisymmetric body. Recall that a transitive
groupoid is characterized by a typical group. Clearly, the typical
group of a transitive material groupoid (read: uniform body) is the
typical material symmetry group. But what is the typical group of
our new transitive material-type groupoid? The somewhat
disappointing answer is: the normalizer of the typical symmetry
group within the general linear group. This is a much larger entity
(that includes, for example, all dilatations).



The time dimension

What is the counterpart of unisymmetry in the time domain? If we
fix a point and let time go on, isosymmetry implies that the
material, though changing its material properties (such as elastic
moduli), preserves its symmetry type. So, rubber may turn into
gold! These are very common processes of aging, such as the case
of osteoporosis, where there is a deterioration of the mineral
quality and quantity of trabecular bone.

What is the interpretation of other kinds of aging processes? They
would represent processes whereby the material symmetry type
changes (e.g., from isotropy to transverse isotropy). These
necessarily abrupt changes give rise to phenomena of
morphogenesis and pattern formation.



The solid case

We mentioned the fact that the typical group of the material-type
groupoid is the normalizer of the symmetry group within the
general linear group. In the solid case, however, it is possible to
define a reduced groupoid based on the normalizer within the
orthogonal group. Moreover, for certain solid classes (including
isotropy, transverse isotropy and orthotropy), an important result
can be shown to hold true, namely: In a unisymmetric solid
evolving without morphogenesis, a canonical separation can be
effected between aging and remodeling components.



The solid material-type groupoid (I)

Let X and Y be two isosymmetric solid points in some reference
configuration, and let A be a conjugation between the respective
symmetry groups GX and GY , namely, GY = A GX A−1.

Let KX : TXB → R3 and KY : TYB → R3 be respective natural
states, whose symmetry groups we denote by ḠX and ḠY .

R3 R3

TXB TYB

Ā

A

KX KY

A conjugation between ḠX and ḠY is clearly given by

Ā = KY A K−1
X



The solid material-type groupoid (II)

Lemma: Conjugate orthogonal subgroups of the general linear
group are orthogonally conjugate.2 In fact, the orthogonal part of
the polar decomposition of a conjugation in the general linear
group between two subgroups of the orthogonal group is also a
conjugation between these subgroups.

Since ḠX and ḠY are orthogonal subgroups, the lemma applies.
Let Q̄ be an orthogonal conjugation. Then

Q = K−1
Y Q̄ KX

is the corresponding conjugation between GX and GY .

We define the solid material-type groupoid by means of all the
conjugations attainable in this way.

2Coleman B and Noll W (1964).



The solid material-type groupoid (III)

What has been gained? The degrees of freedom in the choice of
‘arrows’ in the groupoids introduced so far as follows:

1. Material groupoid: Symmetry group G of source or target

2. Material-type groupoid: Normalizer N (G) of G within the
general linear group

3. Solid material-type groupoid: Normalizer N̄ (Ḡ) of Ḡ within
the orthogonal group

Corollary: If N̄ (Ḡ) = Ḡ, the solid material-type groupoid (of a
FGM) coincides with the material groupoid (of a uniform body).
As a consequence, for solid classes with this property, we can talk
about inhomogeneities (dislocations) and canonically split
remodeling from aging!


