PMCTs

Marius Crainic

Utrecht University

XXVIFWGP-Madrid

・ロト ・聞ト ・ヨト ・ヨト

₹ 990

understanding compactness in Poisson Geometry.

examples.

■ their structure (... classification?).

■ fundamental properties.

イロト 不得 とくほ とくほとう

ъ

understanding compactness in Poisson Geometry.

examples.

■ their structure (... classification?).

■ fundamental properties.

イロト 不得 とくほと くほとう

understanding compactness in Poisson Geometry.

examples.

■ their structure (... classification?).

■ fundamental properties.

イロト 不得 とくほと くほとう

understanding compactness in Poisson Geometry.

examples.

■ their structure (... classification?).

■ fundamental properties.

イロト 不得 とくほと くほとう

understanding compactness in Poisson Geometry.

examples.

- their structure (... classification?).
- fundamental properties.

イロト イポト イヨト イヨト

understanding compactness in Poisson Geometry.

examples.

■ their structure (... classification?).

fundamental properties.

Ongoing joint work with: David Martinez Torres, Rui Loja Fernandes:

- Poisson Manifolds of Compact Types (PMCT 1), arXiv:1510.07108
- Regular Poisson manifolds of compact types (PMCT 2):1603.00064.

(E) < E)</p>

ъ

understanding compactness in Poisson Geometry.

examples.

■ their structure (... classification?).

fundamental properties.

Breakthrough in the strong compact case: David Martinez Torres:

A Poisson manifold of strong compact type, arXiv:1312.7267.

・ロット (雪) () () () ()

æ

Lie and Poisson Compactness in Lie Compactness in Poisson

イロン 不同 とくほ とくほ とう

ъ

$$\Big\{ \text{Lie Theory} \Big\} \hookrightarrow \Big\{ \text{Poisson Geometry} \Big\}$$

 $(\mathfrak{g}, [\cdot, \cdot]) \mapsto (\mathfrak{g}^*, \pi_{\mathrm{lin}}).$ (structure constants $c_{ij}^k \mapsto$ bivector $\sum c_{ij}^k x_k \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_i}$)

Note

Roughly speaking:

Lie Theory = linear Poisson Geometry-

Lie and Poisson Compactness in Lie Compactness in Poisson

イロン 不同 とくほ とくほ とう

ъ

$$\left\{ \mathsf{Lie Theory} \right\} \hookrightarrow \left\{ \mathsf{Poisson Geometry} \right\}$$

 $(\mathfrak{g}, [\cdot, \cdot]) \mapsto (\mathfrak{g}^*, \pi_{\mathrm{lin}}).$ (structure constants $c_{ii}^k \mapsto$ bivector $\sum c_{ii}^k x_k \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_i}$)

Note

Roughly speaking:

Lie Theory = linear Poisson Geometry-

イロト イポト イヨト イヨト

ъ

$$\Bigl\{ \mathsf{Lie \ Theory} \, \Bigr\} \hookrightarrow \Bigl\{ \mathsf{Poisson \ Geometry} \ \Bigr\}$$

 $(\mathfrak{g}, [\cdot, \cdot]) \mapsto (\mathfrak{g}^*, \pi_{\mathrm{lin}}).$ (structure constants $c_{ij}^k \mapsto$ bivector $\sum c_{ij}^k x_k \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}$)

Note

Roughly speaking:

Lie Theory = linear Poisson Geometry-

イロト イポト イヨト イヨト

3

$$\Bigl\{ \mathsf{Lie \ Theory} \, \Bigr\} \hookrightarrow \Bigl\{ \mathsf{Poisson \ Geometry} \ \Bigr\}$$

 $(\mathfrak{g}, [\cdot, \cdot]) \mapsto (\mathfrak{g}^*, \pi_{\mathrm{lin}}).$ (structure constants $c_{ij}^k \mapsto$ bivector $\sum c_{ij}^k x_k \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}$)

Note

Roughly speaking:

Lie Theory = linear Poisson Geometry-

イロト イポト イヨト イヨト

3

$$\Bigl\{ \mathsf{Lie \ Theory} \, \Bigr\} \hookrightarrow \Bigl\{ \mathsf{Poisson \ Geometry} \ \Bigr\}$$

 $(\mathfrak{g}, [\cdot, \cdot]) \mapsto (\mathfrak{g}^*, \pi_{\mathrm{lin}}).$ (structure constants $c_{ij}^k \mapsto$ bivector $\sum c_{ij}^k x_k \frac{\partial}{\partial x_i} \frac{\partial}{\partial x_j}$)

Note

Roughly speaking:

Lie Theory = linear Poisson Geometry-

Lie and Poisson Compactness in Lie Compactness in Poisson

Lie theory:

	Lie	algebra	g is	of compact	type
--	-----	---------	------	------------	------

if there exists an integrating

Lie group G

which is compact

・ロト ・ ア・ ・ ヨト ・ ヨト

э

Note

Lie and Poisson Compactness in Lie Compactness in Poisson

Lie theory:

Lie algebra \mathfrak{g} is

of compact type

if there exists an integrating

Lie group G

which is compact

イロト 不得 とくほ とくほとう

ъ

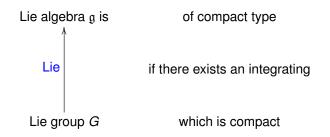
Note

Lie and Poisson Compactness in Lie Compactness in Poisson

イロン 不同 とくほ とくほ とう

ъ

Lie theory:



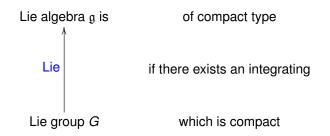
Note

Lie and Poisson Compactness in Lie Compactness in Poisson

イロト イポト イヨト イヨト

3

Lie theory:



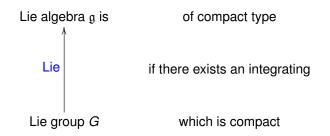
Note

Lie and Poisson Compactness in Lie Compactness in Poisson

イロト イポト イヨト イヨト

ъ

Lie theory:



Note

Definition Examples

Lie and Poisson Compactness in Lie Compactness in Poisson

Linear variation, Weyl integration formula, Duistermaat-Heckman

Passing to Poisson:

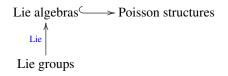
Marius Crainic PMCTs

Lie and Poisson Compactness in Lie Compactness in Poisson

Passing to Poisson:

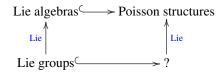
Lie algebras Poisson structures

Passing to Poisson:



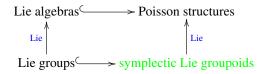
₹ 990

Passing to Poisson:



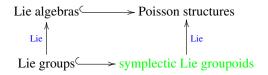
▲□▶▲□▶▲□▶▲□▶ □ のQの

Passing to Poisson:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

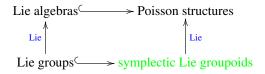
Passing to Poisson:



To understand: compactness types for groupoids $\mathcal{G} \rightrightarrows M$:

イロン 不得 とくほ とくほ とうほ

Passing to Poisson:

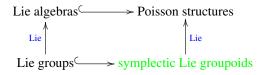


To understand: compactness types for groupoids $\mathcal{G} \rightrightarrows M$:

• compact: if \mathcal{G} is compact.

イロン 不得 とくほ とくほ とうほ

Passing to Poisson:

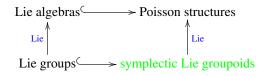


To understand: compactness types for groupoids $\mathcal{G} \rightrightarrows M$:

- compact: if \mathcal{G} is compact.
- s-proper: if the source map $s : \mathcal{G} \to M$ is proper.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Passing to Poisson:



To understand: compactness types for groupoids $\mathcal{G} \rightrightarrows M$:

- compact: if \mathcal{G} is compact.
- s-proper: if the source map $s : \mathcal{G} \to M$ is proper.
- proper: if $(s, t) : \mathcal{G} \to M \times M$ is proper.

イロト イポト イヨト イヨト

Definition

Consider one of the compactness types

 $C \in \{\text{compact}, \text{s-proper}, \text{proper}\}.$

Say (M, π) is of C-type: if it comes from a symplectic Lie groupoid

 $(\mathcal{G},\Omega) \rightrightarrows M$

which has property C.

イロト イポト イヨト イヨト 一臣

Definition

Consider one of the compactness types

 $\mathcal{C} \in \{\text{compact}, \text{s-proper}, \text{proper}\}.$

Say (M, π) is of C-type: if it comes from a symplectic Lie groupoid

 $(\mathcal{G},\Omega) \rightrightarrows M$

which has property C.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Definition

Consider one of the compactness types

 $\mathcal{C} \in \{\text{compact}, \text{s-proper}, \text{proper}\}.$

Say (M, π) is of C-type: if it comes from a symplectic Lie groupoid

 $(\mathcal{G}, \Omega) \rightrightarrows M$

which has property C.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Definition

Consider one of the compactness types

 $\mathcal{C} \in \{\text{compact}, \text{s-proper}, \text{proper}\}.$

Say (M, π) is of C-type: if it comes from a symplectic Lie groupoid

 $(\mathcal{G}, \Omega) \rightrightarrows M$

which has property C.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Definition

Consider one of the compactness types

 $\mathcal{C} \in \{\text{compact}, \text{s-proper}, \text{proper}\}.$

Say (M, π) is of C-type: if it comes from a symplectic Lie groupoid

 $(\mathcal{G}, \Omega) \rightrightarrows M$

which has property C.

Add the adjective "*strong*": if G is the canonical integration.

Note: makes sense for general Dirac structures!

Lie and Poisson Compactness in Lie Compactness in Poisson

Definition

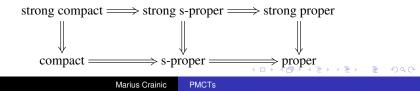
Consider one of the compactness types

```
\mathcal{C} \in \{\text{compact}, \text{s-proper}, \text{proper}\}.
```

Say (M, π) is of *C*-type: if it comes from a symplectic Lie groupoid

 $(\mathcal{G}, \Omega) \rightrightarrows M$

which has property \mathcal{C} .



Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type \iff *S* is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

(integrating groupoids: (T^*G, Ω_{can}) .)

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

(integrating groupoids: (T^*G, Ω_{can}) .)

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

(integrating groupoids: (T^*G, Ω_{can}) .)

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

Symplectic, and Lie-theoretic Reduction and Martinez-Torres' example

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\text{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

Example (Symplectic manifolds)

For symplectic (S, ω) :

- (s-)compact type $\iff S$ is compact.
- proper type: always.
- strong: if also $\pi_1(S)$ is finite.

(integrating groupoids: $S \times S \Rightarrow M$, or the fundamental groupoid).

Example (Lie algebras)

For $(\mathfrak{g}^*, \pi_{\mathsf{lin}})$:

- compact type: never.
- (s-)proper type $\iff \mathfrak{g}$ is of compact type.
- strong (s-) proper type $\iff \mathfrak{g}$ is of strong compact type.

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- **Constructed using** $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g}$ Ad-invariant.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of $\mathfrak{g}^*)$

- It lives on *G*-simply connected compact Lie group.
- **Constructed using** $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g}$ Ad-invariant.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- **Constructed using** $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g}$ Ad-invariant.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- $\blacksquare \text{ Constructed using } \langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \text{ Ad-invariant.}$
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- Constructed using $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g}$ Ad-invariant.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_a \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- Constructed using $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g}$ Ad-invariant.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

イロト イポト イヨト イヨト

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- Constructed using $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g}$ Ad-invariant.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- Constructed using $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g}$ Ad-invariant.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

Example (the Cartan Dirac structure \equiv the non-linear analogue of \mathfrak{g}^*)

- It lives on *G*-simply connected compact Lie group.
- Constructed using $\langle \cdot, \cdot \rangle_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g}$ Ad-invariant.
- No longer Poisson, but not far from it ... i.e. it is Dirac:
- i.e. comes with a *pre*-symplectic foliation: the conjugacy classes $C_g \subset G$ endowed with (GHJW '97)

$$\omega_g(\widehat{u},\widehat{v}) := \left\langle \frac{\mathrm{Ad}_g - \mathrm{Ad}_{g^{-1}}}{2} u, v \right\rangle_{\mathfrak{g}}$$

The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (The zero Poisson structure)

 $(M, \pi \equiv 0)$ -not of any strong C-type. The canonical integration:

 $(T^*M, \Omega_{\operatorname{can}}) \rightrightarrows M.$

Other possible integrations: quotients T^*M/Λ modulo lattices

 $\Lambda \subset T^*M$

which are Lagrangian (so that Ω_{can} descends). This is part of:

 $\left\{\begin{array}{c} \text{integral affine} \\ \text{structures } \Lambda \text{ on } M \end{array}\right\} \stackrel{1-1}{\longleftrightarrow} \left\{\begin{array}{c} \text{isomorphism classes of} \\ \text{symplectic torus bundles over } M \end{array}\right\}$

So: proper integrations of $(M, 0) \leftrightarrow$ integral affine structures on M.

Definition Symplect Examples The zero The structure of the PMCTS Reductio Linear variation, Weyl integration formula, Duistermaat-Heckman Submanil

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (The zero Poisson structure)

 $(M, \pi \equiv 0)$ -not of any strong C-type. The canonical integration:

 $(T^*M, \Omega_{\operatorname{can}}) \rightrightarrows M.$

Other possible integrations: quotients T^*M/Λ modulo lattices

 $\Lambda \subset T^*M$

which are Lagrangian (so that Ω_{can} descends). This is part of:

 $\left\{\begin{array}{c} \text{integral affine} \\ \text{structures } \Lambda \text{ on } M \end{array}\right\} \stackrel{1-1}{\longleftrightarrow} \left\{\begin{array}{c} \text{isomorphism classes of} \\ \text{symplectic torus bundles over } M \end{array}\right\}$

So: proper integrations of $(M, 0) \leftrightarrow$ integral affine structures on M.

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (The zero Poisson structure)

 $(M, \pi \equiv 0)$ -not of any strong C-type. The canonical integration:

 $(T^*M, \Omega_{\operatorname{can}}) \rightrightarrows M.$

Other possible integrations: quotients T^*M/Λ modulo lattices

 $\Lambda \subset T^*M$

which are Lagrangian (so that Ω_{can} descends). This is part of:

 $\begin{cases} \text{integral affine} \\ \text{structures } \Lambda \text{ on } M \end{cases} \xrightarrow{1-1} \begin{cases} \text{isomorphism classes of} \\ \text{symplectic torus bundles over } M \end{cases}$

So: proper integrations of $(M, 0) \longleftrightarrow$ integral affine structures on M.

Definition Symplectic, and Lie Examples The structure of the PMCTS Reduction and Mar Linear variation, Weyl integration formula, Duistermaat-Heckman Submanifolds

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (The zero Poisson structure)

 $(M, \pi \equiv 0)$ -not of any strong C-type. The canonical integration:

 $(T^*M, \Omega_{\operatorname{can}}) \rightrightarrows M.$

Other possible integrations: quotients T^*M/Λ modulo lattices

 $\Lambda \subset T^*M$

which are Lagrangian (so that Ω_{can} descends). This is part of:

$$\begin{cases} \text{integral affine} \\ \text{structures } \Lambda \text{ on } M \end{cases} \stackrel{1-1}{\longleftrightarrow} \begin{cases} \text{isomorphism classes of} \\ \text{symplectic torus bundles over } M \end{cases}$$

So: proper integrations of $(M, 0) \longleftrightarrow$ integral affine structures on M

Definition Examples The structure of the PMCTS Submanifolds Submanifolds

Symplectic, and Lie-theoretic The zero Poisson structure and Integral Affine Geometry Reduction and Martinez-Torres' example Submanifolds

Example (The zero Poisson structure)

 $(M, \pi \equiv 0)$ -not of any strong C-type. The canonical integration:

 $(T^*M, \Omega_{\operatorname{can}}) \rightrightarrows M.$

Other possible integrations: quotients T^*M/Λ modulo lattices

 $\Lambda \subset T^*M$

which are Lagrangian (so that Ω_{can} descends). This is part of:

$$\begin{cases} \text{integral affine} \\ \text{structures } \Lambda \text{ on } M \end{cases} \stackrel{1-1}{\longleftrightarrow} \begin{cases} \text{isomorphism classes of} \\ \text{symplectic torus bundles over } M \end{cases}$$

So: proper integrations of $(M, 0) \leftrightarrow$ integral affine structures on M.

Consider:

 $p:M \to B$

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of *p* make *M* into Poisson; this is:

- not of strong compact type (unless *B* is a point),
- is of compact type if *B* has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

イロト イポト イヨト イヨト

Consider:

p: M o B

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of p make M into Poisson; this is:

- not of strong compact type (unless *B* is a point),
- is of compact type if *B* has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

イロト イポト イヨト イヨト

Consider:

 $p: M \to B$

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of *p* make *M* into Poisson; this is:

■ not of strong compact type (unless *B* is a point),

■ is of compact type if *B* has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

イロト イポト イヨト イヨト

Consider:

 $p: M \to B$

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of p make M into Poisson; this is:

- not of strong compact type (unless *B* is a point),
- is of compact type if *B* has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

イロン 不得 とくほ とくほとう

Consider:

 $p: M \to B$

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of *p* make *M* into Poisson; this is:

- not of strong compact type (unless *B* is a point),
- is of compact type if *B* has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

ヘロト 人間 とくほとくほとう

Consider:

 $p: M \rightarrow B$

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of *p* make *M* into Poisson; this is:

- not of strong compact type (unless *B* is a point),
- is of compact type if *B* has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

・ロン・西方・ ・ ヨン・ ヨン・

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

 $\mu:(\boldsymbol{Q},\omega)
ightarrow \mathfrak{g}^{*}$

and the reduced Poisson manifold

M = Q/G endowed with $\pi_{\rm red}$.

Assume action free and proper (so M is smooth), μ -connected fibers.

Then (M, π_{red}) :

- is always of proper type.
- is of s-proper type if μ is proper.
- is of compact type only when *G* is finite!

The zero Poisson structure and Integral Affine Geon Reduction and Martinez-Torres' example Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

 $\mu:(\boldsymbol{Q},\omega)
ightarrow \mathfrak{g}^*$

and the reduced Poisson manifold

M = Q/G endowed with π_{red} .

Assume action free and proper (so M is smooth), μ -connected fibers.

Then (M, π_{red}) :

- is always of proper type.
- is of s-proper type if μ is proper.
- is of compact type only when *G* is finite!

l integration formula, Duistermaat-Heckman

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

 $\mu:(\boldsymbol{Q},\omega)\to\mathfrak{g}^*$

Reduction and Martinez-Torres' example

and the reduced Poisson manifold

M = Q/G endowed with π_{red} .

Assume action free and proper (so M is smooth), μ -connected fibers.

Then (M, π_{red}) :

- is always of proper type.
- is of s-proper type if μ is proper.
- is of compact type only when *G* is finite!

integration formula, Duistermaat-Heckman Submar

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

 $\mu:(\boldsymbol{Q},\omega)\to\mathfrak{g}^*$

Reduction and Martinez-Torres' example

and the reduced Poisson manifold

M = Q/G endowed with π_{red} .

Assume action free and proper (so M is smooth), μ -connected fibers.

Then (M, π_{red}) :

- is always of proper type.
- is of s-proper type if μ is proper.
- is of compact type only when *G* is finite!

The zero Poisson structure and Integral Affine Reduction and Martinez-Torres' example Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

 $\mu:(\mathcal{Q},\omega)
ightarrow \mathfrak{g}^*$

and the reduced Poisson manifold

M = Q/G endowed with $\pi_{\rm red}$.

Assume action free and proper (so M is smooth), μ -connected fibers.

Then (M, π_{red}) :

- is always of proper type.
- is of s-proper type if μ is proper.
- is of compact type only when *G* is finite!

The structure of the PMCTS Reduction and Martinez-Torres' example ration formula, Duistermaat-Heckman Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

 $\mu:(\boldsymbol{Q},\omega)\to\mathfrak{g}^*$

and the reduced Poisson manifold

M = Q/G endowed with π_{red} .

Assume action free and proper (so M is smooth), μ -connected fibers.

Then (M, π_{red}) :

- is always of proper type.
- is of s-proper type if μ is proper.
- is of compact type only when *G* is finite!

Reduction and Martinez-Torres' example

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \to \mathfrak{q}^*$

and the reduced Poisson manifold

M = Q/G endowed with $\pi_{\rm red}$.

Assume action free and proper (so *M* is smooth), μ -connected fibers.

Then (M, π_{red}) :

- is always of proper type.
- is of s-proper type if μ is proper.
- is of compact type only when G is finite!

(one can add "strong" if μ -fibers are 1-connected).

Example (S^1 quasi-Hamiltonian spaces)

Similarly for $M = Q/S^1$ for an S^1 -quasi-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \to \mathbf{S}^1.$

Assume the symplectic leaves are 1-connected. Then:

- If μ -connected fibers and free action, *M* is of compact type.
- For *strong compactness* one needs 1-connected fibers or, ⇐⇒, contractible *S*¹-orbits (? by McDuff in '88, + by Kotschick in '06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration

$$p:M^5 o S^1$$

Example (S^1 quasi-Hamiltonian spaces)

Similally for $M = Q/S^1$ for an S^1 -quasi-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \rightarrow \mathbf{S}^{1}.$

Assume the symplectic leaves are 1-connected. Then:

- If μ -connected fibers and free action, *M* is of compact type.
- For *strong compactness* one needs 1-connected fibers or, ⇐⇒, contractible *S*¹-orbits (? by McDuff in '88, + by Kotschick in '06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration

$$p:M^5 o S^1$$

Example (S^1 quasi-Hamiltonian spaces)

Similally for $M = Q/S^1$ for an S^1 -quasi-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \rightarrow S^1.$

Assume the symplectic leaves are 1-connected. Then:

- If μ -connected fibers and free action, *M* is of compact type.
- For strong compactness one needs 1-connected fibers or, ⇐⇒, contractible S¹-orbits (? by McDuff in '88, + by Kotschick in '06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration

$$p:M^5 o S^1$$

Example (S^1 quasi-Hamiltonian spaces)

Similarly for $M = Q/S^1$ for an S^1 -quasi-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \rightarrow S^1.$

Assume the symplectic leaves are 1-connected. Then:

- If μ -connected fibers and free action, *M* is of compact type.
- For strong compactness one needs 1-connected fibers or, ⇐⇒, contractible S¹-orbits (? by McDuff in '88, + by Kotschick in '06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration

$$p:M^5 o S^1$$

Example (S¹ quasi-Hamiltonian spaces)

Similarly for $M = Q/S^1$ for an S^1 -quasi-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \rightarrow S^1.$

Assume the symplectic leaves are 1-connected. Then:

- If μ -connected fibers and free action, *M* is of compact type.
- For strong compactness one needs 1-connected fibers or, <, contractible S¹-orbits (? by McDuff in '88, + by Kotschick in '06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration

$$p:M^5 o S^1$$

Example (S¹ quasi-Hamiltonian spaces)

Similarly for $M = Q/S^1$ for an S^1 -quasi-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \rightarrow S^1.$

Assume the symplectic leaves are 1-connected. Then:

- If μ -connected fibers and free action, *M* is of compact type.
- For *strong compactness* one needs 1-connected fibers or, ⇐⇒, contractible *S*¹-orbits (? by McDuff in '88, + by Kotschick in '06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration

$$p:M^5 o S^1$$

Example (S¹ quasi-Hamiltonian spaces)

Similally for $M = Q/S^1$ for an S^1 -quasi-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \rightarrow S^1.$

Assume the symplectic leaves are 1-connected. Then:

- If μ -connected fibers and free action, *M* is of compact type.
- For strong compactness one needs 1-connected fibers or, ⇐⇒, contractible S¹-orbits (? by McDuff in '88, + by Kotschick in '06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration

$$p:M^5 o S^1$$

Example (S^1 quasi-Hamiltonian spaces)

Similarly for $M = Q/S^1$ for an S^1 -quasi-Hamiltonian space

 $\mu: (\mathbf{Q}, \omega) \rightarrow S^1.$

Assume the symplectic leaves are 1-connected. Then:

- If μ -connected fibers and free action, *M* is of compact type.
- For strong compactness one needs 1-connected fibers or, ⇐⇒, contractible S¹-orbits (? by McDuff in '88, + by Kotschick in '06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration

$$p:M^5 o S^1$$

Warning

Compactness types are, in general (and most often!), not inherited by Poisson submanifolds.

- example: the sphere

$$\mathbb{S}_{\mathfrak{g}^*} \subset \mathfrak{g}^*$$

where \mathfrak{g} is a Lie algebra of strong compact type. Then $\mathbb{S}_{\mathfrak{g}^*}$ is (almost) never of proper type.

+ example: if (M, π) is of proper type, then it comes with an "orbit type" stratification, with strata being (regular) Poisson submanifolds. They are always of proper type!

イロト イポト イヨト イヨト

Warning

Compactness types are, in general (and most often!), not inherited by Poisson submanifolds.

- example: the sphere

$$\mathbb{S}_{\mathfrak{g}^*} \subset \mathfrak{g}^*$$

where \mathfrak{g} is a Lie algebra of strong compact type. Then $\mathbb{S}_{\mathfrak{g}^*}$ is (almost) never of proper type.

+ example: if (M, π) is of proper type, then it comes with an "orbit type" stratification, with strata being (regular) Poisson submanifolds. They are always of proper type!

イロン 不得 とくほ とくほとう

Warning

Compactness types are, in general (and most often!), not inherited by Poisson submanifolds.

- example: the sphere

$$\mathbb{S}_{\mathfrak{g}^*} \subset \mathfrak{g}^*$$

where ${\mathfrak g}$ is a Lie algebra of strong compact type. Then ${\mathbb S}_{{\mathfrak g}^*}$ is (almost) never of proper type.

+ example: if (M, π) is of proper type, then it comes with an "orbit type" stratification, with strata being (regular) Poisson submanifolds. They are always of proper type!

イロト イポト イヨト イヨト

Warning

Compactness types are, in general (and most often!), not inherited by Poisson submanifolds.

- example: the sphere

$$\mathbb{S}_{\mathfrak{g}^*} \subset \mathfrak{g}^*$$

where \mathfrak{g} is a Lie algebra of strong compact type. Then $\mathbb{S}_{\mathfrak{g}^*}$ is (almost) never of proper type.

+ example: if (M, π) is of proper type, then it comes with an "orbit type" stratification, with strata being (regular) Poisson submanifolds. They are always of proper type!

<ロト <回 > < 注 > < 注 > 、

Warning

Compactness types are, in general (and most often!), not inherited by Poisson submanifolds.

- example: the sphere

$$\mathbb{S}_{\mathfrak{g}^*} \subset \mathfrak{g}^*$$

where \mathfrak{g} is a Lie algebra of strong compact type. Then $\mathbb{S}_{\mathfrak{g}^*}$ is (almost) never of proper type.

+ example: if (M, π) is of proper type, then it comes with an "orbit type" stratification, with strata being (regular) Poisson submanifolds. They are always of proper type!

<ロト <回 > < 注 > < 注 > 、

Warning

Compactness types are, in general (and most often!), not inherited by Poisson submanifolds.

- example: the sphere

$$\mathbb{S}_{\mathfrak{g}^*} \subset \mathfrak{g}^*$$

where \mathfrak{g} is a Lie algebra of strong compact type. Then $\mathbb{S}_{\mathfrak{g}^*}$ is (almost) never of proper type.

+ example: if (M, π) is of proper type, then it comes with an "orbit type" stratification, with strata being (regular) Poisson submanifolds. They are always of proper type!

◆□ > ◆□ > ◆豆 > ◆豆 > -

Passing to the regular case Orbifolds Integral Affine Geometry Symplectic gerbes

The structure of PMCTs- main points:

- 0. Desingularization.
- 1. Orbifolds.
- 2. Integral Affine Geometry.
- 3. Symplectic gerbes.

Note

after step 0: we restrict to the regular case, concentrate on the space of symplectic leaves

 $B := M/\mathcal{F}_{\pi}$ (\mathcal{F}_{π} – the symplectic foliation)

and the structure induced on it. This is PMCT2.

Passing to the regular case Orbifolds Integral Affine Geometry Symplectic gerbes

The structure of PMCTs- main points:

0. Desingularization.

- 1. Orbifolds.
- 2. Integral Affine Geometry.
- 3. Symplectic gerbes.

Note

 after step 0: we restrict to the regular case, concentrate on the space of symplectic leaves

 $B := M/\mathcal{F}_{\pi}$ (\mathcal{F}_{π} – the symplectic foliation)

and the structure induced on it. This is PMCT2.

Passing to the regular case Orbifolds Integral Affine Geometry Symplectic gerbes

The structure of PMCTs- main points:

- 0. Desingularization.
- 1. Orbifolds.
- 2. Integral Affine Geometry.
- 3. Symplectic gerbes.

Note

 after step 0: we restrict to the regular case, concentrate on the space of symplectic leaves

 $B := M/\mathcal{F}_{\pi}$ (\mathcal{F}_{π} - the symplectic foliation)

and the structure induced on it. This is PMCT2.

Passing to the regular case Orbifolds Integral Affine Geometry Symplectic gerbes

The structure of PMCTs- main points:

- 0. Desingularization.
- 1. Orbifolds.
- 2. Integral Affine Geometry.
- 3. Symplectic gerbes.

Note

 after step 0: we restrict to the regular case, concentrate on the space of symplectic leaves

 $B := M/\mathcal{F}_{\pi}$ (\mathcal{F}_{π} - the symplectic foliation)

and the structure induced on it. This is PMCT2.

- 0. Desingularization.
- 1. Orbifolds.
- 2. Integral Affine Geometry.
- 3. Symplectic gerbes.

Note

after step 0: we restrict to the regular case, concentrate on the space of symplectic leaves

 $B := M / \mathcal{F}_{\pi}$ (\mathcal{F}_{π} – the symplectic foliation)

and the structure induced on it. This is PMCT2.

- 0. Desingularization.
- 1. Orbifolds.
- 2. Integral Affine Geometry.
- 3. Symplectic gerbes.

Note

 after step 0: we restrict to the regular case, concentrate on the space of symplectic leaves

 $B := M/\mathcal{F}_{\pi}$ (\mathcal{F}_{π} - the symplectic foliation)

and the structure induced on it. This is PMCT2.

- 0. Desingularization.
- 1. Orbifolds.
- 2. Integral Affine Geometry.
- 3. Symplectic gerbes.

Note

 after step 0: we restrict to the regular case, concentrate on the space of symplectic leaves

 $B := M/\mathcal{F}_{\pi}$ (\mathcal{F}_{π} - the symplectic foliation)

and the structure induced on it. This is PMCT2.

- 0. Desingularization.
- 1. Orbifolds.
- 2. Integral Affine Geometry.
- 3. Symplectic gerbes.

Note

 after step 0: we restrict to the regular case, concentrate on the space of symplectic leaves

 $B := M/\mathcal{F}_{\pi}$ (\mathcal{F}_{π} - the symplectic foliation)

and the structure induced on it. This is PMCT2.

Desingularization of (M, π) : desingularize via blow-ups, but do everything at once, intrinsically:

 $\hat{M} := \{ (x, \mathfrak{t}) : x \in M, \mathfrak{t} \subset \mathfrak{g}_x \text{ maximal abelian} \},\$

where $\mathfrak{g}_x(\pi) = \operatorname{Ker} \pi_x^{\sharp}$, the isotropy Lie algebra at $x \in M$. Properties:

- $\hat{M} \text{ is smooth.}$
- comes with a Dirac structure (Poisson on the regular part).
- it is regular (!) and of proper type(!)

Example

In the linear case $M = g^*$,

$$\hat{M} = G/T imes_W \mathfrak{t}^*$$

Desingularization of (M, π) : desingularize via blow-ups, but do everything at once, intrinsically:

 $\hat{M} := \{ (x, \mathfrak{t}) : x \in M, \mathfrak{t} \subset \mathfrak{g}_x \text{ maximal abelian} \},\$

where $\mathfrak{g}_x(\pi) = \operatorname{Ker} \pi_x^{\sharp}$, the isotropy Lie algebra at $x \in M$. Properties:

- $\hat{M} \text{ is smooth.}$
- comes with a Dirac structure (Poisson on the regular part).
- it is regular (!) and of proper type(!)

Example

In the linear case $M = \mathfrak{g}^*$,

$$\hat{M} = G/T imes_W \mathfrak{t}^*$$

Desingularization of (M, π) : desingularize via blow-ups, but do everything at once, intrinsically:

 $\hat{M} := \{ (x, \mathfrak{t}) : x \in M, \mathfrak{t} \subset \mathfrak{g}_x \text{ maximal abelian} \},$

where $\mathfrak{g}_x(\pi) = \operatorname{Ker} \pi_x^{\sharp}$, the isotropy Lie algebra at $x \in M$. Properties:

 $\widehat{M} \text{ is smooth.}$

comes with a Dirac structure (Poisson on the regular part).

■ it is regular (!) and of proper type(!)

Example

In the linear case $M = g^*$,

$$\hat{M} = G/T imes_W \mathfrak{t}^*$$

Desingularization of (M, π) : desingularize via blow-ups, but do everything at once, intrinsically:

 $\hat{M} := \{ (x, \mathfrak{t}) : x \in M, \mathfrak{t} \subset \mathfrak{g}_x \text{ maximal abelian} \},$

where $\mathfrak{g}_x(\pi) = \operatorname{Ker} \pi_x^{\sharp}$, the isotropy Lie algebra at $x \in M$. Properties:

- *M* is smooth.
- comes with a Dirac structure (Poisson on the regular part).
- it is regular (!) and of proper type(!)

Example

In the linear case $M = \mathfrak{g}^*$,

$$\hat{M} = G/T imes_W \mathfrak{t}^*$$

Desingularization of (M, π) : desingularize via blow-ups, but do everything at once, intrinsically:

 $\hat{M} := \{ (x, \mathfrak{t}) : x \in M, \mathfrak{t} \subset \mathfrak{g}_x \text{ maximal abelian} \},$

where $\mathfrak{g}_x(\pi) = \operatorname{Ker} \pi_x^{\sharp}$, the isotropy Lie algebra at $x \in M$. Properties:

- *M* is smooth.
- comes with a Dirac structure (Poisson on the regular part).
- it is regular (!) and of proper type(!)

Example

In the linear case $M = \mathfrak{g}^*$,

$$\hat{M} = G/T imes_W \mathfrak{t}^*$$

Desingularization of (M, π) : desingularize via blow-ups, but do everything at once, intrinsically:

 $\hat{M} := \{ (x, \mathfrak{t}) : x \in M, \mathfrak{t} \subset \mathfrak{g}_x \text{ maximal abelian} \},$

where $\mathfrak{g}_x(\pi) = \operatorname{Ker} \pi_x^{\sharp}$, the isotropy Lie algebra at $x \in M$. Properties:

- *M* is smooth.
- comes with a Dirac structure (Poisson on the regular part).
- it is regular (!) and of proper type(!)

Example

In the linear case $M = \mathfrak{g}^*$,

$$\hat{M} = G/T imes_W \mathfrak{t}^*$$

Passing to the regular case Orbifolds Integral Affine Geometry Symplectic gerbes

ヘロト 人間 とくほとく ほとう

Orbifold structure: consider the leaf space

 $B := M/\mathcal{F}_{\pi}$

of the symplectic foliation \mathcal{F}_{π} (very pathological in general!).

Theorem

If (M, π) is a of proper type then B is an orbifold (and any proper integration gives rise to a canonical orbifold atlass/structure on B).

If the symplectic leaves are simply-connected, then B is smooth.

Explanation: if G integrates (M, π), form

 $I
ightarrow \mathcal{T}
ightarrow \mathcal{G}
ightarrow \mathcal{B}
ightarrow \mathbf{1}$

where \mathcal{T} is made of the connected components of the isotropies \mathcal{G}_x . The quotient \mathcal{B} is an orbifold atlass since it has finite isotropy groups.

イロト 不得 とくほ とくほ とうほ

Orbifold structure: consider the leaf space

 $B := M/\mathcal{F}_{\pi}$

of the symplectic foliation \mathcal{F}_{π} (very pathological in general!).

Theorem

If (M, π) is a of proper type then B is an orbifold (and any proper integration gives rise to a canonical orbifold atlass/structure on B).

If the symplectic leaves are simply-connected, then B is smooth.

Explanation: if G integrates (M, π), form

 $I
ightarrow \mathcal{T}
ightarrow \mathcal{G}
ightarrow \mathcal{B}
ightarrow 1$

where \mathcal{T} is made of the connected components of the isotropies \mathcal{G}_x . The quotient \mathcal{B} is an orbifold atlass since it has finite isotropy groups.

イロト 不得 とくほ とくほ とうほ

Orbifold structure: consider the leaf space

 $B := M/\mathcal{F}_{\pi}$

of the symplectic foliation \mathcal{F}_{π} (very pathological in general!).

Theorem

If (M, π) is a of proper type then B is an orbifold (and any proper integration gives rise to a canonical orbifold atlass/structure on B).

If the symplectic leaves are simply-connected, then B is smooth.

Explanation: if G integrates (M, π) , form

 $1
ightarrow \mathcal{T}
ightarrow \mathcal{G}
ightarrow \mathcal{B}
ightarrow 1$

where \mathcal{T} is made of the connected components of the isotropies \mathcal{G}_x . The quotient \mathcal{B} is an orbifold atlass since it has finite isotropy groups.

イロト 不得 とくほ とくほ とうほ

Orbifold structure: consider the leaf space

 $B := M/\mathcal{F}_{\pi}$

of the symplectic foliation \mathcal{F}_{π} (very pathological in general!).

Theorem

If (M, π) is a of proper type then B is an orbifold (and any proper integration gives rise to a canonical orbifold atlass/structure on B).

Orbifold structure: consider the leaf space

 $B := M/\mathcal{F}_{\pi}$

of the symplectic foliation \mathcal{F}_{π} (very pathological in general!).

Theorem

If (M, π) is a of proper type then B is an orbifold (and any proper integration gives rise to a canonical orbifold atlass/structure on B).

If the symplectic leaves are simply-connected, then B is smooth.

Explanation: if G integrates (M, π), form

 $1
ightarrow \mathcal{T}
ightarrow \mathcal{G}
ightarrow \mathcal{B}
ightarrow 1$

where T is made of the connected components of the isotropies \mathcal{G}_x . The quotient \mathcal{B} is an orbifold atlass since it has finite isotropy groups.

イロン 不得 とくほ とくほ とうほ

Orbifold structure: consider the leaf space

 $B := M/\mathcal{F}_{\pi}$

of the symplectic foliation \mathcal{F}_{π} (very pathological in general!).

Theorem

If (M, π) is a of proper type then B is an orbifold (and any proper integration gives rise to a canonical orbifold atlass/structure on B).

If the symplectic leaves are simply-connected, then B is smooth.

Explanation: if \mathcal{G} integrates (M, π) , form

 $1 \rightarrow \mathcal{T} \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1$

where \mathcal{T} is made of the connected components of the isotropies \mathcal{G}_x . The quotient \mathcal{B} is an orbifold atlass since it has finite isotropy groups.

イロト 不得 とくほ とくほ とうほ

Orbifold structure: consider the leaf space

 $B := M/\mathcal{F}_{\pi}$

of the symplectic foliation \mathcal{F}_{π} (very pathological in general!).

Theorem

If (M, π) is a of proper type then B is an orbifold (and any proper integration gives rise to a canonical orbifold atlass/structure on B).

If the symplectic leaves are simply-connected, then B is smooth.

Explanation: if \mathcal{G} integrates (M, π), form

 $1 \rightarrow \mathcal{T} \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1$

where \mathcal{T} is made of the connected components of the isotropies \mathcal{G}_x . The quotient \mathcal{B} is an orbifold atlass since it has finite isotropy groups.

イロト 不得 とくほ とくほ とうほ

Different description: in the short exact sequence

 $1 \rightarrow \mathcal{T} \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1,$

the restriction of Ω from G makes T into a pre-symplectic torus bundle over M. Fact: this comes from a symplectic torus bundle over B- i.e. from an IAS on B!

Theorem

For any regular Poisson manifold (M, π) of *C*-type its leaf space $B = M/\mathcal{F}_{\pi}$ is an integral affine orbifold: any integration having property *C* gives rise to an integral orbifold structure on *B*. Moreover, the underlying classical orbifold is good.

Different description: in the short exact sequence

 $1 \rightarrow \mathcal{T} \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1,$

the restriction of Ω from G makes T into a pre-symplectic torus bundle over M. Fact: this comes from a symplectic torus bundle over B- i.e. from an IAS on B!

Theorem

For any regular Poisson manifold (M, π) of *C*-type its leaf space $B = M/F_{\pi}$ is an integral affine orbifold: any integration having property *C* gives rise to an integral orbifold structure on *B*. Moreover, the underlying classical orbifold is good.

Different description: in the short exact sequence

$$1 \rightarrow \mathcal{T} \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1,$$

the restriction of Ω from \mathcal{G} makes \mathcal{T} into a pre-symplectic torus bundle over M. Fact: this comes from a symplectic torus bundle over B- i.e. from an IAS on B!

Theorem

For any regular Poisson manifold (M, π) of *C*-type its leaf space $B = M/F_{\pi}$ is an integral affine orbifold: any integration having property *C* gives rise to an integral orbifold structure on *B*. Moreover, the underlying classical orbifold is good.

Different description: in the short exact sequence

$$1 \rightarrow \mathcal{T} \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1,$$

the restriction of Ω from \mathcal{G} makes \mathcal{T} into a pre-symplectic torus bundle over M. Fact: this comes from a symplectic torus bundle over B- i.e. from an IAS on B!

Theorem

For any regular Poisson manifold (M, π) of *C*-type its leaf space $B = M/F_{\pi}$ is an integral affine orbifold: any integration having property *C* gives rise to an integral orbifold structure on *B*. Moreover, the underlying classical orbifold is good.

Different description: in the short exact sequence

$$1 \rightarrow \mathcal{T} \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1,$$

the restriction of Ω from \mathcal{G} makes \mathcal{T} into a pre-symplectic torus bundle over M. Fact: this comes from a symplectic torus bundle over B- i.e. from an IAS on B!

Theorem

For any regular Poisson manifold (M, π) of *C*-type its leaf space $B = M/F_{\pi}$ is an integral affine orbifold: any integration having property *C* gives rise to an integral orbifold structure on *B*. Moreover, the underlying classical orbifold is good.

Different description: in the short exact sequence

$$1 \rightarrow \mathcal{T} \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1,$$

the restriction of Ω from \mathcal{G} makes \mathcal{T} into a pre-symplectic torus bundle over M. Fact: this comes from a symplectic torus bundle over B- i.e. from an IAS on B!

Theorem

For any regular Poisson manifold (M, π) of C-type its leaf space $B = M/\mathcal{F}_{\pi}$ is an integral affine orbifold: any integration having property C gives rise to an integral orbifold structure on B. Moreover, the underlying classical orbifold is good.

イロン 不同 とくほ とくほ とう

Classical S^1 -gerbes over B: higher versions of principal S^1 -bundles.

Several descriptions varying from "down to earth" to "more intrinsic":

- 1. in terms of transition functions/ S^1 -valued Cech cocycles on B.
- 2. in terms of central extensions of Lie groupoids

 $1
ightarrow S^1
ightarrow \mathcal{G}
ightarrow \mathcal{B}
ightarrow 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

- replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).
- replace *B* by an orbifold, or even by a general Lie groupoids.

イロト 不得 とくほ とくほとう

Classical S^1 -gerbes over *B*: higher versions of principal S^1 -bundles.

Several descriptions varying from "down to earth" to "more intrinsic":

- 1. in terms of transition functions/ S^1 -valued Cech cocycles on B.
- 2. in terms of central extensions of Lie groupoids

 $1
ightarrow S^1
ightarrow \mathcal{G}
ightarrow \mathcal{B}
ightarrow 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

- replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).
- replace *B* by an orbifold, or even by a general Lie groupoids.

イロト 不得 とくほと くほとう

Classical S^1 -gerbes over *B*: higher versions of principal S^1 -bundles.

Several descriptions varying from "down to earth" to "more intrinsic":

1. in terms of transition functions/ S^1 -valued Cech cocycles on B.

 $1 \rightarrow S^1 \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

- replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).
- replace *B* by an orbifold, or even by a general Lie groupoids.

Several descriptions varying from "down to earth" to "more intrinsic":

1. in terms of transition functions/ S^1 -valued Cech cocycles on B.

2. in terms of central extensions of Lie groupoids

 $1 \rightarrow S^1 \rightarrow \mathcal{G} \rightarrow \mathcal{B} \rightarrow 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

- replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).
- replace *B* by an orbifold, or even by a general Lie groupoids.

(ロ) (四) (ヨ) (ヨ) (ヨ)

Several descriptions varying from "down to earth" to "more intrinsic":

- 1. in terms of transition functions/ S^1 -valued Cech cocycles on B.
- 2. in terms of central extensions of Lie groupoids

 $1 \to {\boldsymbol{\mathcal{S}}}^1 \to {\boldsymbol{\mathcal{G}}} \to {\boldsymbol{\mathcal{B}}} \to 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

- replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).
- replace *B* by an orbifold, or even by a general Lie groupoids.

イロン 不得 とくほ とくほ とうほ

Classical S^1 -gerbes over *B*: higher versions of principal S^1 -bundles. Several descriptions varying from "down to earth" to "more intrinsic":

- 1. in terms of transition functions/ S^1 -valued Cech cocycles on B.
- 2. in terms of central extensions of Lie groupoids

 $1 \to {\boldsymbol{\mathcal{S}}}^1 \to {\boldsymbol{\mathcal{G}}} \to {\boldsymbol{\mathcal{B}}} \to 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

- replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).
- replace *B* by an orbifold, or even by a general Lie groupoids.

(日) (圖) (E) (E) (E)

Several descriptions varying from "down to earth" to "more intrinsic":

- 1. in terms of transition functions/ S^1 -valued Cech cocycles on B.
- 2. in terms of central extensions of Lie groupoids

 $1 \to {\boldsymbol{\mathcal{S}}}^1 \to {\boldsymbol{\mathcal{G}}} \to {\boldsymbol{\mathcal{B}}} \to 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

- replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).
- replace *B* by an orbifold, or even by a general Lie groupoids.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

Several descriptions varying from "down to earth" to "more intrinsic":

- 1. in terms of transition functions/ S^1 -valued Cech cocycles on B.
- 2. in terms of central extensions of Lie groupoids

 $1 \to {\boldsymbol{\mathcal{S}}}^1 \to {\boldsymbol{\mathcal{G}}} \to {\boldsymbol{\mathcal{B}}} \to 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

• replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).

replace B by an orbifold, or even by a general Lie groupoids.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - のへぐ

Several descriptions varying from "down to earth" to "more intrinsic":

- 1. in terms of transition functions/ S^1 -valued Cech cocycles on B.
- 2. in terms of central extensions of Lie groupoids

 $1 \to {\boldsymbol{\mathcal{S}}}^1 \to {\boldsymbol{\mathcal{G}}} \to {\boldsymbol{\mathcal{B}}} \to 1$

where \mathcal{B} models the smooth structure on B.

Here 1. \iff 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

- replace S^1 by a torus bundle \mathcal{T} over B (\mathcal{T} -gerbes).
- replace *B* by an orbifold, or even by a general Lie groupoids.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Definition Examples The structure of the PMCTS Linear variation, Weyl integration formula, Duistermaat-Heckman Passing to the regular case Orbifolds Integral Affine Geometry Symplectic gerbes

Symplectic gerbes: the same as above, just that:

- we start with a symplectic torus bundle T over B (IAS!).
- we look at symplectic central extensions

 $1
ightarrow \mathcal{T}
ightarrow (\mathcal{G}, \Omega)
ightarrow \mathcal{B}
ightarrow 1$

(hence Ω induces the given symplectic form on T).

Symplectic T-gerbes over *B*: symplectic Morita equivalence classes of such extensions. They form a group w.r.t. "the fusion product".

Theorem

Extensions as above are classified by a cohomology class

 $c_2(\mathcal{G},\Omega) \in H^2(B,\mathcal{T}_{Lagr}),$

and this induces an isomorphism between the group of symplectic T-gerbes over B and $H^2(B, T_{Lagr})$.

Definition Examples The structure of the PMCTS Linear variation, Weyl integration formula, Duistermaat-Heckman Passing to the regular case Orbifolds Integral Affine Geometry Symplectic gerbes

Symplectic gerbes: the same as above, just that:

- we start with a symplectic torus bundle T over B (IAS!).
- we look at symplectic central extensions

 $1
ightarrow \mathcal{T}
ightarrow (\mathcal{G}, \Omega)
ightarrow \mathcal{B}
ightarrow 1$

(hence Ω induces the given symplectic form on \mathcal{T}).

Symplectic T-gerbes over *B*: symplectic Morita equivalence classes of such extensions. They form a group w.r.t. "the fusion product".

Theorem

Extensions as above are classified by a cohomology class

 $c_2(\mathcal{G},\Omega) \in H^2(B,\mathcal{T}_{Lagr}),$

and this induces an isomorphism between the group of symplectic \mathcal{T} -gerbes over B and $H^2(B, \mathcal{T}_{Lagr})$.

Symplectic gerbes: the same as above, just that:

• we start with a symplectic torus bundle T over B (IAS!).

• we look at symplectic central extensions

 $1 o \mathcal{T} o (\mathcal{G}, \Omega) o \mathcal{B} o \mathbf{1}$

(hence Ω induces the given symplectic form on \mathcal{T}).

Symplectic T-gerbes over *B*: symplectic Morita equivalence classes of such extensions. They form a group w.r.t. "the fusion product".

Theorem

Extensions as above are classified by a cohomology class

 $C_2(\mathcal{G},\Omega) \in H^2(B,\mathcal{T}_{Lagr}),$

and this induces an isomorphism between the group of symplectic \mathcal{T} -gerbes over B and $H^2(B, \mathcal{T}_{Lagr})$.

Symplectic gerbes

Symplectic gerbes: the same as above, just that:

- we start with a symplectic torus bundle \mathcal{T} over B (IAS!).
- we look at symplectic central extensions

 $1 \rightarrow \mathcal{T} \rightarrow (\mathcal{G}, \Omega) \rightarrow \mathcal{B} \rightarrow 1$

(hence Ω induces the given symplectic form on \mathcal{T}).

• • • • • • • • • • • • • •

.E. ►

Symplectic gerbes: the same as above, just that:

- we start with a symplectic torus bundle T over B (IAS!).
- we look at symplectic central extensions

 $\mathbf{1} \to \mathcal{T} \to (\mathcal{G}, \Omega) \to \mathcal{B} \to \mathbf{1}$

(hence Ω induces the given symplectic form on \mathcal{T}).

Symplectic \mathcal{T} -gerbes over *B*: symplectic Morita equivalence classes of such extensions. They form a group w.r.t. "the fusion product".

Theorem

Extensions as above are classified by a cohomology class

 $c_2(\mathcal{G},\Omega) \in H^2(B,\mathcal{T}_{Lagr}),$

and this induces an isomorphism between the group of symplectic T-gerbes over B and $H^2(B, T_{Lagr})$.

Symplectic gerbes: the same as above, just that:

- we start with a symplectic torus bundle T over B (IAS!).
- we look at symplectic central extensions

 $1 \to \mathcal{T} \to (\mathcal{G}, \Omega) \to \mathcal{B} \to 1$

(hence Ω induces the given symplectic form on \mathcal{T}).

Symplectic \mathcal{T} -gerbes over *B*: symplectic Morita equivalence classes of such extensions. They form a group w.r.t. "the fusion product".

Theorem

Extensions as above are classified by a cohomology class

 $C_2(\mathcal{G},\Omega) \in H^2(B,\mathcal{T}_{Lagr}),$

and this induces an isomorphism between the group of symplectic T-gerbes over B and H²(B, T_{Lagr}).

Symplectic gerbes: the same as above, just that:

- we start with a symplectic torus bundle T over B (IAS!).
- we look at symplectic central extensions

 $1 \to \mathcal{T} \to (\mathcal{G}, \Omega) \to \mathcal{B} \to 1$

(hence Ω induces the given symplectic form on $\mathcal{T}).$

Symplectic \mathcal{T} -gerbes over *B*: symplectic Morita equivalence classes of such extensions. They form a group w.r.t. "the fusion product".

Theorem

Extensions as above are classified by a cohomology class

$$c_2(\mathcal{G}, \Omega) \in H^2(B, \mathcal{T}_{Lagr}),$$

and this induces an isomorphism between the group of symplectic T-gerbes over B and $H^2(B, T_{Lagr})$.

・ロン ・聞と ・ ほと ・ ほとう

1

Symplectic gerbes-back to PMCTs: for a proper integration (\mathcal{G}, Ω) of (M, π) we get the IAS on the leaf space B, i.e. a symplectic torus bundle, and a class

$$c_2(\mathcal{G},\Omega) \in H^2(\mathcal{B},\mathcal{T}_{\mathrm{Lagr}}).$$

Theorem

 $c_2(\mathcal{G}, \Omega) = 0$ iff \mathcal{G} arise from (free) \mathcal{T} -Hamiltonian reduction or, equivalently, from a proper isotropic realization of (M, π) .

Definition Examples The structure of the PMCTS Linear variation, Weyl integration formula, Duistermaat-Heckman

The linear variation theorem The Duistermaat-Heckman theorem The Weyl integration formula

イロト 不得 とくほ とくほとう

Here: (M, π) regular of s-proper type with 1-connected leaves; then *B* is smooth, we have a locally trivial fibration

 $p: M \to B,$

and think of *M* as a family $\{(S_b, \omega_b)\}_{b \in B}$ of symplectic manifolds.

Fix $b_0 \in B$ with fiber (S_0, ω_0) ; realize \tilde{B} using paths starting at b_0 .

1. The Gauss-Manin connection allows us to look at

 $\gamma^*([\omega_{\gamma(1)}])-[\omega_0]\in H^2(S_0).$

2. The IAS on *B* induced by *G* gives rise to the developing map $\operatorname{dev}: \tilde{B} \to \mathbb{R}^q.$

3. $s_{\mathcal{G}}^{-1}(b_0)=$ a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1,\ldots,c_q\in H^2(S_0).$

イロン 不同 とくほ とくほ とう

Here: (M, π) regular of s-proper type with 1-connected leaves; then *B* is smooth, we have a locally trivial fibration

 $p: M \to B,$

and think of *M* as a family $\{(S_b, \omega_b)\}_{b \in B}$ of symplectic manifolds.

Fix $b_0 \in B$ with fiber (S_0, ω_0) ; realize \tilde{B} using paths starting at b_0 .

1. The Gauss-Manin connection allows us to look at

$$\gamma^*([\omega_{\gamma(1)}])-[\omega_0]\in H^2(S_0).$$

2. The IAS on *B* induced by *G* gives rise to the developing map $\operatorname{dev}: \tilde{B} \to \mathbb{R}^q$.

3. $s_{\mathcal{G}}^{-1}(b_0) =$ a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1,\ldots,c_q \in H^2(S_0).$

ヘロト 人間 とくほとく ほとう

Here: (M, π) regular of s-proper type with 1-connected leaves; then *B* is smooth, we have a locally trivial fibration

 $p: M \rightarrow B$,

and think of *M* as a family $\{(S_b, \omega_b)\}_{b \in B}$ of symplectic manifolds.

Fix $b_0 \in B$ with fiber (S_0, ω_0) ; realize \tilde{B} using paths starting at b_0 .

1. The Gauss-Manin connection allows us to look at

 $\gamma^*([\omega_{\gamma(1)}])-[\omega_0]\in H^2(S_0).$

2. The IAS on *B* induced by *G* gives rise to the developing map $\operatorname{dev}: \tilde{B} \to \mathbb{R}^q$.

3. $s_{\mathcal{G}}^{-1}(b_0)$ =a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1,\ldots,c_q\in H^2(S_0).$

<ロ> (四) (四) (三) (三) (三)

Here: (M, π) regular of s-proper type with 1-connected leaves; then *B* is smooth, we have a locally trivial fibration

 $p: M \rightarrow B$,

and think of *M* as a family $\{(S_b, \omega_b)\}_{b \in B}$ of symplectic manifolds.

Fix $b_0 \in B$ with fiber (S_0, ω_0) ; realize \tilde{B} using paths starting at b_0 .

1. The Gauss-Manin connection allows us to look at

 $\gamma^*([\omega_{\gamma(1)}])-[\omega_0]\in H^2(S_0).$

2. The IAS on *B* induced by *G* gives rise to the developing map $\operatorname{dev}: \tilde{B} \to \mathbb{R}^q$.

3. $s_{\mathcal{G}}^{-1}(b_0) =$ a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1,\ldots,c_q \in H^2(S_0).$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Here: (M, π) regular of s-proper type with 1-connected leaves; then *B* is smooth, we have a locally trivial fibration

 $p: M \rightarrow B$,

and think of *M* as a family $\{(S_b, \omega_b)\}_{b \in B}$ of symplectic manifolds.

Fix $b_0 \in B$ with fiber (S_0, ω_0) ; realize \tilde{B} using paths starting at b_0 .

1. The Gauss-Manin connection allows us to look at

 $\gamma^*([\omega_{\gamma(1)}])-[\omega_0]\in H^2(S_0).$

2. The IAS on *B* induced by *G* gives rise to the developing map $\operatorname{dev}: \tilde{B} \to \mathbb{R}^q$.

3. $s_{\mathcal{G}}^{-1}(b_0)$ =a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1,\ldots,c_q\in H^2(S_0).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ □目 − ∽へ⊙

Here: (M, π) regular of s-proper type with 1-connected leaves; then *B* is smooth, we have a locally trivial fibration

$$p: M \to B$$
,

and think of *M* as a family $\{(S_b, \omega_b)\}_{b \in B}$ of symplectic manifolds.

Fix $b_0 \in B$ with fiber (S_0, ω_0) ; realize \tilde{B} using paths starting at b_0 .

1. The Gauss-Manin connection allows us to look at

 $\gamma^*([\omega_{\gamma(1)}]) - [\omega_0] \in H^2(S_0).$

2. The IAS on *B* induced by *G* gives rise to the developing map $\operatorname{dev}: \tilde{B} \to \mathbb{R}^q.$

3. $s_{\mathcal{G}}^{-1}(b_0) =$ a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1, \ldots, c_q \in H^2(S_0)$.

◆□▶ ◆□▶ ◆目▶ ◆目▶ □目 − ∽へ⊙

Here: (M, π) regular of s-proper type with 1-connected leaves; then *B* is smooth, we have a locally trivial fibration

$$p: M \to B$$
,

and think of *M* as a family $\{(S_b, \omega_b)\}_{b \in B}$ of symplectic manifolds.

Fix $b_0 \in B$ with fiber (S_0, ω_0) ; realize \tilde{B} using paths starting at b_0 .

1. The Gauss-Manin connection allows us to look at

$$\gamma^*([\omega_{\gamma(1)}])-[\omega_0]\in H^2(S_0).$$

2. The IAS on *B* induced by \mathcal{G} gives rise to the developing map dev : $\tilde{B} \to \mathbb{R}^q$.

3. $s_{\mathcal{G}}^{-1}(b_0) =$ a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1, \ldots, c_q \in H^2(S_0)$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Here: (M, π) regular of s-proper type with 1-connected leaves; then *B* is smooth, we have a locally trivial fibration

$$p: M \to B$$
,

and think of *M* as a family $\{(S_b, \omega_b)\}_{b \in B}$ of symplectic manifolds.

Fix $b_0 \in B$ with fiber (S_0, ω_0) ; realize \tilde{B} using paths starting at b_0 .

1. The Gauss-Manin connection allows us to look at

$$\gamma^*([\omega_{\gamma(1)}])-[\omega_0]\in H^2(S_0).$$

2. The IAS on *B* induced by \mathcal{G} gives rise to the developing map dev : $\tilde{B} \to \mathbb{R}^q$.

3. $s_{\mathcal{G}}^{-1}(b_0) =$ a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1,\ldots,c_q \in H^2(S_0).$

The linear variation theorem The Duistermaat-Heckman theorem The Weyl integration formula

- 1. The Gauss-Manin connection allows us to look at $\gamma^*([\omega_{\gamma(1)}])-[\omega_0]\in H^2(\mathcal{S}_0).$
- 2. The IAS on *B* induced by \mathcal{G} gives rise to the developing map dev : $\tilde{B} \to \mathbb{R}^q$.
- 3. $s_{\mathcal{G}}^{-1}(b_0)$ =a principal \mathbb{T}^q -bundle over S_0 ; Chern classes denoted $c_1,\ldots,c_q\in H^2(S_0).$

Theorem

One has the linear variation formula:

$$\gamma^*([\omega_{\gamma(1)}]) - [\omega_0] = dev^1(\gamma)\mathbf{c}_1 + \ldots + dev^q(\gamma)\mathbf{c}_q.$$

ヘロト ヘ回ト ヘヨト ヘヨト

Same assumptions as before. Consider the following measures on *B*: 1. μ_{Aff} -corresponding to the IAS on *B*.

2. $\mu_{\rm DH}$ - the push-forward of the Liouville measure on \mathcal{G} .

Also consider the leafwise symplectic volumes,

vol : $B \to \mathbb{R}$

and $\iota: B \to \mathbb{Z}$ counting the components of the isotropy groups of \mathcal{G} .

Theorem

$$\mu_{DH} = (\iota \cdot vol)^2 \mu_{Aff}$$

Same assumptions as before. Consider the following measures on *B*: 1. μ_{AB} -corresponding to the IAS on *B*.

2. μ_{DH} - the push-forward of the Liouville measure on \mathcal{G} .

Also consider the leafwise symplectic volumes,

vol : $B \to \mathbb{R}$

and $\iota: B \to \mathbb{Z}$ counting the components of the isotropy groups of \mathcal{G} .

Theorem

$$\mu_{DH} = (\iota \cdot vol)^2 \mu_{Aff}$$

Same assumptions as before. Consider the following measures on *B*: 1. μ_{Aff} -corresponding to the IAS on *B*.

2. μ_{DH} - the push-forward of the Liouville measure on \mathcal{G} .

Also consider the leafwise symplectic volumes,

vol : $B \to \mathbb{R}$

and $\iota: B \to \mathbb{Z}$ counting the components of the isotropy groups of \mathcal{G} .

Theorem

$$\mu_{DH} = (\iota \cdot vol)^2 \mu_{Aff}$$

Same assumptions as before. Consider the following measures on *B*: 1. μ_{Aff} -corresponding to the IAS on *B*.

2. μ_{DH} - the push-forward of the Liouville measure on \mathcal{G} .

Also consider the leafwise symplectic volumes,

vol : $B \to \mathbb{R}$

and $\iota: B \to \mathbb{Z}$ counting the components of the isotropy groups of \mathcal{G} .

Theorem

$$\mu_{DH} = (\iota \cdot vol)^2 \mu_{Aff}$$

Same assumptions as before. Consider the following measures on *B*: 1. μ_{Aff} -corresponding to the IAS on *B*.

2. μ_{DH} - the push-forward of the Liouville measure on \mathcal{G} .

Also consider the leafwise symplectic volumes,

vol : $B \to \mathbb{R}$

and $\iota: B \to \mathbb{Z}$ counting the components of the isotropy groups of \mathcal{G} .

Theorem

$$\mu_{DH} = (\iota \cdot vol)^2 \mu_{Aff}$$

Same assumptions as before. Consider the following measures on *B*: 1. μ_{Aff} -corresponding to the IAS on *B*.

2. μ_{DH} - the push-forward of the Liouville measure on \mathcal{G} .

Also consider the leafwise symplectic volumes,

 $\operatorname{vol}:B
ightarrow\mathbb{R}$

and $\iota: B \to \mathbb{Z}$ counting the components of the isotropy groups of \mathcal{G} .

Theorem

$$\mu_{DH} = (\iota \cdot vol)^2 \mu_{Aff}$$

Same assumptions as before. Consider the following measures on *B*: 1. μ_{Aff} -corresponding to the IAS on *B*.

2. μ_{DH} - the push-forward of the Liouville measure on \mathcal{G} .

Also consider the leafwise symplectic volumes,

 $\operatorname{vol}:B
ightarrow\mathbb{R}$

and $\iota: B \to \mathbb{Z}$ counting the components of the isotropy groups of \mathcal{G} .

Theorem

$$\mu_{DH} = (\iota \cdot vol)^2 \mu_{Aff}$$

The linear variation theorem The Duistermaat-Heckman theorem **The Weyl integration formula**

イロト イポト イヨト イヨト

With the same assumptions as before:

Theorem

If (M, π) is a regular Poisson manifold, with proper integration (\mathcal{G}, Ω) , then for any $f \in C_c^{\infty}(M)$:

$$\int_{M} f(x) \, \mathrm{d} \mu_{M}^{A\!f\!f}(x) = \int_{B} \left(\iota(b) \int_{S_{b}} f(y) \, \mathrm{d} \mu_{S_{b}}(y) \right) \, \mathrm{d} \mu_{A\!f\!f}(b),$$

where μ_{S_b} is the Liouville measure of the symplectic leaf S_b .

The linear variation theorem The Duistermaat-Heckman theorem **The Weyl integration formula**

イロト イポト イヨト イヨト

э

With the same assumptions as before:

Theorem

If (M, π) is a regular Poisson manifold, with proper integration (\mathcal{G}, Ω) , then for any $f \in C_c^{\infty}(M)$:

$$\int_{\mathcal{M}} f(x) \,\mathrm{d} \mu_{\mathcal{M}}^{A\!f\!f}(x) = \int_{\mathcal{B}} \left(\iota(b) \int_{\mathcal{S}_b} f(y) \,\mathrm{d} \mu_{\mathcal{S}_b}(y) \right) \,\mathrm{d} \mu_{A\!f\!f}(b),$$

where μ_{S_b} is the Liouville measure of the symplectic leaf S_b .