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their structure (... classification?).

fundamental properties.

Ongoing joint work with: David Martinez Torres, Rui Loja Fernandes:

Poisson Manifolds of Compact Types (PMCT 1), arXiv:1510.07108

Regular Poisson manifolds of compact types (PMCT 2):1603.00064.
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understanding compactness in Poisson Geometry.
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their structure (... classification?).

fundamental properties.

Breakthrough in the strong compact case: David Martinez Torres:

A Poisson manifold of strong compact type, arXiv:1312.7267.
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Lie and Poisson
Compactness in Lie
Compactness in Poisson

{
Lie Theory

}
↪→
{

Poisson Geometry
}

(g, [·, ·]) 7→ (g∗, πlin).(
structure constants ck

ij
7→ bivector

∑
ck

ij xk
∂
∂xi

∂
∂xj

)

Note

Roughly speaking:

Lie Theory = linear Poisson Geometry.

Aim: add "compactness" to the story.
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Lie theory:

Lie algebra g is of compact type

if there exists an integrating

Lie group G which is compact

Note

If the canonical integration of G (the unique simply connected one) is
compact: g- of strong compact type.
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Lie algebras �
� // Poisson structures

Lie groups

Lie
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� � // symplectic Lie groupoids

Lie

OO

To understand: compactness types for groupoids G ⇒ M:

compact: if G is compact.

s-proper: if the source map s : G → M is proper.

proper: if (s, t) : G → M ×M is proper.
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Definition

Consider one of the compactness types

C ∈ {compact, s-proper,proper}.

Say (M, π) is of C-type: if it comes from a symplectic Lie groupoid

(G,Ω) ⇒ M

which has property C.

Add the adjective "strong": if G is the canonical integration.
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Consider one of the compactness types

C ∈ {compact, s-proper,proper}.

Say (M, π) is of C-type: if it comes from a symplectic Lie groupoid

(G,Ω) ⇒ M

which has property C.

Add the adjective "strong": if G is the canonical integration.

Note: makes sense for general Dirac structures!
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Consider one of the compactness types

C ∈ {compact, s-proper,proper}.

Say (M, π) is of C-type: if it comes from a symplectic Lie groupoid

(G,Ω) ⇒ M

which has property C.

Add the adjective "strong": if G is the canonical integration.

strong compact +3

��

strong s-proper +3

��

strong proper
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compact +3 s-proper +3 proper
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Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Symplectic manifolds)

For symplectic (S, ω):

(s-)compact type⇐⇒ S is compact.

proper type: always.

strong: if also π1(S) is finite.

(integrating groupoids: S × S ⇒ M, or the fundamental groupoid).

Example (Lie algebras)

For (g∗, πlin):

compact type: never.

(s-)proper type⇐⇒ g is of compact type.

strong (s-) proper type⇐⇒ g is of strong compact type.

(integrating groupoids: (T ∗G,Ωcan). )
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Example (the Cartan Dirac structure ≡ the non-linear analogue of g∗)

It lives on G-simply connected compact Lie group.

Constructed using 〈·, ·〉g : g× g Ad-invariant.

No longer Poisson, but not far from it ... i.e. it is Dirac:

i.e. comes with a pre-symplectic foliation: the conjugacy classes
Cg ⊂ G endowed with (GHJW ’97)

ωg(û, v̂) :=

〈
Adg − Adg−1

2
u, v

〉
g

Fact: G with this Dirac structure is always of strong compact type!
(integrating groupoid: just G n G coming from conjugation).
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Example (The zero Poisson structure)

(M, π ≡ 0)-not of any strong C-type. The canonical integration:

(T ∗M,Ωcan) ⇒ M.

Other possible integrations: quotients T ∗M/Λ modulo lattices

Λ ⊂ T ∗M

which are Lagrangian (so that Ωcan descends). This is part of: integral affine
structures Λ on M

 1−1←→

 isomorphism classes of
symplectic torus bundles over M


So: proper integrations of (M,0)←→ integral affine structures on M.
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Example (Symplectic fibrations over Integral Affine)

Consider:
p : M → B

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of p make M into Poisson; this is:

not of strong compact type (unless B is a point),

is of compact type if B has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Symplectic fibrations over Integral Affine)

Consider:
p : M → B

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of p make M into Poisson; this is:

not of strong compact type (unless B is a point),

is of compact type if B has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Symplectic fibrations over Integral Affine)

Consider:
p : M → B

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of p make M into Poisson; this is:

not of strong compact type (unless B is a point),

is of compact type if B has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Symplectic fibrations over Integral Affine)

Consider:
p : M → B

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of p make M into Poisson; this is:

not of strong compact type (unless B is a point),

is of compact type if B has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Symplectic fibrations over Integral Affine)

Consider:
p : M → B

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of p make M into Poisson; this is:

not of strong compact type (unless B is a point),

is of compact type if B has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Symplectic fibrations over Integral Affine)

Consider:
p : M → B

symplectic fibration with connected fibers, everything compact.

Then the (symplectic) fibers of p make M into Poisson; this is:

not of strong compact type (unless B is a point),

is of compact type if B has an integral affine structure.

Note: in the strong case, the symplectic forms do vary!

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

µ : (Q, ω)→ g∗

and the reduced Poisson manifold

M = Q/G endowed with πred.

Assume action free and proper (so M is smooth), µ-connected fibers.

Then (M, πred):

is always of proper type.

is of s-proper type if µ is proper.

is of compact type only when G is finite!

(one can add "strong" if µ-fibers are 1-connected).

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

µ : (Q, ω)→ g∗

and the reduced Poisson manifold

M = Q/G endowed with πred.

Assume action free and proper (so M is smooth), µ-connected fibers.

Then (M, πred):

is always of proper type.

is of s-proper type if µ is proper.

is of compact type only when G is finite!

(one can add "strong" if µ-fibers are 1-connected).

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

µ : (Q, ω)→ g∗

and the reduced Poisson manifold

M = Q/G endowed with πred.

Assume action free and proper (so M is smooth), µ-connected fibers.

Then (M, πred):

is always of proper type.

is of s-proper type if µ is proper.

is of compact type only when G is finite!

(one can add "strong" if µ-fibers are 1-connected).

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

µ : (Q, ω)→ g∗

and the reduced Poisson manifold

M = Q/G endowed with πred.

Assume action free and proper (so M is smooth), µ-connected fibers.

Then (M, πred):

is always of proper type.

is of s-proper type if µ is proper.

is of compact type only when G is finite!

(one can add "strong" if µ-fibers are 1-connected).

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

µ : (Q, ω)→ g∗

and the reduced Poisson manifold

M = Q/G endowed with πred.

Assume action free and proper (so M is smooth), µ-connected fibers.

Then (M, πred):

is always of proper type.

is of s-proper type if µ is proper.

is of compact type only when G is finite!

(one can add "strong" if µ-fibers are 1-connected).

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

µ : (Q, ω)→ g∗

and the reduced Poisson manifold

M = Q/G endowed with πred.

Assume action free and proper (so M is smooth), µ-connected fibers.

Then (M, πred):

is always of proper type.

is of s-proper type if µ is proper.

is of compact type only when G is finite!

(one can add "strong" if µ-fibers are 1-connected).

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (Reduction)

Consider: compact Lie group G, a G-Hamiltonian space

µ : (Q, ω)→ g∗

and the reduced Poisson manifold

M = Q/G endowed with πred.

Assume action free and proper (so M is smooth), µ-connected fibers.

Then (M, πred):

is always of proper type.

is of s-proper type if µ is proper.

is of compact type only when G is finite!

(one can add "strong" if µ-fibers are 1-connected).

Marius Crainic PMCTs



Definition
Examples

The structure of the PMCTS
Linear variation, Weyl integration formula, Duistermaat-Heckman

Symplectic, and Lie-theoretic
The zero Poisson structure and Integral Affine Geometry
Reduction and Martinez-Torres’ example
Submanifolds

Example (S1 quasi-Hamiltonian spaces)

Similalrly for M = Q/S1 for an S1-quasi-Hamiltonian space

µ : (Q, ω)→ S1.

Assume the symplectic leaves are 1-connected. Then:

If µ-connected fibers and free action, M is of compact type.

For strong compactness one needs 1-connected fibers or,⇐⇒,
contractible S1-orbits (? by McDuff in ’88, + by Kotschick in ’06).

Theorem (Kotschick, Martinez-Torres)

There exists a fibration
p : M5 → S1

with fibers K 3-surfaces carrying symplectic forms such that M5

becomes a Poisson manifold of strong compact type.
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Submanifolds:

Warning

Compactness types are, in general (and most often!), not inherited by
Poisson submanifolds.

- example: the sphere
Sg∗ ⊂ g∗

where g is a Lie algebra of strong compact type. Then Sg∗ is
(almost) never of proper type.

+ example: if (M, π) is of proper type, then it comes with an "orbit
type" stratification, with strata being (regular) Poisson
submanifolds. They are always of proper type!
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Symplectic gerbes

The structure of PMCTs- main points:

0. Desingularization.

1. Orbifolds.

2. Integral Affine Geometry.

3. Symplectic gerbes.

Note

after step 0: we restrict to the regular case, concentrate on the
space of symplectic leaves

B := M/Fπ (Fπ − the symplectic foliation)

and the structure induced on it.This is PMCT2.

step 0 and the return to the general case is PMCT3.
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Passing to the regular case
Orbifolds
Integral Affine Geometry
Symplectic gerbes

Desingularization of (M, π): desingularize via blow-ups, but do
everything at once, intrinsically:

M̂ := {(x , t) : x ∈ M, t ⊂ gx maximal abelian},

where gx (π) = Kerπ]x , the isotropy Lie algebra at x ∈ M. Properties:

M̂ is smooth.

comes with a Dirac structure (Poisson on the regular part).

it is regular (!) and of proper type(!)

Example

In the linear case M = g∗,

M̂ = G/T ×W t∗

It follows that the Grothendieck simultaneous resolution, the Weyl
integration formula, etc are 100% Poisson geometric!
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Passing to the regular case
Orbifolds
Integral Affine Geometry
Symplectic gerbes

Orbifold structure: consider the leaf space

B := M/Fπ

of the symplectic foliation Fπ (very pathological in general!).

Theorem

If (M, π) is a of proper type then B is an orbifold (and any proper
integration gives rise to a canonical orbifold atlass/structure on B).

If the symplectic leaves are simply-connected, then B is smooth.

Explanation: if G integrates (M, π), form

1→ T → G → B → 1

where T is made of the connected components of the isotropies Gx .
The quotient B is an orbifold atlass since it has finite isotropy groups.
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Passing to the regular case
Orbifolds
Integral Affine Geometry
Symplectic gerbes

Integral affine geometry: it arises from the variation of the symplectic
forms (see blackboard).

Different description: in the short exact sequence

1→ T → G → B → 1,

the restriction of Ω from G makes T into a pre-symplectic torus bundle
over M. Fact: this comes from a symplectic torus bundle over B- i.e.
from an IAS on B!

Theorem

For any regular Poisson manifold (M, π) of C-type its leaf space
B = M/Fπ is an integral affine orbifold: any integration having
property C gives rise to an integral orbifold structure on B. Moreover,
the underlying classical orbifold is good.
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Passing to the regular case
Orbifolds
Integral Affine Geometry
Symplectic gerbes

Classical S1-gerbes over B: higher versions of principal S1-bundles.

Several descriptions varying from "down to earth" to "more intrinsic":

1. in terms of transition functions/S1-valued Cech cocycles on B.

2. in terms of central extensions of Lie groupoids

1→ S1 → G → B → 1

where B models the smooth structure on B.

Here 1.⇐⇒ 2.: via the Dixmier-Douady class of an extension.

Several variations, e.g. the obvious ones:

replace S1 by a torus bundle T over B (T -gerbes).

replace B by an orbifold, or even by a general Lie groupoids.
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replace B by an orbifold, or even by a general Lie groupoids.
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Symplectic gerbes: the same as above, just that:

we start with a symplectic torus bundle T over B (IAS!).

we look at symplectic central extensions

1→ T → (G,Ω)→ B → 1

(hence Ω induces the given symplectic form on T ).

Symplectic T -gerbes over B: symplectic Morita equivalence classes
of such extensions.They form a group w.r.t. "the fusion product".

Theorem

Extensions as above are classified by a cohomology class

c2(G,Ω) ∈ H2(B, TLagr),

and this induces an isomorphism between the group of symplectic
T -gerbes over B and H2(B, TLagr).
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Symplectic gerbes-back to PMCTs: for a proper integration (G,Ω) of
(M, π) we get the IAS on the leaf space B, i.e. a symplectic torus
bundle, and a class

c2(G,Ω) ∈ H2(B, TLagr).

Theorem

c2(G,Ω) = 0 iff G arise from (free) T -Hamiltonian reduction or,
equivalently, from a proper isotropic realization of (M, π).
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The linear variation theorem
The Duistermaat-Heckman theorem
The Weyl integration formula

Here: (M, π) regular of s-proper type with 1-connected leaves; then B
is smooth, we have a locally trivial fibration

p : M → B,

and think of M as a family {(Sb, ωb)}b∈B of symplectic manifolds.

Fix b0 ∈ B with fiber (S0, ω0); realize B̃ using paths starting at b0.

1. The Gauss-Manin connection allows us to look at

γ∗([ωγ(1)])− [ω0] ∈ H2(S0).

2. The IAS on B induced by G gives rise to the developing map

dev : B̃ → Rq .

3. s−1
G (b0) =a principal Tq-bundle over S0; Chern classes denoted

c1, . . . , cq ∈ H2(S0).

Theorem

One has the linear variation formula:

γ∗([ωγ(1)])− [ω0] = dev1(γ)c1 + . . .+ devq(γ)cq .
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Same assumptions as before. Consider the following measures on B:
1. µAff-corresponding to the IAS on B.

2. µDH- the push-forward of the Liouville measure on G.

Also consider the leafwise symplectic volumes,

vol : B → R

and ι : B → Z counting the components of the isotropy groups of G.

Theorem

µDH = (ι · vol)2µAff

and (ι · vol)2 is polynomial w.r.t. the integral affine structure on B.
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With the same assumptions as before:

Theorem

If (M, π) is a regular Poisson manifold, with proper integration (G,Ω),
then for any f ∈ C∞c (M):∫

M
f (x) dµAff

M (x) =

∫
B

(
ι(b)

∫
Sb

f (y) dµSb (y)

)
dµAff(b),

where µSb is the Liouville measure of the symplectic leaf Sb.
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