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Time function: Classical and Quantum
The problem of Time in Quantum Mechanics

* Time of arrival;
Is Time a quantum observable (self-adjoint operator)? ——» o Time of occurrence;

* Tunneling Time.
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* Counterexamples;

Pauli's theorem
* Maximally symmetric Time operators;

o Time POVMs.
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v v

Time in QM. is dynamical. Self-adjoint operators are not enough.

Our proposal:
A Time function to define simultaneity.

Aniello, P. and Ciaglia, F. M. and Di Cosmo, F. and Marmo, G. and Pérez-Pardo, J. M.



Geometric aspects of simultaneity
Twofold role of Time in physical phenomena

Causality: the dynamical evolution is e
perceived as an ordered sequence of T o

states of the system
(I)T (pl
Causality and Simultaneity are “transversal to each other”

O, (p2)  Simultaneity: mutual relation between

states of different dynamical trajectories
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Geometric aspects of simultaneity

How to define simultaneity

Time function:
T (p) #T (®-(p)) VT #0 P,
A state can never be simultaneous o, ) i P (p2)
to its dynamical evolution e

o,
T (p1) = T (p3) — T (&, (p1)) = T (, (p2)) | (p1)

Simultaneity between states is preserved The level sets d’eﬁne the

under the dynamical evolution simultaneous states

* The time functions is a dynamical object
® [t can be defined both for classical and quantum systems without the need of quantization

* In the quantum setting, it is not associated to any self-adjoint operator
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Time function: Classical and Quantum

Free point particle: Classical Hamiltonian Mechanics:

e LA L
ynamtca[ trajectories ~* The space of States is a symplectic manifold (73 g w)

"o The observables are smooth functions:

( — c :
~ Dy (T) — Py - The dynamical evolution @ is the flow of a vector
O ((] 3 m = 4  field I associated to a Hamiltonian function [ :
() =piT+a | irw = dH

The Time function is not defined on the fixed points of the dynamics (particles at rest).

A Simultaneous states Q'fime ﬁl«nCtiOﬂ.’

p - =
pP-q

p2

/ T(C];ﬁ):p—2:> e O (g IS et

In general, the Time function will be defined on an

open dense subset P of the space of states, which
is invariant w.r.t. the dynamical evolution

Fixed points
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Time function: Classical and Quantum

p A
1-D harmonic oscillator:

Dynamical trajectories: / \
[ p(7) = —mugsin(vT) — pcos(vT) ﬁm s

P, (q;p) =«

— : Fixed
\ Q(T) = QCOS(VT) = % SlIl(VT) ixed point

‘Because of periodic orbits the global transversality between causality and simultaneity is lost

The simultaneity relation becomes periodic

Some well-Known examples of periodic simultaneity relations:

Mechanical clock. Ancient Maya calendar

Aniello, P. and Ciaglia, F. M. and Di Cosmo, F. and Marmo, G. and Pérez-Pardo, J. M.



Time function: Classical and Quantum

Dynamical trajectories:
1-D harmonic oscillator = :

. Periodic Time function (with period Tr) K \

> ((I)T (p)) =T ((I)T—HWT (p)) Vk € Z ﬁ:m >
)

»T (p1) =T (p2) = T (@, (p1)) =T (D, (pg)) ™

The periodic Time function takes values in the circle, the non-trivial topology of the
circle allows to handle the periodicity of the orbits
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Time function: Classical and Quantum

_ Dynamical trajectories:
1-D harmonic oscillator R neous statalpl lp

- Periodic Time function (with period TT)

T (D, (p) = T (®r s ey (p)) Vk € Z

»T (p1) =T (p2) = T(®,(p1)) =T (P, (p2)) Fixed poin

The periodic Time function takes values in the circle, the non-trivial topology of the
circle allows to handle the periodicity of the orbits

The reduced space of states is diffeomorphic to the cilinder:
U: P, 2R* - {(0,0)} - S* xR*
The periodic Time function is the just the projection on the circle: 1" = prg1 o W
The simultaneous states are points on a radial line
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Time function: Classical and Quantum
Geometric formulation of Quantum Mechanics

The carrier space is a Hilbert space ‘The observables are self-adjoint linear operators
H = (CP on the Hilbert space:
EH PN A A=A

The pure states D+ are rays of the Hilbert space
b)) ~ |8) +— [¥) =re|), reRT, & € U(1)

The space of pure states is the complex projective space C'P(n — 1) which is a Kahler manifold:

H — {0} g(X;Y) =w(J(X);Y) VXY € X(CP(n—1))
v R* Observables are represented by expectation value functions:
g2n—1 (00) (Y| A o)) eaA+bB = aeA + ben
CAY {easeB} =€a B
. () (WPl) (A B]
Unitary evolutions are generated by a Hamiltonian operator:
CP(n—1)

ipw — deH
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Time function: Classical and Quantum

The Qubit case
The complex projective space CP(1)
1s c[iffeomomﬁic toa2-D spﬁere: Hamiltonian operator H= 121 ‘1> <1| + 19 |2> <2|
1) Tigenvalues V1, V2 Figenvectors |1) ,|2)

Figenprojectors E1 = [1)(1], E; =[2)(2[, E; + E; =1

7,
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Time function: Classical and Quantum

The Qubit case
The complex projective space CP(1)
is Cﬁ]{f@OﬂlOTPﬁiC toa2-D spﬁere: Hamiltonian operator H= 121 ‘1> <1| + 19 |2> <2’
1) Tigenvalues V1, V2 Figenvectors |1) ,|2)

Figenprojectors E1 = [1)(1], E; =[2)(2[, E; + E; =1

Expectation value functions
€] ‘= €r,, €2 :=€ER, , CH = V1€1 + 2€9

These are constants of the motion in involution

{e1;e2} =0, {em;e1} =0, {em;ea} =0

They are not linearly independent:
e1+es=1— en=1—¢q

7 S

The same is true for their associated Hamiltonian vector fields:

[XlaXZ]:Oa[Xlar] :Oa[X27F]:Oa )(1—'_)(2:O
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Time function: Classical and Quantum

The Qubit case
gl point The dynamical vector field reads:
|1> = V1X1 S V2X2 — (Vl "3 1/2) X1

The dynamical trajectories are circles with
center on the z-axis.
The North and South poles are fixed points
(the eigenvectors of the Hamiltonian operator).
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Time function: Classical and Quantum

The Qubit case
Fixed point The dynamical vector field reads:
|1> F:V1X1+V2X2 — (Vl _1/2)X1

The dynamical trajectories are circles with
center on the z-axis.
The North and South poles are fixed points
(the eigenvectors of the Hamiltonian operator).

. ‘The reduced space of states is diffeomorphic
12) to an open finite cilinder:

U: P, — St x1T

Normalized vector in the Hilbert space:

) 8 1 101 162 = r2c” ( o 2(01—02) )
[¢) = N O EC: (r1 €01 [1) + rp €2 |2)) = T G m 1) +12)
The diffeomorphism reads: W (py,) = (ez(el_ez) : (7“1)27:; (7“2)2)
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Time function: Classical and Quantum
The Qubit case

Fixed point

The qubit case is mathematically equivalent to
the 1-D harmonic oscillator!!!

The Time function is:

T =prqgi oW T (py) = at(01—02)

T o q)T (pw) _— 62(91 —92) e—’L(l/l —1/2)’7'
The sets of simultaneous states are the meridians on the 2-D sphere.

The periodic Time function is not the expectation value function of

some self-adjoint linear operator.
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Time function: Classical and Quantum

Higher-dimensional generalization
n
Hamiltonian operator H = E v B
j=1
Expectation value functions  €j *— €E; 5 {ej;ex} =0={e;;en}
There are (n-1) linearly independent constants of the motion.

These constants of the motion are functionally independent on the reduced space of states:

Pe:=A{py € CP(n—1): (j|) #0 Vj =1,....n}

The reduced space of states is diffeomorphic to a product: ¥ : P, — (S) S

3 a7 ), B .'Ln—_n.,r]‘. Tn_]‘
\P(p¢):(e(910),,e(9 16)7ﬁ7..'7N2)

There is a family of periodic Time functions:
Tj . (I)T (p’eb) = ez(Hj —0.,) e’l,(l/n — V)T
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Time function: Classical and Quantum

Conclusions:

* The simultaneity aspect of Time in QM. is captured by the Time function;
* The Time function is intimately connected to the dynamics of the system;
* In general, the Time function of a quantum system is not associated to an operator;

* The Time function is well-defined for finite-level quantum systems, whereas the
Time operator is not;

* The definition of a Time function is well-suited for both Classical and Quantum
systems without the need to invoKe a quantization procedure;

* [n principle, the Time function can be defined for dissipative systems.
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Thank_ You for Your attention

Time in Quantum Mechanics
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