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Overview

Variational formulations in mechanics - a powerful tool to study:

– Symmetry and conservation laws;

– Reduction;

– Inclusion of constraints;

– Structure preserving numerical schemes;

– Derivation of new models;

– ....

Question: how can we extend these variational formulations to nonequilibrium

thermodynamics?

Various variational principles related to nonequilibrium thermodynamics:

Principle of least dissipation Onsager [1931], Onsager, Machlup [1953];

Principle of minimum entropy production Prigogine [1947], Glansdorff, Prigogine [1971]

And others: Gyarmati [1970], Ichiyanagi [1994], Biot [1975], Fukagawa, Fujitani [2012].

Our goal: develop a variational formulation that:

– Produces the complete set of evolution equations of the thermodynamical system

– Recovers the Hamilton principle ”in absence of irreversible processes”.
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1. What is nonequilibrium thermodynamics?

1.1 Thermodynamics:
In a classical historical sense: not a dynamical theory!!

– Started during the industrialisation period;

– Closely related to the need to improve the efficiency of steam engines, i.e., the efficiency of

the conversion heat → work;

– Foundational work of Carnot in is book 1824:

Nicolas Léonard Sadi Carnot (1796-1832) A famous movie from 1926

– Provides an upper limit on the efficiency η that any classical thermodynamic engine can

achieve during the conversion heat → work

η =
Work done by the system

heat put into the system
≤ 1−

Tcold

Thot

– The famous Carnot cycle has η = 1− Tcold
Thot

(because of its reversibility).

François Gay-Balmaz (CNRS-ENS-PARIS) Nonequilibrium thermodynamics 4 / 50



– Many contributors to the field of thermodynamics: Carnot (1796-1832), Mayer

(1814-1878), Joule (1818-1899), Clausius (1822-1888), Kelvin (1824-1907), Maxwell

(1831-1879), Rayleigh (1842-1919), ....

– Since these foundational works until 1960, thermodynamics has been a

phenomenological theory mainly restricted to the description of either:

equilibrium states

quasi-static processes: processes that happen slowly enough for the system to

remain in internal equilibrium.

; does not aim to describe the dynamic evolution of the system.

– Such a classical theory can be developed in a well established setting (Gibbs [1902]),

governed by the well-known first and second laws.

- Main quantities:

The energy [J] of the system: the ability of the system to do work;

The entropy [J/K] of the system: a measure of its disorder and of the

unavailability of its energy to do work.

(Clausius, based on Carnot)
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- The two laws of thermodynamics (more precise later):

First law: For any system: ∆U = ∆W ext + ∆Qext + ∆Mext

Second law: For an adiabatically closed system (∆Qext = 0 = ∆Mext): ∆S ≥ 0.

- Usual quantities in thermodynamics (e.g., case of a fluid with one component):

→ Extensive variables:

Energy U, Entropy S , Number of moles N, Volume V

Fundamental relation:

U = U(S ,V ,N) (energy representation) homogeneous of degree one;

S = S(U,V ,N) (entropy representation) homogeneous of degree one.

→ Intensive variables: in the energy representation:

Temperature T =
∂U

∂S
, Pressure p = − ∂U

∂V
, Chemical potential µ =

∂U

∂N

- Extensive VS intensive variables:

+ =

V V 2V

T T T

François Gay-Balmaz (CNRS-ENS-PARIS) Nonequilibrium thermodynamics 6 / 50



1.2 Nonequilibrium thermodynamics:

Goal: describe the macroscopic evolution of thermodynamical systems out of equilibrium.

- Also useful to predict final equilibrium states!

- There are systems, e.g., the controversial adiabatic piston problem, for which classical

thermodynamics cannot predict the final equilibrium state, Gruber [1999].

F
ext

§

m

P
ext
H

`

1 m3 m2
T         S2

2
,

T         S1
1
,

1

§3

§2

®

 0=  0=
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ext The adiabatic piston problem:

- Two fixed cylinders, one adiabatic movable piston

- A brake maintain first the piston at rest

- Each two fluids are in equilibrium with

p1(0),T1(0),V1(0) and p2(0),T2(0),V2(0)

- The brake is released:

; find the final equilibrium state

- Importance of the transport phenomena:

matter (e.g., diffusion), heat (e.g., conduction), momentum (e.g., viscosity)

- Importance of the expression of the associated entropy production involving possible

cross-effects (Onsager’s relations).

- Deep impact in all branches of engineering and sciences
E.g., - successfully applied to biological processes such as protein folding and transport through membranes;

E.g., - fundamental for atmospheric circulation and weather prediction;

E.g., - fundamental for the dynamics of thermal, multiphase, multicomponent, or viscoelastic fluids.
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Big names in non-equilibrium thermodynamics include:
Onsager (1903-1976) Nobel prize in chemistry, Stueckelberg (1905-1984),
Meixner (1908-1994), Prigogine (1917-2003) Nobel prize in chemistry.

Non-equilibrium thermodynamics is a work in progress, not an established edifice.

Since 1960 Stueckelberg has consistently presented thermodynamics in a way similar to
mechanics, i.e. as a phenomenological theory with time evolution described by first order
differential equations ; new point of view on macroscopic physical theories

−→

Our variational formulations will reflect these inclusions.
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2. The two laws of nonequilibrium thermodynamics
(Stueckelberg’s formulation)

- Σ a physical system, Σext its exterior;

- The state of the system is defined by a set of state variables (usually a set of
mechanical variables and thermal variables);

- State functions are functions of these variables.

First law:

For every system Σ, there exists an extensive scalar state function E , called the
energy, which satisfies

d

dt
E (t) = Pext

W (t) + Pext
H (t) + Pext

M (t), where:

Pext
W (t): power due to external forces acting on the mechanical variables of Σ;

Pext
H (t): power due to heat transfer from the exterior to Σ;

Pext
M (t): power due to matter transfer from the exterior to Σ.

- Sometimes not possible to clearly distinguish between these three forms of
power (pour hot water into cold water...)
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Definitions:

A system is said to be closed if there is no exchange of matter, i.e.,
Pext

M (t) = 0.

A system is said to be adiabatically closed if it is closed and there is no heat
exchanges, i.e., Pext

M (t) = Pext
H (t) = 0.

A system is said to be isolated if it is adiabatically closed and there is no
mechanical power exchange, i.e., Pext

M (t) = Pext
H (t) = Pext

W (t) = 0.

- From the first law, it follows that the energy of an isolated system is constant.
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Second law:

For every system Σ, there exists an extensive scalar state function S , called
entropy, which obeys the following two conditions

(a) Evolution part:
If the system is adiabatically closed, the entropy S is a non-decreasing
function with respect to time, i.e.,

d

dt
S(t) = I (t) ≥ 0,

where I (t) is the entropy production rate of the system accounting for the
irreversibility of internal processes.

(b) Equilibrium part:
If the system is isolated, as time tends to infinity the entropy tends towards
a finite local maximum of the function S over all the thermodynamic states
ρ compatible with the system, i.e.,

lim
t→+∞

S(t) = max
ρ compatible

S [ρ].
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Definition:

The evolution of an isolated system is said to be reversible if I (t) = 0,
namely, the entropy is constant.

The evolution of a system Σ is said to be reversible, if the evolution of the
total isolated system with which Σ interacts is reversible.

- Cyclic engines (∆SEng = 0). The isolate system is ΣEng ∪ Σh ∪ Σc .
Carnot is reversible ∆Stot = 0, Rankine is irreverisibe ∆Stot > 0

Definition (Stueckelberg):

A simple system Σ is a macroscopic system for which one (scalar) thermal
variable τ and a finite set of mechanical variables are sufficient to describe
entirely the state of the system.
From the second law of thermodynamics, we can always choose τ = S .

A discrete system Σ is a collection Σ = ∪N
A=1ΣA of a finite number of

interacting simple systems ΣA.

- The adiabatic piston is not a simple system (S1 and S2)
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INTERMEDIATE SUMMARY

Classical thermodynamics: field created during the industrialisation period;
study of equilibrium states and quasi-static processes.

Main concepts: energy and entropy; the two laws;
usual variables: U,S ,V ,N,T , p, µ.

A controversial problem: the adiabatic piston problem cannot be solved in
the setting of classical thermodynamics. One needs the evolution equations.

Nonequilibrium thermodynamics: a field containing macroscopic disciplines:
classical mechanics, electromagnetism, fluid mechanics, ....

; Our variational formulation has to reflect this

Stueckelberg’s formulation of the two laws

Properties of a system: closed, adiabatically closed, isolate, reversible,
simple, or discrete.

François Gay-Balmaz (CNRS-ENS-PARIS) Nonequilibrium thermodynamics 13 / 50



3. Variational principles in mechanics

3.1 Mechanical systems

Σ a mechanical system.
Q configuration manifold;
state space: the tangent bundle TQ 3 (q, v);

- Examples of configuration spaces:

Material point Q = R3 3 x

Rigid body Q = SO(3) 3 A

Fluid mechanics Q = Diff(D) 3 ϕ, X ∈ D 7→ ϕ(t,X) ∈ D

Continuum mechanics Q = Emb(D,R3)

Electrically charged fluids Q = Diff(D)︸ ︷︷ ︸
fluid motion

s C∞(D,U(1))︸ ︷︷ ︸
charge

Liquid crystals Q = Diff(D)︸ ︷︷ ︸
fluid motion

s C∞(D,SO(3))︸ ︷︷ ︸
microstructure
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- Equations of motions for mechanical systems

Naturally described and studied by using the Lagrangian and Hamiltonian
formalisms

Underlying abstract structures: variational principles, symplectic and Poisson
structures

3.2 Hamilton’s principle:

- Lagrangian function

L = L(q, q̇) : TQ → R L = kinetic energy− potential energy

- Equations of motion: q(t) critical curve of the action functional

A(q( )) :=

∫ T

0

L(q(t), q̇(t))dt

among curves in Q with fixed endpoints: q(0) = q0, q(T ) = qT .

; Hamilton’s principle:

0 = δ

∫ T

0

L(q(t), q̇(t))dt =

∫ T

0

(
∂L

∂q
− d

dt

∂L

∂q̇

)
︸ ︷︷ ︸

Euler-Lagrange equations

δq dt +
∂L

∂q̇
δq

∣∣∣∣T
0︸ ︷︷ ︸

Lagrangian 1-form on TQ
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3.3 Forced mechanical systems

System not isolated in mechanics ; Pext
W .

External force F ext : TQ → T ∗Q can be easily included in the variational
principle

- Hamilton’s principle with force

δ

∫ T

0

L(q(t), q̇(t))dt +

∫ T

0

〈
F ext(q(t), q̇(t)), δq(t)

〉
dt = 0

- Equations of motion
d

dt

∂L

∂q̇
− ∂L

∂q
= F ext

- Energy

E (q, q̇) =

〈
∂L

∂q̇
, q̇

〉
− L(q, q̇)

d

dt
E =

〈
F ext, q̇

〉
= Pext

W : first law in mechanics
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3.4 Nonholonomic mechanical systems:

Rolling constraint: rolling ball, bike, cars,...

Electrical network:ffffffffffffffffffffffffffffffffffInfinite dimensional example:

(Kirchhoff current law:
constraint distribution on the configuration charge space)

ffffffffffffffffffffff; constraint distribution ∆ ⊂ TQ.
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Q configuration manifold, L : TQ → R Lagrangian.

Nonholonomic linear constraint ∆ ⊂ TQ, vector subbundle.

- Lagrange-d’Alembert principle

d

dε

∣∣∣∣
ε=0

∫ T

0

L(qε, q̇ε)dt = 0, where δq =
d

dε

∣∣∣∣
ε=0

qε ∈ ∆ and q̇ε=0 ∈ ∆

- Equations of motion
d

dt

∂L

∂q̇
− ∂L

∂q
∈ ∆◦, q̇ ∈ ∆

Can be written with a Lagrange multiplier: ∆ = kerω

d

dt

∂L

∂q̇
− ∂L

∂q
= λ · ω(q), ω(q) · q̇ = 0

This is NOT a Lagrange multiplier variational principle!
(”vakonomic mechanics”, useful in control problems)
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Variational principles in Lagrangian mechanics:

A systematic and efficient way to recover equations or propose new models
in classical mechanics

Naturally extend to include external forces and linear nonholonomic
constraints

A natural setting to study the symmetries of the system and deduce the
corresponding conservation laws via Noether’s theorem

Admits a temporal discretization useful to derive numerical schemes
(variational integrators)
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4. Variational formulation for the nonequilibrium
thermodynamics of simple discrete systems

4.1 From mechanics to nonequilibrium thermodynamics: why do we need
the entropy?
Mass-spring system with friction: mass m, spring constant k, friction force

{
F fr(x, ẋ) = −λ ẋ

|ẋ| if ẋ 6= 0, λ > 0

|F fr| ≤ F fr
max if ẋ = 0

Emec = 1
2 mẋ2 + 1

2 kx2

Equations of motion: mẍ = −kx + F fr

Experiment in two steps:

(I) 0→ 1: Relaxation to an equilibrium

Initial mechanical state: x0 6= 0, ẋ0 = 0.

Damped oscillations until it reaches equilibrium state: x1 = 0, ẋ1 = 0.

Computation d
dt Emech = ẋF fr = −λ|ẋ|

Isolate system: First Law ⇒ d
dt E = 0, where E is state function

⇒ there exists some state function U, called internal energy,

⇒ such that E = Emech + U

(II) 1→ 2: Back to initial position by applying an external force F ext

First Law: d
dt E = Pext

W = F extẋ

⇒ 0 < W ext =

∫ t2

t1

Pext
W dt = E2 − E1

(I )
= E2 − E0 = U2 − U0

Original and final mechanical states are identical & E is a state function & U2 > U1

⇒ there exists an additional state variable; Second Law ⇒ this variable is the entropy.
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First and Second Laws force us to introduce a new non-mechanical state
variable, the entropy, to distinguish the final state from the original one.

- Energy:

E (x , ẋ ,S) =
1

2
mẋ2 +

1

2
kx2 + U(S)

- Lagrangian: a function L = L(q, v ,S) : TQ × R→ R

- Equation for S : If the system is isolate

0 =
d

dt
E = F frẋ + T Ṡ , T :=

∂U

∂S
the temperature.

; Complete system of evolution equations
mẍ = −kx + F fr mechanical equation

Ṡ = − 1

T
F frẋ =

λ

T
|ẋ | thermal equation
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4.2 The variational formulation (FGB & Yoshimura [2016])

Theorem
Consider a simple closed system: L : TQ × R→ R, F ext,F fr : TQ × R→ T∗Q, Pext

H .
Suppose (q(t),S(t)) satisfies

δ

∫ t2

t1

L(q, q̇,S)dt +

∫ t2

t1

〈
F ext(q, q̇, S), δq

〉
= 0, Variational Condition

with nonlinear nonholonomic constraint

∂L

∂S
(q, q̇, S)Ṡ =

〈
F fr(q, q̇, S), q̇

〉
− Pext

H , Phenomenological Constraint

and with respect to variations δq and δS subject to

∂L

∂S
(q, q̇, S)δS =

〈
F fr(q, q̇, S), δq

〉
, Variational Constraint

with δq(t1) = δq(t2) = 0.
Then, the curve (q(t), S(t)) satisfies

d

dt

∂L

∂q̇
−
∂L

∂q
= F ext(q, q̇, S) + F fr(q, q̇, S),

∂L

∂S
Ṡ =

〈
F fr(q, q̇, S), q̇

〉
− Pext

H .
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Roughly speaking: we include thermodynamics by imposing the Second Law as a
nonholonomic nonlinear constraint;

Pass from the phenomenological constraint to the variational constraint in a
”similar way” with nonholonomic mechanics: (more later...)

q̇ ∈ ∆ ; δq ∈ ∆.

Assume Σ is isolate. In this case the evolution of the system is reversible if and
only if

〈
F fr(q(t), q̇(t)), q̇(t)

〉
= 0. The system is reversible if and only if F fr = 0.

Proof. Applying

δ

∫ t2

t1

L(q, q̇, S)dt +

∫ t2

t1

〈
F ext(q, q̇, S), δq

〉
= 0

and using δq(t1) = δq(t2) = 0, we get∫ t2

t1

(〈
∂L

∂q
− d

dt

∂L

∂q̇
+ F ext, δq

〉
+
∂L

∂S
δS

)
dt = 0.

Variational constraint ; replace ∂L
∂S
δS by the virtual work of the friction force〈

F fr(q, q̇,S), δq
〉
. �
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Example 1: piston

System

x

F
ext

m

F fr

P
ext
H

ext

ideal gas confined by a piston in a cylinder
closed system: Pext

M = 0
state variables (x , ẋ ,S)
derived in Gruber [1999]
from Stueckelberg’s two laws

Lagrangian and forces

L(x , ẋ ,S) =
1

2
mẋ2 − U(x , S), U(x , S) := U(S ,V = Ax ,N0)

U(S ,N,V ) = U0e
1

cR

(
S
N
− S0

N0

)(
N

N0

) 1
c

+1(
V0

V

) 1
c

: internal energy of the gas

deduced from U = cNRT and pV = NRT , c the gas constant (e.g. c = 3
2

for
monoatomic gas, c = 5

2
for diatomic gas), R the universal gas constant.

Friction force
F fr(x , ẋ , S) = −λ(x , S)ẋ

λ(x , S) ≥ 0 phenomenological coefficient.
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Phenomenological constraint

∂U
∂S

Ṡ = λ(x ,S)ẋ2 + Pext
H

Variational formulation

δ

∫ t2

t1

[
1

2
mẋ2 − U(x ,S)

]
dt +

∫ t2

t1

〈
F ext(q, q̇,S), δq

〉
dt = 0,

subject to the variational constraint

∂U
∂S

δS = λ(x ,S)ẋδx .

Evolution equations{
mẍ = p(x ,S)A + F ext − λ(x ,S)ẋ mechanical equation

T Ṡ = λ(x ,S)ẋ2 + Pext
H thermal equation

where T = ∂U
∂S and p := − ∂U

∂V .
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Example 2: including matter transport

System

¹ ¹ ¹

J J
(2)(1)

(m)

m1 2Reservoir Reservoir

Membrane

One chemical
component

(1) (2)

Two reservoirs k = 1, 2
one membrane k = m
Number of moles N(k), k = 1, 2,m
State variables (N(1),N(2),N(m),S)
J(1) flux ”reservoir 1 → membrane”
J(2) flux ”membrane → reservoir 2”
internal energy U(S ,N(1),N(2),N(m))
chemical potentials µ(k) = ∂U

∂N(k)

Entropy production:

Ṡ = − 1

T

(
J(1)(µ(1) − µ(m)) + J(2)(µ(m) − µ(2))

)
see, e.g., Oster, Perelson, Katchalsky [1973]. The fluxes are determined
phenomenologically.

How to interpret this as a phenomenological constraint to which is naturally
associated a variational constraint?

Define the thermodynamic displacements W(k) such that Ẇ(k) = µ(k).

François Gay-Balmaz (CNRS-ENS-PARIS) Nonequilibrium thermodynamics 26 / 50



Lagrangian
L(S ,N(1),N(2),N(m)) = −U(S ,N(1),N(2),N(m))

Phenomenological constraint
Using the thermodynamic displacements W(k)

∂L

∂S
Ṡ = J(1)(Ẇ(1) − Ẇ(m)) + J(2)(Ẇ(m) − Ẇ(2))

Other constraint mass conservation

Ṅ(1) + Ṅ(2) + Ṅ(m) = 0

Variational formulation
We need equations of evolution + thermodynamic displacements ;

δ

∫ t2

t1

(
L(S ,N(1),N(2),N(m)) + Ẇ(k)N

(k)
)

dt = 0,

subject to the variational constraints

∂L

∂S
δS = J(1)(δW(1) − δW(m)) + J(2)(δW(m) − δW(2)), δN(1) + δN(2) + δN(m) = 0,

with δW(k)(ti ) = 0, for k = 1, 2,m and i = 1, 2
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Evolution equations{
Ṅ(1) = J(1), Ṅ(m) = −J(1) + J(2), Ṅ(2) = −J(2) matter diffusion equation

T Ṡ = −J(1)(µ(1) − µ(m))− J(2)(µ(m) − µ(2)) thermal equation

where T = ∂U
∂S and p := − ∂U

∂V .

François Gay-Balmaz (CNRS-ENS-PARIS) Nonequilibrium thermodynamics 28 / 50



Example 3: chemical reactions

System

System of R chemical components I = 1, ...,R undergoing r chemical reactions
a = 1, ..., r : ∑

I

ν′
a
I I

a(1)

�
a(2)

∑
I

ν′′
a
I I , a = 1, ..., r ,

a(1), a(2): forward and backward reactions associated to the reaction a
ν′′

a
I , ν′

a
I : forward and backward stoichiometric coefficients for I in reaction a.

e.g., photosynthesis: 6CO2 + 6H2O→ C6H12O6 + 6O2

e.g., 6 carbon dioxide + 6 water → 1 glucose + 6 oxygen.

- Number of moles of the component I : NI .

- Internal energy of a multicomponent gas: U = U(S ,N1, ...,NR ,V )

- Affinity of reaction a: Aa := −
∑R

I =1 ν
a
I µ

I , a = 1, ..., r .

- Mass conservation during each reaction: Lavoisier law
”rien ne se perd, rien ne se crée, tout se transforme”:∑

I

mIν
a
I = 0, ∀ a, νa

I := ν′′
a
I − ν′

a
I , mI molecular weight of I
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- Entropy production
T Ṡ = J fr

a Aa + Pext
H ,

where J fr
a is the friction rate of reaction a, determined phenomenologically.

As before: associated variational constraint?

Define the thermodynamic displacements νa such that ν̇a = Aa.

Lagrangian

L(N1, ...,NR ,S) := −U(N1, ...,NR ,S ,V0), (isochoric)

Phenomenological constraint Using thermodynamic displacements νa:

∂L

∂S
Ṡ =

r∑
a=1

J fr
a ν̇

a − Pext
H

Other constraint Chemical constraint

ν̇a =
R∑

I =1

νa
I Ẇ I
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Variational formulation
We need equations of evolution + thermodynamic displacements ;

δ

∫ t2

t1

(
L(N1, ...,NR ,S) +

R∑
I =1

Ẇ I NI

)
dt = 0,

subject to the variational constraints

∂L

∂S
δS =

r∑
a=1

J fr
a δν

a and δνa =
R∑

I =1

νa
I δW I ,

Evolution equations{
ṄI = J fr

a ν
a
I matter reaction equation

T Ṡ = J fr
a Aa + Pext

H thermal equation

where T = ∂U
∂S .
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Example 4: coupling of matter transfer and chemical reactions

Membrane transfer with several chemical components:

¹ ¹ ¹

J JI

m1 2Reservoir ReservoirMembrane
 Chemical
component I

(1)

 Chemical
componentK

(m)

¹K

JK

¹K

I
(2)

I I I

JK

¹K

(1) (2)

(2)

(2)(1)

(1) (m)

R chemical components that can - diffuse through the membrane
R chemical components that can - undergo r chemical reactions

Number of moles N
(1)
I , N

(2)
I , N

(m)
I , I = 1, ...,R

J
(1)
I flux ”reservoir 1 → membrane”, for component I

J
(2)
I flux ”membrane → reservoir 2”, for component I

U(S , {N(1)
I ,N

(2)
I ,N

(m)
I }), µI

(k) =
∂U

∂N
(k)
I

, Aa
(k) := −

R∑
I =1

νa
I µ

I
(k), a = 1, ..., r

Thermodynamic displacements νa
(k), W I

(k) with ν̇a = Aa
(k) and Ẇ I

(k) = µI
(k).
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4.3 Variational formulation for the coupling of mechanics, matter transfer
and chemical reactions (FGB & Yoshimura [2016])

Theorem
Consider a simple closed system with - Lagrangian L : TQ × R× RR×r → R

- External force and heat power Fext : TQ × R× RR×r → T∗Q, Pext
H

- Fluxes F fr : TQ × R× RR×r → T∗Q and J
(k)
I
, J

fr(k)
a : TQ × R× RR×r → R.

Suppose (q(t), S(t),N
(k)
I

(t),W I
(k)(t), νa

(k)(t)) satisfies

δ

∫ t2

t1

(
L(q, q̇, S, {N

(k)
I
}) +

∑
I,k

Ẇ I
(k)N

(k)
I

)
dt +

∫ t2

t1

〈
Fext

, δq
〉

= 0,
Variational

Condition

with nonlinear nonholonomic constraint: Phenomenological & Chemical Constraints

∂L

∂S
Ṡ =

〈
F fr

, q̇
〉

︸ ︷︷ ︸
friction

+
∑

I

(
J

(1)
I

(Ẇ I
(1) − Ẇ I

(m)) + J
(2)
I

(Ẇ I
(m) − Ẇ I

(2))
)

︸ ︷︷ ︸
matter transfer

+
∑
k,a

Jfr (k)
a ν̇

a
(k)

︸ ︷︷ ︸
chemical reaction

−Pext
H , ν̇

a
(k) =

∑
I

ν
a
I Ẇ I

(k)︸ ︷︷ ︸
chemical constraint

,

and with respect to variations δq, δS, δN
(k)
I

, δW I
(k), δνa

(k) subject to Variational Constraints

∂L

∂S
δS =

〈
F fr

, δq
〉

︸ ︷︷ ︸
virtual friction

+

R∑
I =1

(
J

(1)
I

(δW I
(1) − δW I

(m)) + J
(2)
I

(δW I
(m) − δW I

(2))
)

︸ ︷︷ ︸
virtual matter transfer

+
∑
k,a

Jfr (k)
a δν

a
(k)

︸ ︷︷ ︸
virtual

chemical reactions

, δν
a
(k) =

∑
I

ν
a
I δW I

(k)︸ ︷︷ ︸
virtual

chemical constraint

.
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....

Then, the curve (q(t), S(t),N
(k)
I (t)) satisfies

d

dt

∂L

∂q̇
−
∂L

∂q
= F ext + F fr mechanical equation

Ṅ
(1)
I = J

(1)
I + Jfr (1)

a ν
a
I , I = 1, ...,R

Ṅ
(m)
I = −J

(1)
I + J

(2)
I + Jfr (m)

a ν
a
I , I = 1, ...,R reaction-diffusion equations

Ṅ
(2)
I = −J

(2)
I + Jfr (2)

a ν
a
I , I = 1, ...,R.

−T Ṡ = −
〈

F fr, q̇
〉

+ J
(1)
I

(
µI

(1) − µ
I
(m)

)
+ J

(2)
I

(
µI

(m) − µ
I
(2)

)
− Jfr (k)

a Aa
(k) − Pext

H thermal equation.
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INTERMEDIATE SUMMARY

From mechanics to nonequilibrium thermodynamics:
illustrated, from a basic example, the need of introducing a new
non-mechanical state variable: the entropy.

Variational formulation (first look):
regard the second law as a nonlinear constraint: called ”phenomenological”;
construct the associated variational constraint ”virtual second law”.

Various examples:
First: strict application of the theorem to the piston;
Then: does the same ideas apply to matter transfer and chemical reactions?
Yes!!: define the corresponding ”thermodynamic displacements”.

Variational formulation for simple systems:
Systems with friction, matter transfer, chemical reaction. Unifying idea:

q̇, Γ̇, ν̇ → δq, δΓ, δν
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5. Geometric structure of the variational formulation

- The phenomenological constraint in thermodynamics is nonlinear.

Example: given by

C :=

{
(q, q̇, S , Ṡ) ∈ T (Q × R) | ∂L

∂S
(q, q̇,S)Ṡ =

〈
F fr(q, q̇, S), q̇

〉}
⊂ T (Q × R)

- In thermodynamics: natural definition of the virtual constraint:

δq, δS such that
∂L

∂S
(q, q̇, S)δS =

〈
F fr(q, q̇, S), δq

〉
- In mechanics, nonlinear constraints C ⊂ TQ have been considered: Appell [1911],

Chetaev [1934]. Lagrange-d’Alembert principle?

- For Chetaev: if C = {(q, v) ∈ TQ | R(q, v) = 0}, then

δq such that
∂R

∂v
(q, v) · δq = 0

- Simple examples show that Chetaev’s rule cannot be used in general (e.g., for some

systems in Appell [1911] obtained as limits of linear constraints, already observed in

Delassus [1911]).
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- Marle [1998] considers the kinematic constraint CK and the virtual constraint CV as

independent objects.

- Geometric setting in Cendra, Ibort, de León, Mart́ın de Diego [2004], Cendra, Grillo

[2009]:

kinematic constraint CK ⊂ TQ: a submanifod

variational constraint CV ⊂ TQ ×Q TQ such that

CV (q, v) := CV ∩ ({(q, v)} × TqQ) are vector subspace of same dimensions

- Principe of virtual work

d

dε

∣∣∣∣
ε=0

∫ T

0

L(qε, q̇ε)dt = 0, where δq =
d

dε

∣∣∣∣
ε=0

qε ∈ CV (q, q̇) and (q, q̇)ε=0 ∈ CK

- Equations of motion

d

dt

∂L

∂q̇
− ∂L

∂q
∈ CV (q, q̇)◦, (q, q̇) ∈ CK
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(1) Mechanics with linear nonholonomic constraints

CK = ∆ ; CV = TQ ×Q ∆ i.e. CV (q, v) = ∆(q)

; Energy preserving

(2) Chetaev’s approach:

CK = {(q, v) ∈ TQ | RK (q, q̇) = 0}; CV = {(q, v , δq) | ∂R
∂v

(q, v) · δq = 0}

Recovers (1) if CK linear

; Not energy preserving in general

(3) Thermodynamics of simple and isolated systems without matter transfer and

without chemical reactions: Q ; Q × R,

CV ⊂ T (Q × R)×Q×R T (Q × R) ; CK ⊂ T (Q × R)

Also mathematically recovers (1) (with Q → Q × R) if CV does not depend on v

(forbidden by the Second Law!!).

; Energy preserving (First Law).
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6. Variational formulation for the nonequilibrium
thermodynamics of discrete systems

6.1 Discrete systems

Recall: closed discrete system Σ = ∪N
A=1ΣA, ΣA simple systems

R1 R2

1

2

3

4

5

6

F
ext

ext

- State variables q ∈ QΣ (not qA), SA, A = 1, ...,N.

- External forces: Pext
W =

∑
A Pext→A

W =
∑

A

〈
F ext→A, q̇

〉
,

F ext→A : TQΣ × RN → T ∗QΣ

- External heat power: Pext
H =

∑
A,R PR→A

H , ΣR heat sources: system with UR (SR )

- Friction forces F fr(A) : TQΣ × RN → T ∗QΣ

- Internal heat power exchange PB→A
H .
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6.2 Internal heat power as a ”friction force”

- From the first and second law

PB→A
H = κAB (q, SA, SB )(TB − TA),

κAB = κBA ≥ 0 heat transfer phenomenological coefficient.

We write

N∑
B=1

PB→A
H = −

N∑
B=1

J
fr(A)
B (q, SA,SB )TB , J

fr(A)
B := −

(
κAB − δAB

N∑
C=1

κAC

)

; suggests to write TB = Γ̇B .

Define the thermodynamic displacement ΓB such that Γ̇B = TB .

- Such a variable has been considered!! Green and Naghdi [1991] (non classical heat

conduction theory): the thermal displacement.

- Introduction of ΓA ; introduction of ΣA (in entropy units, clarified in the continuum

case)
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6.3 Variational formulation (FGB & Yoshimura [2016])

Theorem

Consider a closed discrete system with L, F ext→A, F fr(A), PR→A
H , and J

fr(B)
B .

Suppose (q(t), SA(t), ΓA(t),ΣA(t)) satisfies

δ

∫ t2

t1

(
L(q, q̇,S1, ..., SN ) +

∑
A

(SA − ΣA)Γ̇A
)

dt +

∫ t2

t1

〈
F ext, δq

〉
= 0,

Variational
Condition

with nonlinear nonholonomic constraint:

∂L

∂SA
Σ̇A =

〈
F fr(A), q̇

〉
+

N∑
B=1

J
fr(A)
B Γ̇B − Pext→A

H , ∀ A,
Phenomenoloical

Constraint

and with respect to variations δq, δSA, δΓA, δΣA, δνa
(k)

subject to

∂L

∂SA
δΣA =

〈
F fr(A)(...), δq

〉
+

N∑
B=1

J
fr(A)
B (...)δΓB , ∀ A,

Variational
Constraint

Then (q(t),SA(t)) satisfies
d

dt

∂L

∂q̇
−
∂L

∂q
=

N∑
A=1

F fr(A) + F ext,

∂L

∂SA
ṠA =

〈
F fr(A), q̇

〉
+

N∑
B=1

J
fr(A)
B Γ̇B − Pext→A

H , ∀ A,

and ṠA = Σ̇A, Γ̇A = −
∂L

∂SA
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7. Variational formulation for the nonequilibrium
thermodynamics of continuum systems

7.1 Geometry of continuum mechanics

- Configuration space: Q = Emb(B,S), B compact with smooth boundary;
- Configuration space: dimS = dimB, often S = B or S = Rn.

- Motion: ϕ(t) ∈ Emb(B,S)

x = ϕ(t,X ), XA: material coordinates; xa spatial coordinates

- Reference fields: ρref(X ), Sref(X ), Gref(X ), others

- Spatial fields: g(x), .....

- Lagrangian: L : T Emb(B,S)→ R, general form

L(ϕ, ϕ̇) =

∫
B
L(X , ϕ(X ), ϕ̇(X ),TXϕ)µGref (X )

=

∫
B

[
1

2
ρref |ϕ̇|2gµGref − E(TXϕ, ....ref)µGref − ρrefV(ϕ)

]
µGref

- Boundary conditions:

I) free boundary II) fixed boundary: e.g., S = B - no slip: ϕ|∂B = id ; Q = Diff0(S)

- tangential: Q = Diff(S)
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7.2 Hamilton’s principle in reversible continuum mechanics

- Equations of motion

δ

∫ t2

t1

L(ϕ, ϕ̇)dt = 0, δϕ(0) = δϕ(T ) = 0, δϕ|∂B = ...

; ρref
Dϕ̇

Dt
= DIV Pcons + ρrefB

cons,

Pcons :=

(
∂E

∂TXϕ

)]g

: Piola-Kirchhoff stress tensor

Bcons := −(dV ◦ ϕ)]g : material body forces

- P(X ) : T ∗XB × T ∗x S → R a two-point tensor field;
- DIV Pa = PaA

|A = PA
a,A + PL

aΓA
LA − PA

lγ
l
anϕ

n
,A, relative to Gref and g

- D/Dt relative to g .

- Boundary conditions:

I ) Pcons(N[G , ) = 0 on ∂B II ) nothing or Pcons(N[G , )|T∂B = 0 on ∂B
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- Spatial representation:

Assume right invariance w.r.t. isotropy subgroup of the reference fields.
Define the spatial fields

ρ := ϕ∗ρref mass density

b := ϕ∗(G ]
ref) Finger deformation

s := ϕ∗Sref spatial entropy

; spatial Lagrangian

`(v, ρ, s, b) =

∫
S

[
1

2
ρ|v|2g − ε(ρ, s, b)− ρV

]
µg

- Equations of motion{
ρ(∂tv + v · ∇v) = divσcons + ρbcons, balance of momenta

∂tρ+ div(ρv) = 0, ∂ts + div(sv) = 0, ∂tb + Lvb = 0, continuity equations

σcons = −pg ] + σcons
el , p = ε− ρ ∂ε

∂ρ
− s

∂ε

∂s
, σcons

el = 2

(
∂ε

∂b
· b
)]g
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7.2 Heat conducting viscous fluid (Navier-Stokes-Fourier)

Recall the variational formulation for the thermodynamics of discrete systems:

- need ΓA and ΣA;

- entropy is a dynamic variable:

L(ϕ, ϕ̇; Sref), Sref(X ) ; L(ϕ, ϕ̇,S), S(t,X )

- Friction force ; friction stress:〈
F fr, q̇

〉
; (Pfr)[g : ∇g ϕ̇

- Heat conduction:

κAB (T B − T A), T A = Γ̇A ; JS · dT, T = Γ̇,

JS (t,X ): entropy flux density;
Γ(t,X ): temperature displacement;
T(t,X ): temperature; all in material representation.

- Heat power supply:

Pext
Q ; Pext

Q =

∫
B
ρrefRµGref

.
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Theorem (Variational formulation of Navier-Stokes-Fourier equations)

The variational formulation

δ

∫ t2

t1

(
L(ϕ, ϕ̇,S) +

∫
B

(S − Σ)Γ̇µGref

)
dt = 0, Variational Condition

with no-slip boundary conditions ϕ|∂B = id,

∂L

∂S
Σ̇= −(Pfr)[g : ∇g ϕ̇+ JS · dΓ̇− ρrefR, Phenomenological Constraint

∂L

∂S
δΣ= −(Pfr)[g : ∇gδϕ+ JS · dδΓ, Variational Constraint

and δΓ|∂B = 0, yields the Navier-Stokes-Fourier system
ρref

DV

Dt
= DIV(Pcons + Pfr) + ρrefB

cons, V = ϕ̇

T(Ṡ + DIV JS ) = (Pfr)[g : ∇g V − JS · dT + ρrefR,

with Σ̇ = Ṡ + DIV JS !!!

Moreover: δΓ|∂B free ⇒ JS ·N[G |∂B = 0.
If in addition ρrefR = 0, then the fluid is adiabatically closed.
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- Spatial representation:

Check that L and the constraints are right-invariant

; Similar variational formulation in spatial variable yields:
ρ(∂tv + v · ∇v) = − grad p + divσfr, p = ∂ε

∂ρρ+ ∂ε
∂s s − ε,

∂tρ+ div(ρv) = 0,

T (∂ts + div(sv) + div jS ) = (σfr)[g : ∇v − jS · dT + ρr , T = ∂ε
∂s .

(familiar form of Navier-Stokes-Fourier, e.g., Landau & Lifshitz [1987])

- Thermodynamic phenomenology:

Phenomenological expressions for the ”fluxes” σfr and jS in terms of the
”affinities” Def v and dT compatible with the Second Law.

Well-known relations

σfr = 2µ(Def v)]g +

(
ζ − 2

3
µ

)
(div v)g ] and T j

[g

S = −κdT (Fourier law),

µ ≥ 0 shear viscosity, ζ ≥ 0 bulk viscosity, κ ≥ 0 thermal conductivity.
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7.3 Multicomponent reacting viscous fluid

Works by collecting all the previous examples
ρ(∂tv + v · ∇v) = − grad p + divσfr, p = ∂ε

∂nA
nA + ∂ε

∂s s − ε,

∂tnA + div(nAv) + div jA = jaν
a
A,

T (∂ts + div(sv) + div jS ) = (σfr)[g : Def v − jS · dT − jA · dµA + jaAa + ρr ,

- Thermodynamic phenomenology:

−
[

jS

jA

]
=

[
LSS LSB

LAS LAB

][
dT

dµB

]
,

[
Tr σfr

ja

]
=

[
L00 L0b

La0 Lab

][
1
3

div v

Ab

]
, (σfr)(0) = 2µ(Def v]g )(0),

Positive quadratic forms & satisfy Onsager’s reciprocal relations.

- Important application: atmospheric entry
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Current works:

Reduction

Dirac structures

Discretizations

....
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Thank you
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