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1 Introduction

Quantum Field Theory (QFT) is the current paradigm of Fundamental Physics. It arises from

the convolution of Quantum Physics and Relativity, the two major theoretical revolutions of the

XX century physics. The search for a theory of quantum fields started right after the discovery of

Quantum Mechanics, but the ultraviolet problem postponed the formulation of a consistent theory

till the end of the World War II. The main problem was solved in perturbation theory by the

renormalization of vacuum energy, masses, charges, fundamental fields and other couplings. One

further step in the formulation of the theory beyond perturbation theory was achieved by Wilson’s

renormalization group approach a quarter of a century later.

It is usually considered that there were only two conceptual revolutions in XX century physics:

the theory of relativity and the quantum theory. It is not quite true, the formulation of QFT

required also a radical deep conceptual change in the relations between theory and observations

that might be considered as a third major revolution of physics. The need of renormalization

of ultraviolet (UV) divergences required a dramatic solution (a la Planck): the parameters which

appear in the Lagrangian do not coincide with those associated with observations. Moreover the

parameters of the Lagrangian of interacting field theories become divergent when the UV cutoff is

removed, while the physical parameters remain finite in that limit.

The first attempts to quantize field theories were initiated one year after the discovery of

quantum mechanics by Heisenberg, Born, and Jordan for free fields. One year later in 1927 Dirac

introduced quantum electrodynamics (QED), the first quantum theory of interacting quantum fields.

The quantization of relativistic field theories was initiated by Jordan and Pauli one year later.

However, the development of the theory was suddenly stopped by the appearance of ultraviolet

divergences. The situation was so desperate that Heisenberg noted in 1938 that the revolutions

of special relativity and of quantum mechanics were associated with fundamental dimensional pa-

rameters: the speed of light, c, and Planck’s constant, h. These delineated the domain of classical

physics. He proposed that the next revolution be associated with the introduction of a fundamental

unit of length, which would delineate the domain in which the concept of fields and local interactions

would be applicable.

Dirac was even more pessimistic. He wrote in last paragraph of the forth edition of his book

on the Principles of Quantum Mechanics: Parece ser que hemos seguido hasta donde es posible el

desarrollo lógico de las ideas de la mecánica cuántica tal y como se conocen hoy en d́ıa. Teniendo

en cuenta que las dificultades son de carácter muy profundo y únicamente pueden ser superadas por

un cambio drástico de los fundamentos de la teoŕıa, probablemente tan drástico como el paso de la

teoŕıa de las órbitas de Bohr a la mecánica cuántica actual.

The resolution of the renormalization problem required two decades to be solved by Bethe,

Feynman, Schwinger and Tomonaga

After the resolution of this problem QED became a powerful predictive theory for atomic physics

and provided results which matched the experimental values with the major accuracy ever found

in physics. The QED prediction for the magnetic dipole moment of the muon

(gµ − 2)theor. = 233 183 478 (308)× 10−11, (1.1)

fits impressively well with the experimentally measured value

(gµ − 2)exp. = 233 184 600 (1680)× 10−11. (1.2)

However, in the late fifties is was remarked that the renormalization of the theory has another UV

catastrophe due to the appearance of a singular pole in the effective electric charge of the electron.

The phenomenon know as Landau pole motivated that the majority of particle physicists consider
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that quantum field theory was not a suitable theory for weak and strong interactions of the newly

discovered elementary particles.

However, with the discovery of the theory of gauge fields and the formulation of the Standard

Model of particle physics the perspective radically changed and today quantum field theory is the

basic framework of Fundamental Physics.

•What are the essential features of quantum field theory which make it so special?

First, it provides a framework where the theory of relativity and the quantum theory become

consistently integrated out.

Sometimes field theory is identified with particle theory. This is not absolutely correct. Field

theory is a framework which goes beyond particle physics. In fact there are field theories where

there is no particle interpretation of any of the states of the theory.

But the most successful field theories admit a particle interpretation. That means that there

are states which can be correctly interpreted as local particle states and in those cases field theory

provides a causal framework for particle interactions where action at a distance is replaced by local

field interactions. Although this is also achieved by classical field theory, the difference with the

classical theory resides on the fact that in the quantum theory the interaction between the particles

can be interpreted as a creation and destruction of messenger particles process. The association of

forces and interactions with particle exchange is one of the most interesting features of QFT.

The particles which appear in field theory are very special: they are all identical. This means

that the electrons in the earth is the same as the electrons in alpha Centauri because they are

excitations of the same electron field in QED.

Another essential characteristic of relativistic field theories is that when the field theory admits

particle states they are accompanied by antiparticle states, i.e. the theory requires the existence of

antiparticles. This interesting property is also a source of the ultraviolet problems of the theory.

• What are the mathematical tools of quantum field theory?

As G. Gamow remarked the first two revolutions had at their disposal the required mathematical

tools: In their efforts to solve the riddles of Nature, physicists often looked for the help of pure

mathematics, and in many cases obtained it. When Einstein wanted to interpret gravity as the

curvature of four-dimensional, continuum space-time, he found waiting for him Riemann’s theory

of curved multidimensional space. When Heisenberg looked for some unusual kind of mathematics

to describe the motion of electrons inside of an atom, noncommutative algebra was ready for him.

However, the revolution of QFT was lacking an appropriate mathematical tool. The theory of

distributions to deal with singularities in a rigorous way was formulated by L. Schwartz in the late

forties.

The fact that the quantum fields involve distributions is behind the existence of UV divergences

which in the quantum field theory require renormalization.

The goal of the series of lectures is to summarize the foundations of QFT in the Fall Workshop

of Geometry and Physics. The focus is to provide some insights of the theory of quantum fields to

an audience with a solid mathematical background. However, due to the tight schedule the level of

mathematical rigor will be softened. I will follow a path between the standards level fixed by von

Neumann y Dirac in their approaches to quantum mechanics.

2 Quantum Mechanics and Relativity

2.1 Quantum Mechanics

A quantum theory is defined by a space of states which are projective rays of vectors |ψ〉 of a Hilbert

space H. The physical observables are Hermitian operators in this Hilbert space. In any quantum

system, there is an special observable, the Hamiltonian H(t), which governs the time evolution of
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the quantum states by the first order differential equation

i∂t|ψ(t)〉 = H(t)|ψ(t)〉

The symmetries of a quantum system are unitary operators U which commute with the Hamiltonian

of the system. In the particular case that the Hamiltonian H(t) is time independent the unitary

group defined by

U(t) = eitH

is as symmetry group, i.e. [U(t), H ] = 0, and defines the dynamics of the quantum system,

|ψ(t)〉 = U(t)|ψ(t)〉.

Some interesting cases of quantum systems are those who arise from the canonical quantization

of classical mechanical systems. The archetype of those systems is the harmonic oscillator. Let us

analyse this case in some detail because it will be useful to understand its generalization to field

theory.

Classical Harmonic Oscillator

The Lagrangian of an harmonic oscillator is

L =
1

2
mẋ2 − 1

2
mω2x2. (2.1)

The Euler-Lagrange equations give rise to the classical Newton’s equation of motion

ẍ = −ω2x. (2.2)

The solution of (2.2) in terms of the initial Cauchy conditions (x(0), ẋ(0)) is

x(t) = x(0) cosωt+
ẋ(0)

ω
sinωt (2.3)

=
1

2

[
x(0) + i

ẋ(0)

ω

]
e−iωt +

1

2

[
x(0)− i

ẋ(0)

ω

]
eiωt. (2.4)

Upon Legendre transformation

p = mẋ, (2.5)

and the Poisson bracket structure,

{x, x} = {p, p} = 0; {x, p} = 1 (2.6)

one obtains the Hamiltonian of the harmonic oscillator

H =
1

2m
p2 +

1

2
mω2x2, (2.7)

and the corresponding Hamilton equations of motion

ẋ = {x,H} =
p

m
, ṗ = {p,H} = −mω2x (2.8)

are equivalent to Newton’s equations (2.2).

In field theory is very convenient to use the coherent variables

a =

√
mω

2
x+

i√
2mω

p; a∗ =

√
mω

2
x− i√

2mω
p, (2.9)
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in terms of which time evolution becomes

a(t) = a(0) e−iωt, (2.10)

which gives (2.4),

x(t) =
1√
2mω

(a(t) + a∗(t) ) =
1√
2mω

(
a(0) e−iωt + a∗(0) eiωt

)
. (2.11)

The Quantum Harmonic Oscillator

The canonical quantization prescription proceeds by mapping the classical observables, position

x and momentum p into operators in a Hilbert space H and replacing the Poisson bracket {·.·} by

a commutator of operators i[·, ·], i.e.

{x, p} = 1 ⇒ [x̂, p̂] = i I, (2.12)

where we assume that the Planck constant ~ = 1.

The Hamiltonian is given by

Ĥ =
1

2
ω[p̂2 + x̂2],

which reads as

Ĥ = ω(a†a+ 1
2 ), (2.13)

in terms of creation and annihilation operators

a =

√
mω

2
x̂+

i√
2mω

p̂; a† =

√
mω

2
x̂− i√

2mω
p̂. (2.14)

Now, because of the conmutation relations

[H, a†] = ωa† [H, a] = −ωa [a, a†] = 1,

we have that for any eigenstate |E〉 of the Hamiltonian Ĥ , Ĥ |E〉 = E|E〉 there are two more

eigenstates a†|E〉 and a|E〉, because

Ha†|E〉 = a†H |E〉+ ωa†|E〉 = (E + ω)a†|E〉
H a|E〉 = aH |E〉 − ω a |E〉 = (E − ω)a |E〉.

Since, 〈ψ|H |ψ〉 = ω〈ψ|a†a+ 1
2 I|ψ〉 = (ω + 1

2 )||a|ψ〉||2 ≥ 0 the ladder of quantum states have to

end before the energy E becomes negative. The only possibility to avoid this is by the existence of

a final ground state such that a|E0〉 = 0. But then, the energy of this ground state H |E0〉 = 1
2ω|E0〉

is non-vanishing, unlike the energy of the classical vacuum configuration which vanishes. The non-

trivial value of the quantum vacuum energy has remarkable consequences for the physics of the

vacuum in the quantum field theory.

We shall denote from now on ground state |E0〉 by |0〉. Higher energy states are obtained by

applying the creation operator a† to the ground state |0〉 by

|n〉 = 1√
(n+ 1)!

(a†)n|0〉; H |n〉 = (n+ 1
2 )ω|n〉 (2.15)

for any positive integer n ∈ N. The state |n〉 has unit norm, i.e. ‖|n〉‖2= 1 and satisfies that

a|n〉 = √
n|n− 1〉.
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In the harmonic oscillator the fundamental observables are the position x and the momentum

p. Since by the quantization prescription x̂ and p̂ do not commute, the space of states has to be

infinite-dimensional. Moreover, since any other operator O that commutes with both fundamental

operators [p̂, O] = [x̂, O] = 0 has to be proportional to the identity O = cI, and the projector P to

the subspace spanned by the states |n〉 commutes with x̂ and p̂ ([p̂,P] = [x̂,P] = 0) it follows that

P = cI. This implies that the subspace spanned by the vectors |n〉 is complete, i.e. does coincide

with the whole Hilbert space H.

Although the principles of quantum mechanics are identical for all quantum system and all

separable Hilbert spaces are isomorphic, different systems can be distinguished by their algebra of

observables. In the particular case of the harmonic oscillator the belonging of the position x̂ and

the momentum p̂ operators to the algebra of observables not only implies that the Hilbert space is

infinite dimensional, but also that it can be identified with the space of square integrable functions

L2(R) of the position (Schrödinger representation) or momentum (Heisenberg representation).

In the Schrödinger representation the ground state reads

〈x|0〉 =
√
ω

π
e−

1

2
ωx2

.

The position and momentum operator are given by

x̂ψ(x) = xψ(x); p̂ψ(x) = −i∂xψ(x).

The Hamiltonian reads

Ĥ = − 1

2m

d 2

dx2
+

1

2
mω2x2, (2.16)

and the creation and destruction operators are

a =
1√
2mω

(
d

dx
+mωx

)
; a† =

1√
2mω

(
− d

dx
+mωx

)
. (2.17)

It is easy to check that the excited states (2.15) are given by

〈x|n〉 = Hn(x)e
− 1

2
ωx2

.

in terms of the Hermite polynomials

Hn(x) = e
1

2
ωx2 1√

(n+ 1)!
(a†)ne−

1

2
ωx2

.

The generalization for multidimensional harmonic oscillators is straightforward. If we have

n-harmonic oscillators of frequencies ωi and masses mi; i = 1, 2, · · ·n. The position and momentum

operators are given in the Schrödinger representation by

x̂iψ(x) = xiψ(x); p̂iψ(x) = −i∂iψ(x),

where x = (x1, x2, . . . , xn) ∈ Rn. They satisfy the canonical commutation relations

[x̂i, p̂j ] = iδij .

The Hamiltonian is

Ĥ = −
n∑

i=1

1

2mi

(
∂2i +mω2

i x
2
i

)
, (2.18)

and in terms the creation and destruction operators

ai =
1√

2miωi
(∂i +miωixi) ; a† =

1√
2miωi

(−∂i +miωixi) .
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reads

Ĥ =

n∑

i=1

ωi(a
†
iai +

1
2 ), (2.19)

The ground state

〈x|0〉 =
(

n∏

i=1

√
ωi

π

)
e−

1

2

∑n
i=1

ωix
2

i ,

has an energy given by the sum of the ground state energies of the different harmonic modes

E0 =
1

2

n∑

i=1

ωi.

It is easy to check that the excited states (2.15) are given by

〈x|n1, n2, . . . , nn〉 =
(

n∏

i=1

Hni
(xi)

)
e−

1

2

∑

n
i=1

ωix
2

i .

in terms of the Hermite polynomials Hni
, i = 1, 2, . . . , n.

2.2 Relativity and the Poincaré Group

The Einstein theory of Relativity is based on the unification of space and time into a four-

dimensional Minkowski space-time R4 equiped with the Lorentzian metric of signature (+,−,−,−)

dx2 = dx20 − dx21 − dx22 − dx23 =
3∑

µ=0

ηµνdxµdxν , (2.20)

where x0 = ct denotes the time-like coordinate and

ηµν =




1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


 (2.21)

the Minkowski metric. From now on we shall assume that the speed of light c is normalized to unit.

Figure 1. Light cone an causal structure of space-time.

The geodesic which connects two points x, y of Minkowski space-time is a straighline in R4 and

the Minkowski distance between the two points is

d(x, y) = (y0 − x0)
2 − (y1 − x1)

2 − (y2 − x2)
2 − (y3 − x3)

2, (2.22)
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When this distance vanishes the geodesic line represents the trajectory of a light ray connecting the

two points.

The line connecting two points x, y is time-like if d(x, y) > 0; space-like if d(x, y) > 0; light-

like if d(x, y) = 0; Two points x, y are causally separated iff d(x, y) ≥ 0; and spatially separated

iff d(x, y) < 0; A causal line connecting x, y is future oriented if y0 − x0 > 0; past oriented if

y0 − x0 < 0;

The space-time symmetries of a relativistic theory are space-time translations,

x′ = x+ a

space rotations, e.g.

x′
µ
= Λµ

νx
ν , Λµ

ν =




1 0 0 0

0 cos θ sin θ 0

0 − sin θ cos θ 0

0 0 0 1


 , with 0 ≤ θ ≤ 2π (2.23)

and Lorentz transformations, e.g.

x′
µ
= Λµ

νx
ν , Λµ

ν =




γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1


 , with γ =

√
1− v2 (2.24)

which are linear transformations which leave the Minkowski metric invariant

ηµν = Λσ
µηστΛ

τ
µ.

There are some extra discrete symmetries which play an important role in field theory. They are

generated by time reversal,

(x, t) → (x,−t)
and parity

(x, t) → (−x, t),

which differ from those of (2.23), (2.24). The whole group of space-time symmetries is the Poincar e

group which contains all these continuous and discrete symmetries

P = ISO(3, 1) = {(Λ, a); Λ ∈ O(3, 1), a ∈ R
4}.

The first attempts to make compatible the quantum theory with the theory of relativity where

based on covariant equations like the Maxwell equation of classical electrodynamics. This lead to

the discovery of Klein-Gordon equation for scalar fields and the Dirac equation for spinorial fields.

E. Wigner introduced a completely different approach. If the quantum theories are defined in a

Hilbert space and the relativity is based on Poincaré group he conjectured that elementary quantum

particles as the most elementary quantum system must support irreducible representations of the

Poincaré group. This program was achieved by Wigner and Mackey and the results is the simplest

irreducible representations are characterized by two numbers which represent the mass mR+ and

the spin s ∈ N/2 of the particle. The case of spin zero correspond to a scalar fields satisfying the

Klein-Gordon equation.
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3 Quantum Field Theory

The most interesting case of field theory is that which concerns relativistic fields. The compatibility

of quantum theories with the theory of relativity is not immediate. The first attempts to formulate

a quantum dynamics compatible with the theory of relativity lead to puzzling theories full of

paradoxes, like the Klein paradox, which arises in the dynamics defined by Klein-Gordon or Dirac

equations. The solution to those puzzles comes from the quantization of classical field theories.

A quantum field theory is a quantum theory which is relativistic invariant and where there is

an special type of quantum operators which are associated to the classical fields.

In the case of a real scalar field φ a consistent theory should satisfy the following principles.

• 1. Quantum principle: The space of quantum states is the space of rays a separable Hilbert

space H.

• 2. Unitarity: There is a (anti)unitary representation U(Λ, a) of the Poincaré group in H,

where time reversal is represented as an anti-unitary operator U(T ).

• 3. Spectral condition: The spectrum of generators of space time translations Pµ is contained

in the forward like cone

V̄+ = {pµ; p2 ≥ 0, p0 ≥ 0}. (3.1)

• 4. Vacuum state: There is a unique vacuum state Ψ0 ∈ H, with PµΨ0 = 0.

• 5. Field Theory (real boson): For any classical field f in the space S(R3) of fast decreasing

smooth C∞(R3) functions 1 there is field operator φ(f) in H which satisfies that φ(f) = φ(f)†.

The field operator can be considered as the smearing by f of a fundamental field operator

φ(x)

φ(f) =

∫
d3xf(x)φ(x). (3.2)

The subspace spanned by the vectors φ(f1)φ(f2) · · ·φ(fn)|0〉 for arbitrary test functions

f1, f2, · · · fn ∈ S(R3) is a dense subspace of H.

• 6. Poincaré covariance: Let f̃ ∈ S(R4) be a test function defined in Minkowski space-time

and

φ(f̃) =

∫

R4

d4xφ(x)f̃ (x), (3.3)

where φ(x) = φ(x, t) = eitP0φ(x)e−itP0 .Then,

U(Λ, a)φ(f̃)U(Λ, a)† = φ(f̃(Λ,a))
2, (3.4)

where

f̃(Λ,a)(x) = f̃(Λ−1(x− a)) (3.5)

• 7. (Bosonic) Local Causality: For any f, g ∈ S(R3) the corresponding field operators φ(f), φ(g)

commute, 3

[φ(f), φ(g)] = 0. (3.6)

1In the case of massless fields the test function has to be of compact support, i.e. f ∈ D(R3) = C∞
0 (R3)

2For higher spin fields the Poincaré representation satisfies U(Λ, a)φ(f)U(Λ, a)† = S(Λ)−1φ(f(Λ,a)), where S is a

linear n-dimensional representation of Lorentz group and φ is a field with n-components
3In the fermionic case the commutator [·, ·] is replaced by an anticommutator {·, ·}
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3.1 Canonical Quantization

As in the case of quantum mechanics there are special cases where the quantum field theory arises

from the quantization of a classical field theory.

Let us consider a scalar real field φ in Minkowski space-time R4. The classical field theory

is given according to the variational principle from the stationary field configurations φ(x)of the

classical action functional

S[φ(x)] ≡
∫
d4xL(φ, ∂µφ) =

∫
d4x

(
1
2∂µφ∂

µφ− V (φ)
)
. (3.7)

The equations of motion are obtained, thus, from the Euler-Lagrange equations

∂µ

[
δL

δ(∂µφ)

]
− δL
δφ

= 0 =⇒ �φ+
δV

δφ
= 0, (3.8)

where � = ∂µ∂
µ. Notice that the Poincaré invariance of the action implies the Poincaré invariance

of the equations of motion.

The quantization is usually formulated in the Hamiltonian formalism. Thus, it is necessary to

start from the classical canonical formalism. Let M be the configuration space of square integrable

classical fields at any fixed time (e.g. t = 0),

M =

{
φ(x) = φ(x, 0); ‖ φ ‖2=

∫
d3x |φ(x, 0)|2 <∞

}
. (3.9)

The Legendre transformation maps the tangent space TM into the cotangent space T ∗M, fixing

the value of the canonical momentum

π =
δL
δφ̇

= φ̇, (3.10)

from the Lagrangian

L =

∫
d3x

(
1
2 φ̇

2 − 1
2 (∇φ)2 − V (φ)

)
, (3.11)

where φ̇ = ∂tφ. The corresponding Hamiltonian is given by

H =

∫
d3x

(
1
2π

2 + 1
2 (∇φ)2 + V (φ)

)
, (3.12)

In the case of a free massive theory with mass m, V (φ) = 1
2m

2φ2 and the Hamiltonian reads

H = 1
2

(
‖ π ‖2 + ‖ ∇φ ‖2 +m2 ‖ φ ‖2

)
, (3.13)

where we have used the L2(R3) norm introduced in (3.9).

In this case the classical vacuum solution is unique φ = 0. However, in the massless case m = 0

the vacuum is degenerated, because and constant configuration φ = cte is a solution with finite

energy, although such configurations in the massive case have infinity energy.

The symplectic structure of T ∗M

ω =

∫
d3 x dπ ∧ dφ (3.14)

induces a Poisson structure in the space of functionals of T ∗M. Given two local functionals F(φ, π),

G(φ, π) of the canonical variables

F(φ, π) =

∫
d3x F (φ, π), G(φ, π) =

∫
d3x G(φ, π). (3.15)
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Their Poisson bracket is defined by

{F ,G} ≡
∫
d3x

[
δF

δφ

δG

δπ
− δF

δπ

δG

δφ

]
, (3.16)

where the functional derivative δ
δφ is given by

δF

δφ
=
δF
δφ

− ∂µ

[
δF

δ(∂µφ)

]
. (3.17)

The Poisson brackets of fundamental fields are

{φ(x1), φ(x2)} = {π(x1), π(x2)} = 0,

{φ(x1), π(x2)} = δ3(x1 − x2). (3.18)

because of the basic rules of functional derivation

δφ(x1)

δφ(x2)
= δ3(x1 − x2);

δπ(x1)

δπ(x2)
= δ3(x1 − x2). (3.19)

The appearance of delta functions in the Poisson structure of the fields reflects the fact that a

mathematically sound analysis of field theory requires the use of distributions. This will be even

more necessary for the quantum fields. Thus, it is convenient to consider smeared field functionals.

Given a classical function f which might be more regular that the L2(R3) fields (e.g. f ∈ S(R3)

for massive fields, or f ∈ D(R3) for massless fields) the smeared fields are defined by the images of

the linear functional

φ(f) =

∫
d3xf(x)φ(x); π(f) =

∫
d3xf(x)π(x) (3.20)

in L2(R3).

The Poisson structure can be expressed in terms of smeared fields φ(f) as

{φ(f1), φ(f2)} = {π(f1), π(f2)} = 0,

{φ(f1), π(f2)} = (f1, f2) (3.21)

where (·, ·) denotes the Hilbert product of L2(R3).

By choosing an orthonormal Hilbert basis of test functions fn in L2(R3) we can get a discrete

representation of the Poisson structure,

{φn, φm} = {φn, φm} = 0; {φn, πm} = δmn (3.22)

where φn = φ(fn) and πn = π(fn).

In that representation the Hamiltonian operator (3.13) becomes

H = 1
2

∞∑

n=0

πn
2 − 1

2

∞∑

n,m=0

∆mnφmφn + 1
2m

2
∞∑

n=0

φn
2, (3.23)

where

∆mn = (fm,∆fn) = (fm,∇
2fn). (3.24)

In this representation it is clear that the system describes an infinity of coupled harmonic

oscillators. The way of disentangling the coupling is to find the normal modes, i.e. to choose of

basis of test functions fn where the interaction operator ∆ is diagonal. The normal modes are

plane waves which do not belong to L2(R3). For such a reason it is convenient to introduce an
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infrared regulator, i.e. to consider the system in a finite volume. There are physical reason why

this method is sensible. In the quantum case there will appear a series of divergences of two types:

ultraviolet (UV) divergences, which are due to short range singularities dues to to the local products

of distributions, and infrared (IR) divergences which are dues to the infinity volume of space. Both

need to be regularized and renormalized as we will see later in these lectures. In this perspective

the introduction of a finite volume can be considered as a regulator of IR divergences. Poincaré

invariance will be recovered in the limit of infinite volume at the very end.

We shall consider mostly the torus T 3 compactification of (R3), The normal modes in this case

are normalizable plane waves,

f+
n (x) =

1

2
(fn(x) + fn(x)

∗); f−
n (x) = − i

2
(fn(x)− fn(x)

∗) n ∈ Z
3
+. (3.25)

with

fn(x) =
1

(2π)
3

2

ei2πn·x/L. (3.26)

where n ∈ Z3, n·x = n1x1+n2x2+n3x3 and L is the length of each side of the torus, i.e. x ∈ [0, L]3.

The normal modes diagonalize the Hamiltonian because

∆f±
n (x) = − 2π

L (n · n)f±
n (x). (3.27)

However, it is more convenient to use the complex modes fn, provided that in the mode expansion

the fields

φ(x) =
∑

n∈Z3

φnfn(x), (3.28)

the coefficients φn = φ(f) satisfy the reality conditions φ∗n = φ−n in order guarantee the reality of

the fields φ∗ = φ

In terms of the complex modes the Hamiltonian is diagonal

H = 1
2

∑

n∈Z3

(
|πn|2 + (| 2πnL |2 +m2)|φn|2

)
, (3.29)

and it is evident that the system (4.4) describes an infinity of harmonic oscillators with frequencies

ωn =
√
| 2πnL |2 +m2. (3.30)

Canonical quantization maps classical fields into operators in a Hilbert space H satisfying the

commutation relations obtained by replacing Poisson brackets by commutators

{·, ·} =⇒ i [·, ·], (3.31)

which can be realized in the Schrödinger representation on space of functionals of M by

π̂(x) = −i δ

δφ(x)
; φ̂(x) = φ(x). (3.32)

The corresponding quantum Hamiltonian is

Ĥ = 1
2

(
‖ π̂ ‖2 + ‖ ∇φ ‖2 +m2 ‖ φ ‖2

)
, (3.33)

In terms of smeared functions the Schrödinger representation of the momentum operator

π̂(f) = −i
∫
d3x f(x)

δ

δφ(x)
, (3.34)
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becomes just a Gateaux derivative operator (see P. Michor lectures)

π̂(f)F(φ) = −i lim
s→0

1

s
(F(φ+ sf)−F(φ)) . (3.35)

For any orthonormal basis of test functions fn in L2(R3) we have that for classical fields

φ ∈ L2(R3)

φ(x) =

∞∑

n=0

φnfn(x), (3.36)

where φn = φ(fn). Moreover, since by linearity φ(f) =

∞∑

n=0

φnfn

π̂(x)F(φ) = −i δ

δφ(x)
F
( ∞∑

n=0

φnfn(x)

)
(3.37)

and from (3.35) it follows that

π̂(fn) = −i fn
δ

δφn
. (3.38)

In the plane wave basis the quantum Hamiltonian

Ĥ = 1
2

∑

n∈Z3

(
δ

δφ−n

δ

δφn

+ ω2
n |φn|2

)
, (3.39)

again corresponds to an infinity of harmonic oscillators with frequencies ωn.

4 The quantum vacuum

The advantage of the diagonal structure of the quantum Hamiltonian in the plane wave basis is

that it facilitates the analysis of its spectrum.

In particular the ground state known in QFT as vacuum state is given by

Ψ0 =
∏

n∈Z3

1√
2π
e−

1

2
ωn|φn|2 = exp

{
− 1

2

∑

n∈Z3

(
ωn|φn|2 + log 2π

)
}

(4.1)

Indeed,

ĤΨ0 = E0Ψ0, (4.2)

where the vacuum energy

E0 =
1

2

∑

n∈Z3

ωn (4.3)

is half the divergent sum of all normal modes frequencies. This appearance of this divergence is

a genuine quantum effect which is induced by the fact the lowest energy (zero-point energy) of

each quantum oscillator is non-vanishing. The divergence is generated by the large momentum n

(ultraviolet) modes. The vacuum energy is the first quantity of the quantum theory which presents

UV divergences.
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4.1 Renormalization of Vacuum Energy

The appearance of UV divergences postponed the formulation of quantum field theories for two

decades. The solution of the UV puzzle came from the renormalization program. The main idea

behind the renormalization program is the disassociation of the fundamental observables like the

quantum Hamiltonian and the observed quantities.

To implement the renormalization program we need a previous step which is known a regular-

ization. In this step we introduce a modification of all fundamental (bare) operators depending on

a UV scale parameter Λ in a way the it becomes a well defined operator with a finite spectrum,

e.g. by cutting the infinite sum in (4.6) to a finite sum The modification disappears in the limit

Λ → ∞ where we recover the original divergent expressions. The second step consist in physical

modification of the fundamental observables by absorbing the sources of divergences into the phys-

ical parameters like masses, charges, couplings or energy scales of the theory in a way that the they

remain finite in the Λ → ∞.

To illustrate the implementation of the renormalization mechanism let us consider the case of

the Hamiltonian operator of the free field theory (3.33).

The regularization can be introduced in different ways. Let us consider two different methods

• Sharp momentum cut-off

ĤΛ = 1
2

ωn<Λ∑

n∈Z3

(
δ

δφ−n

δ

δφn

+ ω2
n |φn|2

)
, (4.4)

• Heat kernel regularization

Ĥǫ =
1
2

∑

n∈Z3

(
δ

δφ−n

δ

δφn

+ ω2
n e

−ǫω2

n |φn|2
)
, (4.5)

which can be related by choosing ǫ =
√
2

Λ2 .

There are other methods which include higher derivative terms or lattice discretization of the

continuum space, but for simplicity we shall not discuss them in this course.

The renormalization of the fundamental Hamiltonian is obtained by substracting an unobserv-

able constant quantity E0 in such a way that the observable (renormalized) quantum Hamiltonian

Ĥren = lim
Λ→∞

(ĤΛ − E0(Λ)), (4.6)

is a well defined quantum operator with a finite energy spectrum.

Even if the renormalization of the Hamiltonian solves the divergency problem, one might wonder

about the physical meaning. First, let us analyse the structure of the divergences of vacuum energy.

In the large L limit the vacuum energy E0 becomes a good approximation to the Riemann

integral

E0(Λ, L) =
1

2
L3

∫

|k|≤Λ

d3k

(2π)3
ω(k) +O(LΛ) (4.7)

Now it becomes clear that the infrared divergence is just due to the infinite volume of the system

and translation invariance. However the vacuum energy density

E0(Λ) = lim
L→∞

E0(Λ, L)

L3
=

1

2

∫

|k|≤Λ

d3k

(2π)3
ω(k) (4.8)

is free of IR divergences. However, the integral (4.8) is UV divergent. In the sharp momentum

cut-off regularization

E0(Λ) =
Λ4

16π2
+
m2Λ2

16π2
+

m4

64π2
log

m2

Λ2
+
m4(1− log 16)

128π2
+O( 1

Λ2 ) (4.9)

– 14 –



in the large Λ limit. Whereas in the heat kernel regularization

E0(Λ) =
1

8π2ǫ2
− m2

16π2ǫ
+

m4

64π2
(2 + γ + log

ǫm2

4
) +O(ǫ) (4.10)

for small values of ǫ =
√
2

Λ2 . The leading quartic and logarithmic divergent terms are the same in

both regularizations whereas the quadratically divergent term is different.

The source of divergence is of ultraviolet origin because it comes from the integration of ω(k)

at large values of the momentum. The quantum field theory of free scalar fields is a infinite

set of harmonic oscillators, each one labelled by k. Each of these oscillators contribute to the

vacuum energy with their zero-point energy, 1
2ω(k). This total contribution of zero-points energies

to the vacuum energy density gives infinity, since even then there are modes with arbitrary high

momentum. This is the ultraviolet origin of this divergence. It appears in any quantum field theory

and not only in the free scalar quantum field. It is something intrinsic to the theory of quantum

fields.

4.2 Momentum Operator

The generator of space translations is the momentum operator P̂i. In the free scalar field theory it

is given by

P̂i =

∫
d3x (π̂∂iφ) , i = 1, 2, 3, (4.11)

Since the vacuum state is invariant,

P̂iΨ0 = i

∫
d3x φ

√
∇2 +m2 ∂iφΨ0 =

i

2

∫
d3x ∂i

(
φ
√
∇2 +m2 φ

)
Ψ0 = 0, (4.12)

which apparently does not require renormalization as the vacuum energy, However, this is too naive.

If we write (4.13) in terms of the Fourier modes of the field,

P̂iΨ0 =
2π

L

∑

n∈Z3

(ni ωn)Ψ0 = 0, (4.13)

we realized that the sum is divergent. However, in the cut-off or heat kernel regularizations the

regularized eigenvalues vanish

P̂iΨ0 =
2π

L

|ωn|<Λ∑

n∈Z3

(ni ωn)Ψ0 =
2π

L

∑

n∈Z3

(ni ωne
−ǫω2

n)Ψ0 = 0, (4.14)

and, thus, the renormalized value of the vacuum eigenvalue of P̂i vanish. This is due to the spherical

symmetry of both regularizations. What is remarkable is that in the case of the vacuum energy

any choice of the regularization provides a non-vanishing value. In this sense there is a different

between the quantum generators of space and time translations, which seems to be not in agreement

with the Lorentz symmetry. This is a genuine characteristic of canonical quantization as will be

emphasized later in the course.

4.3 Casimir effect

The existence of UV divergences in vacuum energy is not a special property of the scalar field.

Any quantum field theory faces the same problem, e.g. the electromagnetic field in quantum

electrodynamics or the fields of the Standard Model have UV divergent vacuum energies. We have

renormalized the divergences by removing the whole contribution of vacuum energy. However,

this does not mean that it is an unphysical quantity. The fact that the vacuum energy can have
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observable consequences was first pointed out by H. Casimir in 1948. He remarked that although

we can remove a fixed vacuum energy for the free fields, the variation of the vacuum energy under

external conditions could be detected and observed.

Consider a pair of infinite, perfectly conducting plates placed parallel to each other at a distance

d. The conducting character of the plates implies that the electromagnetic forces vanishes at both

plate surfaces. The presence of the plates modifies the vacuum energy in a d-dependent way. If

the perturbation increases the vacuum energy with the distance it will induce an attractive force

between the plates and this force will be repulsive if the energy decreases with the distance.

Figure 2. Three different domains in the Casimir effect.

The main modification introduced by the plates is the presence of boundary conditions on the

classical fields. Since the free electromagnetic field corresponds to photons with two polarizations

the electromagnetic vacuum energy is twice the vacuum energy of a massless scalar field with

vanishing boundary conditions on the plates. The physical R3 space is split into three disjoint

domains

Ω
I
= {x ∈ R

3;−∞ < x3 ≤ d
2}

Ω
II

= {x ∈ R
3;−d

2
< x3 ≤ d

2
}

Ω
III

= {x ∈ R
3;−∞ < x3 ≤ d

2
}.

The physical vacuum is the product of the vacua of the different sectors

ψ0(φ) = ψ
I
(φ

I
)ψ

II
(φ

II
)ψ

III
(φ

III
) (4.15)

and the vacuum energy the sum of the vacuum energies of the three domains

E0 = E
I
+ E

II
+ E

III
(4.16)

The calculation of vacuum energy density E
II

= E
II
/V

II
can be seen in appendix A and gives the

following result using the heat kernel regularization

E
II

=
1

8π2ǫ2
+

1

16
√
πǫ

3

2

1

d
− π2

1440d4
+O(ǫ

1

2 ) (4.17)

In the other cases we only get

E
I
=

1

8π2ǫ2
, E

III
=

1

8π2ǫ2
(4.18)
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because of their infinite transversal size. The common divergent term corresponds to the vacuum

density in infinite volume. Thus, it disappears under vacuum energy renormalization. The ǫ
3

2 diver-

gent term between the plates correspond to the selfenergy of the plates and has to be renormalized

as well. The remaining renormalized vacuum energy density between the plates is

Eren
II

= − π2

1440d4
(4.19)

is negative which leads to an attractive force between the plates.

5 Fields versus Particles

We have assumed that the field operators act on a separable Hilbert space H without any special

properties. In canonical quantization we assumed that the space of quantum states is given by

functionals of the configuration space of square integrable classical fields M (3.9). However, such

a space has not a well defined Hilbert product. The reason being that in quantum mechanics the

equivalent space of functions of the configuration space is given by the L2 product in terms of

the Lebesgue measure of Rn, dn x. However in infinite dimensional Hilbert spaces the equivalent

Lebesgue measure is not well defined, because the basic building blocks of hypercubes of size L

have infinity volume if L > 1 or zero if L < 1. Thus, although all operators: the fields φ(f),

the Hamiltonian Ĥ and momentum operator P̂ are formally selfadjoint with respect to the naive

generalization of Lebesgue measure δφ, the definition of the quantum field theory require a rigourous

definition of the the Hilbert product and a redefinition of the physical observables.

The key ingredient is that the naive vacuum state (4.1) defines a good measure in the space of

functionals on space of classical fields M. Indeed, the measure defined by

δµ(φ) = N e−(φ,
√
−∇2+m2φ)δφ =

∏

n∈Z3

1√
π
e−ωnφ

2

nδφn, (5.1)

where N is the normalization factor, which guarantees that the volume of the configuration space

is unit. According to Minlos’ theorem (see Appendix B)the Gaussian measure δµ is supported on

the space of tempered distributions S ′(R3) in the massive case and on the space of generalized

distributions D′ in the massless case.

The above definition requires a redefinition of all physical physical states and operators by a

similarity transformation

Ψ(φ) ⇒ e
1

2
(φ,

√
−∇2+m2φ)Ψ(φ); O ⇒ e

1

2
(φ,

√
−∇2+m2φ)Oe−

1

2
(φ,

√
−∇2+m2φ), (5.2)

The field operator φ(f) remains unchanged whereas the canonical momentum operator π̂(f)

becomes

π̂(f) = −i
∫
d3x f(x)

(
δ

δφ(x)
−
√
−∇2 +m2φ(x)

)
, (5.3)

and are now selfadjoint with respect to the Hilbert product

(F ,G) =
∫

S′(R3)

δµ(φ)F(φ)∗G(φ) (5.4)

of H = L2(S ′(R3), δµ).

The vacuum state becomes trivial

Ψ0 = 1, (5.5)

which now is normalizable with respect to the Gaussian measure (5.1), i.e (Ψ0,Ψ0) = 1.

The new renormalized Hamiltonian

Ĥren = −
∫
d3x

(
δ

δφ(x)
− 2
√
−∇2 +m2φ(x)

)
δ

δφ(x)
, (5.6)

and the excited states are just field polynomials.
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5.1 Fock space

The space of physical states is generated by polynomials of field operators, e.g.

F(f1,f2,··· ,fn) = φ(f1)φ(f2) · · ·φ(fn). (5.7)

The simplest state is a degree zero polynomial: the vacuum state. The degree one monomials

φ(f) (5.8)

correspond to one-particle states, where f is the quantum wave packet state of the particle. In

mathematical terms one-particle states constitute the dual space of the configuration space of

classical fields 4. Indeed, the functional

Ff(φ) = φ(f) (5.9)

associated to one-particle states is linear on the space of quantum field φ ∈ S ′(R3). Higher order

monomials correspond to linear combinations of quantum states with different number of particles.

To pick up only states with a defined number of particles one has to proceed as in the harmonic

oscillator case where the eigenstates of the Hamiltonian are given by Hermite polynomials which

involve suitable combinations of monomials.

For such a reason to identify physical states with a simple interpretation in terms of particles

it is convenient to introduce a coherent state basis. This can be achieved in terms of creation and

annihilation operators,

a(f) = φ(
√

−∇2 +m2f) + iπ̂(f) a(f)† = φ(
√
−∇2 +m2 f)− iπ̂(f)†. (5.10)

It is easy to show that

[a(f), a(g)] = [a(f)†, a(g)†] = 0 (5.11)
[
a(f), a(g)†

]
= 2(f,

√
−∇2 +m2 g) (5.12)

Using the basis of plane waves (3.26) we have

Ĥren =
1

4

∑

n∈Z3

(
a†nan + ana

†
n

)
− E0 =

1

2

∑

n∈Z3

a†nan (5.13)

where a(fn) = an,

P̂ren =
1

4

∑

n∈Z3

n

ωn

(
a†nan + ana

†
n

)
, (5.14)

and we can define the number operator as

N̂ =
1

2

∑

n∈Z3

1

ωn

a†nan. (5.15)

The main property of the number operator are its commutation relations with the creation and

annihilation operators,

[N̂, an] = −an, [N̂ , a†n] = a†n. (5.16)

The creation operators a(f) can generate by iterative actions on the vacuum a basis of physical

states. In particular, the state5

|f〉 = a†(f)|0〉 (5.17)

4This is explains why in the case of gauge fields, where the configuration space of classical gauge fields modulo

gauge transformations is a curved manifold, the particle interpretation of quantum states is so difficult
5We use the Dirac notation, where |0〉 = Ψ0 is the vacuum state, and the ket |f〉 denotes the state a(f)†Ψ0 =

a(f)† |0〉.
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can be considered as an one particle state with wave packet f . Indeed, it easy to check that

N̂ |f〉 = |f〉 (5.18)

The normalization of the creation operators simplifies the identification of the norm of one-particle

states,

〈f |f〉 =‖ f ‖2=
∫
d3x |f |2. (5.19)

The completion of the space of one-particle states with this norm is then

H = L2(R3,C) = {f, ‖ f ‖2<∞}, (5.20)

which again can be identified with the dual space of the configuration space of classical gauge fields.

The next step are the two particle states. They are of the form

|f1, f2〉 =
1√
2
a†(f1)a

†(f2)|0〉 =
1√
2
a†(f2)|f1〉, (5.21)

and satisfy that

N̂ |f1, f2〉 = 2|f1, f2〉. (5.22)

The n-particle states can be identified with

|f1, f2, · · · , fn〉 =
1√
n!
a†(f1)a

†(f2) · · · a†(fn)|0〉, (5.23)

because they satisfy that

N̂ |f1, f2, · · · , fn〉 = n|f1, f2, · · · , fn〉. (5.24)

Now because of the commutation properties of the bosonic field operators, the space of states

with n-particles is not the tensor product H⊗n of n Hilbert spaces of one-particle states H. Instead

it can be identified with the subspace of symmetric states involving n particles,

sH⊗n ⊂ H ⊗H⊗ n· · · ⊗ H, (5.25)

of the space of quantum states of n distinguishable particles H⊗n = H⊗H⊗ n· · ·⊗H. The subspace

of symmetric states sH⊗n is the Hilbert space of n identical bosonic particles.

In this sense the bosonic nature of the commutation relations implies the bosonic statistics of

the corresponding particles. To some extent this example illustrates the existence of a link between

the spin of the fields and the statistics of the corresponding particles. In general, for any field theory

the spin-statistics connection follows from the fundamental principles (spin-statistics theorem).

The Fock space is the Hilbert space of all multiparticle bosonic states,

F =

∞⊕

n=0

sH⊗n. (5.26)

It is the Hilbert space of the (bosonic) quantum field theory. In the free theory the Hamiltonian Ĥ

and the number of particles operator N̂ commute. Thus, the energy levels have a definite number

of particles. However, in the presence of interactions this is not longer true, e.g. for

V (φ) =
1

2
m2φ2 +

λ

4!
φ4

we have that

[N̂ , V ] 6= 0
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which means that the number of particles might change by time evolution. This is one of the novel

characteristics of quantum field theory. New process like, decaying of particles, pair creation and

photon emission in atoms can occur in the theory. Quantum field theory in a natural way describe

such a processes in an accurate manner.

Although we have identified the Fock structure of the space of quantum states with a number

of particles stratification, the notion of particle is secondary and it is just the quantum field who is

fundamental. The explanation of why two particles are identical come from the fact that they are

generated by the same field, which permeates the whole Universe. In this way we understand why

the particles coming in cosmic rays from far Galaxies are identical to the same particles on earth.

The link is the quantum field. Moreover, there are field theories where the particle composition is

unclear. For example in gauge theories, the fundamental fields are quark and gluon fields, but the

physical particles are mesons, baryons and glueballs which are bounded composites of quarks and

gluons.

5.2 Wick theorem

An important consequence of the Gaussian nature of the ground state of a free field theory is the

clustering property of the vacuum expectation values of the product of field operators

〈0|φ(f1)φ(f1) · · ·φ(fn)|0〉 = 〈φ(f1)φ(f1) · · ·φ(fn)〉 =
∫
δµ φ(f1)φ(f1) · · ·φ(fn).

The cluster property is a fundamental characteric of Gaussian measures which gives rise to the

Wick theorem which states that

〈φ(f1)φ(f2) · · ·φ(fn)〉 =






0 for n = 2m+ 1
1

2!m!

∑

σ∈Sn

〈φ(fσ(1))φ(fσ(2))〉 · · · 〈φ(fσ(2m−1))φ(fσ(2m))〉 for n = 2m

6 Fields in Interaction

The free theory quantized in the previous section shows the basic properties of a relativistic quantum

field theory, but the goal is to quantize theories of interacting fields. The procedure is basically

the same, but the main difference is that the interacting Hamiltonian is not exactly solvable. For

example, let us consider the λ
4!φ

4 theory Hamiltonian

Ĥ = 1
2

(
‖ π̂ ‖2 + ‖ ∇φ ‖2 +m2 ‖ φ ‖2 +

λ

4!
‖ φ2 ‖2

)
, (6.1)

Using the same quantization rules as in (3.32) we get a formal quantum Hamiltonian Ĥ which is

defined in the space of functionals in the space of classical fields M. However, as we have seen in

the case of free fields, the theory need a renormalization.

Using the plane wave basis on a finite torus, we have

Ĥ = 1
2

∑

n∈Z3


 δ

δφ−n

δ

δφn

+ ω2
n |φn|2 +

λ

12

∑

n1,n2∈Z3

φnφn1
φn2

φ−n−n1−n2


 (6.2)

Again the regularization of UV divergences requires the introduction of a regularization, e.g.

ĤΛ = 1
2

ωn<Λ∑

n∈Z3


 δ

δφ−n

δ

δφn

+ ω2
n |φn|2 +

λ

12

ωn1
,ωn2

<Λ∑

n1,n2∈Z3

φnφn1
φn2

φ−n−n1−n2


 . (6.3)
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The Hamiltonian (6.3) can be split into two terms

ĤΛ = H0 + Ĥ int
Λ . (6.4)

The first term

Ĥ0 = 1
2

ωn<Λ∑

n∈Z3

(
δ

δφ−n

δ

δφn

+ ω2
n |φn|2

)
(6.5)

is just the Hamiltonian of the free bosonic theory, whereas the second term

Ĥ int
Λ =

λ

4!

ωn1
,ωn2

,ωn3
<Λ∑

n1,n2,n3∈Z3

φn1
φn2

φn3
φ−n1−n2−n3

. (6.6)

contains the interaction terms. The renormalization of H0 can be performed as in previous section

by substracting the vacuum energy of the free theory,

Ĥren
Λ = Hren

0 + Ĥ int
Λ . (6.7)

But there are new divergences generated by the interacting terms which require an extra renor-

malization.

6.1 Renormalization of excited states

The easiest way of dealing with the interacting theory is to consider the interacting term Ĥ int
Λ

as a perturbation. In first order of perturbation theory the vacuum energy gets an additional

contribution

∆E0 = 〈0|Ĥint|0〉, (6.8)

which by Wick’s theorem

∆E0 =
λ

8

ωn1
,ωn2

<Λ∑

n1,n2∈Z3

〈0|φ−n1
φn1

|0〉〈0|φ−n2
φn2

|0〉, (6.9)

gives an extra divergent contribution to the vacuum energy,

∆E0 = λ
128π4

(
Λ4 − 2Λ2m2(log m2

2Λ2 − 1
2 ) +m4(log m2

2Λ2 − 1
2 )

2
)
+O

(
m2

Λ2

)
, (6.10)

which has to be substracted to renormalize the vacuum energy to zero.

The vacuum energy is not the only divergent quantity of the theory. The energy of one-particle

states gets a perturbative correction which is also UV divergent. The energy of the state |fn〉 = an|0〉
in the free theory is ωn. The first order correction to the excited state energy is

∆En = 〈fn|Ĥint|fn〉. (6.11)

Using Wick’s theorem, a simple calculation shows that

∆En = ∆E0 +
λ

8

ωn1
,ωn2

<Λ∑

n1,n2∈Z3

〈fn|φ−n1
φn1

|fn〉〈0|φ−n2
φn2

|0〉. (6.12)

Both terms are divergent. The first term corresponds the vacuum energy correction, which is

removed by the previous renormalization of vacuum energy (6.10). The second term is a new type

of UV quadratic divergence. In the sharp momentum cutoff it is given by

λ

32π2ωn

(
Λ2 −m2

(
log

m2

2Λ2
− 1

2

))
. (6.13)

– 21 –



The renormalization of the divergence can be absorbed by a renormalization of the mass of the

theory. Indeed if we redefine the Hamiltonian of the theory as

Ĥren
int =

1

2
∆m2

∑

n∈Z3

|φn|2 +
λ

4!

ωn1
,ωn2

,ωn3
<Λ∑

n1,n2,n3∈Z3

φn1
φn2

φn3
φ−n1−n2−n3

, (6.14)

where

∆m2 = − λ

32π2

(
Λ2 −m2

(
log

m2

2Λ2
− 1

2

))
, (6.15)

the first order correction to the energy of all one-particle levels is finite. With the above prescription

there is no correction to the free value ωn, but we could have renormalized the mass of the theory

by a different substraction: m2 → m2−∆m2+a2. In that case the renormalized value of the energy

one-particle states will be after resummation of the perturbative series,

ωr
n =

√
n2 +m2 + a2.

With the above renormalizations of the vacuum energy and mass the theory is finite at first

order of perturbation theory. This means that the corrections to the higher energy levels are finite

at first order in λ.

We can understand now the physical meaning of the renormalization program. The physical

parameters which appear in the classical Lagrangian do not necessary coincide with the correspond-

ing quantum physical parameters. This includes the constant term which can always be added to

the classical Lagrangian without changing the dynamics, but determines the vacuum energy of the

quantum theory, the mass of the theory m and the coupling constant λ.

Until now we have only renormalized the mass and the vacuum energy. However, in higher

orders of perturbation theory new UV divergences appear. They can be absorbed by new renor-

malizations of the vacuum energy E0, the mass m2, the coupling constant λ and the field operators

φ̂(f).

However, the proof of consistency of the resulting theory is quite involved and required few

decades to be completely achieved. One of the main problems is that in the canonical approach

the preservation of the relativistic invariance is not guaranteed. Among other things the use of

UV cutoff break Lorentz invariance and one has to prove that the renormalization prescriptions

do preserve the relativistic symmetries. In general, it is not obvious that the interacting theory

satisfies the general quantum field principles of section 3.

For such a reasons it is convenient to develop a new approach to quantization based on a

covariant formalism, where time and space are treated on the same footing.

7 Covariant approach

If we consider the Heisenberg representation of quantum operators the field operator evolves ac-

cording to the Heisenberg law

φ(x, t) = U(t)φ(x)U(t)†, (7.1)

and if we consider test functions f̃ ∈ S(R4) the smeared operators

φ(f̃) =

∫

R4

d4xφ(x, t)f̃ (x, t) (7.2)

satisfy that

U(t)φ(f̃ )U(t)† = φ(f̃(I,t)), (7.3)
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where

f̃(I,a)(x, t) = f(x, t− a). (7.4)

In terms of the new covariant field operators the principles of quantum field theory are similar to

the ones introduced in section 3. The only changes affect to the last three principles which read:

• 5. Field Theory (real boson) : For any f ∈ S(R3) there is field operator φ(f̃ ) in H which

satisfies that φ(f̃) = φ(f̃)∗. The subspace spanned by the vectors φ(f1)φ(f2) · · ·φ(fn)|0〉 for
arbitrary test functions f1, f2, · · · fn ∈ S(R4) is a dense subspace of H.

• 6. Poincaré covariance: For any Poincaré transformation (Λ, a) and classical field test function

defined in Minkowski space-time f̃ ∈ S(R4)

U(Λ, a)φ(f̃)U(Λ, a)† = φ(f̃(Λ,a)), (7.5)

where

f̃(Λ,a)(x) = f̃(Λ−1(x − a)). (7.6)

• 7. (Bosonic) Local Causality: For any f̃ , g̃ ∈ S(R4) whose domains are space-like separated6

the corresponding field operators φ(f̃), φ(f̃ ) commute7

[φ(f), φ(g)] = 0. (7.7)

It is not difficult to show that these principles are satisfied by the free field theory. The only non-

trivial test is the calculation of the commutator of free fields [φ(f), φ(g)]. After some simple algebra

it can be shown that it is an operator proportional to the identity operator times a real function of

f and g which can be estimated by the vacuum expectation value of the operator,

[φ(f), φ(g)] = I

∫

R4

d4x

∫

R4

d4y f(x)∆(x − y) g(y) = I 〈0|[φ(f), φ(g)]|0〉 (7.8)

where

∆(x− y) =

∫
d3k

(2π)3
1

2
√
k2 +m2

(
eik·(x−y) − e−ik·(x−y)

)
, (7.9)

and k · (x − y) = k · (x − y) −
√
k+m2(x0 − y0). The local causality property (7.7) follows from

the fact that the causal propagator kernel ∆(x − y) vanish for equal times x0 = y0, since the two

terms in

∆(x − y, 0) =

∫
d3k

(2π)3
1

2
√
k2 +m2

(
eik·(x−y) − e−ik·(x−y)

)
= 0, (7.10)

give the same contributions by flipping the sign of k in one of them. Although the expression of

causal propagator kernel ∆(x − y) is relativistic invariant, it seems to be non-covariant. However,

it can be written in a covariant form

∆(x − y) = D(x − y)−D(y − x), (7.11)

where

D(x − y) =

∫
d4k

(2π)4
θ(k0)δ(k

2 +m2)eik·(x−y). (7.12)

This result shows that the covariant approach to quantization could also be derived from the Peierls

covariant classical approach to field theory, replacing Peierls brackets by commutators.

To check that fundamental principles are satisfied in an interacting theory is more difficult, but

it can be seen that in perturbation theory it is satisfied even after renormalization.

6f̃ , g̃ are space-like separated if for any x, y ∈ R4 such that f̃(x) 6= 0 and g̃(y) 6= 0, d(x, y) < 0.
7In the fermionic case the commutator [·, ·] is replaced by an anticommutator {·, ·}
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7.1 Euclidean approach

Working with field operators in the Fock space is hard because they are unbounded operators. For

such a reason it is more convenient to consider its expectation values on the different states. Since

the full Fock space is generated by the completeness principle by the field operators, it is enough

to consider the expectation values of the products of field operators on the vacuum state.

These expectation values are known as Wightman functions

W (f̃1, f̃2, . . . , f̃n) = 〈0|φ(f̃1)φ(f̃2) . . . φ(f̃n)|0〉. (7.13)

However the unbounded character of the field operators φ(f̃) reflects in the oscillating behavior of

the Wightman functions. For such a reason is much more convenient to introduce the Euclidean

time analytic extensions of the quantum fields and the corresponding Wightman functions which

after analytic continuation become Schwinger functions. Indeed if the consider a Euclidean time

τ = it the τ -evolution of the field operators becomes

φE(x, τ) = eτHφ(x, 0)e−τH . (7.14)

The smearing by f̃ of φE(x, t) by a test function defines the Euclidean field operators

φE(f̃) =

∫

R4

d4xφE(x, t)f̃ (x, t). (7.15)

Now the vacuum expectation values of products of field operators φE(f̃) is not always well defined

because the Euclidean time evolution is given by hermitian operators UE(τ) = U(it) which define a

semigroup instead of a group unlike the case of real time evolution. The hermitian operators UE(τ)

are only bounded for positive values of the Euclidean time τ < 0. For such a reason the vacuum

expectation values of products of field operators φE(f̃) require some time-ordering of the domains

of the test functions. If the supports of the family of functions f̃i ∈ SR
4

are ordered, i.e. for any xi
where f(xi) 6= 0, τ1 > τ2 > · · · > τn, then

Sn(f̃1, f̃2, . . . , f̃n) = 〈0|φE(f̃1)φE(f̃2) . . . φE(f̃n)|0〉 (7.16)

is a well defined function and does coincide in that case with the analytic extension of the corre-

sponding Minkowskian vacuum expectation values.

Moreover, it can be extended for multivariable test functions f̃n ∈ S(R4n) defined in R4n by

Sn(̃fn) =

∫

R4

d4x1

∫

R4

d4x2 . . .

∫

R4

d4xn φE(x1)φE(x2) . . . φE(xn)f̃n(x1, x2, . . . , xn), (7.17)

when, f̃n has support in a time ordered subset of R4n, i.e. f̃n(x1, x2, . . . , xn) = 0 if x ∈ R4n does

not satisfies one of the inequalities τ1 > τ2 > · · · > τn. In the particular case of f̃n = f̃1f̃2 . . . f̃n the

expectation value (7.17) reduces to (7.16). But Sn(̃fn) can be extended for multivariables functions

with more general support by analytic extension from the Mikowskian definition.

The interesting thing is that this analytic extension also provides a finite value for the case where

the supports are not time-ordered. These analytically extended functions, known as Schwinger

functions, although can only be expressed as vacuum expectation values of products of Euclidean

fields (7.16) when the supports of the the test functions are time-ordered, in practice, because of

their symmetry under permutations, can only be calculated in that way.

The quantum field theory can be completely formulated in terms of Schwinger functions and

the fundamental principles reformulated in the following way.

Let θ be the Euclidean-time reflection symmetry defined by θ(x, τ) = θ(x,−τ). The action of θ

on R4 induces a transformation on the classical fields test functions defined by θf̃(x) = f̃(θx) and in

the multivariable test functions f̃n ∈ S in a similar way θf̃n(x1, x2, . . . , xn) = f̃n(θx1, θx2, . . . , θxn)
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• 1. Regularity. The Schwinger functions Sn are tempered distributions in S, satisfying the

reflection reality condition

Sn(̃fn)
∗ = Sn(θf̃

∗
n) (7.18)

• 2. Permutation Symmetry. The Schwinger functions are symmetric under permutations, i.e.

Sn(f̃σ(1), f̃σ(2), . . . , f̃σ(n)) = Sn(f̃1, f̃2, . . . , f̃n) (7.19)

for any permutation σ ∈ Sn.

• 3. Euclidean invariance. The Schwinger functions are covariant under Euclidean transforma-

tions, i.e.

Sn(̃f(Λ,a),n) = Sn (̃fn) (7.20)

for any Euclidean transformation (Λ, a) ∈ E4 = ISO(4).

• 4. Reflection positivity. For any family of multivariable functions test functions f̃ni
∈

S(R4ni

+ ), i = 0, 1, 2, . . . , n the following inequality 8

n∑

i,j=0

Sni+nj
(θf̃∗ni

.̃fnj
) ≥ 0 (7.21)

holds.

• 5. Cluster property. For any pair of multivariable functions test functions f̃n ∈ S(R4n), f̃m ∈
S(R4m), we have that

lim
σ→∞

Sn+m(̃fn .̃f(I,σ),m) = Sn(̃fn)Sm(̃fm), (7.22)

where (I, τ) is the Euclidean time translation (I, σ)(x, τ) = (x, τ + σ).

These Euclidean principles follow from the field theory principles introduced in Section 3. The

Euclidean principles 1-3 are a straightforward consequence of the Minkowskian principles. The

third Euclidean principle follows from the positivity of the norm of the state

n∑

i=0

φ(̃fni
)|0〉 (7.23)

Finally the cluster property is a consequence of the uniqueness of the vacuum assumed in the

fourth Minkowskian principle.

What is not so evident is to show that from the Euclidean principles one can reconstruct

a quantum field theory satisfying the Minkowskian principles. The proof was achieved by

Osterwalder and Schrader in the early seventies. We will not elaborate in the proof that can

be seen in the books by B. Simon and J. Glimm and A. Jaffe included in the bibliography.

7.2 Functional integral approach

The major advantage of the Euclidean approach is that the Schwinger functions are better behaved

that the corresponding Wightman distributions and what is more important they can be derived

in most of the cases from functional integration with respect to a probability measure. This also

allows by introducing a suitable regularization a systematic numerical approach.

8R4
+ = {(x, τ) ∈ R4, τ ≥ 0}
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The result which was first suggested by K. Symanzik and E. Nelson is that formally speaking

the Schwinger functions can be considered as the momentum operators of a functional measure

defined in the space of distributions S(R4) defined by the exponential of the Euclidean classical

action SE , i.e.

Sn(f̃1, f̃2, . . . , f̃n) =

∫

S′(R4)

δφ e−SE(φ) φ(f̃1)φ(f̃2) . . . φ(f̃n) = (7.24)

In the case of free field theory

SE(φ) =
1

2
‖ ∇φ ‖2 +m

2

2
‖ φ ‖2= 1

2
(φ, (−∇2 +m2)φ) (7.25)

and we have that

S2(f̃ , g̃) =

∫

S′(R4)

δφ e−SE(φ)φ(f̃)φ(g̃) =
1

2
(f̃ , (−∇2 +m2)−1g̃) =

∫

S′(R4)

δµmφ(f̃)φ(g̃) (7.26)

where δµm is the Gaussian measure defined on S ′(R4) with vanishing mean and covariance the

operator (−∇2 +m2)−1.

It is obvious that this Schwinger function does coincide with the analytic extension of the

Wightman function of the free theory. In fact, from the functional integral formulation it is easy

to check that the Schwinger functions satisfy the regularity, symmetry and Euclidean covariance

principles. Concerning the reflection positivity property it is not so evident. Let us check that this

is the case to illustrate the subtleties of the very special Osterwalder-Schrader’s property. Let us

consider the case of a one-particle states with a complex function f̃ ∈ S(R4
+)

S2(θf̃
∗, f̃) =

∫

S′(R4)

δφ e−SE(φ)θφ(f̃ )∗φ(f̃ ) =
1

2
(θf̃ , (−∇2 +m2)−1f̃). (7.27)

Let us define ϕ = (−∇2 +m2)−1f̃ . Since θ commutes with (−∇2 +m2) we have

(θf̃ , (−∇2 +m2)−1f̃) = (θf̃ , ϕ) = ((−∇2 +m2)θϕ, ϕ). (7.28)

and since the support of f̃ is contained in S(R4
+), that of θf̃ is in S(R4

−), thus, we can restrict the

integral in (7.28) to S(R4
+),

(θf̃ , ϕ) = (θf̃ , ϕ)− = ((−∇2 +m2)θϕ, ϕ)− (7.29)

By the same reason, (θϕ, (−∇2 +m2)ϕ)− = (θϕ, f̃)− = 0 and

(θf̃ , ϕ) = ((−∇2 +m2)θϕ, ϕ)− − (θϕ, (−∇2 +m2)ϕ)−. (7.30)

Integrating by parts one gets

(θf̃ , ϕ) = −
∫

R3

d3x ∂nθϕ
∗ϕ+

∫

R3

d3x θϕ∗∂nϕ (7.31)

where ∂nϕ denotes the normal derivative of ϕ at the boundary ∂R+ = R
3 at Euclidean time τ = 0

of R4
+. Now, at the boundary τ = 0, θϕ = ϕ and ∂nθϕ = −∂nϕ, thus,

(θf̃ , ϕ) = 2Re

∫

R3

d3x θϕ∗∂nϕ. (7.32)

Finally, by integrating by parts back we get

Re

∫

R3

d3x θϕ∗∂nϕ = (∇ϕ,∇ϕ)− − (ϕ,−∇2ϕ)−. (7.33)
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and since −∇2ϕ = −∇2(−∇2 +m2)−1f̃ = f̃ −m2ϕ,

(θf̃ , ϕ) = 2 ‖ ∇ϕ ‖2− +2m2 ‖ ϕ ‖2−≥ 0. (7.34)

The proof of reflection positivity for higher order Schwinger functions follows from Wick theorem

in a similar way.

The cluster property of the two-point Schwinger formula follows from the fact that the kernel

(−∇2 +m2)−1(x, y) vanish in the limit ‖ x− y ‖→ ∞.

In this formalism the functional integral of the interacting theory can be understood as a

Riemann-Stieltjes measure with respect to the Gaussian measure of the free theory δµm, i.e.

Sn(f̃1, f̃2, . . . , f̃n) =

∫

S′(R4)

δµm(φ) e−V (φ) φ(f̃1)φ(f̃2), . . . , φ(f̃n). (7.35)

Perturbation theory is defined just by the Taylor expansion of e−V (φ) in power series and the formal

commutation of the Gaussian integration with the Taylor sum. In the λφ4 case the perturbation

theory is defined by

Sn(f̃1, f̃2, . . . , f̃n) =

∞∑

n=0

1

n!

λn

4!n

∫

S′(R4)

δµm(φ) ‖ φ2 ‖2n φ(f̃1)φ(f̃2), . . . , φ(f̃n). (7.36)

In this formalism the UV divergent appear when computing the different terms of (7.36) by using

Wick’s theorem. But the advantage of the covariant formalism is that there the preservation of

Poincaré symmetries under renormalization is more transparent.

8 What is beyond

From the Euclidean formulation it follows that the functional integral approach is a constructive

way of quantizing a field theory. The perturbative expansion (7.36) provides a very explicit way of

computing Schwinger functions. The ultraviolet divergences that arise there, can be renormalized

by absorbing the divergences in the bare parameters of the theory in some cases.

From this point of view the quantum field theories are classified in two classes: theories where

the set of parameters of the Lagrangian are enough to absorb all UV divergences and theories where

they are not enough. Theories of the first family are called renormalizable whereas those of the

second class are unrenormalizable. Of course, only theories of the first type are sensible since with

a finite number of parameters they can predict the behavior of all quantum states.

To distinguish between both cases one has to work out the perturbation theory and find a

good prescription scheme to renormalize all UV divergences. The best renormalization scheme is

the BPHZ scheme, developed by Bogolibov, Parasiuk, Hepp and Zimmerman to provide a rigorous

proof to the perturbative renormalization program.

In a heuristic way, one can distinguish the renormalizable theory just by a power counting

algorithm. This consist in assigning a physical dimension to the fields under scale transformations

in a way that leave the kinetic term of the action scale invariant (dimensionless). In the scalar theory

this means that the scalar field φ has dimension dφ = 1, the same as the space-time derivatives ∂x
operator. In that way the kinetic term of the action

1

2
‖ ∇φ ‖2

become dimensionless. The theory is renormalizable by power counting if all the terms of the action

have non-positive dimensions. This constraint only allows Poincaré invariant terms like

m2

2
‖ φ ‖2,
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which has dimension d = −2,
σ

3!

∫

R4

d4x φ(x)3,

which has dimension d = −2, or
λ

4!

∫

R4

d4x φ(x)4

which is dimensionless. No other selfinteracting terms give rise to a renormalizable theory. This

limitation became very important in model building because it introduces very stringent limitations.

The remarkable thing is that Nature has chosen renormalizable models to build the theory of

fundamental interactions.

The only fundamental theory which does not satisfy the renormalizability criterium is Einstein

theory of Gravitation. In that theory due to diffeomorphism invariance the Einstein term contains

and infinity of terms with positive dimensions.

One of the advantages of the covariant approach is that does not requires the existence of a

classical Lagrangian. It is enough to have a complete set of Schwinger functions satisfying the

fundamental properties 1-5 of a QFT. This opens the possibility of quantum systems which are not

defined by quantization of a classical system. There are few examples of that. But also it opens the

possibility of having different field theories with the same Schwinger functions. In that case they

are quantum-mechanically equivalent although their classical theories are completely different.

In two space-time dimensions, theories which in addition to the fundamental properties 1-5 are

conformally invariant, have been analysed and classified without any reference to the corresponding

classical systems. In three dimension there has been a recent breakthrough which open the possi-

bility of having similar results. However, in four space-time dimensions the problem is far from a

solution.

In the early seventies WIlson developed an interpretation of the renormalization procedure as

a non-linear representation of the one-dimensional group of dilations. In the Euclidean formalism

using a space-time lattice regularization Wilson mapped the quantum field theory system into a sta-

tistical mechanical one. Then, using the properties of second order phase transitions he interpreted

the renormalization of a field theory as a limit process near a critical point of the renormalization

group associated to the second order phase transition. The Wilson method provided a new non-

perturbative approach to quantum field theory which allows a numerical treatment and has been

intensively used in quantum chromodynamics.

However, with the Wilson’s approach it was also born the possibility to considering QFT as the

ultimate theory of Nature. It can be considered as just a successful approximation to the intimate

structure of Nature. This approach, known as effective field theory, considers that the range of

validity of the quantum field theory has an energy upper bound beyond which the theory does not

hold. The limit scale is sometimes associated to the Planck energy scale, but for some theories

might be smaller.

In the last three decades to solve the problem of quantizing gravity there have been many

attempts which searched for theories with Beyond field theory. From one way or another all these

attempts consider the possibility of non-local interactions. The most popular approach the super-

string theory. The connection of all the non-local approach with fundamental aspects of Nature

has not yet been confirmed by experiments.

A Casimir Effect

In the domain ΩII between two parallel plates the normal modes of the field φ become discrete

under Dirichlet boundary conditions

k3 =
nπ

d
n ∈ Z
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whereas k1 and k2 remain continuous in R2. For the other two domains ΩI ,ΩIII the Fourier modes

of the classical field φ are continuous, i.e. k ∈ R3

In the heat kernel regularization the vacuum energy density between the plates is

E
II

=
1

2

∫
d3k

(2π)3
e−ǫk2

√
k2 (A.1)

+
1

2d

∫ ∞

−∞

∫ ∞

−∞

dk1dk2
(2π)2

e−ǫ(k2

1
+k2

2
)
√
k21 + k22 (A.2)

+
1

2d

∞∑

n=1

∫ ∞

−∞

∫ ∞

−∞

dk1dk2
(2π)2

e−ǫ(k2

1
+k2

2
+(nπ

d )
2
)

√
k21 + k22 +

(nπ
d

)2
.

The first term is the vacuum energy of the free field and gives

E(1) =
1

8π2ǫ2
. (A.3)

The second term corresponds to the selfenergy of the plates and gives

E(2) =
1

16
√
πǫ

3

2

1

d
. (A.4)

Finally, to calculate the third term we define the function

f(z) =
1

2π

∫ ∞

0

k dk e−ǫ
√

k2+( zπ
d )2
√
k2 +

(zπ
d

)2
=

1

4π

∫ ∞

( zπ
d )2

dκ e−ǫ
√
κ√κ. (A.5)

The contribution of the third terms to the vacuum energy can be written as

E(3)
II

=
1

d

[
1

2
f(0) +

∞∑

n=1

f(n)−
∫ ∞

0

dz f(z)

]
(A.6)

Using the Euler-MacLaurin formula

∞∑

n=1

f(n)−
∫ ∞

0

dz f(z) = −1

2
[f(0) + f(∞)] +

1

12
[f ′(∞)− f ′(0)]

− 1

720
[f ′′′(∞)− f ′′′(0)] + . . . (A.7)

Now the function (A.5) satisfies that f(∞) = f ′(∞) = f ′′′(∞) = 0 and f ′(0) = 0, the value of E
II

is determined by f ′′′(0). Computing this term and removing the ultraviolet cutoff, ǫ → 0 we find

the result

E(3) =
1

1440
f ′′′(0) = − π2S

1440d4
. (A.8)

B Gaussian Measures

Let us consider in R the following Gaussian measure

dµc =
e−

x2

2c√
2πc

dx. (B.1)

The integral of any L1(R) function is defined by

〈f〉 =
∫

R

dµc(x) f(x) (B.2)

gets its main contribution from the interval (−c, c). The main properties of the Gaussian measure

are given by the average of its momenta,
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• 〈1〉c = 1

• 〈x2m+1〉c = 0

• 〈x2m〉c = (2m− 1)!!〈x2〉m = (2m− 1)!! c2m

The last results is known as Wick’s theorem.

There is one special function f(x) = eixy whose average is the generating function gc(y) of all

momenta of the measure

gc(y) = 〈gc(y)〉c = e−
c
2
y2

. (B.3)

Indeed, all momenta of the measure can be obtained from the derivatives of the generating function

at the origin

〈xm〉 = (−i)m dm

dym
gc

∣∣∣
y=0

. (B.4)

The multidimensional generalization is straightforward. Let C be a positive, symmetric matrix,

i.e.

(x,Cy) = (Cx, y), (x,Cx) > 0). (B.5)

Positivity implies the non-degenerate character of C, detC 6= 0, which guarantees the existence of

the inverse matrix C−1.

The Gaussian measure is defined by

dµC =
e−

1

2
(x,C−1x)

√
2π detC

dnx. (B.6)

The momenta of the multidimensional Gaussian measure are obtained in terms of the covariance

matrix C. Indeed

• 〈1〉
C
= 1

• 〈xi1xi2 . . . xi2m−1 〉
C
= 0

• 〈xi1xi2 . . . xi2m〉
C
=

1

2mm!

∑

σ∈S2m

Cσ(i1)σ(i2)Cσ(i3)σ(i4) . . . Cσ(i2m−1σ(i2m))

The last formula is Wick’s theorem. The derivatives of the generating function i

gC(y) = 〈ei(x,y)〉
C
= e−

1

2
(y,Cy). (B.7)

generate the momenta of the Gaussian measure,

〈xi1xi2 . . . xim〉
C
= (−i)m ∂mgC

∂xi1∂xi2 . . . ∂xim

∣∣∣
y=0

. (B.8)

• Gaussian measures in Hilbert Spaces

The above measures can be generalized for infinite dimensional topological vector spaces. The

simplest case is the Hilbert space case. Let us consider a be a positive, symmetric, trace class

operator C in a Hilbert space H:

• (x,Cy) = (Cx, y), for any x, y ∈ H
• (x,Cx) > 0, for any x ∈ H
• trC <∞.
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Positivity implies the non-degenerate character of C, which guarantees the existence of the inverse

matrix C−1. Let us assume for concreteness that H = L2(Rn,C) and

Cs = (−∆+m2)−s

in R4 with s > 2. It easy to check that Cs is positive, symmetric, trace class operator in L2(Rn,C).

The Minlos theorem establishes that the measure defined by Cs is a Borelian probability measure

in H = L2(Rn,C). The momenta of this Gaussian measure are again obtained in terms of the

covariance matrix C,

• 〈1〉
C
= 1

• 〈(g, f1)(g, f2) . . . (g, f2m−1)〉C = 0

• 〈(g, f1)(g, f2) . . . (g, f2m−1〉C =
1

2mm!

∑

σ∈S2m

(fσ(1), Cfσ(2))(fσ(3), Cfσ(4)) . . . (fσ(2m−1), Cfσ(2m)).

The last formula is the infinite-dimensional version of Wick’s theorem. The generating functional

is

GC(f) = 〈ei(x,y)〉
C
=

∫

L2(Rn,C)

dµC(g)e
i(f,Cg) = e−

1

2
(f,Cf), (B.9)

because its functional derivatives generate the momenta of the measure,

〈(g, f1)(g, f2) . . . (g, fm)〉
C
= (−i)m ∂mGC

∂f1∂f2 . . . ∂fm

∣∣∣
f=0

. (B.10)

However, in field theory the natural covariance are not so regular so one needs to make appeal

to another version of Minlos’ theorem which applies to covariances which are not of trace class. In

this case the space of test functions is dual in some sense to the distributions of the space where

the measure is supported.

Let S(Rn) the space of fast decreasing smooth C∞(Rn) functions and C a positive, symmetric,

bounded operator in S(Rn). The Minlos theorem states that there is a unique Borelian Gaussian

measure with C covariance in the space of tempered distributions S ′(Rn), which is the dual of

S(Rn). The same holds for the space of smooth functions of compact support D(Rn) and its dual

D′(Rn), the space of distributions.

In the first case the generating function

GC(f) = 〈ei(x,y)〉
C
=

∫

S′(Rn,C)

dµC(g)e
i(f,g) = e−

1

2
(f,Cf), (B.11)

is defined only for test functions f ∈ S(Rn), whereas in the second case they are on defined for for

functions of compact support D(Rn).

There are two special Gaussian measures which arise in quantum field theory. One defined by

the covariance operator

C0 = (−∇2 +m2)−1/2

in R3 that corresponds to the measure defined by the ground state of a free bosonic field theory.

The second is defined by the covariance operators

CE = (−∆+m2)−1

in R
4, which corresponds to the measure given by the Euclidean functional integral of a free bosonic

theory. In physical terms CE is known as the Euclidean propagator of a scalar field.
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C Peierls brackets

There is an alternative canonical approach to classical dynamics developed by R. Peierls which

allows a relativistic covariant description of classical field theory.

The standard approach uses the Poisson structure based on equal time commutators (2.6)

(3.16). However, in relativistic theories the simultaneity of space separated points is not a relativistic

invariant notion. For such a reason R. Peierls introduced an equivalent dynamical approach which

explicitly preserves relativistic covariance.

The phase space in classical mechanics T ∗M contains all Cauchy data (x, p) ∈ T ∗M and a

canonical symplectic structure

ω0 =

n∑

i=1

dxi ∧ dpi

that determine the time evolution of the system for any kind of Hamiltonian function H(p, q)

following the Hamilton motion equations

ẋ = {x,H}, ṗ = {p,H}, (C.1)

where {, ·, ·} is the Poisson bracket defined by the symplectic form ω0.

Peierls remarks that the phase space can be identified with the trajectories of the system in

M induced by any given Lagrangian L0. In this sense, the Cauchy data are not fixed at a given

initial time but by the trajectories themselves, which illustrates why it is the suitable framework

for a covariant formulation.

Next, Peierls introduced a Poisson structure in the space of trajectories in the following way.

Given two time-dependent functions A and B in TM × R we can consider two new dynamical

systems with Lagrangians LA = L0+λA and LB = L0+λB. The trajectories of the new dynamics

differ from those of that governed by L0. If we compare the deviation of the trajectories with the

same asymptotic values at t = −∞ in the limit λ → 0 we get two new functions on the space of

trajectories

DAB(t) = lim
λ→0

1

λ

[∫ t

−∞
dsB(xλ(s), s)−

∫ t

−∞
dsB(x0(s), s)

]
, (C.2)

In a similar way one can define two new functions by comparing the deviation of the trajectories

with the same asymptotic values at t = +∞

DAB(t) = lim
λ→0

1

λ

[∫ ∞

t

dsB(xλ(s), s)−
∫ ∞

t

dsB(x0(s), s)

]
, (C.3)

Then, the Peierls brackets {·, ·}L0
are given by

{A,B}L0
= DAB − DAB. (C.4)

It has been proved by Peierls in 1952 that, when the Lagrangian L0 is regular it defines a Hamil-

tonian system, and the above bracket satisfies the following properties

{A,B + C}L0
= {A,B}L0

+ {A,C}L0
Distributive

{A,BC}L0
= {A,B}L0

C +B{A,C}L0
Leibnitz rule

{A,B}L0
= −{B,A}L0

Antisymmetry

{A, {B,C}L0
}L0

= {{C,A}L0
, B}L0

+ {{A,B}L0
, C}L0

Jacobi

and, thus, defines a Poisson structure in the space of classical trajectories.
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In the case of the one-dimensional harmonic oscillator the Poisson bracket of position operator

is

{x(t1), x(t2)} =
1

ω
sinω(t1 − t2). (C.5)

The construction of Peierls brackets depends on the Lagrangian L0 of the theory. In this sense

is not as universal as the Poisson brackets induced by the symplectic structure of T ∗M .

The generalization to field theory is straightforward and the result for a free scalar theory. In

the case of the scalar field, a general solution of the field equations

(∂µ∂
µ +m2)φ(x) = 0 (C.6)

can be obtained via its Fourier transform

(−k2 +m2)φ̃(k) = 0, (C.7)

whose general solution can be written as φ̃(p) = 2πα̂(k)δ(k2−m2), where α̂(k) a completely general

function of kµ. The solution in position space obtained by inverse Fourier transform is

φ(x) =

∫
d4k

(2π)4
(2π)δ(k2 −m2)θ(k0)

[
α(p)e−ik·x + α(k)∗eik·x

]

=

∫
d3k

(2π)3
1

2ωk

[
α(k )e−iωkt+k·x + α(k )∗eiωkt−k·x] . (C.8)

The corresponding Peierls brackets are given by

{φ(x), φ(y)} = ∆(x− y), (C.9)

where ∆(x− y) is the causal propagator (7.9). In the case of equal time the Peierls bracket reduce

to the Poisson bracket, and vanishes.

The covariant quantization rule is a generalization of the canonical one, to replace the Peierls

brackets by operator commutators,
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