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1. Deterministic epidemic models

Basic hypotheses

» Homogeneous mixing:

- The same contact rate ¢ for everybody
- Uniformly random election of a partner

» Constant transmission probability per contact

» Duration of the infectious period T ~ Exp(0):

E(T) =1/0
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An example: SIS model

ﬂ=)LS—5], S+I=N

dt

- A = rate at which susceptible individuals .S
get infected (force of infection)

- Proportional to the number of infectious contacts

- 0 = recovery rate



1. Deterministic epidemic models

Homogeneous SIS model

£=C‘/J’Si—5], S+I=N

dt N

A=pBcI/N > Homogeneous mixing

- B: probability of transmission

* 0 = recovery rate
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Homogeneous SIS model

di
dt
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& (cfs—-0)i, s+i=1

>0 when s(0)=1 < R :=% > 1

(s=S/N, i = I/N)

o

(epidemic threshold = 1)
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Basic reproduction number &,

- R, = Average number of infections produced by a typical
infectious individual in a totally susceptible population

= pcT =P cl/o underthe MF hypotheses
- Deterministic SIS and SIR have the same R,

- When mixing is nhon-homogeneous,

¢ ~ Structure of the contact pattern

— Consider the probability of reaching an
infectious individual through a contact
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2. Networks and epidemic models

A contact network of STDs
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2. Networks and epidemic models

Gonorrhoea and chlamydia core groups and sexual

networks in Manitoba
A M Jolly, J L Wylie

This paper summarises the results of the R, equation in
sexually transmitted infection (STI) repeaters in
Manitoba, Canada, in the early 1990s, with both
concurrent and more recent descriptions of sexual
networks in the same population. The research
presented provides empirical network and sex partner
data to refine definitions of sexual networks and core
groups in phase IV epidemics. New challenges for both
practice and research are also discussed.

n an effort to reduce the burden and cost of ill-

ness of sexually transmitted infections, legisla-

tion, policy guidelines, and programmes have
been implemented in the developed world. Syphi-
lis and gonorrhoea have been notifiable diseases
in many jurisdictions for decades." Chlamydia
was reported in most provinces in Canada by
1991,” and in the USA 46 states reported chlamy-
dial infections to the Centers for Disease Control
(CDC) by 1992.° Guidelines on the diagnosis,
treatment, and management of gonorrhoea and
chlamydia have been published regularly in the
USA and Canada. Screening programmes to
detect asymptomatic patients with disease have

...............................................................

Sex Transm Infect 2002;78(Suppl 1):i145-i151

decrease of infections in the years immediately
following."”

The basic formula for describing the success of
a disease in a population (that is, whether it
propagates or dies out), is:

Ry = BeD

R, is the reproductive number of infection and
represents the “average number of secondary
infections produced when one infected individual
is introduced into a host population where every-
one is susceptible.”” If R, is greater than 1, such as
within the core group, the disease will spread in a
population; if it is consistently less than 1, the
disease will eventually cease to exist in the
population.” The term B is the probability of
transmission from one infected individual to a
susceptible partner; D denotes the duration of
infectiousness, and ¢ is the measurement of
random sexual contact between infectious indi-
viduals and susceptible individuals given by:

2

c=m+—
m




Deterministic models on networks

Node-based models explicitly include the contacts in the
network by means of the adjacency matrix

Heterogeneous mean-field models consider a statistical
description of the contact pattern in the network (degree
distribution, degree-degree correlations, etc.)

- ODEs for the number of nodes with the same degree
and state

- assume the so-called proportionate mixing

Pairwise models - time evolution of the number of pairs
of disease status: S-S, S-l, |-, ...



Heterogeneous mean-field models

- Approach developed by May and Anderson in the 80s for
modelling STDs (and reintroduced in the early 2000s by
physics community working on computer viruses)

- Heterogeneous means that individuals are not identical
but characterized by their number of contacts (degree)

- Mean field means that individuals of the same degree
behave in the same way and experience the same
environment
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Heterogeneous mean-field models

- Lead to a good estimate of the epidemic threshold for the
SIR model on networks but not so good for the SIS model

/ PHYSICAL REVIEW LETTERS \

Thresholds for Epidemic Spreading in Networks

Claudio Castellano' and Romualdo Pastor-Satorras>

K PRL 105, 218701 (2010) /
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A heterogeneous mean-field model

- I,: number of infectious nodes of degree &

e 7 p
—k=kB,S,©,-0l,, S,=N-I,
- J
Y,
0 =~ = fraction of (oriented) links

pointing to infectious nodes

= prob. that a randomly chosen link

Proportionate : : :
P points to an infectious node

mixing
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R, for the heterogeneous SIR/SIS models

Linearizing the system at the DFE for g, = p,
it follows

o (ke MV,

(May & Anderson 1988; Diekmann & Heesterbeek 2000)
(Pastor-Satorras & Vespignani 2001, Newmann 2002)

P _/3’<k2>_/5(<k> o
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The contact rate ¢ in networks

- Susceptible nodes are reached via a randomly
selected link — degree distribution of nodes
reached by following a randomly chosen link:

kp,

G

2 k> \ <k>2/

(p,: degree distribution)

- SO,
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What is the impact of human behaviour
on the progress of an epidemic?

SARS epidemics 2002-2003
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3. Awareness and epidemics

OPEN a ACCESS Freely available online PLOS (1) ne\

Coupled Contagion Dynamics of Fear and Disease:
Mathematical and Computational Explorations

Q)shua M. Epstein”>3*, Jon Parker', Derek Cummings®, Ross A. Hammond®' (2008)

/The spread of awareness and its impact\
on epidemic outbreaks

Sebastian Funk?1, Erez Gilad?, Chris WatkinsP, and Vincent A. A. Jansen?

\_ 6872-6877 | PNAS | April 21,2009 | vol. 106 | no. 16 Y,

Istvan Z. Kiss®*, Jackie Cassell®, Mario Recker ¢, Péter L. Simon¢

\ Mathematical Biosciences 225 (2010) 1-10

The impact of information transmission on epidemic outbreaks

\

/
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An extended compartmental model
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(Funk et al., JTB 2010)



Conclusions from these (and other) works

In models where the appearance of aware nodes is only
based on local generation of information arising from the
presence of the disease, there is no change in epidemic
threshold but a reduction of the final epidemic size.

When awareness spreads as an infection (aware nodes
“infect” susceptible ones), epidemic threshold changes.

In IBM models with different networks for the transmission
of infection and information, the degree of overlapping
plays an important role but no analytic expression of the
epidemic threshold involving the latter is available.



Competing contagious processes

- Awareness propagation is a contagious process
and, so, its dissemination in the presence of an
epidemic can be embedded into the class of
competing spreading processes.

- Recent papers deal with the simultaneous
progress of competitive viral species and study
conditions for their coexistence



3. Awareness & epidemics

Competing contagious processes

-

\_

Effect of the interconnected network structure on the epidemic threshold

PHYSICAL REVIEW E 88, 022801 (2013)

~

Huijuan Wang,"*" Qian Li,* Gregorio D’ Agostino,’ Shlomo Havlin,* H. Eugene Stanley,” and Piet Van Mieghem'

)
/ PHYSICAL REVIEW E 89, 062817 (2014) \
Competitive epidemic spreading over arbitrary multilayer networks
Faryad Darabi Sahneh” and Caterina Scoglio
N /
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Awareness and epidemics - 2

k endi
/PRL111,128701(2013) PHYSICAL REVIEW LETTERS 2os€pi'ﬁaﬁ%é‘§gzm\

Dynamical Interplay between Awareness and Epidemic Spreading in Multiplex Networks
Clara Granell,' Sergio Gémez,' and Alex Arenas'?

IDepartament d’Enginyeria Informatica i Matematiques, Universitat Rovira i Virgili, 43007 Tarragona, Spain
K IPHES, Institut Catala de Paleoecologia Humana i Evolucié Social, C/Escorxador s/n, 43003 Tarragona, Spain /

~

Individual-based Information Dissemination in
Multilayer Epidemic Modeling

Faryad Darabi Sahneh?, Fahmida N. Chowdhury’, Gary Brase® and Caterina M. Scoglio® '
\_ Math. Model. Nat. Phenom. (2014) )

/Generalized Epidemic Mean-Field Model\
for Spreading Processes Over Multilayer
Complex Networks

Faryad Darabi Sahneh, Student Member, IEEE, Caterina Scoglio, Member, IEEE, and
Piet Van Mieghem, Member, IEEE

k IEEE/ACM TRANSACTIONS ON NETWORKING (2013) /




3. Awareness & epidemics

Two-layer networks

FIG. 1. (Color online) Schematic of two-layer contact topology
G(V,E4,Ep), where a group of nodes shares two distinct interactions.

(Sahneh & Scoglio, PRE (2014))
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Multiplex networks

-

PHYSICAL REVIEW X 3, 041022 (2013)

~

Mathematical Formulation of Multilayer Networks

Manlio De Domenico,! Albert Solé-Ribalta,' Emanuele Cozzo,2 Mikko Kjveléi,3 Yamir Moreno,

-

Mason A. Porter,® Sergio Gémez,' and Alex Arenas'
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PHYSICAL REVIEW E 89, 032804 (2014)

Structural measures for multiplex networks

~

\_Federico Battiston,' Vincenzo Nicosia,'> and Vito Latoral’zﬂ
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Questions arising from such processes

- What characteristics of two-layer networks allow
for coexistence of competing contagious
processes?

- How to characterize the interrelation between

layers in a meaningful way for the dynamics of
processes defined on them?
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An interesting analytical result

Theorem 1. In the SI;SI;S model [Eqgs. (1) and (2)] for
competitive epidemics over multilayer networks, if the two
network layers G4 and Gp are identical, coexistence is
impossible; 1.e., a virus with even a slightly larger effective
infection rate dominates and completely removes the other
virus. Otherwise, if node-degree vectors of G 4 and G g are not
parallel, i.e.,d 4 }f d g, or if normalized dominant eigenvectors
of G4 and Gp do not completely overlap, i.e., v4 # vp,
the multilayer structure of the underlying topology allows a
nontrivial coexistence region.

(Sahneh & Scoglio, PRE 2014)



Interrelation between network layers

Overlap and inter-layer degree-degree correlation
have been highlighted as important features

\_

6872-6877 | PNAS | April 21,2009 | vol. 106

"The spread of awareness and its impac
on epidemic outbreaks

Sebastian Funk?', Erez Gilad?, Chris WatkinsP, and Vincent A. A. Jansen?

no. 16

t

/

The relationship of the overlap with previous
analytical results about coexistence of competing
processes Is not clear



4. A model for studying the overlap impact

Let us extend the heterogeneous SIS/SIR model
by assuming the following hypotheses:

1) Links of the two layers uniformly overlap
over the set of nodes: the fraction of
overlapped links is independent of the degree

2) Intra-layer degree correlations are not present
(proportionate mixing within each layer)
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A model for studying the overlap impact

- According to these assumptions, we can write

dl :
—t =kp(1-p,,)S,0,+kB.p, S0, -ul,
dt Y

Pp4 = prob. that two nodes connected by a
randomly chosen link of layer A are
also connected in layer B

]
0, =W;klk
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A model for studying the overlap impact

- To introduce the overlap a into the model, we
have to relate it to the conditional probability p ,

- Defining the overlap as a := %3— it follows
_ AUB

Lanp Lanp LauB

PBla = LA B Lasp La
Lo+ Lp—Lanp
—
L4

(140




4. A toy model for studying the overlap impact

A model for studying the overlap impact

- Introducing this relationship into the model and if
we use the fraction of nodes that are both
infectious and of degree £, i, = I, /N, we have

L (- )

b 8 (14 52 ) @) ath) — i) €1 — i

_ (Juher & J.S., arXiv 2015)
(pA(k) =N /N=i +sk)
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A model for studying the overlap impact

If (k) > (ka), the non-negativity of the factor mul-
tiplying (3 1s guaranteed because the overlapping « 1s
bounded from above by

_ LanB < (ka)N _ (ka)
N Lasp — <k‘A>N—|- (kB>N— <I€A>N N <kB>

Y

In general, we have:
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A model for studying overlap impact

- It can be considered as an extension of the classic
heterogeneous mean-field SIS model, so similar

results follows

- For instance, linearizing around the DFE, it follows:

- N
R (k)
k(@) = matran (5 (1 " (ka) “)

. +Be (1+Ez—i§) a). }




4. A toy model for studying the overlap impact

Predicted R, vs overlap

0 0.2 0.4
overlap («a)

Figure 1: Ry of the mean-field SIS model as a function of the
overlap o between network layers. Parameters values: p = 1,
B=0.1, 8. = 0.005, (ka) = 20, (k%) = 600, and (k) = 50.
For these mean degrees, « € [0,2/5].



Stochastic simulations

Develop an algorithm that, given two degree distributions,
allows a the maximum range of possible overlaps

Based on a cross-rewiring process: the degree distribution
of each layer remains unchanged

Given the degree sequences {k}, {k;’} of each layer, a
more accurate upper bound of the maximum overlap

between them is E mln{k k}

E max{k k. }
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Overlap between degree distributions

Regular | Poisson SEF Exponential
1 0.739020 | 0.564752 | 0.448772
Regular 1 0.7761 0.6112 0.5004
0.993035 | 0.654052 | 0.583859
Poisson 0.994325 | 0.7180 0.6345
0.97987 0.665794
SE 0.98575 0.7095

TABLE 3. Maximum overlap generated using the CR Algorithm
(first row) vs the maximum value permitted by Theorem 4.4 (sec-
ond row). In all cases, N = 10000 and (k) = 10.



R, computed from stochastic simul's

R, computed as the mean number of new
infections produced by “typical” individuals at the
beginning of an outbreak, i.e., by those who have
been infected by primary cases

(Britton, Juher & J.S., arXiv 2015, to appear in J. Theor. Biol.)

Primary cases are chosen uniformly at random
(i.e., independently of their degree)

Results correspond to averages over 250 runs
using different sets of 10 primary cases
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Comparison of R, : preliminary results

Regular random networks

| (Ka) = 20,' (KB) =30 | | p=01
J.=0.005
O=1

N =10000

0 0.2 0.4 0.6 0.8
overlap («)
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Comparison of R, : preliminary results

Exponential random networks

3l (Ka) =20, (Kg) =30 | p=01
J.=0.005
O=1
N =10000
0 . . .
0 0.2 0.4 0.6 0.8

overlap («)



Conclusions of the extended SIS model

A simple model to analyse the impact of network
overlap on the initial epidemic growth is derived

An algorithm to control the desired overlap
between layers without intra-layer degree
correlations is implemented

Simulations with different degree distributions
show the importance of having uniform overlap
over the whole set of nodes for the accuracy of the
model predictions



Thanks for your attention !!

https://sites.google.com/site/min2016girona/

Creating and controlling overlap in two-layer networks.
Application to a mean-field SIS epidemic model with
awareness dissemination. In: arXiv:1504.02031 [physics.soc-ph]



