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Outline of the talk    
1.  Deterministic epidemic models: Basic hypotheses 

2.  Networks and epidemic models 

3.  Awareness and epidemics: multilayer networks 

4.  A toy model for studying the impact of the overlap 
between layers on epidemics 
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1. Deterministic epidemic models 

• λ = rate at which susceptible individuals S   
        get infected (force of infection) 

• Proportional to the number of infectious contacts 

• δ = recovery rate 
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• λ = rate at which susceptible individuals S   
        get infected (force of infection) 

• Proportional to the number of infectious contacts 

• δ = recovery rate 



Basic hypotheses 

Ø  Homogeneous mixing: 
         - The same contact rate c  for everybody 

 - Uniformly random election of a partner 
 

Ø  Constant transmission probability per contact 

Ø  Duration of the infectious period T    ~ Exp(δ): 
 


 
 
E(T  )  =  1/δ   
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An example: SIS model 

dI
dt
= λ S−δI , S + I = N

 

• λ = rate at which susceptible individuals S   
        get infected (force of infection) 

• Proportional to the number of infectious contacts 

• δ = recovery rate 
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Homogeneous SIS model 

dI
dt
= cβS I

N
−δI , S + I = N

 

• λ = β c I/N   à   Homogeneous mixing 

• β : probability of transmission 

• δ = recovery rate 
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Homogeneous SIS model 

di
dt
= (cβ s−δ)i, s+ i =1

(s = S/N,  i = I/N) 

di
dt t=0

> 0 when s(0) =1 ⇔ R0 :=
cβ
δ

>1

(epidemic threshold = 1) 
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Basic reproduction number R0  
•   R0 = Average number of infections produced by a typical         
            infectious individual in a totally susceptible population  

         =  β c T  =  β c 1/δ    under the MF hypotheses 
 

• Deterministic SIS and SIR have the same R0   

• When mixing is non-homogeneous,   
          c   ~  structure of the contact pattern 
 

            → Consider the probability of reaching an  
          infectious individual through a contact  
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2. Networks and epidemic models 
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A contact network of STDs 
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(Sex. Transm. Infect. 2002) 
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Deterministic models on networks 
• Node-based models explicitly include the contacts in the 

network by means of the adjacency matrix 

• Heterogeneous mean-field models consider a statistical 
description of the contact pattern in the network (degree 
distribution, degree-degree correlations, etc.)  

      à ODEs for the number of nodes with the same degree 
 and state 

      à assume the so-called proportionate mixing  
 

• Pairwise models à time evolution of the number of pairs 
of disease status: S-S, S-I, I-I, … 
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Heterogeneous mean-field models 
• Approach developed by May and Anderson in the 80s for 

modelling STDs (and reintroduced in the early 2000s by 
physics community working on computer viruses)  

• Heterogeneous means that individuals are not identical 
but characterized by their number of contacts (degree) 

• Mean field means that individuals of the same degree 
behave in the same way and experience the same 
environment   
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Heterogeneous mean-field models 
•  Lead to a good estimate of the epidemic threshold for the 

SIR model on networks but not so good for the SIS model  
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A heterogeneous mean-field model 
•   Ik: number of infectious nodes of degree k 
 
 
 
 
                             
                        = fraction of (oriented) links  

    pointing to infectious nodes 
                 = prob. that a randomly chosen link   

    points to an infectious node                            
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ΘI :=
kIk

k
∑
k N

dIk
dt

= kβkSkΘI −δIk , Sk = N − Ik

Proportionate  
mixing 



R0 for the heterogeneous SIR/SIS models 
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Linearizing the system at the DFE for βk = β, 
it follows  

(May & Anderson 1988; Diekmann & Heesterbeek 2000) 
(Pastor-Satorras & Vespignani 2001, Newmann 2002) 
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•   Susceptible nodes are reached via a randomly  
   selected link        degree distribution of nodes 
   reached by following a randomly chosen link:  

                                                                          
 
• So,          

The contact rate c in networks 
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c = q = kqk
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qk =
k pk
k

( pk : degree distribution) 
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What is the impact of human behaviour 
on the progress of an epidemic? 

SARS epidemics 2002-2003 
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What is the impact of human behaviour 
on the progress of an epidemic? 

Awareness vs unawareness 
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What is the impact of human behaviour 
on the progress of an epidemic? 

Awareness vs unawareness 
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(2008) 



An extended compartmental model 
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(Funk et al., JTB 2010) 

unaware 

aware 
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Conclusions from these (and other) works 
•  In models where the appearance of aware nodes is only 

based on local generation of information arising from the 
presence of the disease, there is no change in epidemic 
threshold but a reduction of the final epidemic size. 

• When awareness spreads as an infection (aware nodes 
“infect” susceptible ones), epidemic threshold changes.  

 

•  In IBM models with different networks for the transmission 
of infection and information, the degree of overlapping 
plays an important role but no analytic expression of the 
epidemic threshold involving the latter is available. 
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Competing contagious processes 
• Awareness propagation is a contagious process 
and, so, its dissemination in the presence of an 
epidemic can be embedded into the class of 
competing spreading processes. 

• Recent papers deal with the simultaneous 
progress of competitive viral species and study 
conditions for their coexistence   
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Competing contagious processes 
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Awareness and epidemics - 2 
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(2014) 

(2013)  



Two-layer networks 

(Sahneh & Scoglio, PRE (2014)) 
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Multiplex networks 
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Questions arising from such processes 

• What characteristics of two-layer networks allow 
for coexistence of competing contagious  
processes? 

• How to characterize the interrelation between 
layers in a meaningful way for the dynamics of 
processes defined on them? 

3. Awareness & epidemics 31 



An interesting analytical result 

(Sahneh & Scoglio, PRE 2014) 
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Interrelation between network layers 
• Overlap and inter-layer degree-degree correlation 
have been highlighted as important features 

• The relationship of the overlap with previous 
analytical results about coexistence of competing 
processes is not clear 
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4. A model for studying the overlap impact 

• Let us extend the heterogeneous SIS/SIR model 
by assuming the following hypotheses: 

   

  1) Links of the two layers uniformly overlap  
      over the set of nodes: the fraction of  
      overlapped links is independent of the degree 
 

  2) Intra-layer degree correlations are not present 
      (proportionate mixing within each layer)   
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A model for studying the overlap impact 

• According to these assumptions, we can write 

         pB|A  = prob. that two nodes connected by a 
   randomly chosen link of layer A are
   also connected in layer B  
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dIk
dt

= kβ (1− pB|A)SkΘI + kβc pB|ASkΘI −µIk     

ΘI =
1
k N

kIk
k
∑



A model for studying the overlap impact 
• To introduce the overlap α into the model, we 
have to relate it to the conditional probability pB|A 

• Defining the overlap as                     it follows 
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A model for studying the overlap impact 

•  Introducing this relationship into the model and if 
we use the fraction of nodes that are both 
infectious and of degree k, ik = Ik / N, we have 
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pA(k) = Nk N = ik + sk( )
(Juher & J.S., arXiv 2015) 



A model for studying the overlap impact 
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α ≤
min kA , kB{ }
max kA , kB{ }

In general, we have: 



A model for studying overlap impact 
•  It can be considered as an extension of the classic 
heterogeneous mean-field SIS model, so similar 
results follows  

• For instance, linearizing around the DFE, it follows:  

          

4. A toy model for studying the overlap impact 39 

R0 (α)



Predicted R0 vs overlap 
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Stochastic simulations  
• Develop an algorithm that, given two degree distributions, 

allows a the maximum range of possible overlaps  

• Based on a cross-rewiring process: the degree distribution 
of each layer remains unchanged 

 

• Given the degree sequences {ki}, {ki’} of each layer, a 
more accurate upper bound of the maximum overlap 
between them is 
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αmax ≤
min ki ,ki

'{ }i∑
max ki ,ki

'{ }i∑



Overlap between degree distributions 
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R0 computed from stochastic simul’s 
• R0 computed as the mean number of new 
infections produced by “typical” individuals at the 
beginning of an outbreak, i.e., by those who have 
been infected by primary cases                      
(Britton, Juher & J.S., arXiv 2015, to appear in J.Theor. Biol.)  

• Primary cases are chosen uniformly at random 
(i.e., independently of their degree) 

 

• Results correspond to averages over 250 runs 
using different sets of 10 primary cases 
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Comparison of R0 : preliminary results 
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β = 0.1 
βc= 0.005 
δ = 1 
N = 10000 



Comparison of R0 : preliminary results 
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β = 0.1 
βc= 0.005 
δ = 1 
N = 10000 



Conclusions of the extended SIS model 
• A simple model to analyse the impact of network 
overlap on the initial epidemic growth is derived  

 

• An algorithm to control the desired overlap 
between layers without intra-layer degree 
correlations is implemented    

• Simulations with different degree distributions 
show the importance of having uniform overlap 
over the whole set of nodes for the accuracy of the 
model predictions  
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Thanks for your attention !! 

https://sites.google.com/site/min2016girona/     
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