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Outline

» Control theory and its role in biology.
» Realization problem: an abstract formulation.
» Realization theory of polynomial/rational/Nash systems.

» Realization theory of interconnection structure.



What is control theory about ?

Plant

A

Controller

» Plant — dynamical system (behavior changes with time)
» Controller — dynamical system



What is control theory about ?

Plant

A

Controller

Task: find controller u = C(y) such that the y has the desired
properties:

> y—0,
>[5 y?(s)ds minimal, etc.



Example: thermostat
Plant

heating on

heating off

» Qutputs: temperature x
» Control input: ‘heating on’ and ‘heating off’.

Control objective: maintain the temperature between
19.5-20.5°C
Controller

heatingon if x<19.5

heating off  if x >20.5



How do we solve control problems ?

Find a mathematical model (state-space representation)
x(t) = f(x(1),u(t))
y(t) = h(x(t),u(t))
of the input-output behavior of the plant
ury.

Compute a controller

§(t) = M) y(D)
u(t) = C(E(1),y(1)

such that

has the desired properties.



Mathematical tools for control

Tools for computing controllers:
» Stability theory of dynamical systems, Lyapunov’s theory:
the plant + controller

&(t) = MI(&(1),y(1))
u(t) = C(&(1),y(1)
x(t) = f(x(1),u(t))
y(t) = h(x(t))
should at least be (asymptotically) stable around a

trajectory.

» Optimal control (calculus of variations): the control law u(-)
should optimize a cost functional

J(x,u)

» Controllers have to be computed: numerical methods,
optimization.



Mathematical tools for control: cont

Making controllers requires models (differential/difference
equations)

» How to estimate parameters of differential/difference
equations from measured data (system identification:
statistics, stochastic processes, optimization).

» How to simplify models without loosing too much of their
observed behavior (model reduction).

What is the relationship among various models which are
observationally equivalent (realization theory) ?



Control theory and systems biology

>

>

Feedback C control theory C cybernetics.

Living organisms are control systems: plenty of feedback
loops.

Control theory tell us how to design feedback.

Biologists want to understand why a particular feedback is
there.

Systems biology is about reverse engineering of feedback
interconnection



Realization theory: reverse engineering of plant
models

Realization theory: problem statement
We observe the input-output behavior (black-box)

s
=
u(t)

of a physical process

—_—

u(t)




Realization theory: reverse engineering of plant
models

Realization theory: problem statement
We observe the input-output behavior (black-box)

s
=
u(t)

Which mathematical models (fixed structure)

To(t) + o(t) = Ku(t), y(t)
u(t) y(t) = oft)

can describe the observed behavior of the black-box ?



Realization theory for biological systems

We can fix either the algebraic structure of the models.

u(t)

S = oy (ES)92 — By St Ea
ES — 0p S921 E924 Bg(ES)hZZ

P = ()Lg(ES)932 E934
E = const




or the interconnection structure

)'(1 :6X3+11U

)'(2:X1—11X3—12U

u(t)

X2

X3 = Xo +6Xx3+3uU




Polynomial/rational/Nash systems: biochemical
reactions

ki ko
ES —— E+P

E+S

k_1

mass-action kinetics: polynomial equations

S=—KkE-S+k_{ES
ES = —E=KE-S—(k_1+k)ES

P = kES
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Polynomial/rational/Nash systems: biochemical
reactions

Michaelis-Menten kinetics: rational equations

S= k(B £2)5 kL
_ VmaxS
P_ S+Km

power-function models: Nash systems

S = aq(ES)92 — By Shii Eha
ES = 0pS%1 E%4 — Bz(ES)h22

P — og(ES)92 E9

E = const
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Systems
input space U C R¥

output space R’

Y =(X,f,hxo)
» state-space X =R"
dynamics x(t) = f(x(t),u(t)) (Yae U: fy;=fi(x(:),a))
output function y(t) = h(x(t))
initial state x(0) = xp € X

v

v

v
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Framework
Irreducible variety
X=X({t,...,fs} CR[Xy,...,Xp])={aeR" V1 <i<s: fi(a)=0}
Polynomial functions A(X) and rational functions Q(X)
AX)={p: X >R |3IFfeR[Xy,...,Xp]Vae X :p(a)=f(a)}

Q(X)={p/qlp,gc A q+#0}
Nash manifold

d m;

X=[U{aeR"|pj(a)e;0}  pjeRXi,.... Xn], gj € {<,=}
i=1 j=1

Nash functions N(X)

analytic f: X - Rs.t. {(x,y) e R™" | f(x) = y} is semi-algebraic
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Polynomial and rational systems

Y =(X,f,h,xo) - polynomial / rational system

X - irreducible variety

x(H) = F(x(D),u(t) Voe U fur=fi(x(),a) € AX) / Q(X)
h: X — R" - output map with h; € A(X) / Q(X)

Xp € X - initial state

vV v v Yy

X:Rz, h(X1,X2,X3):X2 X:Rz, h(X1,X2):X2

Xy = —axju+bxs Xy = —axi+ C);szqz
Xo = CX3 Xo = x?:jd
).(3:aX1U*(b+C)X3 X0:(1,1)
X=(1,1,1)

Realization theory of polynomial/rational systems: [Sontag
1970’s, Bartuszewicz 1980’s, Nemcova & Van Schuppen
2000°s]:w
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Nash systems

Y = (X,f,h,xo) - Nash system

» X - semi-alg. connected Nash manifold

s X(t) = f(x(t),u(t)  Vae U:fy = f(x(-).a) € N(X)
» h: X — R’ - output map with h; € N(X)
» Xg € X - initial state

X =R3, h(x1,x2,x3) = x3

X1 =1.75817.1072%7 — 1.4489 x2x, %

Xp = 5051256.04276.1072 x)70x, 049625 _ 1.93417.10~4 x5-85x; *2°
X3 =1.93417 x}85x; 429 —3.4657.102 x23

Xo=(1,1,1)
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Admissible controls

Inputs: piecewise-constant
u:{(0,Ty) —Q
(0,Ty)={seT:0<s<t}
T =10, +%) : (0, Ty) = [0, Ty]
Constant inputs:
[,1]:(0,t) 58— weQ

Concatenation of inputs: u: (0, T,) - Q, v:(0,T,) = Q

_ u(t) tet<T,
u|_|v.(0,Tu+TV)9t|—>{ W(t-T)) t>T,
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Admissible controls: continued

Set of admissible control inputs Upe
— a set of piecewise-constant controls such that

» constant inputs belong Upc
VoeQ3IteT: [of] € Uy

» Upc is closed under restricting inputs to an interval

Yu € Upe YVt € (0, Ty) : Ulio,p € Upe

» Inputs from Uy, can be extended on a small time interval
with any constant.

YU € Upe Vo e Q3> 0: and ull[w,e] € Upe



Problem formulation
Response maps
p: Upe — R" is a response map if (p; € A(Upc — R))

.....

o Z ah 3 I_II:1 t[/ vu S upc
j1 7777 j k=0

Realization problem - existence
Given a response map p: Upe — R”

Find a system ¥ = (X, f, h, xp) such that

p(u) = h(xs(Ty; Xo,u)) for all u € Upe C Upe(X)
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Rational systems: some definitions

Y is reachable if the set of reachable states x(t) is Zariski
dense.

The observation algebra Q(X) is the smallest algebra which
contains h and which is closed under the Lie-derivative L; ,
o€ R™.

Y is observable, if Q(X) equals the ring of rational functions.
For simplicity: output dimension 1.

D, — derivation on the space of input-output maps

Dat(u)(s) = G 0(ull (o D)(t 5o

A(p) — be the smallest algebra which contains p and which is
closed under derivation Dj,.

Q(p) — the quotient field of A(p).



Realization theory of rational systems [Nemcova, Van
Schuppen]
3 rational system
» If X is observable and reachable, then it is minimal. The
converse is true under further conditions.
» Y is minimal if and only if trdegQ(X) = dim A(p).

» If two rational systems are both realizations of p, they are
both reachable and observable, then they are birationally
isomorphic.

» Any rational system can be converted to a reachable and
observable one, while preserving the input-output behavior.

» p has a realization by a rational system if and only if Q(p)
is finitely generated.



Application of realization theory: identifiability
Parametrized system ¥ (P) = {£(0) = (X°,1°, h°,x{) | 6 € P}
» P CR® an irreducible variety - parameter set
» the same input spaces U C R™ and output spaces R"

A parametrization ?: P — ¥ (P) is
» globally identifiable if each 6 can be determined uniquely
from the input-output map of ¥(0).

» structurally identifiable if each 6 outside an algebraic set
(of measure zero) can be determined uniquely from the
input-output map of ¥(8)

Identifiability ensures that the parameter estimation problem is
well posed.!
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Application of realization theory: identifiability

Theorem
Y (P) - structured rational system:

» structurally canonical ( X(0) reachable and observable for
almost all 6)

» structurally distinguishes parameters (£ () is injective
except on a set of measure zero)
Then the following are equivalent
» P:0 — X(0) is structurally identifiable
» For almost all 61,8, the only isomorphism between ¥(61)
and ¥X(6) is the identity.

.... can be extended to global identifiability.
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Existence of Nash realizations

Theorem (Nemcova,Petreczky,Van Schuppen)

p has a Nash realization = trdeg Apps(p) < 4o
trdeg Aops(P) < + =- p has a Nash realization - open problem
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Local realizations

Theorem (Nemcova, Petreczky)

trdeg Aops(P) < +o0, |U| < +oo =
Ju € Upe: py has alocal Nash realization

local Nash realization © = (X, f, h, xo):

p(u) = h(xs(Ty; X0, U)) YU € Upe N Upe(X) small enough

shifted response map py:

pu(v) =p(ulv) Vv e Uy st ulv e Uy

Proof relies on implicit function theorem for Nash functions.
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Semialgebraic reachability
Y =(X,f,h,xo) Nash system
Y semialgebraically reachable, if ¥ semi-algebraically

reachable if any Nash functions which vanishes on the
reachable set equals zero, i.e.

Vge N(X):(g=0o0nR(x)=9g=0)

R(X0) = {x=(Tu; X0, U)|U € Upc(X)}

Reachability reduction Every Nash system can be converted to
a semi-algebraically reachable one, while remaining a local
realization of the same input-output map.

The procedure relies on implicit function theorem for Nash
functions.
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Semialgebraic observability
Y =(X,f,h,xo) Nash system
Aobs(X) algebra generated by
hi, Lo, --Lohi Vi=1,...ro..,0cQkeN.

L,g — Lie derivative
Y semialgebraically observable < trdeg Apps(X) = trdeg N(X)

Observability reduction Every Nash system can be converted to
a semi-algebraically observable one, while remaining a local
realization of the same input-output map.

The procedure relies on implicit function theorem for Nash
functions.
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Minimality
Y is minimal local realization of p < dimXx <dim¥’ for all local
realizations X’ of p
Main results

» 3 local Nash realization of p,
Y minimal < dimX = trdeg Aops(P)

& Y reachable + observable

» 34,3, reachable + observable local Nash realization of p

V. Vo - . . .
Ju, Vi C X5y, Vo C Xy, : L', L5%isomorphic local realizations of p,
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Summary

» Conditions for existence of a Nash system realizing the
given input-output behavior

» Conditions for minimality, minimal systems are locally
unique.

» We can convert any realization to a minimal one.
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Problem formulation: interconnection structure

Interconnected system, ¥1,Y,,¥ 3 subsystems

u X1
—5 ]




Realization with interconnection structure

We observe the input-output behavior (black-box)

y(1)
——————— =2
u(t)

Problem: Given a graph find a complex system which
reproduces the input-output behavior and has the same
interconnection structure as this graph:



Example: interconnection structure

—> we are looking for systems




Realization of connectivity structure: motivation

» Discovering the topology of gene regulatory networks.

» Drug design: if we know the topology, we know which link
to cut.

» Discovering interaction between regions of brain using
fMRI.



Reverse engineering of interconnection structure

It would be tempting to find the interconnection structure of a
complete black-box: problem is not well posed.

, X; =2x1 + U \
. /‘a y(1)

| Xo = 3Xo+ U

X3 =3x3+ U




has the the same input-output behavior from zero initial state as

k1:6X3+11U -
u
X4
u
%o = X1 —11x3 — 12
) Xo X1 X3 u <—] y(t)
— 3
u(t) %
. %
X3 = Xo + 6x3 +3uU

but the connectivity structures are totally different !



Connectivity structure for linear system

A linear system is a diff. equation
x=Ax+Bu, y=0Cx, x(0)=0
AeR™N CeR™ BeR™1,

Connectivity structure is a directed graph G=(V,E)

» V ={X4,...,Xp,u,y} vertices, Xy,...,Xp, U,y Symbols.
» E edges:
e=(x;,x;) A#0
ecE e=(y,x;) Ci#0
e=(x,u) B#0

Condensed graph GS: graph formed by strongly connected
components of G



Connectivity structure for linear system
Suppose H(s) = % and dega(s)=n
Theorem (Bras,Petreczky,Westra,Roebroeck,Peeters)

A condensed subgraph cannot have more components than the
number of divisors of a(s) over reals.

Extension to several outputs, further results exist.



Example: model of fMRI signal

0.5u—1.25x —2.5(xz — 1)
. X1
X= Xo — X3
1
1.25% (1-0.2% ) — xéxq

y = —0.04%‘ —0.112x, — 0.028x3 +0.18

» y — MRl signal
> Xi,...,X4 —neuronal activity
» U — cognitive input.



Example: model of fMRI signal

Linearization:

125 —25 0 0 0.5
| 1 0 0 0 0
“l o 1 5 of|*"|0]|Y ®
0 06 -4 —1 0
y=[0 0 0012 —0.152]z (@)
H(S) _ 0.082—-0.0396s

T §447.25834+15524+21.255+12.5

Divisors of the denominator: s+1,s+2 and s+ 1.255+2.5

H cannot be realized by a system whose graph has more than
3 components.

H can be realized by a system whose graph has exactly 3
components.



Coordinated stochastic linear systems: discussion

» We characterized connectivity in terms of output
processes.

» Old tool: Granger noncausality.

In neuroscience connectivity of brain regions is investigated,
using:
» Recursive models relating future outputs to past ones,
using Granger causality

» Difference equations in state-space form, using the graph
of the system

The results above are the first step to reconcile these two
approaches.



Conclusions

» Control theory could be useful for systems biology.

» Realization theory is important for biological modelling:
sanity check.

Open problems:
» Is it relevant for biology ?

» We looked at the algebraic structure and the network
topology: how to combine the two worlds ?

» For mathematicians: a lot of non-trivial (at least for control
theorists) mathematics.
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