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Outline

I Control theory and its role in biology.

I Realization problem: an abstract formulation.

I Realization theory of polynomial/rational/Nash systems.

I Realization theory of interconnection structure.



What is control theory about ?

u y

Plant

Controller

I Plant – dynamical system (behavior changes with time)
I Controller – dynamical system



What is control theory about ?

u y

Plant

Controller

Task: find controller u = C (y) such that the y has the desired
properties:

I y → 0,
I

∫
∞

0 y2(s)ds minimal, etc.



Example: thermostat
Plant

ẋ = −x + 18 ẋ = −x + 22

heating on

heating off

I Outputs: temperature x
I Control input: ‘heating on’ and ‘heating off’.

Control objective: maintain the temperature between
19.5−20.5◦C

Controller
heating on if x < 19.5
heating off if x > 20.5



How do we solve control problems ?
Find a mathematical model (state-space representation)

ẋ(t) = f (x(t),u(t))

y(t) = h(x(t),u(t))

of the input-output behavior of the plant

u 7→ y .

Compute a controller

ξ̇(t) = M(ξ(t),y(t))

u(t) = C(ξ(t),y(t))

such that
y(.)

has the desired properties.



Mathematical tools for control
Tools for computing controllers:

I Stability theory of dynamical systems, Lyapunov’s theory:
the plant + controller

ξ̇(t) = M(ξ(t),y(t))

u(t) = C(ξ(t),y(t))

ẋ(t) = f (x(t),u(t))

y(t) = h(x(t))

should at least be (asymptotically) stable around a
trajectory.

I Optimal control (calculus of variations): the control law u(·)
should optimize a cost functional

J (x ,u)

I Controllers have to be computed: numerical methods,
optimization.

I Everything above can be formulated for stochastic
systems: theory of stochastic processes.



Mathematical tools for control: cont
Making controllers requires models (differential/difference
equations)

I How to estimate parameters of differential/difference
equations from measured data (system identification:
statistics, stochastic processes, optimization).

I How to simplify models without loosing too much of their
observed behavior (model reduction).

What is the relationship among various models which are
observationally equivalent (realization theory) ?



Control theory and systems biology

I Feedback ⊆ control theory ⊆ cybernetics.

I Living organisms are control systems: plenty of feedback
loops.

I Control theory tell us how to design feedback.

I Biologists want to understand why a particular feedback is
there.

Systems biology is about reverse engineering of feedback
interconnection



Realization theory: reverse engineering of plant
models

Realization theory: problem statement
We observe the input-output behavior (black-box)

y(t)

u(t)

of a physical process

y(t)

u(t)



Realization theory: reverse engineering of plant
models

Realization theory: problem statement
We observe the input-output behavior (black-box)

y(t)

u(t)

Which mathematical models (fixed structure)

T ω̇(t) + ω(t) = Ku(t),
y(t) = ω(t)

y(t)

u(t)

can describe the observed behavior of the black-box ?



Realization theory for biological systems
We can fix either the algebraic structure of the models.

Ṡ = α1(ES)g12−β1Sh11Eh14

ĖS = α2Sg21Eg24−β2(ES)h22

Ṗ = α3(ES)g32Eg34

E = const

y(t)

u(t)



or the interconnection structure

ẋ1 = 6x3 + 11u

ẋ2 = x1−11x3−12u

ẋ3 = x2 + 6x3 + 3u

u

u

u

y

x1

x2

x
′
3

y(t)

u(t)



Polynomial/rational/Nash systems: biochemical
reactions

E + S ES E + P-
�

k1

k−1

-
k2

mass-action kinetics: polynomial equations

Ṡ = −k1E ·S + k−1ES
ĖS = −Ė = k1E ·S− (k−1 + k2)ES

Ṗ = k2ES
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Polynomial/rational/Nash systems: biochemical
reactions

Michaelis-Menten kinetics: rational equations

Ṡ =−k1

(
Et − Et S

S+Km

)
S + k−1

Et S
S+Km

Ṗ = vmax S
S+Km

power-function models: Nash systems

Ṡ = α1(ES)g12−β1Sh11Eh14

ĖS = α2Sg21Eg24−β2(ES)h22

Ṗ = α3(ES)g32Eg34

E = const
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Systems
input space U ⊆ Rk

output space Rr

Σ = (X , f ,h,x0)

I state-space X = Rn

I dynamics ẋ(t) = f (x(t),u(t)) (∀α ∈ U : fα,i = fi(x(·),α))

I output function y(t) = h(x(t))

I initial state x(0) = x0 ∈ X
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Framework

Irreducible variety

X = X ({f1, . . . , fs}⊆R[X1, . . . ,Xn]) = {a∈Rn | ∀1≤ i ≤ s : fi(a) = 0}

Polynomial functions A(X ) and rational functions Q(X )

A(X ) = {p : X → R | ∃f ∈ R[X1, . . . ,Xn] ∀a ∈ X : p(a) = f (a)}

Q(X ) = {p/q | p,q ∈ A,q 6= 0}

Nash manifold

X =
d⋂

i=1

mi⋃
j=1

{a∈Rn |pij(a) εij 0} pij ∈R[X1, . . . ,Xn], εij ∈{<,=}

Nash functions N(X )

analytic f : X→R s.t. {(x ,y)∈Rn+1 | f (x) = y} is semi-algebraic
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Polynomial and rational systems

Σ = (X , f ,h,x0) - polynomial / rational system

I X - irreducible variety
I ẋ(t) = f (x(t),u(t)) ∀α ∈ U : fα,i = fi(x(·),α) ∈ A(X ) / Q(X )
I h : X → Rr - output map with hi ∈ A(X ) / Q(X )
I x0 ∈ X - initial state

X = R2, h(x1,x2,x3) = x2 X = R2, h(x1,x2) = x2

ẋ1 =−ax1u + bx3 ẋ1 =−ax1 +
cx1+bx2

1
x1+d

ẋ2 = cx3 ẋ2 = ex1
x1+d

ẋ3 = ax1u− (b + c)x3 x0 = (1,1)
x0 = (1,1,1)

Realization theory of polynomial/rational systems: [Sontag
1970’s, Bartuszewicz 1980’s, Nemcova & Van Schuppen
2000’s]:w
Slides of Jana Nemcova



Nash systems

Σ = (X , f ,h,x0) - Nash system

I X - semi-alg. connected Nash manifold
I ẋ(t) = f (x(t),u(t)) ∀α ∈ U : fα,i = fi(x(·),α) ∈ N(X )

I h : X → Rr - output map with hi ∈ N(X )

I x0 ∈ X - initial state

X = R3
+, h(x1,x2,x3) = x3

ẋ1 = 1.75817.10−2.37−1.4489 x2
1 x−1.05

2

ẋ2 = 50.51256.04276.10−2 x0.75
1 x−0.45625

2 −1.93417.10−4 x4.65
2 x−4.29

3

ẋ3 = 1.93417 x4.65
2 x−4.29

3 −3.4657.10−2 x0.3
3

x0 = (1,1,1)
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Admissible controls
Inputs: piecewise-constant

u : 〈0,Tu〉 → Ω

〈0,Tu〉= {s ∈ T : 0≤ s ≤ t}

T = [0,+∞) : 〈0,Tu〉= [0,Tu]

Constant inputs:

[ω, t ] : 〈0, t〉 3 s 7→ ω ∈ Ω

Concatenation of inputs: u : 〈0,Tu〉 → Ω, v : 〈0,Tv 〉 → Ω

utv : 〈0,Tu + Tv 〉 3 t 7→
{

u(t) t ∈ t ≤ Tu
v(t−Tu) t > Tu
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Admissible controls: continued
Set of admissible control inputs Upc
– a set of piecewise-constant controls such that

I constant inputs belong Upc

∀ω ∈ Ω ∃t ∈ T : [ω, t ] ∈Upc

I Upc is closed under restricting inputs to an interval

∀u ∈Upc ∀t ∈ 〈0,Tu〉 : u|〈0,t〉 ∈Upc

I Inputs from Upc can be extended on a small time interval
with any constant.

∀u ∈Upc ∀ω ∈ Ω ∃ε > 0 : and ut [ω,ε] ∈Upc



Problem formulation

Response maps

p : Upc → Rr is a response map if (pj ∈ A(Upc → R))

pj(u) = pj((α1, t1) · · ·(αk , tk )) = pj α1,...,αk
(t1, . . . , tk )

=
∞

∑
j1,...,jk =0

aj1,...,jk Πk
i=1t ji

i ∀u ∈Upc

Realization problem - existence

Given a response map p : Upc → Rr

Find a system Σ = (X , f ,h,x0) such that

p(u) = h(xΣ(Tu;x0,u)) for all u ∈Upc ⊆Upc(Σ)

Slides of Jana Nemcova



Rational systems: some definitions
Σ is reachable if the set of reachable states x(t) is Zariski
dense.

The observation algebra Q(Σ) is the smallest algebra which
contains h and which is closed under the Lie-derivative Lfα ,
α ∈ Rm.
Σ is observable, if Q(Σ) equals the ring of rational functions.

For simplicity: output dimension 1.

Dα – derivation on the space of input-output maps

Dαϕ(u)(s) =
d
dt

ϕ(ut (α, t))(t + s)|t=0+

A(p) – be the smallest algebra which contains p and which is
closed under derivation Dα.

Q(p) – the quotient field of A(p).



Realization theory of rational systems [Nemcova, Van
Schuppen]

Σ rational system

I If Σ is observable and reachable, then it is minimal. The
converse is true under further conditions.

I Σ is minimal if and only if trdegQ(Σ) = dimA(p).

I If two rational systems are both realizations of p, they are
both reachable and observable, then they are birationally
isomorphic.

I Any rational system can be converted to a reachable and
observable one, while preserving the input-output behavior.

I p has a realization by a rational system if and only if Q(p)
is finitely generated.



Application of realization theory: identifiability
Parametrized system Σ(P) = {Σ(θ) = (X θ, f θ,hθ,xθ

0 ) | θ ∈ P}
I P ⊆ Rs an irreducible variety - parameter set
I the same input spaces U ⊆ Rm and output spaces Rr

A parametrization P : P→ Σ(P) is

I globally identifiable if each θ can be determined uniquely
from the input-output map of Σ(θ).

I structurally identifiable if each θ outside an algebraic set
(of measure zero) can be determined uniquely from the
input-output map of Σ(θ)

Identifiability ensures that the parameter estimation problem is
well posed.!
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Application of realization theory: identifiability

Theorem
Σ(P) - structured rational system:

I structurally canonical ( Σ(θ) reachable and observable for
almost all θ)

I structurally distinguishes parameters (Σ(θ) is injective
except on a set of measure zero)

Then the following are equivalent
I P : θ→ Σ(θ) is structurally identifiable
I For almost all θ1,θ2 the only isomorphism between Σ(θ1)

and Σ(θ2) is the identity.

.... can be extended to global identifiability.
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Existence of Nash realizations

Theorem (Nemcova,Petreczky,Van Schuppen)

p has a Nash realization ⇒ trdeg Aobs(p) < +∞

trdeg Aobs(p) < +∞ ⇒ p has a Nash realization - open problem
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Local realizations

Theorem (Nemcova, Petreczky)

trdeg Aobs(p) < +∞, |U|< +∞ ⇒
∃u ∈Upc : pu has a local Nash realization

local Nash realization Σ = (X , f ,h,x0):

p(u) = h(xΣ(Tu;x0,u)) ∀u ∈Upc ∩Upc(Σ) small enough

shifted response map pu:

pu(v) = p(utv) ∀v ∈Upc s.t. utv ∈Upc

Proof relies on implicit function theorem for Nash functions.
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Semialgebraic reachability
Σ = (X , f ,h,x0) Nash system

Σ semialgebraically reachable, if Σ semi-algebraically
reachable if any Nash functions which vanishes on the
reachable set equals zero, i.e.

∀g ∈ N(X ) : (g = 0 on R (x0)⇒ g = 0)

R (x0) = {xΣ(Tu;x0,u)|u ∈Upc(Σ)}

Reachability reduction Every Nash system can be converted to
a semi-algebraically reachable one, while remaining a local
realization of the same input-output map.

The procedure relies on implicit function theorem for Nash
functions.
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Semialgebraic observability
Σ = (X , f ,h,x0) Nash system
Aobs(Σ) algebra generated by

hi , Lω1 · · ·Lωk hi ∀i = 1, . . . , r ,ω1, . . . ,ωk ∈ Ω,k ∈ N.

Lωg – Lie derivative
Σ semialgebraically observable ⇔ trdeg Aobs(Σ) = trdeg N(X )

Observability reduction Every Nash system can be converted to
a semi-algebraically observable one, while remaining a local
realization of the same input-output map.

The procedure relies on implicit function theorem for Nash
functions.
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Minimality

Σ is minimal local realization of p ⇔ dimΣ≤ dimΣ′ for all local
realizations Σ′ of p

Main results

I Σ local Nash realization of pu

Σ minimal ⇔ dimΣ = trdeg Aobs(p)

⇔ Σ reachable + observable

I Σ1,Σ2 reachable + observable local Nash realization of p

∃u,V1⊆XΣ1 ,V2⊆XΣ2 : ΣV1
1 ,ΣV2

2 isomorphic local realizations of pu
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Summary

I Conditions for existence of a Nash system realizing the
given input-output behavior

I Conditions for minimality, minimal systems are locally
unique.

I We can convert any realization to a minimal one.
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Problem formulation: interconnection structure
Interconnected system, Σ1,Σ2,Σ3 subsystems

Σ1 Σ2

Σ3

u x1

x2x3

y

y(t)

u(t)

Its interconnection structure is the graph

x1 x2

x3

u

y



Realization with interconnection structure
We observe the input-output behavior (black-box)

y(t)

u(t)

Problem: Given a graph find a complex system which
reproduces the input-output behavior and has the same
interconnection structure as this graph:



Example: interconnection structure

x1 x2

x3

u

y

=⇒ we are looking for systems

Σ
′
1 Σ

′
2

Σ
′
3

u x
′
1

x
′
2x

′
3

y

y(t)

u(t)



Realization of connectivity structure: motivation

I Discovering the topology of gene regulatory networks.

I Drug design: if we know the topology, we know which link
to cut.

I Discovering interaction between regions of brain using
fMRI.



Reverse engineering of interconnection structure
It would be tempting to find the interconnection structure of a
complete black-box: problem is not well posed.

ẋ1 = 2x1 + u

ẋ2 = 3x2 + u

ẋ3 = 3x3 + u

y =

∑
3
i=1 xi

u

u

u

y(t)

u(t)



has the the same input-output behavior from zero initial state as

ẋ1 = 6x3 + 11u

ẋ2 = x1−11x3−12u

ẋ3 = x2 + 6x3 + 3u

u

u

u

y

x1

x2

x
′
3

y(t)

u(t)

but the connectivity structures are totally different !



Connectivity structure for linear system
A linear system is a diff. equation

ẋ = Ax + Bu, y = Cx , x(0) = 0

A ∈ Rn×n,C ∈ R1×n,B ∈ Rn×1.

Connectivity structure is a directed graph G = (V ,E)

I V = {x1, . . . ,xn,u,y} vertices, x1, . . . ,xn,u,y symbols.

I E edges:

e ∈ E ⇐⇒


e = (xj ,xi) Ai ,j 6= 0
e = (y,xi) Ci 6= 0
e = (xi ,u) Bi 6= 0

Condensed graph GS: graph formed by strongly connected
components of G



Connectivity structure for linear system
Suppose H(s) = b(s)

a(s) and dega(s) = n

Theorem (Bras,Petreczky,Westra,Roebroeck,Peeters)
A condensed subgraph cannot have more components than the
number of divisors of a(s) over reals.

Extension to several outputs, further results exist.



Example: model of fMRI signal

ẋ =


0.5u−1.25x1−2.5(x2−1)

x1
x2−x5

3

1.25x2

(
1−0.2

1
x2

)
−x4

3 x4

 (1)

y =−0.04
x4

x3
−0.112x4−0.028x3 + 0.18 (2)

I y – MRI signal
I x1, . . . ,x4 – neuronal activity
I u – cognitive input.



Example: model of fMRI signal
Linearization:

ż =


−1.25 −2.5 0 0

1 0 0 0
0 1 −5 0
0 0.6 −4 −1

z +


0.5
0
0
0

u (3)

y =
[
0 0 0.012 −0.152

]
z (4)

H(s) = 0.082−0.0396s
s4+7.25s3+15s2+21.25s+12.5

Divisors of the denominator: s + 1,s + 2 and s2 + 1.25s + 2.5

H cannot be realized by a system whose graph has more than
3 components.

H can be realized by a system whose graph has exactly 3
components.



Coordinated stochastic linear systems: discussion

I We characterized connectivity in terms of output
processes.

I Old tool: Granger noncausality.

In neuroscience connectivity of brain regions is investigated,
using:

I Recursive models relating future outputs to past ones,
using Granger causality

I Difference equations in state-space form, using the graph
of the system

The results above are the first step to reconcile these two
approaches.



Conclusions

I Control theory could be useful for systems biology.

I Realization theory is important for biological modelling:
sanity check.

Open problems:
I Is it relevant for biology ?

I We looked at the algebraic structure and the network
topology: how to combine the two worlds ?

I For mathematicians: a lot of non-trivial (at least for control
theorists) mathematics.
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