
Analytic Left Inversion of Multivariable
Lotka–Volterra Modelsα

W. Steven Grayβ

Mathematical Perspectives in Biology
Madrid, Spain

February 5, 2016

βJoint work with Luis A. Duffaut Espinosa (GMU) and Kurusch Ebrahimi-Fard (ICMAT)

αResearch supported by the BBVA Foundation Grant to Researchers, Innovators and Cultural Creators (Spain).

W. S. Gray February 5, 2016 – ICMAT



Problem

Trajectory Generation Problem: explicitly compute the input to drive a nonlinear system

to produce some desired output.

• Fliess operators: Fc : u 7→ y are analytic multivariable input-output maps, which are described

by coefficients (c, η) and corresponding iterated integrals (M. Fliess, 1983).

• Left inversion problem: given a multivariable Fliess operator Fc and a function y in its range,

determine an input u such that y = Fc[u].

• Hopf algebra antipode: group (G, ◦) of unital Fliess operators and its corresponding Hopf

algebra H of coordinate functions; G 3 F ◦−1
c = Fc ◦ S, S : H → H

S ? id = id ? S = ε

• Lotka–Volterra Model: żi = βizi +
∑n

j=1 αijzizj, i = 1, 2, . . . , n

Input-Output systems are obtained by introducing time dependence on the parameters βi(t) and

αij(t) (inputs uk), and assuming that y = h(z) (outputs y = Fc[u]).
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Setting

Fliess operator

y = Fc[u](t, t0) =
∑
η∈X∗

(c, η)Eη[u](t, t0)

alphabet: X = {x0, x1, . . . , xm}

system: c :=
∑
η∈X∗

(c, η)︸ ︷︷ ︸
∈R`

η ∈ R`〈〈X〉〉

controls: u : [t0, t1]→ Rm, u0 := 1

xi ←→ ui
Exiη̄[u](t, t0) =

∫ t

t0

ui(s)Eη̄[u](s, t0) ds

E∅[u] := 1
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System interconnections I

yu

Fd

Fc

×

product connection: FcFd = Fc tt d

yu

Fd

Fc

+

parallel connection: Fc + Fd = Fc+d
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System interconnections II

Cascade connection

u
v

yFd Fc

d :=
∑
η∈X∗

(d, η)η, (d, η) ∈ Rm, d0 := 1

(Fc ◦ Fd)[u](t, t0) =
∑
η∈X∗

(c, η)Eη
[
Fd[u]

]
(t, t0)

Exiη̄[Fd[u]](t, t0) =

∫ t

t0

Fdi[u](s, t0)Eη̄[Fd[u]](s, t0) ds

(Fc ◦ Fd)[u] = Fc◦′d[u] xiη ◦′ d := x0

(
di tt (η ◦′ d)

)
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System interconnections III

Feedback loop

u
v

y

Fd

Fc
v = u+ Fd◦′c[v]

Fc•d[u] = Fc◦′(ε−d◦′c)◦−1[u]

Involves an extension of Fliess operators: unital Fliess operators

Fcε[u] := u+ Fc[u] = (I + Fc)[u]

cε := ε+ c

Fcε ◦ Fdε[u] = Fcε◦dε[u]

This composition defines a group (G, ◦) with unit ε on R〈〈Xε〉〉 [G-DE].
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Coordinate functions I

Faà di Bruno type Hopf algebra

Coordinate functions: aiη : G→ R, aiη(cε) := 〈cε, aiη〉 = (cε, η)i ∈ R

〈cε ◦ dε, aiη〉 = 〈cε ⊗ dε,∆(a
i
η)〉

= 〈cε ⊗ dε,
∑
(η)

a
i
η′ ⊗ a

j

η′′〉

Theorem: Coordinate functions form a connected graded commutative non-cocommutative

Hopf algebra (H,∆, ε, S,m, ι).

Antipode: S : H → H 〈c◦−1
ε , aiη〉 = 〈cε, S(aiη)〉

S(a
i
η) = −aiη −

∑
(η)

′
S(a

i
η′)a

j

η′′ = −aiη −
∑
(η)

′
a
i
η′S(a

j

η′′)

W. S. Gray February 5, 2016 – ICMAT 6



Coordinate functions II

Coproduct and antipode calculations

∆ : H → H ⊗H

∆(a
i
∅) = a

i
∅ ⊗ 1 + 1⊗ ai∅

∆(a
i
xj

) = a
i
xj
⊗ 1 + 1⊗ aixj

∆(a
i
x0

) = a
i
x0
⊗ 1 + 1⊗ aix0

+ a
i
x`
⊗ a`∅

∆(a
i
xjxk

) = a
i
xjxk
⊗ 1 + 1⊗ aixjxk

〈cε ◦ dε, aixjxk〉 = (cε ◦ dε, xjxk)i

= a
i
x0

(cε) + a
i
x0

(dε) + a
i
x`

(cε)a
`
∅(dε)

= (cε, x0)i + (dε, x0)i + (cε, x`)i(dε, ∅)`

S : H → H

S(a
i
∅) = −ai∅

S(a
i
xj

) = −aixj

S(a
i
x0

) = −aix0
+ a

i
x`
a
`
∅

S(a
i
xjxk

) = −aixjxk

〈c◦−1
ε , a

i
xjxk
〉 = (c

◦−1
ε , xjxk)i

= −aix0
(cε) + a

i
x`

(cε)a
`
∅(cε)

= −(cε, x0)i + (cε, x`)i(cε, ∅)`
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Left Inversion of MIMO Fliess operators I

Observe: c ∈ R〈〈X〉〉 can be written as c = cN + cF , where cN :=
∑

k≥0(c, x
k
0)xk0 and

cF := c− cN .

Definition: Given c ∈ Rk〈〈X〉〉, let ri ≥ 1 be the largest integer such that supp(cF,i) ⊆
x
ri−1
0 X∗, i = 1, 2, . . . ,m. Then ci has relative degree ri if x

ri−1
0 xj ∈ supp(ci), for

j ∈ {1, . . . ,m}, otherwise it is not well defined. In addition, c has vector relative degree

r = [r1 r2 · · · rm] if each ci has relative degree ri and the m×m matrix

A =

 (c1, x
r1−1
0 x1) (c1, x

r1−1
0 x2) · · · (c1, x

r1−1
0 xm)

...
...

...
...

(cm, x
rm−1
0 x1) (cm, x

rm−1
0 x2) · · · (cm, x

rm−1
0 xm)


has full rank. Otherwise, c does not have vector relative degree.

This definition coincides with the usual definition of relative degree given in a state space setting.

But this definition is independent of the state space setting.
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Left Inversion of MIMO Fliess operators II

Lemma: The set of series Rm×m〈〈X〉〉 having invertible constant terms is a group under

the shuffle product. In particular, the shuffle inverse of any such series C is

C
tt −1

= ((C, ∅)(I − C ′)) tt −1
= (C, ∅)−1

(C
′
)
tt ∗

,

where C ′ = I − (C, ∅)−1C is proper, i.e., (C ′, ∅) = 0, and (C ′) tt ∗ :=
∑

k≥0(C
′) tt k.

Lemma: For any C ∈ Rm×m〈〈X〉〉 with an invertible constant term, FC, which is

defined componentwise by [FC]i,j = FCi,j , has a well defined multiplicative inverse given by

(FC)−1 = FC tt −1.

Notation: Let R[[X0]] be all commutative series over X0 := {x0}. When c ∈ R[[X0]],

Fc[u](t) =
∑

k≥0(c, x
k
0)E

xk0
[u](t) =

∑
k≥0(c, x

k
0)tk/k!.
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Left Inversion of MIMO Fliess operators III

y
(r)

= F(xr0)−1(c)[u] + FC[u]u ∈ Rm

u = −(FC[u])
−1
F(xr0)−1(c−cy)[u], y(t) = Fcy[u](t) =

∑
k≥0

(cy, x
k
0)t

k
/k!

u = −Fd[u], d = C
tt −1

tt (x
r
0)
−1

(c− cy)

(xr0)
−1(c− cy)i = (x

ri
0 )−1(ci − cyi) and Ci,j = (x

ri−1
0 xj)

−1(ci)

Theorem: Suppose c ∈ Rm〈〈X〉〉 has vector relative degree r. Let y be analytic at t = 0

with generating series cy ∈ RmLC〈〈X〉〉 satisfying (cy, x
(r)
0 )

∗
= (c, x

(r)
0 ). Then the input

u(t) =
∞∑
k=0

(cu, x
k
0)
tk

k!
with cu = ((C

tt −1
tt (x

r
0)
−1

(c− cy))◦−1
)|N ,

is the unique solution to Fc[u] = y on [0, T ] for some T > 0.

Note: the condition ∗ on cy ensures that y is in the range of Fc.
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Multivariable I/O Lotka–Volterra Models I

żi = βizi +
∑n

j=1 αijzizj, i = 1, 2, . . . , n

 ż1

ż2

ż3

 =

 β1z1 − α12z1z2

−β2z2 + α21z1z2 − α23z2z3

−β3z3 + α32z3z2

 2 Predators - 1 Prey

The systems within the first octant have:

• periodic orbits around (β2/α21, β1/α12, 0) if β1α32 = β3α12

• extinction of one population if β1α32 < β3α12

• unbounded growing if β1α32 > β3α12.

ANSATZ: Input-output models are obtained by introducing time dependence on the
parameters βi(t)’s or αij(t)’s (inputs), and assuming y = h(z) (outputs).
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Multivariable I/O Lotka–Volterra Models II
Vector relative degree r for three LV systems with y1 = z2 and y2 = z3:

I/O map r range restrictions

Fc :

[
β1

β2

]
7→
[
y1

y2

]
not defined –

Fc :

[
β2

β3

]
7→
[
y1

y2

]
[1 1]

(cy1, ∅) = (c1, ∅)
(cy2, ∅) = (c2, ∅)

Fc :

[
β1

β3

]
7→
[
y1

y2

]
[2 1]

(full)

(cy1, ∅) = (c1, ∅)
(cy1, x0) = (c1, x0)

(cy2, ∅) = (c2, ∅)

Consider case 2: r = [1 1], u1 := β2, u2 := β3ż1

ż2

ż3

 =

 β1z1 − α12z1z2

α21z1z2 − α23z2z3

α32z3z2

−
 0

z2

0

u1 −

 0

0

z3

u2,

(
y1

y2

)
=

(
z2

z3

)

with zi(0) = zi,0 > 0, i = 1, 2, 3. Normalizing all parameters to 1.
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Multivariable I/O Lotka–Volterra Models III

Inputs: u1 = β2, u2 = β3

Vector relative degree r = [1 1].

c1 = z2,0 + (α21z1,0z2,0 − α23z2,0z3,0)x0 − (z2,0)x1 + 0x2 + · · · ,

c2 = z3,0 + (α32z2,0z3,0)x0 + 0x1 − (z3,0)x2 + · · · .

Extinction vs. periodic orbit
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Multivariable I/O Lotka–Volterra Models IV

Output function

One must select an output function

y(t) =

∞∑
k=0

(cy, x
k
0)
tk

k!
,

where cy = [cy1, cy2]
T is the generating series of y.

Consider a polynomial of degree 4: (cyj, x
i
0) = vij, i = 1, 2, 3, 4, j = 1, 2.

A = (C, ∅) =

[
(c1, x

r1−1
0 x1) (c1, x

r2−1
0 x2)

(c2, x
r1−1
0 x1) (c2, x

r2−1
0 x2)

]
= diag{−z2,0,−z3,0} has full rank

d = C tt −1 tt (xr0)
−1(c− cy) = [d1 d2]

T .

cu = (d
◦−1

)N
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Multivariable I/O Lotka–Volterra Models V

Numerical Simulation

Note that u1(t2) = u2(t2) = 1 and y1(t2) = z2(t2) = 1 and y2(t2) = 2,
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Fig. 5.2: Orbit transfer.
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Conclusions

• The general multivariable left inverse problem for input-output systems represented as Fliess

operators was solved explicitly via methods from combinatorial Hopf algebras: cancellation-free

antipode formula.

• The technique was then illustrated for an orbit transfer problem in a three species Lotka–Volterra

system: orbit transfer in order to avoid the extinction of the top-predator: System parameters

β, α become controls.

• Efficiency of the software used for calculations/simulations is currently being improved.

Thank you for your attention!
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