Analytic Left Inversion of Multivariable Lotka–Volterra Models $^{\alpha}$

W. Steven $Gray^{\beta}$

OLD DMINION UNIVERSITY

Mathematical Perspectives in Biology Madrid, Spain February 5, 2016

^{*B*} Joint work with Luis A. Duffaut Espinosa (GMU) and Kurusch Ebrahimi-Fard (ICMAT)

 lpha Research supported by the BBVA Foundation Grant to Researchers, Innovators and Cultural Creators (Spain). Fundación BBVA

((†)) ODU

W. S. Gray

February 5, 2016 – ICMAT

Problem

Trajectory Generation Problem: *explicitly compute the input to drive a nonlinear system to produce some desired output.*

- Fliess operators: F_c : u → y are analytic multivariable input-output maps, which are described by coefficients (c, η) and corresponding iterated integrals (M. Fliess, 1983).
- Left inversion problem: given a multivariable Fliess operator F_c and a function y in its range, determine an input u such that $y = F_c[u]$.
- Hopf algebra antipode: group (G, \circ) of unital Fliess operators and its corresponding Hopf algebra H of coordinate functions; $G \ni F_c^{\circ -1} = F_c \circ S$, $S: H \to H$

 $S\star \mathrm{id} = \mathrm{id}\star S = \epsilon$

 Lotka–Volterra Model: z_i = β_iz_i + Σⁿ_{j=1} α_{ij}z_iz_j, i = 1, 2, ..., n Input-Output systems are obtained by introducing time dependence on the parameters β_i(t) and α_{ij}(t) (inputs u_k), and assuming that y = h(z) (outputs y = F_c[u]).

Setting

Fliess operator

$$y = F_c[u](t, t_0) = \sum_{\eta \in X^*} (c, \eta) E_{\eta}[u](t, t_0)$$

alphabet:
$$X = \{x_0, x_1, \dots, x_m\}$$

system: $c := \sum_{\eta \in X^*} \underbrace{(c, \eta)}_{\in \mathbb{R}^\ell} \eta \in \mathbb{R}^\ell \langle \langle X \rangle \rangle$
controls: $u : [t_0, t_1] \to \mathbb{R}^m$, $u_0 := 1$
 $x_i \longleftrightarrow u_i$
 $E_{x_i \overline{\eta}}[u](t, t_0) = \int_{t_0}^t u_i(s) E_{\overline{\eta}}[u](s, t_0) ds$
 $E_{\emptyset}[u] := 1$

System interconnections I

product connection: $F_c F_d = F_c \sqcup d$

parallel connection: $F_c + F_d = F_{c+d}$

System interconnections II

Cascade connection

 $d:=\sum_{\eta\in X^*}(d,\eta)\eta,\quad (d,\eta)\in \mathbb{R}^m$, $d_0:=1$

$$(F_c \circ F_d)[u](t, t_0) = \sum_{\eta \in X^*} (c, \eta) E_{\eta} [F_d[u]](t, t_0)$$

$$E_{x_i ar \eta}[F_d[u]](t,t_0) = \int_{t_0}^t F_{d_i}[u](s,t_0) E_{ar \eta}[F_d[u]](s,t_0) \, ds$$

$$(F_c \circ F_d)[u] = F_{c \circ' d}[u] \qquad \quad x_i \eta \circ' d := x_0 ig(d_i \sqcup (\eta \circ' d) ig)$$

System interconnections III

Feedback loop

Involves an extension of Fliess operators: *unital* Fliess operators

$$F_{c_{\epsilon}}[u] := u + F_{c}[u] = (I + F_{c})[u]$$

 $c_{\epsilon} := \epsilon + c$

$$F_{c_{\epsilon}} \circ F_{d_{\epsilon}}[u] = F_{c_{\epsilon} \circ d_{\epsilon}}[u]$$

This composition defines a group (G, \circ) with unit ϵ on $\mathbb{R}\langle \langle X_{\epsilon} \rangle \rangle$ [G-DE].

Coordinate functions I

Faà di Bruno type Hopf algebra

Coordinate functions: $a^i_\eta: G \to \mathbb{R}, \ a^i_\eta(c_\epsilon) := \langle c_\epsilon, a^i_\eta \rangle = (c_\epsilon, \eta)_i \in \mathbb{R}$

$$egin{aligned} &\langle c_\epsilon \circ d_\epsilon, a^i_\eta
angle &= \langle c_\epsilon \otimes d_\epsilon, \Delta(a^i_\eta)
angle \ &= \langle c_\epsilon \otimes d_\epsilon, \sum_{(\eta)} a^i_{\eta'} \otimes a^j_{\eta''}
angle \end{aligned}$$

Theorem: Coordinate functions form a connected graded commutative non-cocommutative Hopf algebra $(H, \Delta, \epsilon, S, m, \iota)$.

Antipode: $S: H \to H \quad \langle c_{\epsilon}^{\circ -1}, a_{\eta}^i \rangle = \langle c_{\epsilon}, S(a_{\eta}^i) \rangle$

$$S(a_{\eta}^{i}) = -a_{\eta}^{i} - \sum_{(\eta)}' S(a_{\eta'}^{i}) a_{\eta''}^{j} = -a_{\eta}^{i} - \sum_{(\eta)}' a_{\eta'}^{i} S(a_{\eta''}^{j})$$

Coordinate functions II

Coproduct and antipode calculations

$$\begin{split} \Delta : H \to H \otimes H \\ \Delta(a^i_{\emptyset}) &= a^i_{\emptyset} \otimes \mathbf{1} + \mathbf{1} \otimes a^i_{\emptyset} \\ \Delta(a^i_{x_j}) &= a^i_{x_j} \otimes \mathbf{1} + \mathbf{1} \otimes a^i_{x_j} \\ \Delta(a^i_{x_0}) &= a^i_{x_0} \otimes \mathbf{1} + \mathbf{1} \otimes a^i_{x_0} + a^i_{x_\ell} \otimes a^\ell_{\emptyset} \\ \Delta(a^i_{x_j x_k}) &= a^i_{x_j x_k} \otimes \mathbf{1} + \mathbf{1} \otimes a^i_{x_j x_k} \\ \langle c_{\epsilon} \circ d_{\epsilon}, a^i_{x_j x_k} \rangle &= (c_{\epsilon} \circ d_{\epsilon}, x_j x_k)_i \\ &= a^i_{x_0}(c_{\epsilon}) + a^i_{x_0}(d_{\epsilon}) + a^i_{x_\ell}(c_{\epsilon}) a^\ell_{\emptyset}(d_{\epsilon}) \\ &= (c_{\epsilon}, x_0)_i + (d_{\epsilon}, x_0)_i + (c_{\epsilon}, x_\ell)_i (d_{\epsilon}, \emptyset)_\ell \end{split}$$

$$S : H \to H$$

$$S(a_{\emptyset}^{i}) = -a_{\emptyset}^{i}$$

$$S(a_{x_{j}}^{i}) = -a_{x_{j}}^{i}$$

$$S(a_{x_{0}}^{i}) = -a_{x_{0}}^{i} + a_{x_{\ell}}^{i}a_{\emptyset}^{\ell}$$

$$S(a_{x_{j}x_{k}}^{i}) = -a_{x_{j}x_{k}}^{i}$$

$$\langle c_{\epsilon}^{\circ-1}, a_{x_{j}x_{k}}^{i} \rangle = (c_{\epsilon}^{\circ-1}, x_{j}x_{k})_{i}$$

$$= -a_{x_{0}}^{i}(c_{\epsilon}) + a_{x_{\ell}}^{i}(c_{\epsilon})a_{\emptyset}^{\ell}(c_{\epsilon})$$

$$= -(c_{\epsilon}, x_{0})_{i} + (c_{\epsilon}, x_{\ell})_{i}(c_{\epsilon}, \emptyset)_{\ell}$$

Left Inversion of MIMO Fliess operators I

Observe: $c \in \mathbb{R}\langle\langle X \rangle\rangle$ can be written as $c = c_N + c_F$, where $c_N := \sum_{k \ge 0} (c, x_0^k) x_0^k$ and $c_F := c - c_N$.

Definition: Given $c \in \mathbb{R}^k \langle \langle X \rangle \rangle$, let $r_i \geq 1$ be the largest integer such that $\operatorname{supp}(c_{F,i}) \subseteq x_0^{r_i-1}X^*$, $i = 1, 2, \ldots, m$. Then c_i has relative degree r_i if $x_0^{r_i-1}x_j \in \operatorname{supp}(c_i)$, for $j \in \{1, \ldots, m\}$, otherwise it is not well defined. In addition, c has vector relative degree $r = [r_1 \ r_2 \ \cdots \ r_m]$ if each c_i has relative degree r_i and the $m \times m$ matrix

$$A = \begin{bmatrix} (c_1, x_0^{r_1 - 1} x_1) & (c_1, x_0^{r_1 - 1} x_2) & \cdots & (c_1, x_0^{r_1 - 1} x_m) \\ \vdots & \vdots & \vdots & \vdots \\ (c_m, x_0^{r_m - 1} x_1) & (c_m, x_0^{r_m - 1} x_2) & \cdots & (c_m, x_0^{r_m - 1} x_m) \end{bmatrix}$$

has full rank. Otherwise, c does not have vector relative degree.

This definition coincides with the usual definition of relative degree given in a state space setting. But this definition is independent of the state space setting.

Left Inversion of MIMO Fliess operators II

Lemma: The set of series $\mathbb{R}^{m \times m} \langle \langle X \rangle \rangle$ having invertible constant terms is a group under the shuffle product. In particular, the shuffle inverse of any such series C is

$$C^{\sqcup \sqcup -1} = ((C, \emptyset)(I - C'))^{\sqcup \sqcup -1} = (C, \emptyset)^{-1}(C')^{\sqcup \sqcup *},$$

where $C' = I - (C, \emptyset)^{-1}C$ is proper, i.e., $(C', \emptyset) = 0$, and $(C')^{\sqcup \sqcup *} := \sum_{k \ge 0} (C')^{\sqcup \sqcup k}$.

Lemma: For any $C \in \mathbb{R}^{m \times m} \langle \langle X \rangle \rangle$ with an invertible constant term, F_C , which is defined componentwise by $[F_C]_{i,j} = F_{C_{i,j}}$, has a well defined multiplicative inverse given by $(F_C)^{-1} = F_C \sqcup I^{-1}$.

Notation: Let $\mathbb{R}[[X_0]]$ be all commutative series over $X_0 := \{x_0\}$. When $c \in \mathbb{R}[[X_0]]$, $F_c[u](t) = \sum_{k \ge 0} (c, x_0^k) E_{x_0^k}[u](t) = \sum_{k \ge 0} (c, x_0^k) t^k / k!$.

Left Inversion of MIMO Fliess operators III

 $y^{(r)} = F_{(x_0^r)^{-1}(c)}[u] + F_C[u]u \in \mathbb{R}^m$

$$u = -(F_C[u])^{-1}F_{(x_0^r)^{-1}(c-c_y)}[u], \quad y(t) = F_{c_y}[u](t) = \sum_{k \ge 0} (c_y, x_0^k)t^k/k!$$

$$u = -F_d[u], \qquad d = C^{\sqcup \sqcup -1} \sqcup (x_0^r)^{-1} (c - c_y)$$

 $(x_0^r)^{-1}(c-c_y)_i = (x_0^{r_i})^{-1}(c_i-c_{y_i}) \text{ and } C_{i,j} = (x_0^{r_i-1}x_j)^{-1}(c_i)$

Theorem: Suppose $c \in \mathbb{R}^m \langle \langle X \rangle \rangle$ has vector relative degree r. Let y be analytic at t = 0 with generating series $c_y \in \mathbb{R}^m_{LC} \langle \langle X \rangle \rangle$ satisfying $(c_y, x_0^{(r)}) \stackrel{*}{=} (c, x_0^{(r)})$. Then the input

$$u(t) = \sum_{k=0}^{\infty} (c_u, x_0^k) \frac{t^k}{k!} \quad \text{with} \quad c_u = ((C^{\sqcup \sqcup -1} \sqcup (x_0^r)^{-1} (c - c_y))^{\circ -1})_{|N},$$

is the unique solution to $F_c[u] = y$ on [0, T] for some T > 0. Note: the condition * on c_y ensures that y is in the range of F_c .

W. S. Gray

Multivariable I/O Lotka–Volterra Models I

$$\dot{z}_i = \beta_i z_i + \sum_{j=1}^n \alpha_{ij} z_i z_j, \ \ i = 1, 2, \dots, n$$

$$\left(egin{array}{c} \dot{z}_1 \ \dot{z}_2 \ \dot{z}_3 \end{array}
ight) = \left(egin{array}{c} eta_1 z_1 - lpha_{12} z_1 z_2 \ -eta_2 z_2 + lpha_{21} z_1 z_2 - lpha_{23} z_2 z_3 \ -eta_3 z_3 + lpha_{32} z_3 z_2 \end{array}
ight)$$

2 Predators - 1 Prey

The systems within the first octant have:

- periodic orbits around $(\beta_2/\alpha_{21}, \beta_1/\alpha_{12}, 0)$ if $\beta_1\alpha_{32} = \beta_3\alpha_{12}$
- extinction of one population if $\beta_1 \alpha_{32} < \beta_3 \alpha_{12}$
- unbounded growing if $\beta_1 \alpha_{32} > \beta_3 \alpha_{12}$.

ANSATZ: Input-output models are obtained by introducing time dependence on the parameters $\beta_i(t)$'s or $\alpha_{ij}(t)$'s (inputs), and assuming y = h(z) (outputs).

Multivariable I/O Lotka–Volterra Models II

Vector relative degree r for three LV systems with $y_1 = z_2$ and $y_2 = z_3$:

I/O map	r	range restrictions
$\left[\begin{array}{c}F_c:\left[\begin{array}{c}\beta_1\\\beta_2\end{array}\right]\mapsto\left[\begin{array}{c}y_1\\y_2\end{array}\right]$	not defined	_
$\left[\begin{array}{c}F_c:\left[\begin{array}{c}\beta_2\\\beta_3\end{array}\right]\mapsto\left[\begin{array}{c}y_1\\y_2\end{array}\right]\right.$	[1 1]	$(c_{y_1}, \emptyset) = (c_1, \emptyset)$ $(c_{y_2}, \emptyset) = (c_2, \emptyset)$
$F_c: \left[\begin{array}{c} \beta_1\\ \beta_3 \end{array}\right] \mapsto \left[\begin{array}{c} y_1\\ y_2 \end{array}\right]$	[2 1] (full)	$(c_{y_1}, \emptyset) = (c_1, \emptyset)$ $(c_{y_1}, x_0) = (c_1, x_0)$ $(c_{y_2}, \emptyset) = (c_2, \emptyset)$

Consider case 2: $r = [1 \ 1]$, $u_1 := \beta_2$, $u_2 := \beta_3$

$$\begin{pmatrix} \dot{z}_1 \\ \dot{z}_2 \\ \dot{z}_3 \end{pmatrix} = \begin{pmatrix} \beta_1 z_1 - \alpha_{12} z_1 z_2 \\ \alpha_{21} z_1 z_2 - \alpha_{23} z_2 z_3 \\ \alpha_{32} z_3 z_2 \end{pmatrix} - \begin{pmatrix} 0 \\ z_2 \\ 0 \end{pmatrix} u_1 - \begin{pmatrix} 0 \\ 0 \\ z_3 \end{pmatrix} u_2, \qquad \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} z_2 \\ z_3 \end{pmatrix}$$

with $z_i(0) = z_{i,0} > 0$, i = 1, 2, 3. Normalizing all parameters to 1.

Multivariable I/O Lotka–Volterra Models III

Inputs: $u_1 = \beta_2$, $u_2 = \beta_3$

Vector relative degree $r = \begin{bmatrix} 1 & 1 \end{bmatrix}$.

$$c_1 = z_{2,0} + (\alpha_{21}z_{1,0}z_{2,0} - \alpha_{23}z_{2,0}z_{3,0})x_0 - (z_{2,0})x_1 + 0x_2 + \cdots,$$

$$c_2 = z_{3,0} + (\alpha_{32}z_{2,0}z_{3,0})x_0 + 0x_1 - (z_{3,0})x_2 + \cdots.$$

Extinction vs. periodic orbit

Multivariable I/O Lotka–Volterra Models IV

Output function

One must select an output function

$$y(t)=\sum_{k=0}^{\infty}(c_y,x_0^k)rac{t^k}{k!},$$

where $c_y = [c_{y_1}, c_{y_2}]^T$ is the generating series of y.

Consider a polynomial of degree 4: $(c_{y_j}, x_0^i) = v_{ij}$, i = 1, 2, 3, 4, j = 1, 2.

$$\begin{split} A &= (C, \emptyset) = \begin{bmatrix} (c_1, x_0^{r_1 - 1} x_1) & (c_1, x_0^{r_2 - 1} x_2) \\ (c_2, x_0^{r_1 - 1} x_1) & (c_2, x_0^{r_2 - 1} x_2) \end{bmatrix} = \operatorname{diag}\{-z_{2,0}, -z_{3,0}\} \text{ has full rank} \\ d &= C^{\sqcup \sqcup -1} \sqcup (x_0^r)^{-1} (c - c_y) = [d_1 \ d_2]^T. \\ c_u &= (d^{\circ - 1})_N \end{split}$$

Multivariable I/O Lotka–Volterra Models V

Numerical Simulation

Note that $u_1(t_2) = u_2(t_2) = 1$ and $y_1(t_2) = z_2(t_2) = 1$ and $y_2(t_2) = 2$,

Conclusions

- The general multivariable left inverse problem for input-output systems represented as Fliess operators was solved explicitly via methods from combinatorial Hopf algebras: cancellation-free antipode formula.
- The technique was then illustrated for an orbit transfer problem in a three species Lotka–Volterra system: orbit transfer in order to avoid the extinction of the top-predator: System parameters β, α become controls.
- Efficiency of the software used for calculations/simulations is currently being improved.

Thank you for your attention!