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Problem

Trajectory Generation Problem: explicitly compute the input to drive a nonlinear system
to produce some desired output.

e Fliess operators: F. : u — y are analytic multivariable input-output maps, which are described
by coefficients (¢, 1) and corresponding iterated integrals (M. Fliess, 1983).

e Left inversion problem: given a multivariable Fliess operator F. and a function y in its range,
determine an input w such that y = F.|u].

e Hopf algebra antipode: group (G, o) of unital Fliess operators and its corresponding Hopf
algebra H of coordinate functions; G > FCO_1 =F.0oS, S:H—H

Sxid =1d*x S =€
e Lotka—Volterra Model: 2z, = 58;z; + Z?:l oiizizi, 1t=1,2,...,n

Input-Output systems are obtained by introducing time dependence on the parameters (3;(t) and
a;;(t) (inputs uy), and assuming that y = h(z) (outputs y = F_.[u]).
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Setting

Fliess operator

y = F[ul(t, to) = > (e, n) Bylul(t, to)

nex*
alphabet: X =A{zp,x1,...,Tm}
{7 F. Y
system:  ci= Y (e,m)n € RY(X))
nEX * S~
eRr?
controls: u: [to, t1] = R™, wg:=1

€T; > U; Ew’iﬁ[u](t’ to) = /to wi(s)Ez[u](s, to) ds
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System interconnections |

\ 4
T

u—s —l y
F, j@—’

\ 4

product connection: F.Fy = F. 4

\4
T

\4
o

parallel connection: F. + Fy = F.y4
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System interconnections ||

Cascade connection

d:= > (d,m)n, (d,n) €R" dy:=1
neX*

(Feo Fa)[ul(t, to) = > (¢,n) Ey[Falu]] (¢, to)

neXx*

BelPulull(t,t0) = [ Fuul(s, to) By [Pulul)(s, o) ds

(F.o Fy)lu] = FL.or4lu] z;no d:= xzo(d; i (no d))
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System interconnections |1l

Feedback loop

v=1u-+ Fdo’c[/v]

F, « FC°d[u] — co’(e—do’c)o_l[u]

Involves an extension of Fliess operators: unttal Fliess operators

Folu] = u+ F.u] = (I + F.)[u]

Cc :— €+ cC
FCe O Fde [’U,] — FCeode [u]

This composition defines a group (G, o) with unit € on R{{X.)) [G-DE].
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Coordinate functions |

Faa di Bruno type Hopf algebra

Coordinate functions: af? : G — R, a%(ce) = {ce, a%} = (ce,m)i €ER

(ccode,ay) = (ce®de,Alay))

n

— <Ce ® dea ; CL;L?/ ® CL%,/>
n

Theorem: Coordinate functions form a connected graded commutative non-cocommutative
Hopf algebra (H, A, €, S, m, ).

Antipode: S:H — H (27, a%) = (ce, S(a%))

€

) ) / . ) ) /. )
S(a,) = —a, — Z S(a;/)a‘;,, = —a, — Z a;/S(a‘;,,)
(1) (1)
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Coordinate functions |l

Coproduct and antipode calculations

A:H— HXH S:H—> H

A(a%) :a%®1—|—1®a% S(aé)) = —aé)

A<a’sz) — CL;O ® 1 _|_ 1 ® a’;o _|_ a’zcg ® a’g) S(CL;O) — _a’zajo _|_ a’égaé
(ccode,ay ) = (cc o de, zjap); (el ay ) = (e zjmn);
— aio(ce) + aio(de> + a’;g(CE)ag)(de) — _a;O(CE) + aig(ce)aé(ce)

= (ce, 0)i + (de, x0)i + (ce, xr)i(de, D) = —(Ce, 0)i + (Ce, xp)i(ce, D)4
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Left Inversion of MIMO Fliess operators |

Observe: ¢ € R((X)) can be written as ¢ = ¢y + cp, where cy = >, (¢, ri)xy and

CF = C — CN.

Definition: Given ¢ € R¥((X)), let ; > 1 be the largest integer such that supp(cg;) C

1 . . . 1
z,) X", i=1,2,...,m. Then ¢; has relative degree r; if z,) z; € supp(c;), for
j € {1,...,m}, otherwise it is not well defined. In addition, ¢ has vector relative degree
r = [ri o --- 7] if each ¢; has relative degree r; and the m X m matrix

~1 —1 —1
(ct,zgt 1) (e, @)l @) oo (cr,zpt Tm)
A= : : : :
(mexgm_lxl) (Cmaxgm_le) T (Cm>a76m_1xm)

has full rank. Otherwise, ¢ does not have vector relative degree.

This definition coincides with the usual definition of relative degree given in a state space setting.
But this definition is independent of the state space setting.
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Left Inversion of MIMO Fliess operators ||

Lemma: The set of series R™*"™((X)) having invertible constant terms is a group under
the shuffle product. In particular, the shuffle inverse of any such series C' is

cH ol =(c,0I -t = (0 cH

where C' = I — (C,0)™"C is proper, i.e., (C',0) = 0, and (C") """ := 3, ((C") &

Lemma: For any C € R™*™({X)) with an invertible constant term, F¢, which is
defined componentwise by [F¢]; ; = Fe, i has a well defined multiplicative inverse given by

(Fe) ' = F, -1

Notation: Let R[[X(]] be all commutative series over Xy := {xo}. When ¢ € R|[[Xy]],
Ful(8) = Sisoles ) B[] (1) = Sesgle, a) /R
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Left Inversion of MIMO Fliess operators |l

(r) _ m

u = _(FC[U])_lF(xS)—l(c_cy)[u]a y(t) = Fe,lu](t) = Z(Cya xlg)tk/k!
k>0
uw = —Fylul, d=C™ " w(z) (c— ¢

(336)_1(0 — Cy)i = (ajgi)_l(ci — cyi) and C; ; = (xgi_lxj)_l(ci)

Theorem: Suppose ¢ € R™((X)) has vector relative degree r. Let y be analyticat ¢t = 0
with generating series ¢, € R7'((X)) satisfying (c,, x(()r)) = (c, gcér)). Then the input

oo k
w(t) = (e ah) with = ((C™ ™ (@) (e = )" i,
k=0 )

is the unique solution to F.[u] = y on [0, T'] for some T" > 0.
Note: the condition * on ¢, ensures that y is in the range of F..
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Multivariable 1/O Lotka—Volterra Models |

. n .
zi:Bizi‘l'Zj:l Oéz'jZiZj, y— 1,2,...,?’1,
21 B1z1 — 122122
22 = —522:2 + (212122 — (o322023 2 Predators - 1 Prey
Z3 —B323 + 322322

The systems within the first octant have:
e periodic orbits around (52/0&21, ,31/0412, O) if 510432 = [330412
e extinction of one population if Biage < B3aqs

e unbounded growing if  [Biags > Bzao.

ANSATZ: Input-output models are obtained by introducing time dependence on the
parameters 3;(t)’s or «;;(t)’s (inputs), and assuming y = h(z) (outputs).
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Multivariable 1/O Lotka—Volterra Models II

Vector relative degree r for three LV systems with y; = 25 and yo = z3:

/O map r range restrictions
F, : b1 — | not defined —
i B2 1 | Y2 |
-62- -yl- (Cyp@) — (017®)
F. : 11
P R e oY)
- - - - (Cy17 (D) — (Cl7 Q))
) B1 Y1 [2 1] _
F. : By — s | (full) (cy,> x0) = (c1, x0)

(Cy27 Q)) — (027 Q))

Consider case 2: r = [1 1], uy := B2, ug := B3

Z1 B1z1 — 122122 0 0 ” .
. 1 2
zo | = | ao12129 — vazzoz3 | — | 22 | u1 — | O | we, —

) Y2 Z3
Z3 322322 O Z3

with 2;(0) = z;0 > 0, ¢ = 1, 2, 3. Normalizing all parameters to 1.
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Multivariable /0O Lotka—\Volterra Models IlI
Inputs: u; = B, us = 33

Vector relative degree » = [1 1].

c1 =220+ (21210220 — @2322,023,0)T0 — (220)x1 + 0x2 + - - - |

co =230+ (32220230)x0 + 01 — (23,0)T2 + - - - .

Extinction vs. periodic orbit

I
05
Mid-level predator population 0 Mid-level predator population

u1:1,u2:1.2. ’11,1:”LL2:1.
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Multivariable 1/0O Lotka—Volterra Models IV

Output function

One must select an output function

o0 tk
k
y(t) — kZ(Cya xo)ga
=0

where ¢, = [cy,, Cy,]” is the generating series of v.

Consider a polynomial of degree 4: (cyj, 336) =, 1 =1,2,3,4,7 =1,2.

1 1
(cl,xgl 1) (cl,:cg2 x2)

A= (C0) = " — = diag{—220, —23,0} has full rank

(co,zpt 1) (ca, (o)
d=C™ 1w (z)) ec—cy) =[di do]'.

Cu — (do_l)N
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Multivariable 1/0O Lotka—Volterra Models V

Numerical Simulation

Note that ul(tg) = ’U,g(tg) — 1 and yl(tg) = Zg(tg) = 1 and yg(tg) = 2,

*| ==Initial-orbit

= Transition-path

Final-orbit

Top-level predator population

Prey population

Mid-level predator population

Fig. 5.2: Orbit transfer.
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Conclusions

The general multivariable left inverse problem for input-output systems represented as Fliess
operators was solved explicitly via methods from combinatorial Hopf algebras: cancellation-free
antipode formula.

The technique was then illustrated for an orbit transfer problem in a three species Lotka—Volterra
system: orbit transfer in order to avoid the extinction of the top-predator: System parameters
B, o become controls.

Efficiency of the software used for calculations/simulations is currently being improved.

Thank you for your attention!
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