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@ Cancer is a disease of clonal evolution within the body*

@ Although this idea of cancer as an evolutionary problem is not new, it has received
less attention than it perhaps deserves

© The succession of somatic mutations to which cancer cells are subjected leads to
clonal expansion and heterogeneity
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Evolutionary dynamics of cancer poses a barrier to targeted therapy efficiency

Motivation & model formulation Well-stirred systems Inhomogeneous systems

Effects on targeted cance therapy?

Evolutionary dynamics of
carcinogenesis and why targeted
therapy does not work

Rabert J. Gillies, Daniel Verduzco and Robert A. Gatenby

Abstract | Allmalignant cancers, whether inherited or sporadic, are fundamentally
governed by Darwinian dynamics. The process of carcinogenesis requires genetic
instability and highly selective local microenvironments, the combination of which
promotes somatic evolution. These microenvironmental forces, specifically
hypoxia, acidosis and reactive oxygen species, are not only highly selective, but are
also able to induce genetic instability. As a result, malignant cancers are
dynamically evolving clades of cells living in distinct microhabitats that almost
certainly ensure the emergence of therapy-resistant populations. Cytotoxic cancer
therapies also impose intense evolutionary selection pressures on the surviving
cells and thus increase the evolutionary rate. Importantly, the principles of
Darwinian dynamics also embody fundamental principles that can illuminate
strategies for the successful management of cancer.

Conclusions & summary
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Cancer as an evolutionary ecology problem

Competition between normal and cancer cells
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o Late relapse of breast cancer can occur as late as 25 years after resection of the
primary tumour

@ Such long duration between resection and relapse is thought to be inexplicable from
continual growth of secondary cancer
@ Three mechanisms for tumour dormancy have been hypothesised based on
experimental models:
o Solitary cells which persist in a quiescent state for months or even years post-resection
o Non-vascularised, non-angiogenic micro-metastases restricted to a size of 1 to 2 mm in
diameter
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Two strategies to use up available resources

Switch-like vs Bistable Response Curves

Switch-like Bistable

Response
Response

Signal Signal
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Introduction Motivation & model formulation

@ Switch-like cells.

© Birth probability

@ Bistable cells.

Two cellular populations

Well-stirred systems

~ 1 when ¢c >

~1/2 when c ~ ¢

~ 0 when c < ¢

@ Two phenotypes: Proliferating and Quiescent
@ Proliferating cells duplicate or change phenotype to quiescent
© Quiescent cells die or change phenotype to proliferating
@ The dynamics of the population is then controlled by the rates at which cells switch

phenotype:

Inhomogeneous systems

. Death probability

Conclusions & summary

~ 0 when ¢ > &
~1/2 when c ~ ¢
~ 1when c < ¢
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Example: Model for the cell-cycle
Simple model for the G;/S transition
o x; =[Cdh1], x; =[CycB/Cdk1], m = cell mass

da (ka1 + k32A)(1 — x1) _ kamxzxa

dt J3+1—x1 J4+X1’
dX7
— = k1 — (ko1 + koox1)x7
dt
10'
10°
1 10°
<107 <107
107
107 h
o 02 04 0.6 08 1 10730 0.2 04 0.6 I a— 1
X
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Population dynamics

The system we are considering is the competition between an incumbent population of
switch-like cells and an invasor made out of bistable cells. These two populations
compete by a shared resource, eg oxygen.

Oxygen concentration

=—h (1)

X x=0 s & x=L

with ho — hy = Lh™'%Qcy. The parameter Q corresponds to the total cell population that
a uniform concentration of oxygen c(x, t) = co is capable of sustaining. ) is the
population vector corresponding to the kth cellular type k =1,..., N7. N7 = 3:
Switch-like cells, proliferating bistable cells, and quiescent bistable cells.

T. Alarcén (ICREA & CRM, Barcelona, Spain) Population dynamics & cancer ICMAT, Madrid, February 2016 12 /37
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Population dynamics (cont.)

Master Equation for the cellular populations

Nt N
oP(xW, ..., x"D ¢) u N
ot - et Zl , -1 TX,(k)+1\XEk)P+ 5X5k) -1 Txgk)—llx,(‘k)F :
1=
Ny N
> K € ~ 1) T 01,0 g0, P+
k=1 i=1 j#k Xi
(5 — 1) Txgk)ile'j)+1‘xgk)xgj) P] +
Nt N
> K Nk 1) LNCINCIPNCN Ly
k=1 i=1 je (i) X
b oo
(gxgk)ng(-k) - 1) TXSk)_lxﬁk)+1|X§k)X§k) P]
where x¥) is the population vector corresponding to the kth cellular type k = 1,..., Nt

and 5jk)f(x,<k>) = f(x +1).
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Population dynamics (cont.)

Dimensionless transition rates

Transition rate Event

_ G )
T e (

X51)+1|X51) = €W SWltCh-llke cell division

Txf_l)—l\xgl) = EM%XEI) Switch-like cell death

T @, = x? Bistable proliferating cell division
TX53)+1X§2)71|X§3)X1(2) = ewoefHPA(C)X,(?) Proliferating-to-quiescent switch
TX52)+1XI(3)71|XI(_2)X,(3) = ewoe_HAP(‘)X§3) Quiescent-to-proliferating switch
Tx§3)—1\x§3) = ex§3) Bistable quiescent cell death

T ® = GVkXEk) Cell migration Vk and Vj e< i >

k k
X; —1X§ )+1\Xf )Xj

Table : Dimensionless transition rates for our stochastic model of competition between
switch-like and bistable populations.

T. Alarcén (ICREA & CRM, Barcelona, Spain) Population dynamics & cancer ICMAT, Madrid, February 2016
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Aims

Examine the effect of intracellular noise on the long-term behaviour of the
competition between sitch-like and bistable populations

Explore intracellular noise as a mechanism for latency (i.e. long-term survival of a
non-invading mutant)

Analyse the role of cell motility

Study the therapeutic implications of our model

T. Alarcén (ICREA & CRM, Barcelona, Spain) Population dynamics & cancer ICMAT, Madrid, February 2016 15 /37
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Low-noise behaviour: Invasion in well-stirred systems

Hybrid Gillespie simulation results
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Figure : Simulation results for the fixation probability of the mutant (bistable) cell population as
a function of the barrier-to-noise ratio «. The initial mutant-to-incumbent ratio y = 1/500.

wo = 102
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Supression of intracellular noise reduces population noise

Comparison between Gillespie simulations and the mean-field approximation
Q =100 Q=1000
. .
" : "
& Al
< v [ <
5 ‘,' [ 5 |
i ] 'x‘,,’A N ,',"'
0.5] ‘ 0.5] /
s P ——— NS R
Tind imersioros . i mersiors B
dc
2~ kQ = k(ns+ np+ ng) c 3)
dr
dn
® = etanh (ao(c — 1)) ns (4)
dr
dn,
e eny, — ewoPpa(c)n, + ewoPap(c)ng (5)
dng
P + ewoPpa(c)np, — ewoPap(c)ng (6)
Population dynamics & cancer ICMAT, Madrid, February 2016 18 /37
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Linear analysis predicts abrupt transition between invasive a non-invasive
regimes as a function of intracellular noise

Linear analysis

The ability of invasion by a small mutant
population is provided by linearising of the
dynamics of the mutant around the
mutant-free steady state. In our case, this
correponds to the steady state of Egs. (3)
and (4) with n, = ng =0, i.e. ¢ =1 and
ns = Q:

dn —a/2 —a/2

=P —en, — ewoe 2, + ewpe ™/

dr

dn —a/2 —a/2

d—q = —eng + ewpe o/ np — ewpe o/
=

0.8]

0.6

0.4]

0.2]

4 The blue line corresponds to wy = 102,
the green line to wy = 103, and the red
line to wp = 10*
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High-noise behaviour: Emergence of latency

Hybrid Gillespie simulation results
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Figure : Simulation results for the fixation probability of the mutant (bistable) cell population as
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The mutant population exhibits vanishing growth rate under elevated
intracellular noise

Neutral invasion dynamics

o8| B o8| B
L -t
*a
_os| B < os- B
s | b
%
¥
04 - < 04l 4
02— - 02— —
Il Il Il Il Il
o 20409 E 80409 Tes10 o 20409 K 9 80409 Tes10

e+09 6e+09 e+09 Be+0

Time (rescaled) Time (rescaled)

@ We observe that ¢(t) = o

o Constant oxygen concentration implies that Switch-like cells+Proliferating
cells+Quiescent cells ~ Q

@ This allows us to reduce the system and study only the dynamics of the mutant
population

T. Alarcén (ICREA & CRM, Barcelona, Spain) Population dynamics & cancer ICMAT, Madrid, February 2016 21 /37
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Embedded branching process
In order to formulate an analytical theory, we consider the corresponding embedded
branching process equivalent to our multi-type birth-death process.
Embedded branching process

@ The process of embedding consists of a coarse-graining of time variable carryied out
in the following way.

@ After birth, each individual (of type j) lives for a length of time which is
. —1
exponentially distributed with characteristic time 9 = (6(1 + Woe_a/2)) .

© At the end of their life-span, each individual produces offspring according to the
corresponding generating functions of the per-cell offspring probabilities.

—a/2
wpe « 1 2
GP(X7y) = 1+ Woe_a/2y+ 14 Woe—a/2x (7)
1 Wo(i‘_o‘/2
GQ(X7y) = 1+ Woe_"‘/Q + 1+ Woe_o‘/zx (8)

@ For full specification of the age-dependent, embedded branching process, we need to
give the age distribution which in this case is f(7) = 7 te™ /.

v
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The embedded branching process is critical for high-noise intensity

Let M be the matrix whose entries, m; j, correspond to the average offspring of type j
produced by each individual of type j, simply by computing the derivatives of the
generating functions: mpp = 0xGp|x=y=1, Mpg = Oy Gp|x=y=1, Mgp = OxGQ|x=y=1, and
maq = 9y GQ|x=y=1

Dominant eigenvalue of the offspring matrix

2 w 19F
M = ( ltw 16w ) sk
1+W 1.7
whose dominant eigenvalue is: 1o
<15
1/2
\ 1+ (1+w?) /
1= |
1 _|_ w 1.3]
2 121
where w = wpe ™ */ ul
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Survival probability for critical branching processes (A1 = 1)

Probability of eventual extincition (Pg)

QIf\M>1=Pe<l1
Q |f)\1§1:>PE=1

Asymptotic behaviour of the survival probability (Ps(t)) for critical branching
processes

o If \; = 1 then Ps(t) ~ o 't7 ast — oo

@ Ps(t) ~ t~! implies that there is no characterstic survival time and that both short-
and (aribitrarily) long-lived states are possible

T. Alarcén (ICREA & CRM, Barcelona, Spain) Population dynamics & cancer ICMAT, Madrid, February 2016 24 /37
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The structure of the mutant population supresses population noise (o)

o is supressed as w increases

By supressing population noise,
Ps(t), which is inversely
proportional to o, increases and,
thus, so does the probability of
latency, i.e. a state where growth is
supressed by that can last for
aribitraly long time

0.9r
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071

061
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01r
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Summary of results for well-stirred systems

Analytical and numerical results show that:

@ Intracellular noise in the cells of the mutant (bistable) population controls their
ability to invade the incumbent (switch-like) population
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Summary of results for well-stirred systems

Analytical and numerical results show that:

@ Intracellular noise in the cells of the mutant (bistable) population controls their
ability to invade the incumbent (switch-like) population

@ Bistable populations with low intracellular noise (i.e. transitions between phenotypes
are determined by nutrient concentration) are very aggresive and invade the
switch-like incumbent with high probability

@ Bistable populations with high intracellular noise (i.e. transitions between
phenotypes are erratic and less strongly dependent on nutrient concentration) are
critical (in the sense of growth rate equal to zero) and thus the life expetancy of an
invasion is arbitrarily long (latency)

© The structure of the bistable population acts as a buffer for population noise, thus
contributing to long-lived, growth supressed states to be more likely (latency)
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Low-intracellular noise: Mean-field inhomogeneous model

Mean-field inhomogeneous model

dc &c dc

Oc

or  ox2 K(ns + np + ng)c, Ix - =M, 5% . =—h 9)

2,
?;_s =ev % 5 T ctanh (ao(c — 1)) ns (10)
any %np
5 = 25 P 4 enp — ewoPpa(c)np + ewo Pap(c)ng (11)
0 82
8’775/ (9 2 —€ng + GW()PPA(C)HP — EWoPAP(C)nq (12)

with ho — hi = Lh~'7Qcp no-flux boundary conditions for the equations for the cellular
populations

Initial coniditions

c(x,t=0)=1, ny(x,t =0) =d(x — L/2), ng(x,t =0) =d(x — L/2), and
ns(x,t=0)=Q/Lifx#L/2and ns(x =L/2,t=0)=Q/L -2
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Bistable mutant invades switch-like incumbent by migrating towards
better-perfused regions

Numerical results
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Increased mutant motility increases its aggresiveness

Time to incumbent extinction as a function of mutant motility

» =13 = 1071 Dy = i3 = 1072
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Non-motile mutants are non-invasive but generate long-term coexistence

Non-motile mutants: Stasis followed by transient bursts of mutant
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Well-stirred systems Inhomogeneous systems

Mere upregulation of motility is not enough for invasion

Competition between non-motile (incumbent) and motile (mutant) switch-like

populations
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Summary of results for inhomogeneous systems

Numerical solution of our model equations shows that:

@ Spatial inhomogeneities have a non-trivial effect on the competition between our two
cell types
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Summary of results for inhomogeneous systems

Numerical solution of our model equations shows that:

@ Spatial inhomogeneities have a non-trivial effect on the competition between our two
cell types

@ Increased cell motility leads to more aggresive mutants

© Long-term coexistence between mutant and is possible provided mutant cells are not
motile. This is in contrast to the well-stirred case, where no coexistence is possible
for low-noise mutant cells
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Summary

Summary & Conclusions

Formulation, analytical and numerical results for a model of competition between
two populations characterised by two different strategies (response curves) to turn
nutrients into offspring

Intracellular noise shown to be a major factor controlling the outcome of the
competition

Increased cell motility leads to more aggresive mutants although, on its own, it is
insufficient to give the advantage to the mutant (previous transformation is required)

Coexistence between the switch-like and low-noise, non-motile bistable cells is
possible in spatially homogeneous systems. It consists of long periods of stasis
followed by sudden, short-lived bursts of the mutant population

High level of intracellular noise leads to critical growth dynamics: growth-supressed
states but with aribitrarily long life span

Future work

Explore the therapeutic implications of our model
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