Rectifiability, the Jones' β coefficients, and densities

Xavier Tolsa

<u>*icrea</u> UAB

January 11, 2015

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities

January 11, 2015 1 / 19

Rectifiability

 \mathcal{H}^n is the $\mathit{n}\text{-dimensional}$ Hausdorff measure.

A set $E \subset \mathbb{R}^d$ is called *n*-rectifiable if there are *n*-dimensional C^1 (or Lipschitz) manifolds Γ_i such that $\mathcal{H}^n(E \setminus \bigcup_i \Gamma_i) = 0$.

Rectifiability

 \mathcal{H}^n is the *n*-dimensional Hausdorff measure.

A set $E \subset \mathbb{R}^d$ is called *n*-rectifiable if there are *n*-dimensional C^1 (or Lipschitz) manifolds Γ_i such that $\mathcal{H}^n(E \setminus \bigcup_i \Gamma_i) = 0$.

A Borel measure μ on \mathbb{R}^d is called *n*-rectifiable if it is of the form

$$d\mu = g \, d\mathcal{H}^n|_E,$$

where *E* is *n*-rectifiable and $g \in L^1_{loc}(\mathcal{H}^n|_E)$.

Rectifiability

 \mathcal{H}^n is the *n*-dimensional Hausdorff measure.

A set $E \subset \mathbb{R}^d$ is called *n*-rectifiable if there are *n*-dimensional C^1 (or Lipschitz) manifolds Γ_i such that $\mathcal{H}^n(E \setminus \bigcup_i \Gamma_i) = 0$.

A Borel measure μ on \mathbb{R}^d is called *n*-rectifiable if it is of the form

 $d\mu = g \, d\mathcal{H}^n|_E,$

where *E* is *n*-rectifiable and $g \in L^1_{loc}(\mathcal{H}^n|_E)$.

Characterization of *n*-rectifiable sets and measures in terms of:

- existence of approximate tangents,
- existence of densities,
- the size of projections.

(Besicovitch, Federer, Mattila, Preiss...).

X. Tolsa (ICREA / UAB)

Rectifiability and approximate tangents

Theorem (Besicovitch)

Let $E \subset \mathbb{R}^d$ with $\mathcal{H}^n(E) < \infty$. Then E is n-rectifiable if and only if at \mathcal{H}^n -a.e. $z \in E$ there exists an approximate tangent n-plane V. That is, for all s > 0,

$$\lim_{r\to 0}\frac{\mathcal{H}^n(E\cap B(z,r)\setminus X(z,V,s))}{r^n}=0,$$

where X(z, V, s) is the double cone with vertex at z and axis equal to V.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 3 / 19

Rectifiability and densities

Upper *n*-dimensional density of μ : $\Theta^{n,*}(x,\mu) = \limsup_{r \to 0} \frac{\mu(B(x,r))}{r^n}$. Lower *n*-dimensional density of μ : $\Theta^n_*(x,\mu) = \liminf_{r \to 0} \frac{\mu(B(x,r))}{r^n}$. *n*-dimensional density of μ : $\Theta^n(x,\mu) = \lim_{r \to 0} \frac{\mu(B(x,r))}{r^n}$.

Theorem (Preiss)

Let μ be a Radon measure on \mathbb{R}^d . Then μ is n-rectifiable if and only if $\Theta^n(x,\mu)$ exists and is nonzero for μ -a.e. $x \in \mathbb{R}^d$.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 4 / 19

Uniform *n*-rectifiability is a quantitative version of *n*-rectifiability introduced by David and Semmes.

Let $E \subset \mathbb{R}^d$. We say that it is *n*-AD-regular (or Ahlfors-David regular) if $\exists c > 0$ such that

 $c^{-1}r^n \leq \mathcal{H}^n(B(x,r) \cap E) \leq cr^n$ for $x \in E$, $0 < r \leq \text{diam}(E)$.

Let $E \subset \mathbb{R}^d$. We say that it is *n*-AD-regular (or Ahlfors-David regular) if $\exists c > 0$ such that

$$c^{-1} r^n \leq \mathcal{H}^n(B(x,r) \cap E) \leq c r^n$$
 for $x \in E$, $0 < r \leq \text{diam}(E)$.

E is uniformly *n*-rectifiable if it is *n*-AD-regular and there are $M, \theta > 0$ such that for all $x \in E$, $0 < r \le \text{diam}(E)$, there exists a Lipschitz map

$$\varphi: \mathbb{R}^n \supset B_n(0, r) \to \mathbb{R}^d, \qquad \operatorname{Lip}(\varphi) \leq M,$$

such that

$$\mathcal{H}^n(E \cap B(x,r) \cap \varphi(B_n(0,r))) \geq \theta r^n.$$

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 5 / 19

Let $E \subset \mathbb{R}^d$. We say that it is *n*-AD-regular (or Ahlfors-David regular) if $\exists c > 0$ such that

$$c^{-1} r^n \leq \mathcal{H}^n(B(x,r) \cap E) \leq c r^n$$
 for $x \in E$, $0 < r \leq \text{diam}(E)$.

E is uniformly *n*-rectifiable if it is *n*-AD-regular and there are $M, \theta > 0$ such that for all $x \in E$, $0 < r \le \text{diam}(E)$, there exists a Lipschitz map

$$\varphi: \mathbb{R}^n \supset B_n(0, r) \to \mathbb{R}^d, \qquad \operatorname{Lip}(\varphi) \leq M,$$

such that

$$\mathcal{H}^n(E \cap B(x,r) \cap \varphi(B_n(0,r))) \geq \theta r^n.$$

A measure μ is *n*-AD regular if it is of the form

$$d\mu = g \, d\mathcal{H}^n|_E,$$

where E is n-AD regular and $g \approx 1$. μ is uniformly *n*-rectifiable if moreover E uniformly *n*-rectifiable.

X. Tolsa (ICREA / UAB)

Given a ball B(x, r) and a measure μ in \mathbb{R}^d , we denote

$$\beta_{\mu,p}(x,r) = \inf_{L} \left(\frac{1}{r^n} \int_{y \in B(x,r)} \left(\frac{\operatorname{dist}(y,L)}{r} \right)^p \, d\mu(y) \right)^{1/p},$$

where the infimum is taken over all n-planes L.

6 / 19

Given a ball B(x, r) and a measure μ in \mathbb{R}^d , we denote

$$\beta_{\mu,p}(x,r) = \inf_{L} \left(\frac{1}{r^n} \int_{y \in B(x,r)} \left(\frac{\operatorname{dist}(y,L)}{r} \right)^p \, d\mu(y) \right)^{1/p},$$

where the infimum is taken over all *n*-planes *L*. $\beta_{\mu,p}(x, r)$ measures how close μ is to some *n*-plane *L* in B(x, r).

Given a ball B(x, r) and a measure μ in \mathbb{R}^d , we denote

$$\beta_{\mu,p}(x,r) = \inf_{L} \left(\frac{1}{r^n} \int_{y \in B(x,r)} \left(\frac{\operatorname{dist}(y,L)}{r} \right)^p \, d\mu(y) \right)^{1/p},$$

where the infimum is taken over all *n*-planes *L*. $\beta_{\mu,p}(x, r)$ measures how close μ is to some *n*-plane *L* in B(x, r).

Theorem (David-Semmes)

Let μ be n-AD-regular. μ is uniformly n-rectifiable iff for all $x_0 \in \operatorname{supp} \mu$ and R > 0 $\int_{x \in B(x_0, R)} \int_0^R \beta_{\mu,2}(x, r)^2 d\mu(x) \frac{dr}{r} \leq c R^n.$

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 6 / 19

Given a ball B(x, r) and a measure μ in \mathbb{R}^d , we denote

$$\beta_{\mu,p}(x,r) = \inf_{L} \left(\frac{1}{r^n} \int_{y \in B(x,r)} \left(\frac{\operatorname{dist}(y,L)}{r} \right)^p \, d\mu(y) \right)^{1/p},$$

where the infimum is taken over all *n*-planes *L*. $\beta_{\mu,p}(x, r)$ measures how close μ is to some *n*-plane *L* in B(x, r).

Theorem (David-Semmes)

Let μ be n-AD-regular. μ is uniformly n-rectifiable iff for all $x_0 \in \operatorname{supp} \mu$ and R > 0 $\int_{x \in B(x_0, R)} \int_0^R \beta_{\mu,2}(x, r)^2 d\mu(x) \frac{dr}{r} \leq c R^n.$

• This can be thought of as an analog of the characterization of rectifiability in terms of existence of tangents.

Given a ball B(x, r) and a measure μ in \mathbb{R}^d , we denote

$$\beta_{\mu,p}(x,r) = \inf_{L} \left(\frac{1}{r^n} \int_{y \in B(x,r)} \left(\frac{\operatorname{dist}(y,L)}{r} \right)^p \, d\mu(y) \right)^{1/p},$$

where the infimum is taken over all *n*-planes *L*. $\beta_{\mu,p}(x, r)$ measures how close μ is to some *n*-plane *L* in B(x, r).

Theorem (David-Semmes)

Let μ be n-AD-regular. μ is uniformly n-rectifiable iff for all $x_0 \in \operatorname{supp} \mu$ and R > 0 $\int_{x \in B(x_0, R)} \int_0^R \beta_{\mu,2}(x, r)^2 d\mu(x) \frac{dr}{r} \leq c R^n.$

- This can be thought of as an analog of the characterization of rectifiability in terms of existence of tangents.
- A previous L^{∞} version of this result for n = 1 by Peter Jones.

X. Tolsa (ICREA / UAB)

Theorem

Let μ be a Radon measure in \mathbb{R}^d such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 eta_{\mu,2}(x,r)^2 \, rac{dr}{r} < \infty \quad ext{ for } \mu ext{-a.e. } x \in \mathbb{R}^d.$$

Theorem

Let μ be a Radon measure in \mathbb{R}^d such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \quad \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^d.$$

•
$$\Rightarrow$$
 by T., and \Leftarrow by Azzam and T.

Theorem

Let μ be a Radon measure in \mathbb{R}^d such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \quad \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^d.$$

•
$$\Rightarrow$$
 by T., and \Leftarrow by Azzam and T.

Corollary

Let $E \subset \mathbb{R}^d$ be an \mathcal{H}^n -measurable set with $\mathcal{H}^n(E) < \infty$. The set E is n-rectifiable if and only if

$$\int_0^1 \beta_{\mathcal{H}^n|_E,2}(x,r)^2 \, \frac{dr}{r} < \infty \quad \text{ for } \mathcal{H}^n\text{-a.e. } x \in E.$$

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 7 / 19

Theorem

Let μ be a Radon measure in \mathbb{R}^d such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \quad \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^d.$$

Previous results

• Pajot proved \Rightarrow assuming μ to be AD-regular.

Theorem

Let μ be a Radon measure in \mathbb{R}^d such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \quad \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^d.$$

Previous results

- Pajot proved \Rightarrow assuming μ to be AD-regular.
- Badger and Schul proved a dyadic version of ⇒ for n = 1 valid of meaures which may not be absolutely continuous with respect to H¹.

Theorem

Let μ be a Radon measure in \mathbb{R}^d such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \quad \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^d.$$

Previous results

- Pajot proved \Rightarrow assuming μ to be AD-regular.
- Badger and Schul proved a dyadic version of ⇒ for n = 1 valid of meaures which may not be absolutely continuous with respect to H¹.
- Pajot proved \leftarrow for $\mu = \mathcal{H}^n | E$ assuming $\Theta_*^n(x, \mu) > 0$ μ -a.e.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 7 / 19

Theorem

Let μ be a Radon measure in \mathbb{R}^d such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \quad \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^d.$$

Previous results

- Pajot proved \Rightarrow assuming μ to be AD-regular.
- Badger and Schul proved a dyadic version of ⇒ for n = 1 valid of meaures which may not be absolutely continuous with respect to H¹.
- Pajot proved \Leftarrow for $\mu = \mathcal{H}^n | E$ assuming $\Theta_*^n(x, \mu) > 0$ μ -a.e.
- Badger and Schul proved \leftarrow for μ such that $0 < \Theta_*^n(x,\mu) \le \Theta^{n,*}(x,\mu) < \infty \mu$ -a.e.

Recall that μ is *n*-rectifiable iff $\lim_{r\to 0} \frac{\mu(B(x,r))}{r^n} > 0$ exists μ -a.e.

Rectifiability, the Jones' β coefficients, and densities Jan

Recall that μ is *n*-rectifiable iff $\lim_{r\to 0} \frac{\mu(B(x, r))}{r^n} > 0$ exists μ -a.e. What about uniform rectifiability?

Recall that μ is *n*-rectifiable iff $\lim_{r\to 0} \frac{\mu(B(x,r))}{r^n} > 0$ exists μ -a.e. Denote $\mu(B(x,r)) = \mu(B(x,2r))$

$$\Delta_{\mu}(x,r) = \frac{\mu(\mathcal{D}(x,r))}{r^n} - \frac{\mu(\mathcal{D}(x,2r))}{(2r)^n}.$$

Recall that μ is *n*-rectifiable iff $\lim_{r\to 0} \frac{\mu(B(x,r))}{r^n} > 0$ exists μ -a.e. Denote $\mu(B(x,r)) = \mu(B(x,2r))$

$$\Delta_{\mu}(x,r) = \frac{\mu(B(x,r))}{r^{n}} - \frac{\mu(B(x,2r))}{(2r)^{n}}.$$

Theorem (Chousionis, Garnett, Le, T.)

Let μ be n-AD-regular. μ is uniformly n-rectifiable iff for all $x_0 \in \text{supp } \mu$ and R > 0

$$\int_{x\in B(x_0,R)}\int_0^R \Delta_\mu(x,r)^2\,d\mu(x)\,\frac{dr}{r}\leq c\,R^n.$$

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 8 / 19

Recall that μ is *n*-rectifiable iff $\lim_{r\to 0} \frac{\mu(B(x,r))}{r^n} > 0$ exists μ -a.e. Denote $\mu(B(x,r)) = \mu(B(x,2r))$

$$\Delta_{\mu}(x,r) = \frac{\mu(\mathcal{B}(x,r))}{r^n} - \frac{\mu(\mathcal{B}(x,2r))}{(2r)^n}.$$

Theorem (Chousionis, Garnett, Le, T.)

Let μ be n-AD-regular. μ is uniformly n-rectifiable iff for all $x_0 \in \text{supp } \mu$ and R > 0

$$\int_{x\in B(x_0,R)}\int_0^R \Delta_\mu(x,r)^2\,d\mu(x)\,\frac{dr}{r}\leq c\,R^n.$$

 Previous C^{1+ε} versions of this result by Kenig-Toro, David-Kenig-Toro and Preiss-T.-Toro.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 8 / 19

Theorem (T., Toro) Let μ be a Radon measure in \mathbb{R}^d such that

 $0 < \Theta^n_*(x,\mu) \le \Theta^{n,*}(x,\mu) < \infty \quad \mu$ -a.e.

The following are equivalent:

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January

January 11, 2015 9 / 19

Theorem (T., Toro) Let μ be a Radon measure in \mathbb{R}^d such that

 $0 < \Theta^n_*(x,\mu) \le \Theta^{n,*}(x,\mu) < \infty$ μ -a.e.

The following are equivalent:

(a) μ is *n*-rectifiable.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015

9 / 19

Theorem (T., Toro) Let μ be a Radon measure in \mathbb{R}^d such that

 $0 < \Theta^n_*(x,\mu) \le \Theta^{n,*}(x,\mu) < \infty$ μ -a.e.

The following are equivalent:

(a) μ is n-rectifiable. (b) $\int_0^1 \Delta_\mu(x,r)^2 \frac{dr}{r} < \infty$ for μ -a.e. $x \in \mathbb{R}^d$.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 9 / 19

Theorem (T., Toro)

Let μ be a Radon measure in \mathbb{R}^d such that

$$0 < \Theta^n_*(x,\mu) \le \Theta^{n,*}(x,\mu) < \infty \quad \mu$$
-a.e.

The following are equivalent:

(a)
$$\mu$$
 is n-rectifiable.
(b) $\int_0^1 \Delta_\mu(x,r)^2 \frac{dr}{r} < \infty$ for μ -a.e. $x \in \mathbb{R}^d$

(c)
$$\lim_{r\to 0} \Delta_{\mu}(x,r) = 0$$
 for μ -a.e. $x \in \mathbb{R}^d$.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 9 / 19

.

Theorem (T., Toro)

Let μ be a Radon measure in \mathbb{R}^d such that

$$0 < \Theta^n_*(x,\mu) \le \Theta^{n,*}(x,\mu) < \infty \quad \mu$$
-a.e.

The following are equivalent:

(a) μ is n-rectifiable. (b) $\int_0^1 \Delta_\mu(x, r)^2 \frac{dr}{r} < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. (c) $\lim_{t \to 0} \Delta_\mu(x, r) = 0$ for μ -a.e. $x \in \mathbb{R}^d$.

(c)
$$\lim_{r \to 0} \Delta_{\mu}(x, r) = 0$$
 for μ -a.e. $x \in \mathbb{R}$.

• (c) \Rightarrow (a) is false without the assumption $\Theta_*^n(x,\mu) > 0$ μ -a.e.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 9 / 19

Theorem (T.) Suppose n = 1.

Theorem (T.)

Suppose n = 1. Let μ be a Radon measure in \mathbb{R}^d such that

$$0 < \Theta^{1,*}(x,\mu) < \infty \quad \mu$$
-a.e.

Then μ is 1-rectifiable if and only if

$$\int_0^1 \Delta_\mu(x,r)^2 \, rac{dr}{r} < \infty \quad \mu ext{-a.e}$$

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 10 / 19

Theorem (T.)

Suppose n = 1. Let μ be a Radon measure in \mathbb{R}^d such that

$$0 < \Theta^{1,*}(x,\mu) < \infty$$
 μ -a.e.

Then μ is 1-rectifiable if and only if

$$\int_0^1 \Delta_\mu(x,r)^2 \, \frac{dr}{r} < \infty \quad \mu\text{-a.e.}$$

 Other related results which compare the measure in close scales using Wasserstein distance by Azzam, David and Toro (assuming μ doubling).

X. Tolsa (ICREA / UAB) Rectifiability, the Jones' β coefficients, and densities January 11, 2015 10 / 19

Corollary

Let $E \subset \mathbb{R}^d$, with $\mathcal{H}^n(E) < \infty$. In the case n = 1, E is 1-rectifiable if and only if

$$\int_0^1 \Delta_{\mathcal{H}^1|_E}(x,r)^2 \frac{dr}{r} < \infty \quad \mathcal{H}^1\text{-a.e. } x \in E.$$

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities January 11, 2015 11 / 19

Δ coefficients in the non-AD-regular case (3)

Corollary

Let $E \subset \mathbb{R}^d$, with $\mathcal{H}^n(E) < \infty$. In the case n = 1, E is 1-rectifiable if and only if

$$\int_0^1 \Delta_{\mathcal{H}^1|_E}(x,r)^2 \, \frac{dr}{r} < \infty \quad \mathcal{H}^1\text{-a.e. } x \in E.$$

In the case n > 1, E is n-rectifiable if and only if

$$\Theta^n_*(x,\mathcal{H}^n|_E)>0 \quad \textit{and} \quad \int_0^1 \Delta_{\mathcal{H}^n|_E}(x,r)^2\,rac{dr}{r}<\infty \quad \mathcal{H}^n ext{-a.e.} \ x\in E.$$

X. Tolsa (ICREA / UAB)

Proof that

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \quad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{n,*}(x,\mu) < \infty \mu$ -a.e.

Proof that

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \qquad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{n,*}(x,\mu) < \infty \mu$ -a.e.

We can assume that
$$\iint_0^\infty \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} \, d\mu(x) < \infty.$$

X. Tolsa (ICREA / UAB)

Proof that

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \qquad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{n,*}(x,\mu) < \infty \mu$ -a.e.

We can assume that
$$\iint_0^\infty eta_{\mu,2}(x,r)^2 \, rac{dr}{r} \, d\mu(x) < \infty.$$

We use a geometric corona decomposition:

X. Tolsa (ICREA / UAB)

Proof that

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \qquad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{n,*}(x,\mu) < \infty \mu$ -a.e.

We can assume that
$$\displaystyle \int \!\!\int_0^\infty eta_{\mu,2}(x,r)^2 \, \displaystyle rac{dr}{r} \, d\mu(x) < \infty.$$

We use a geometric corona decomposition: We split the dyadic lattice \mathcal{D} into "trees" of cubes.

X. Tolsa (ICREA / UAB)

Proof that

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \qquad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{n,*}(x,\mu) < \infty \mu$ -a.e.

We can assume that
$$\displaystyle \int \!\!\int_0^\infty eta_{\mu,2}(x,r)^2 \, \displaystyle rac{dr}{r} \, d\mu(x) < \infty.$$

We use a geometric corona decomposition: We split the dyadic lattice \mathcal{D} into "trees" of cubes. For $Q \in \mathcal{D}$, denote $\Theta_{\mu}(Q) = \frac{\mu(Q)}{\ell(Q)^n}$.

X. Tolsa (ICREA / UAB)

Proof that

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \qquad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{n,*}(x,\mu) < \infty \mu$ -a.e.

We can assume that
$$\displaystyle \int \!\!\int_0^\infty eta_{\mu,2}(x,r)^2 \, \displaystyle rac{dr}{r} \, d\mu(x) < \infty.$$

We use a geometric corona decomposition: We split the dyadic lattice \mathcal{D} into "trees" of cubes. For $Q \in \mathcal{D}$, denote $\Theta_{\mu}(Q) = \frac{\mu(Q)}{\ell(Q)^n}$. In each tree $\mathcal{T} \subset \mathcal{D}$ with root $R \in \mathcal{D}$, $\Theta_{\mu}(Q) \approx \Theta_{\mu}(R)$, for every $Q \in \mathcal{T}$.

X. Tolsa (ICREA / UAB)

Proof that

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} < \infty \qquad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{n,*}(x,\mu) < \infty \mu$ -a.e.

We can assume that
$$\displaystyle \int \!\!\int_0^\infty eta_{\mu,2}(x,r)^2 \, \displaystyle rac{dr}{r} \, d\mu(x) < \infty.$$

We use a geometric corona decomposition: We split the dyadic lattice \mathcal{D} into "trees" of cubes. For $Q \in \mathcal{D}$, denote $\Theta_{\mu}(Q) = \frac{\mu(Q)}{\ell(Q)^n}$. In each tree $\mathcal{T} \subset \mathcal{D}$ with root $R \in \mathcal{D}$, $\Theta_{\mu}(Q) \approx \Theta_{\mu}(R)$, for every $Q \in \mathcal{T}$. On each \mathcal{T} with root R, μ is "well approximated" by $g \mathcal{H}^n | \Gamma_{\mathcal{T}}$, where $\|g\|_{\infty} \lesssim \Theta(R)$ and $\Gamma_{\mathcal{T}}$ is a bilipschitz image of \mathbb{R}^n .

We prove the Carleson type condition

$$\sum_{R\in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) \lesssim \|\mu\| + \iint_0^\infty \beta_{\mu,2}(x,r)^2 \, \frac{dr}{r} \, d\mu(x) < \infty.$$

X. Tolsa (ICREA / UAB)

We prove the Carleson type condition

$$\sum_{R \in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) \lesssim \|\mu\| + \iint_{0}^{\infty} \beta_{\mu,2}(x,r)^{2} \, \frac{dr}{r} \, d\mu(x) < \infty.$$

Since
$$\int \sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R) \, d\mu(x) = \sum_{R \in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) < \infty,$$

we get
$$\sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R) < \infty \quad \mu\text{-a.e.}$$

X. Tolsa (ICREA / UAB)

We prove the Carleson type condition

$$\sum_{R \in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) \lesssim \|\mu\| + \iint_{0}^{\infty} \beta_{\mu,2}(x,r)^{2} \, \frac{dr}{r} \, d\mu(x) < \infty.$$

Since
$$\int \sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R) \, d\mu(x) = \sum_{R \in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) < \infty,$$

we get
$$\sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R) < \infty \quad \mu\text{-a.e.}$$

Thus if there are infinitely many roots $R_1 \supset R_2 \supset R_3 \supset ...$ that contain x,

$$\lim_{m\to\infty}\Theta_{\mu}(R_m)=0.$$

X. Tolsa (ICREA / UAB)

We prove the Carleson type condition

$$\sum_{R \in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) \lesssim \|\mu\| + \iint_{0}^{\infty} \beta_{\mu,2}(x,r)^{2} \, \frac{dr}{r} \, d\mu(x) < \infty.$$

Since
$$\int \sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R) \, d\mu(x) = \sum_{R \in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) < \infty,$$

we get
$$\sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R) < \infty \quad \mu\text{-a.e.}$$

Thus if there are infinitely many roots $R_1 \supset R_2 \supset R_3 \supset ...$ that contain x,

$$\lim_{m\to\infty}\Theta_{\mu}(R_m)=0.$$

This implies $\Theta^{n,*}(x,\mu) = 0$.

X. Tolsa (ICREA / UAB)

We prove the Carleson type condition

$$\sum_{R \in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) \lesssim \|\mu\| + \iint_{0}^{\infty} \beta_{\mu,2}(x,r)^{2} \, \frac{dr}{r} \, d\mu(x) < \infty.$$
Since
$$\int \sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R) \, d\mu(x) = \sum_{R \in \text{Roots}} \Theta_{\mu}(R) \, \mu(R) < \infty,$$
we get
$$\sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R) < \infty \quad \mu\text{-a.e.}$$

Thus if there are infinitely many roots $R_1 \supset R_2 \supset R_3 \supset ...$ that contain x,

$$\lim_{m\to\infty}\Theta_{\mu}(R_m)=0.$$

This implies $\Theta^{n,*}(x,\mu) = 0$. Contradiction.

So μ -a.e. x belongs to a finite number of roots R_m . If R_m is the one with minimal side length, then $x \in \Gamma_{\mathcal{T}(R_m)}$.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities

Similar arguments for $\Delta_{\mu}(x, r)$, n = 1

Proof that

$$\int_0^1 \Delta_\mu(x,r)^2 \, \frac{dr}{r} < \infty \qquad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{1,*}(x,\mu) < \infty \mu$ -a.e.

Similar arguments for $\Delta_{\mu}(x, r)$, n = 1

Proof that

$$\int_0^1 \Delta_\mu(x,r)^2 \, \frac{dr}{r} < \infty \qquad \mu\text{-a.e.}$$

 $\implies \mu$ rectifiable, assuming $0 < \Theta^{1,*}(x,\mu) < \infty \mu$ -a.e.

We can assume that
$$\displaystyle \iint_0^\infty \Delta_\mu(x,r)^2 \, \displaystyle rac{dr}{r} \, d\mu(x) < \infty.$$

We use a geometric corona decomposition: We split the dyadic lattice \mathcal{D} into "trees" of cubes. For $Q \in \mathcal{D}$, denote $\Theta_{\mu}(Q) = \frac{\mu(Q)}{\ell(Q)}$. In each tree $\mathcal{T} \subset \mathcal{D}$, with root $R \in \mathcal{D}$, $\Theta_{\mu}(Q) \approx \Theta_{\mu}(R)$, for every $Q \in \mathcal{T}$. On each \mathcal{T} with root R, μ is "well approximated" by $g \mathcal{H}^1 | \Gamma_{\mathcal{T}}$, where $\|g\|_{\infty} \lesssim \Theta(R)$ and $\Gamma_{\mathcal{T}}$ is a bilipschitz image of \mathbb{R} .

We prove the Carleson type condition

$$\sum_{R\in\mathsf{Roots}}\Theta_\mu(R)^2\,\mu(R)\lesssim \|\mu\|+\iint_0^\infty \Delta_\mu(x,r)^2\,\frac{dr}{r}\,d\mu(x)<\infty.$$

X. Tolsa (ICREA / UAB)

We prove the Carleson type condition

$$\sum_{R \in \text{Roots}} \Theta_{\mu}(R)^{2} \, \mu(R) \lesssim \|\mu\| + \iint_{0}^{\infty} \Delta_{\mu}(x, r)^{2} \, \frac{dr}{r} \, d\mu(x) < \infty.$$

Since
$$\int \sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R)^{2} \, d\mu(x) = \sum_{R \in \text{Roots}} \Theta_{\mu}(R)^{2} \, \mu(R) < \infty,$$

we get
$$\sum_{R \in \text{Roots}: x \in R} \Theta_{\mu}(R)^{2} < \infty \quad \mu\text{-a.e.}$$

Thus if there are infinitely many roots $R_1 \supset R_2 \supset R_3 \supset ...$ that contain x,

$$\lim_{m\to\infty}\Theta_{\mu}(R_m)=0.$$

This implies $\Theta^{1,*}(x,\mu) = 0$. Contradiction.

So μ -a.e. x belongs to a finite number of roots R_m . If R_m is the one with minimal side length, then $x \in \Gamma_{\mathcal{T}(R_m)}$.

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities

Another variant

Denote

$$\Theta_{\mu}(x,r) = \frac{\mu(B(x,r))}{r^n}.$$

X. Tolsa (ICREA / UAB)

Another variant

Denote

$$\Theta_{\mu}(x,r) = rac{\mu(B(x,r))}{r^n}.$$

Theorem (Azzam, T.)

Let μ be a Radon measure in \mathbb{R}^d such that such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \, \Theta_\mu(x,r) \, \frac{dr}{r} < \infty \quad \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^d$$

X. Tolsa (ICREA / UAB)

Another variant

Denote

$$\Theta_{\mu}(x,r) = \frac{\mu(B(x,r))}{r^n}$$

Theorem (Azzam, T.)

Let μ be a Radon measure in \mathbb{R}^d such that such that $0 < \Theta^{n,*}(x,\mu) < \infty$ for μ -a.e. $x \in \mathbb{R}^d$. Then μ is n-rectifiable if and only if

$$\int_0^1 \beta_{\mu,2}(x,r)^2 \,\Theta_\mu(x,r)^p \,\frac{dr}{r} < \infty \quad \text{ for } \mu\text{-a.e. } x \in \mathbb{R}^d.$$

$$p > 0.$$

X. Tolsa (ICREA / UAB)

Curvature and β_2 's

Curvature of μ :

$$c^{2}(\mu) = \iiint \frac{1}{R(x,y,z)^{2}} d\mu(x) d\mu(y) d\mu(z),$$

where R(x, y, z) is the radius of the circumference that passes through x, y, z.

Curvature and β_2 's

Curvature of μ :

$$c^2(\mu) = \iiint \frac{1}{R(x,y,z)^2} d\mu(x) d\mu(y) d\mu(z),$$

where R(x, y, z) is the radius of the circumference that passes through x, y, z.

Theorem (Azzam, T.)

Let n = 1. Let μ be a Radon measure in \mathbb{R}^2 such that $\mu(B(x, r)) \leq r$ for all $x \in \mathbb{R}^2$, r > 0. Then

$$\|\mu\| + c^2(\mu) \approx \|\mu\| + \iint_0^\infty \beta_{\mu,2}(x,r)^2 \Theta_\mu(x,r) \frac{dr}{r} d\mu(x).$$

X. Tolsa (ICREA / UAB)

Curvature and β_2 's

Curvature of μ :

$$c^2(\mu) = \iiint \frac{1}{R(x,y,z)^2} d\mu(x) d\mu(y) d\mu(z),$$

where R(x, y, z) is the radius of the circumference that passes through x, y, z.

Theorem (Azzam, T.)

Let n = 1. Let μ be a Radon measure in \mathbb{R}^2 such that $\mu(B(x, r)) \leq r$ for all $x \in \mathbb{R}^2$, r > 0. Then

$$\|\mu\| + c^2(\mu) \approx \|\mu\| + \iint_0^\infty \beta_{\mu,2}(x,r)^2 \Theta_\mu(x,r) \frac{dr}{r} d\mu(x).$$

• When μ is AD-regular Mattila, Melnikov and Verdera, and Jones showed

$$c^2(\mu) \approx \iint_0^\infty \beta_{\mu,2}(x,r)^2 \frac{dr}{r} d\mu(x).$$

X. Tolsa (ICREA / UAB)

Rectifiability, the Jones' β coefficients, and densities

A corollary regarding analytic capacity

Corollary

Let $E \subset \mathbb{C}$ be compact. Then

 $\gamma(E) \approx \sup \mu(E),$

where μ satisfies

$$\sup_{r>0}\Theta^1_\mu(x,r)+\int_0^\infty\beta^1_{\mu,2}(x,r)^2\,\Theta^1_\mu(x,r)\,\frac{dr}{r}\leq 1\quad\text{for all }x\in\mathbb{C}.$$

X. Tolsa (ICREA / UAB)

A corollary regarding analytic capacity

Corollary

Let $E \subset \mathbb{C}$ be compact. Then

 $\gamma(E) \approx \sup \mu(E),$

where μ satisfies

$$\sup_{r>0}\Theta^1_\mu(x,r)+\int_0^\infty\beta^1_{\mu,2}(x,r)^2\,\Theta^1_\mu(x,r)\,\frac{dr}{r}\leq 1\quad\text{for all }x\in\mathbb{C}.$$

Conjecture Let $E \subset \mathbb{R}^{n+1}$ be compact. Then

 $\kappa(E) \approx \sup \mu(E),$

where μ satisfies

$$\sup_{\substack{r>0\\ \text{X. Tolsa (ICREA / UAB)}}} \Theta^n_{\mu}(x,r) + \int_0^\infty \beta^n_{\mu,2}(x,r)^2 \Theta^n_{\mu}(x,r) \frac{dr}{r} \le 1 \quad \text{for all } x \in \mathbb{R}^{n+1}.$$
Rectifiability, the Jones' β coefficients, and densities January 11, 2015 18 / 19

The end

Thank you.

X. Tolsa (ICREA / UAB)