Off-diagonal estimates and weighted elliptic operators

Cristian Rios

University of Calgary

Workshop on Harmonic Analysis, Partial Differential Equations and Geometric Measure Theory ICMAT - January 2015

Joint work with David Cruz-Uribe and Chema Martell

• Background

- Main motivators and instigators
- Weighted elliptic operators
- Extended Calderón-Zygmund theory
- Operators defined by sesquilinear forms
- Weighted Sobolev Spaces
- Gaffney estimates
- Kato for weighted ellipticity

New results

- Off Diagonal estimates
- The functional calculus
- Riesz transform bounds
- Square function estimates
- Kato estimates
- Unweighted Kato estimates

• Auscher, Hofmann, Lacey, McIntosh, Tchamitchian, "The solution of the Kato square root problem for second order elliptic operators in \mathbb{R}^n ", Ann.Math. 2002.

- Auscher, Hofmann, Lacey, McIntosh, Tchamitchian, "The solution of the Kato square root problem for second order elliptic operators in \mathbb{R}^n ", Ann.Math. 2002.
- Auscher, "On necessary and sufficient conditions for L^p-estimates of Riesz transforms", Mem.Amer.Math.Soc. 186 (2007)

- Auscher, Hofmann, Lacey, McIntosh, Tchamitchian, "The solution of the Kato square root problem for second order elliptic operators in \mathbb{R}^n ", Ann.Math. 2002.
- Auscher, "On necessary and sufficient conditions for L^p-estimates of Riesz transforms", Mem.Amer.Math.Soc. 186 (2007)
- Auscher and Martell, "Weighted norm inequalities, off diagonal estimates and elliptic operators I,II, III, IV", Adv.Math 2007, J.Evol.Eq. 2007, JFA 2006, Math Z 2008.

- Auscher, Hofmann, Lacey, McIntosh, Tchamitchian, "The solution of the Kato square root problem for second order elliptic operators in \mathbb{R}^n ", Ann.Math. 2002.
- Auscher, "On necessary and sufficient conditions for L^p-estimates of Riesz transforms", Mem.Amer.Math.Soc. 186 (2007)
- Auscher and Martell, "Weighted norm inequalities, off diagonal estimates and elliptic operators I,II, III, IV", Adv.Math 2007, J.Evol.Eq. 2007, JFA 2006, Math Z 2008.
- Cruz-Uribe, R. "*The Kato problem for operators with weighted ellipticity*", TAMS (to appear)

Auscher and Martell "Weighted norm inequalities, off-diagonal estimates and elliptic operators. Part III:Harmonic Analysis of elliptic operators," JFA 241 (2006) 703-746.

$$L = -\operatorname{div} \mathbf{A}(x) \nabla, \quad \mathbf{A} \in \mathcal{E}(\lambda, \Lambda).$$

- Functional calculus for *L*, and weighted f.c.
- Riesz transform estimates (Auscher) $\left\| \nabla L^{-1/2} f \right\|_p \sim \left\| f \right\|_{p'}$ $p_- .$
- RT weighted estimates $\left\| \nabla L^{-1/2} f \right\|_{L^p(u)} \lesssim \|f\|_{L^p(u)}$, $p_- r_w .$
- Reverse inequalities for \sqrt{L} . max $\left\{1, \frac{np_{-}}{n+p_{-}}\right\} ,$

$$\left\|L^{1/2}f\right\|_p \lesssim \|\nabla f\|_p$$

- Square function estimates.
- Commutators with bmo functions $\|[\varphi(L), b]\|_p \lesssim \|b\|_{BMO} \|f\|_p$ (more).

Weights, A_p and reverse Hölder classes

A weight is any nonnegative locally integrable function *u* in ℝⁿ.
The A_v class p > 1

$$[u]_{A_p} = \sup_{B} \oint_{B} u(x) dx \left(\oint_{B} u^{-\frac{1}{p-1}} dx \right)^{p-1} < \infty.$$

• The A_1 class

$$[u]_{A_1} = \sup_{B} \operatorname{esssup}_{x \in B} u(x)^{-1} \oint_{B} u(x) \, dx < \infty.$$

• The RH_s class s > 1

$$[u]_{RH_s} = \sup_{B} \left(\oint_{B} u(x) dx \right)^{-1} \left(\oint_{B} u(x)^s dx \right)^{1/s} < \infty.$$

• The RH_{∞} class

$$[u]_{RH_{\infty}} = \sup_{B} \operatorname{esssup}_{x \in B} u(x) \left(\oint_{B} u(x) dx \right)^{-1} < \infty.$$

New results

Some well known properties of A_p weights

•
$$A_1 \subset A_p \subset A_q$$
 for $1 \le p \le q < \infty$.
• $RH_{\infty} \subset RH_q \subset RH_p$ for $1 .
• $A_{\infty} = \bigcup_{1 \le p < \infty} A_p = \bigcup_{1 < s \le \infty} RH_s$.$

• A_p is left open

$$u \in A_p, \ p > 1 \Longrightarrow \exists \varepsilon > 0 : u \in A_{p-\varepsilon}.$$

• *RH_s* is right open

$$u \in RH_s$$
, $s < \infty \implies \exists \varepsilon > 0 : u \in RH_{s+\varepsilon}$.

1 p</sub> ⇔ w^{-1/p-1} ∈ A_{p'}, p' = p/(p-1).
 If w ∈ A_∞ then dw is doubling.

Extended Calderón-Zygmund theory

Some notation: Given an Euclidean ball $B = B_r(x) \subset \mathbb{R}^n$ denote by

C₁ (B) = 4B
 C_j (B) = 2^{j+1}B/2^jB, j ≥ 2.

Extended Calderón-Zygmund theory

Theorem 1 (Auscher and Martell (II-III))

Given $w \in A_2$ with doubling order $D, 1 \leq p_0 < q_0 \leq \infty$, $T : L^{q_0}(w) \longrightarrow L^{q_0}(w)$ (bounded) sublinear, $\{\mathcal{A}_r\}_{r>0}$ linear from L_c^{∞} into $L^{q_0}(w)$. Suppose that $\forall B = B_r, f \in L_c^{\infty}$ with support $(f) \subset B$ and $j \geq 2$,

$$\left(\oint_{C_{j}(B)} |T(I-\mathcal{A}_{r})f|^{p_{0}} dw\right)^{1/p_{0}} \leq g(j) \left(\oint_{B} |f|^{p_{0}} dw\right)^{1/p_{0}}$$

and for $j \ge 1$,

$$\left(\oint_{C_j(B)} |\mathcal{A}_r f|^{q_0} dw\right)^{1/q_0} \le g(j) \left(\oint_B |f|^{p_0} dw\right)^{1/p_0}$$

where $\sum g(j) < \infty$. Then for all $p_0 , there is a constant C such that for all <math>f \in L_c^{\infty}$, $\|Tf\|_{L^p(w)} \leq C \|f\|_{L^p(w)}$.

Extended Calderón-Zygmund theory

Theorem 2 (Auscher and Martell (II-III))

Given $w \in A_2$, $1 \le p_0 < q_0 \le \infty$, T sublinear and bounded on $L^{p_0}(w)$, $\{A_r\}_{r>0}$ linear and bounded from $\mathcal{D} \subset L^{p_0}(w)$ into $L^{p_0}(w)$, and S linear from \mathcal{D} into measurable functions on \mathbb{R}^n . Suppose that $\forall f \in \mathcal{D}, B = B_r$,

$$\left(\oint_{B} |T(I - \mathcal{A}_{r})f|^{p_{0}} dw \right)^{1/p_{0}} \leq \sum_{j \geq 1} g(j) \left(\oint_{2^{j+1}B} |Sf|^{p_{0}} dw \right)^{1/p_{0}},$$

$$\left(\oint_{B} |T\mathcal{A}_{r}f|^{q_{0}} dw \right)^{1/q_{0}} \leq \sum_{j \geq 1} g(j) \left(\oint_{2^{j+1}B} |Tf|^{p_{0}} dw \right)^{1/p_{0}},$$

where $\sum g(j) < \infty$. Then for all $p_0 , and weights <math>v \in A_{p/p_0}(w) \cap RH_{(q_0/p)'}(w)$, there is a constant C such that for all $f \in \mathcal{D}$,

$$||Tf||_{L^{p}(v \, dw)} \leq C ||Sf||_{L^{p}(v \, dw)}.$$

Operators given by sesquilinear forms

Let a be a sesquilinear form with dense domain $\mathcal{D}(a) \subset H$ in a Hilbert space H such that

- Re $\mathfrak{a}(u, u) \ge 0$, (accretive)
- $|\mathfrak{a}(u,v)| \leq M \|u\|_{\mathfrak{a}} \|v\|_{\mathfrak{a}}$, with $\|f\|_{\mathfrak{a}} = (\operatorname{Re}\mathfrak{a}(f,f) + \langle f,f \rangle_{H})^{1/2}$, (continuous).
- $\bullet \ \left(\mathcal{D} \left(\mathfrak{a} \right) , \left\| \cdot \right\|_{\mathfrak{a}} \right) \text{ is complete } \qquad \text{(closed),}$

Operators given by sesquilinear forms

Let a be a sesquilinear form with dense domain $\mathcal{D}(a) \subset H$ in a Hilbert space H such that

- Re $\mathfrak{a}(u, u) \ge 0$, (accretive)
- $|\mathfrak{a}(u,v)| \leq M \|u\|_{\mathfrak{a}} \|v\|_{\mathfrak{a}}$, with $\|f\|_{\mathfrak{a}} = (\operatorname{Re}\mathfrak{a}(f,f) + \langle f,f \rangle_{H})^{1/2}$, (continuous).
- $(\mathcal{D}(\mathfrak{a}), \|\cdot\|_{\mathfrak{a}})$ is complete (closed),

then there exists an associated operator $L_{\mathfrak{a}}$ such that

$$\mathfrak{a}\left(u,v\right)=\left\langle L_{\mathfrak{a}}u,v
ight
angle _{H}$$
, $orall u\in\mathcal{D}\left(L_{\mathfrak{a}}
ight)$, $v\in\mathcal{D}\left(\mathfrak{a}
ight)$,

with $\mathcal{D}(L_{\mathfrak{a}})$ dense in *H*.

Operators given by sectorial sesquilinear forms

Let $L_{\mathfrak{a}}$ be the operator associated to a densely defined, accretive, continuous, closed sesquilinear form in a Hilbert space *H*. If for some $0 \leq \vartheta < \frac{\pi}{2}$,

• $|\text{Im} \mathfrak{a}(u, u)| \le \tan(\vartheta) \operatorname{Re} \mathfrak{a}(u, u)$ (sectorial of angle ϑ)

then $L_{\mathfrak{a}}$ is sectorial of angle $\vartheta + \frac{\pi}{4}$, i.e.: (i) $\sigma(L_{\mathfrak{a}}) \subset \overline{\Sigma_{\vartheta + \frac{\pi}{4}}}$, (ii) $\sup \left\{ \| z R(z, L_{\mathfrak{a}}) \|_{\operatorname{op}} \mid z \in \mathbb{C} \setminus \overline{\Sigma_{\omega'}} \right\} < \infty$ for all $\omega' > \vartheta + \frac{\pi}{4}$, $R(z, L_{\mathfrak{a}}) = (z - L_{\mathfrak{a}})^{-1}$.

Operators given by sectorial sesquilinear forms

Let $L_{\mathfrak{a}}$ be the operator associated to a densely defined, accretive, continuous, closed sesquilinear form in a Hilbert space *H*. If for some $0 \leq \vartheta < \frac{\pi}{2}$,

• $|\text{Im} \mathfrak{a}(u, u)| \le \tan(\vartheta) \operatorname{Re} \mathfrak{a}(u, u)$ (sectorial of angle ϑ)

then $L_{\mathfrak{a}}$ is sectorial of angle $\vartheta + \frac{\pi}{4}$, i.e.: (i) $\sigma(L_{\mathfrak{a}}) \subset \overline{\Sigma_{\vartheta + \frac{\pi}{4}}}$, (ii) $\sup \left\{ \|z R(z, L_{\mathfrak{a}})\|_{\operatorname{op}} \mid z \in \mathbb{C} \setminus \overline{\Sigma_{\omega'}} \right\} < \infty$ for all $\omega' > \vartheta + \frac{\pi}{4}$, $R(z, L_{\mathfrak{a}}) = (z - L_{\mathfrak{a}})^{-1}$. A consequence of (ii) is that $L_{\mathfrak{a}}$ has a bounded holomorphic calculus in H. (iii) If σ is a bounded holomorphic function in $\Sigma_{-\epsilon}$ then

(iii) If φ is a bounded holomorphic function in $\Sigma_{\omega'}$ then

$$\left\|\varphi\left(L_{\mathfrak{a}}\right)\right\|_{\mathrm{op}} \leq \left\|\varphi\right\|_{\infty}.$$

In particular, $\|e^{-tL_{\mathfrak{a}}}u\|_{H} \le \|u\|_{H}$ for all t > 0.

Weighted Sobolev spaces

Given a weight *w* we let

$$L^{p}\left(w
ight)=\left\{f ext{ measurable, }\left\|f
ight\|_{L^{p}\left(w
ight)}<\infty
ight\}$$

with $\|f\|_{L^{p}(w)} = \left(\int_{\mathbb{R}^{n}} |f(x)|^{p} dw\right)^{1/p}$. Similarly, for integers $k \geq 0$, we let

$$W^{k,p}(w) = \{ f \in L^{p}(w) : |D^{\alpha}f| \in L^{p}(w) \quad |\alpha| \le k \}$$

where $D^{\alpha}f$ is distributional. The norm is defined as

$$\left\|f\right\|_{W^{k,p}(w)} = \left(\sum_{j=0}^{k} \sum_{|\alpha|=j} \int_{\mathbb{R}^{n}} \left|D^{\alpha}f(x)\right|^{p} dw\right)^{1/p}$$

Weighted Sobolev spaces

Let Λ^{s} be the pseudodifferential operator with symbol $(1 + 4\pi^{2} |\xi|^{2})^{-s/2}$ (**Bessel potential**).

Theorem 3 (Miller (TAMS 82))

If $w \in A_p$ *then for all integers* $k \ge 0$

$$W^{k,p}\left(w\right) = \Lambda^{-k}\left(L^{p}\left(w\right)\right)$$

with equivalence of norms, i.e.:

$$\|u\|_{W^{k,p}(w)} \approx \left\|\Lambda^k u\right\|_{L^p(w)}$$

Moreover, $W^{k,p}(w)$ *is a Banach space and, if* p = 2*,* $H^k(w) := W^{k,2}(w)$ *is a Hilbert space with inner product*

$$\langle u, v \rangle_{H^k(w)} = \sum_{j=0}^k \sum_{|\alpha|=j} \int_{\mathbb{R}^n} D^{\alpha} u(x) \overline{D^{\alpha} v(x)} dw.$$

The Fabes-Kenig-Serapioni Poincaré inequality

Given $w \in A_{\infty}$ we define

$$r_w = \inf \left\{ p: w \in A_p
ight\}$$
, $s_w = \sup \left\{ q: w \in RH_q
ight\}$.

The Fabes-Kenig-Serapioni Poincaré inequality

Given $w \in A_{\infty}$ we define

$$r_w = \inf \left\{ p: w \in A_p \right\}$$
, $s_w = \sup \left\{ q: w \in RH_q \right\}$.

Theorem 4 (Fabes, Kenig, Serapioni, Comm. PDE 1982)

 $p \ge 1$, $w \in A_p$, $p_w^* = p \frac{nr_w}{nr_w - p}$ if $p < nr_w$, $p_w^* = \infty$ otherwise. Then for every $p \le q < p_w^*$, $f \in C_0^{\infty}(B_r)$,

$$\left(\oint_{B_r} |f(x)|^q \, dw\right)^{1/q} \le Cr\left(\oint_{B_r} |\nabla f(x)|^p \, dw\right)^{1/p}$$

If $f \in C^{\infty}(B_r)$, then

$$\left(\oint_{B_r} |f(x) - f_{B_r,w}|^q \, dw\right)^{1/q} \le Cr\left(\oint_{B_r} |\nabla f(x)|^p \, dw\right)^{1/p}$$

Given $0 < \lambda \le \Lambda < \infty$, we let $\mathcal{E}_n(\lambda, \Lambda)$ be the set of complex $n \times n$ matrices **A**(x) such that

$$\begin{array}{rcl} \lambda \left| \xi \right|^2 &\leq & \operatorname{Re} \left\langle \mathbf{A} \left(x \right) \xi, \xi \right\rangle, & \forall \xi \in \mathbb{C}^n, & (\text{ellipticity}), \\ \Lambda \left| \xi \right| \left| \eta \right| &\geq & \left| \left\langle \mathbf{A} \left(x \right) \xi, \eta \right\rangle \right|, & \forall \xi, \eta \in \mathbb{C}^n, & (\text{boundedness}). \end{array}$$

Given $0 < \lambda \le \Lambda < \infty$, we let $\mathcal{E}_n(\lambda, \Lambda)$ be the set of complex $n \times n$ matrices **A**(x) such that

$$\begin{array}{ll} \lambda \left| \xi \right|^2 &\leq & \operatorname{Re} \left\langle \mathbf{A} \left(x \right) \xi, \xi \right\rangle, \qquad \forall \xi \in \mathbb{C}^n, \quad \text{(ellipticity),} \\ \Lambda \left| \xi \right| \left| \eta \right| &\geq & \left| \left\langle \mathbf{A} \left(x \right) \xi, \eta \right\rangle \right|, \qquad \forall \xi, \eta \in \mathbb{C}^n, \quad \text{(boundedness).} \end{array}$$

For $w \in A_2$, and $\mathbf{A} \in \mathcal{E}_n(\lambda, \Lambda)$, we define the sesquilinear form in $H^1(w)$

$$\mathfrak{a}_{w}\left(u,v\right)=\int_{\mathbb{R}^{n}}\mathbf{A}\left(x\right)\nabla u\cdot\overline{\nabla v}\,dw.$$

Given $0 < \lambda \le \Lambda < \infty$, we let $\mathcal{E}_n(\lambda, \Lambda)$ be the set of complex $n \times n$ matrices **A**(x) such that

$$\begin{array}{ll} \lambda \left| \xi \right|^2 &\leq \operatorname{Re} \left\langle \mathbf{A} \left(x \right) \xi, \xi \right\rangle, \quad \forall \xi \in \mathbb{C}^n, \quad \text{(ellipticity),} \\ \Lambda \left| \xi \right| \left| \eta \right| &\geq \left| \left\langle \mathbf{A} \left(x \right) \xi, \eta \right\rangle \right|, \quad \forall \xi, \eta \in \mathbb{C}^n, \quad \text{(boundedness).} \end{array}$$

For $w \in A_2$, and $\mathbf{A} \in \mathcal{E}_n(\lambda, \Lambda)$, we define the sesquilinear form in $H^1(w)$

$$\mathfrak{a}_{w}\left(u,v\right)=\int_{\mathbb{R}^{n}}\mathbf{A}\left(x\right)\nabla u\cdot\overline{\nabla v}\,dw.$$

It easily follows that the form \mathfrak{a}_w is densely defined in $L^2(w)$, accretive, continuous, closed, and sectorial of angle $\vartheta = \arctan\left(\sqrt{\frac{\Lambda^2}{\lambda^2}-1}\right)$.

Given $0 < \lambda \le \Lambda < \infty$, we let $\mathcal{E}_n(\lambda, \Lambda)$ be the set of complex $n \times n$ matrices **A**(x) such that

$$\begin{array}{ll} \lambda \left| \xi \right|^2 &\leq \operatorname{Re} \left\langle \mathbf{A} \left(x \right) \xi, \xi \right\rangle, \quad \forall \xi \in \mathbb{C}^n, \quad \text{(ellipticity),} \\ \Lambda \left| \xi \right| \left| \eta \right| &\geq \left| \left\langle \mathbf{A} \left(x \right) \xi, \eta \right\rangle \right|, \quad \forall \xi, \eta \in \mathbb{C}^n, \quad \text{(boundedness).} \end{array}$$

For $w \in A_2$, and $\mathbf{A} \in \mathcal{E}_n(\lambda, \Lambda)$, we define the sesquilinear form in $H^1(w)$

$$\mathfrak{a}_{w}(u,v) = \int_{\mathbb{R}^{n}} \mathbf{A}(x) \, \nabla u \cdot \overline{\nabla v} \, dw.$$

It easily follows that the form \mathfrak{a}_w is densely defined in $L^2(w)$, accretive, continuous, closed, and sectorial of angle $\vartheta = \arctan\left(\sqrt{\frac{\Lambda^2}{\lambda^2}-1}\right)$. The associated operator L_w has dense domain $\mathcal{D}(L_w)$ in $L^2(w)$ and it is formally given by

$$L_{w}u(x) = -\frac{1}{w(x)}\operatorname{div} w(x) \mathbf{A}(x) \nabla u(x) =: -\frac{1}{w(x)}\operatorname{div} \mathbf{A}_{w}(x) \nabla u(x).$$

Gaffney type estimates

The sectoriality of L_w and the techniques in *"The solution of the Kato square root problem for second order operators on* \mathbb{R}^n *" (Lemma 2.1), Auscher, Hofmann, Lacey, McIntosh, Tchamitchian, (Annals 2002),* provide:

Theorem 5 (Cruz-Uribe, R., JFA 2008)

 $w \in A_2, \mathbf{A} \in \mathcal{E}(\lambda, \Lambda), E, F \text{ closed in } \mathbb{R}^n, z \in \Sigma_{\nu}, 0 < \nu < \arctan\left(\frac{\lambda}{\sqrt{\Lambda^2 - \lambda^2}}\right),$

$$\begin{aligned} \left\| e^{-zL_{w}} \left(\mathbf{1}_{E}f \right) \mathbf{1}_{F} \right\|_{L^{2}(w)} &\leq C e^{-\frac{cd^{2}(E,F)}{|z|}} \| \mathbf{1}_{E}f \|_{L^{2}(w)}, \\ \left\| \sqrt{|z|} \nabla e^{-zL_{w}} \left(\mathbf{1}_{E}f \right) \mathbf{1}_{F} \right\|_{L^{2}(w)} &\leq C e^{-\frac{cd^{2}(E,F)}{|z|}} \| \mathbf{1}_{E}f \|_{L^{2}(w)}, \\ \left\| zL_{w}e^{-zL_{w}} \left(\mathbf{1}_{E}f \right) \mathbf{1}_{F} \right\|_{L^{2}(w)} &\leq C e^{-\frac{cd^{2}(E,F)}{|z|}} \| \mathbf{1}_{E}f \|_{L^{2}(w)}. \end{aligned}$$

The Kato estimate for weighted elliptic operators

Theorem 6 (Cruz-Uribe, R, TAMS 2013?)

 $w \in A_2$, $\mathbf{A} \in \mathcal{E}(\lambda, \Lambda)$, there exists $C = C(n, \lambda, \Lambda, [w]_{A_2})$ such that

$$C^{-1} \|\nabla f\|_{L^{2}(w)} \leq \left\| L^{\frac{1}{2}}_{w} f \right\|_{L^{2}(w)} \leq C \|\nabla f\|_{L^{2}(w)}$$

for all $f \in H^1(w)$.

The Kato estimate for weighted elliptic operators

Theorem 6 (Cruz-Uribe, R, TAMS 2013?)

 $w \in A_2$, $\mathbf{A} \in \mathcal{E}(\lambda, \Lambda)$, there exists $C = C(n, \lambda, \Lambda, [w]_{A_2})$ such that

$$C^{-1} \|\nabla f\|_{L^{2}(w)} \leq \left\|L_{w}^{\frac{1}{2}}f\right\|_{L^{2}(w)} \leq C \|\nabla f\|_{L^{2}(w)}$$

for all $f \in H^1(w)$.

Auscher, Rosén, Rule, *Boundary value problems for degenerate elliptic equations and systems*, (2014). Extended Kato square root estimates to more general operators and systems.

Off diagonal estimates for e^{-tL_w}

Definition 7 (Full off diagonal estimates)

Given $1 \le p \le q \le \infty$, a family of sublinear operators $\{T_t\}$ satisfies full off-diagonal estimates from $L^p(w)$ to $L^q(w)$, denoted by $T_t \in \mathcal{F}(L^p(w) \longrightarrow L^q(w))$

if there exists constants $C, c, \theta > 0$ such that for all closed E and F

$$||T_t(f\mathbf{1}_E)\mathbf{1}_F||_{L^q(w)} \le Ct^{-\theta}e^{-\frac{d^2(E,F)}{t}} ||f\mathbf{1}_E||_{L^p(w)}.$$

Off diagonal estimates for e^{-tL_w}

Definition 7 (Full off diagonal estimates)

Given $1 \le p \le q \le \infty$, a family of sublinear operators $\{T_t\}$ satisfies full off-diagonal estimates from $L^p(w)$ to $L^q(w)$, denoted by $T_t \in \mathcal{F}(L^p(w) \longrightarrow L^q(w))$

if there exists constants $C, c, \theta > 0$ such that for all closed E and F

$$\|T_t(f\mathbf{1}_E)\mathbf{1}_F\|_{L^q(w)} \le Ct^{-\theta}e^{-\frac{d^2(E,F)}{t}} \|f\mathbf{1}_E\|_{L^p(w)}.$$

Note: By the Gaffney estimates for e^{-tL_w} we have that

$$e^{-tL_{w}} \in \mathcal{F}\left(L^{2}\left(w\right) \longrightarrow L^{2}\left(w\right)\right),$$

$$\sqrt{t}\nabla e^{-tL_{w}} \in \mathcal{F}\left(L^{2}\left(w\right) \longrightarrow L^{2}\left(w\right)\right),$$

$$tL_{w}e^{-tL_{w}} \in \mathcal{F}\left(L^{2}\left(w\right) \longrightarrow L^{2}\left(w\right)\right).$$

Definition 8 (Off diagonal estimates on balls)

Given $1 \le p \le q \le \infty$, a family of sublinear operators $\{T_t\}$ satisfies off-diagonal estimates on ball from $L^p(w)$ to $L^q(w)$, denoted by

 $T_{t} \in \mathcal{O}\left(L^{p}\left(w\right) \longrightarrow L^{q}\left(w\right)\right)$

if there exists constants c, θ_1 , $\theta_2 > 0$ such that for all balls B,

$$\left(\int_{B}|T_{t}\left(\mathbf{1}_{B}f\right)|^{q}\,dw\right)^{\frac{1}{q}} \lesssim \Upsilon\left(\frac{r}{\sqrt{t}}\right)^{\theta_{2}}\left(\int_{B}|f|^{p}\,dw\right)^{\frac{1}{p}},$$

where r = r(B), and for all $j \ge 2$

$$\left(\oint_{B}\left|T_{t}\left(\mathbf{1}_{C_{j}(B)}f\right)\right|^{q}dw\right)^{\frac{1}{q}} \lesssim 2^{j\theta_{1}}\mathrm{Y}\left(\frac{2^{j}r}{\sqrt{t}}\right)^{\theta_{2}}e^{-\frac{c4^{j}r^{2}}{t}}\left(\oint_{C_{j}(B)}\left|f\right|^{p}dw\right)^{\frac{1}{p}},$$

and

$$\left(\oint_{C_j(B)} |T_t\left(\mathbf{1}_B f\right)|^q dw\right)^{\frac{1}{q}} \lesssim 2^{j\theta_1} \mathrm{Y}\left(\frac{2^j r}{\sqrt{t}}\right)^{\theta_2} e^{-\frac{c4^j r^2}{t}} \left(\oint_B |f|^p dw\right)^{\frac{1}{p}}$$

The function Y

Off diagonal estimates for the semigroup e^{-tL_w}

Theorem 9 (Cruz-Uribe, Martell, R.)

There exist $p_{-} = p_{-}(L_w) < p_{+}(L_w) = p_{+}$ *with*

$$1 \le p_{-} \le (2_w^*)' < 2 < 2_w^* \le p_{+} \le \infty$$

such that if $p_{-} then <math>e^{-tL_{w}} \in \mathcal{O}(L^{p}(w) \longrightarrow L^{q}(w))$.

Off diagonal estimates for the semigroup e^{-tL_w}

Theorem 9 (Cruz-Uribe, Martell, R.)

There exist $p_{-} = p_{-}(L_w) < p_{+}(L_w) = p_{+}$ *with*

$$1 \le p_{-} \le (2_w^*)' < 2 < 2_w^* \le p_{+} \le \infty$$

such that if $p_{-} then <math>e^{-tL_{w}} \in \mathcal{O}(L^{p}(w) \longrightarrow L^{q}(w))$.

Proof (hint).

$$e^{-tL_{w}}, \sqrt{t}\nabla e^{-tL_{w}} \in \mathcal{F}\left(L^{2}\left(w\right) \longrightarrow L^{2}\left(w\right)\right) \subset \mathcal{O}\left(L^{2}\left(w\right) \longrightarrow L^{2}\left(w\right)\right), \text{ then}$$

$$\left(\int_{B} \left|e^{-tL_{w}}\left(\mathbf{1}_{B}f\right)\right|^{q} dw\right)^{1/q}$$

$$\leq \left(\int_{B} \left|e^{-tL_{w}}\left(\mathbf{1}_{B}f\right)\right|^{2} dw\right)^{1/2} + r\left(\int_{B} \left|\nabla e^{-tL_{w}}\left(\mathbf{1}_{B}f\right)\right|^{2} dw\right)^{1/2}$$

$$\lesssim Y\left(\frac{r}{\sqrt{t}}\right)^{1+\theta_{2}} \left(\int_{B} |f|^{2} dw\right)^{1/2}.$$

Weighted off diagonal estimates for the semigroup e^{-tL_w}

Theorem 10

$$w \in A_2, p_-(L_w) = p_- $u \in A_{p/p_-}(w) \cap RH_{(p+/q)'}(w)$ we have that$$

$$e^{-tL_{w}} \in \mathcal{O}\left(L^{p}\left(udw\right) \longrightarrow L^{q}\left(udw\right)\right).$$

Weighted off diagonal estimates for the semigroup e^{-tL_w}

Theorem 10

$$w \in A_2, p_-(L_w) = p_- $u \in A_{p/p_-}(w) \cap RH_{(p+/q)'}(w)$ we have that$$

$$e^{-tL_{w}} \in \mathcal{O}\left(L^{p}\left(udw\right) \longrightarrow L^{q}\left(udw\right)\right).$$

Corollary 11

If w is a weight such that
$$1 \le r_w < 1 + \frac{2}{n}$$
 and $s_w > \frac{n}{2}r_w + 1$ *, then*

$$e^{-tL_w} \in \mathcal{O}\left(L^2 \longrightarrow L^2\right).$$

In particular, it suffices that $w \in A_{\frac{n}{n-1}} \cap RH_{n+1}$.

Off diagonal estimates for $\sqrt{t}\nabla e^{-tL_w}$

Theorem 12 (Cruz-Uribe, Martell, R.)

There exist $q_{-} = q_{-} (L_w) < q_{+} (L_w) = q_{+}$ *with*

$$1 \le q_{-} \le (2^*_w)' < 2 < q_{+} \le \infty$$

such that if $q_{-} then <math>\sqrt{t} \nabla e^{-tL_{w}} \in \mathcal{O}(L^{p}(w) \longrightarrow L^{q}(w))$. Moreover, $q_{-}(L_{w}) = p_{-}(L_{w})$.

Off diagonal estimates for $\sqrt{t}\nabla e^{-tL_w}$

Theorem 12 (Cruz-Uribe, Martell, R.)

There exist $q_{-} = q_{-} (L_w) < q_{+} (L_w) = q_{+}$ *with*

$$1 \le q_{-} \le (2^*_w)' < 2 < q_{+} \le \infty$$

such that if $q_{-} then <math>\sqrt{t} \nabla e^{-tL_{w}} \in \mathcal{O}(L^{p}(w) \longrightarrow L^{q}(w))$. Moreover, $q_{-}(L_{w}) = p_{-}(L_{w})$.

Note: The proof that $q_+ > 2$ is nontrivial.

Off diagonal estimates for $\sqrt{t}\nabla e^{-tL_w}$

Theorem 12 (Cruz-Uribe, Martell, R.)

There exist $q_- = q_-(L_w) < q_+(L_w) = q_+$ *with*

$$1 \le q_{-} \le (2^*_w)' < 2 < q_{+} \le \infty$$

such that if $q_{-} then <math>\sqrt{t} \nabla e^{-tL_{w}} \in \mathcal{O}(L^{p}(w) \longrightarrow L^{q}(w))$. Moreover, $q_{-}(L_{w}) = p_{-}(L_{w})$.

Note: The proof that $q_+ > 2$ is nontrivial.Just use this: *Caccioppoli, Poincaré, Ghering, Hodge projection (Auscher-Martell estimates), Riesz transform estimates, Functional calculus, Semigroup estimates.*

The functional calculus

Denote by $\mathcal{H}_{0}^{\infty}(\Sigma_{\nu})$ the set of holomorphic functions φ in the sector $\Sigma_{\nu} = \{|\arg z| < \nu\}$ which satisfy

$$|\varphi(z)| \le c \frac{|z|^s}{1+|z|^{2s}}$$
 for some $c, s > 0$.

The functional calculus

Denote by $\mathcal{H}_{0}^{\infty}(\Sigma_{\nu})$ the set of holomorphic functions φ in the sector $\Sigma_{\nu} = \{|\arg z| < \nu\}$ which satisfy

$$|\varphi(z)| \le c \frac{|z|^s}{1+|z|^{2s}}$$
 for some $c, s > 0$.

Proposition 12.1 (Cruz-Uribe, Martell, R.)

For $w \in A_2$, $\mathbf{A} \in \mathcal{E}(\lambda, \Lambda)$ fix ν such that $\arctan\left(\sqrt{\frac{\Lambda^2}{\lambda^2} - 1}\right) < \nu < \pi$. Then for $p_-(L_w) and any <math>\varphi \in \mathcal{H}_0^{\infty}(\Sigma_{\nu})$,

$$\|\varphi(L_w)f\|_{L^p(w)} \le C \|\varphi\|_{\infty} \|f\|_{L^p(w)}.$$

with *C* independent of *f* and φ . Furthermore, if $v \in A_{p/p_{-}}(w) \cap RH_{(p+/p)'}(w)$ then L_w also has a bounded holomorphic calculus on $L^p(v \, dw)$:

$$\|\varphi(L_w)f\|_{L^p(v\,dw)} \le C \,\|\varphi\|_{\infty} \,\|f\|_{L^p(v\,dw)}.$$

The functional calculus, unweighted space

Corollary 13 (Cruz-Uribe, Martell, R.)

For $\mathbf{A} \in \mathcal{E}(\lambda, \Lambda)$ fix ν such that $\arctan\left(\sqrt{\frac{\Lambda^2}{\lambda^2} - 1}\right) < \nu < \pi$. Then if $w \in A_2$ is such that $1 < r_w < 1 + \frac{2}{n}$ and $s_w > \frac{n}{2}r_w + 1$, then for any $\varphi \in \mathcal{H}_0^{\infty}(\Sigma_{\nu})$, $\|\varphi(L_w)f\|_{L^2} \leq C \|\varphi\|_{\infty} \|f\|_{L^2}$.

In particular, it suffices to take $w \in A_{\frac{n}{n-1}} \cap RH_{n+1}$.

Riesz transform estimates

Proposition 13.1

For each $p_-(L_w) , there exists C such that$ $<math display="block">\left\| \nabla L_w^{-1/2} f \right\|_{L^p(w)} \le C \|f\|_{L^p(w)}.$

Furthermore, if $v \in A_{p/p_{-}}(w) \cap RH_{(q_{+}/p)'}(w)$ *then*

$$\left\|\nabla L_w^{-1/2} f\right\|_{L^p(v\,\,dw)} \le C \,\|f\|_{L^p(v\,\,dw)}\,.$$

Riesz transform estimates

Proposition 13.1

For each $p_{-}(L_w) , there exists C such that$

$$\left\| \nabla L_w^{-1/2} f \right\|_{L^p(w)} \le C \left\| f \right\|_{L^p(w)}.$$

Furthermore, if $v \in A_{p/p_{-}}(w) \cap RH_{(q_{+}/p)'}(w)$ then

$$\left\|\nabla L_w^{-1/2} f\right\|_{L^p(v \, dw)} \le C \, \|f\|_{L^p(v \, dw)} \, .$$

Corollary 14

If $w \in A_2$, then for all weights v and exponents q such that $p_{-}r_{v}(w) < q < q_{+} / (s_{v}(w))'$,

$$\left\| \nabla L_w^{-1/2} f \right\|_{L^2} \le C \left\| f \right\|_{L^2}.$$

Square function estimates

$$g_{L_{w}}f(x) = \left(\int_{0}^{\infty} \left| (tL_{w})^{1/2} e^{-tL_{w}}f(x) \right|^{2} \frac{dt}{t} \right)^{\frac{1}{2}},$$

$$G_{L_{w}}f(x) = \left(\int_{0}^{\infty} \left| t^{1/2} \nabla e^{-tL_{w}}f(x) \right|^{2} \frac{dt}{t} \right)^{\frac{1}{2}}.$$

Square function estimates

$$g_{L_w} f(x) = \left(\int_0^\infty \left| (tL_w)^{1/2} e^{-tL_w} f(x) \right|^2 \frac{dt}{t} \right)^{\frac{1}{2}},$$

$$G_{L_w} f(x) = \left(\int_0^\infty \left| t^{1/2} \nabla e^{-tL_w} f(x) \right|^2 \frac{dt}{t} \right)^{\frac{1}{2}}.$$

Theorem 15

Let
$$p_{-}(L_w) and $p_{-}(L_w) < q < q_{+}(L_w)$ *, then*$$

$$\begin{aligned} \|g_{L_w}f\|_{L^p(w)} &\sim \|f\|_{L^p(w)}, \quad \forall f \in L^p(w) \bigcap L^2(w) \\ and \\ \|G_{L_w}f\|_{L^q(w)} &\sim \|f\|_{L^q(w)}, \quad \forall f \in L^q(w) \bigcap L^2(w). \end{aligned}$$

Weighted square function estimates

Theorem 16

For all weights u and exponents p such that $p_{-}r_{u}(w) ,$

 $\|g_{L_w}f\|_{L^p(u\,dw)} \sim \|f\|_{L^p(u\,dw)}$,

and for all weights v and exponents q such that $p_{-}r_{v}(w) < q < q_{+} / (s_{v}(w))'$,

$$\|G_{L_w}f\|_{L^q(v\,dw)} \sim \|f\|_{L^q(v\,dw)}.$$

Finally, the inequality $\|f\|_{L^q(v \ dw)} \lesssim \|G_{L_u}f\|_{L^p(v \ dw)}$ holds for $p_- < q < \infty$ whenever $v \in A_p(w)$.

Theorem 17 (Cruz-Uribe, Martell, R.)

 $w \in A_2$, max $\{r_w, p_-\} , then$

$$\left\|L_w^{1/2}f\right\|_{L^p(w)} \sim \|\nabla f\|_{L^p(w)}$$

and if
$$v \in A_{\frac{p}{\max\{r_{w,p-}\}}}(w) \cap RH_{(q+/p)'}(w)$$
, then

$$\left\|L_w^{1/2}f\right\|_{L^p(v\,dw)} \sim \|\nabla f\|_{L^p(v\,dw)}.$$

Theorem 18 (Cruz-Uribe, Martell, R.)

Suppose that
$$w \in A_2$$
 and $p_-r_{\frac{1}{w}}(w) < 2 < q_+ / \left(s_{\frac{1}{w}}(w)\right)'$, then
 $\left\|L_w^{1/2}f\right\|_{L^2} \sim \|\nabla f\|_{L^2}$.

In particular, this holds if $w \in A_1 \cap RH_{1+\frac{n}{2}}$.

Note on the weight conditions

$$r_{\frac{1}{w}}(w)$$

and
$$s_{\frac{1}{w}}(w) > p \iff w \in A_{p'}.$$

Note on the weight conditions

$$r_{\frac{1}{w}}(w) p \iff w \in A_{p'}.$$

• Hence
$$p_{-}r_{\frac{1}{w}}(w) \leq 2$$
 holds if

$$2\frac{nr_w}{nr_w+2}\left(s_w\right)'<2;$$

Note on the weight conditions

$$r_{\frac{1}{w}}(w) p \iff w \in A_{p'}.$$

• Hence
$$p_{-}r_{\frac{1}{w}}(w) \leq 2$$
 holds if
 $2\frac{nr_{w}}{nr_{w}+2}(s_{w})' < 2;$
• and $2 < q_{+}/(s_{\frac{1}{w}}(w))'$ requires
 $r_{w} < (r'_{w})' = (s_{\frac{1}{w}}(w))' < \frac{q_{+}}{2}.$

Note on the weight conditions

$$r_{\frac{1}{w}}(w) p \iff w \in A_{p'}.$$

• Hence
$$p_{-}r_{\frac{1}{w}}(w) \leq 2$$
 holds if

$$2\frac{nr_w}{nr_w+2}(s_w)'<2;$$

• and
$$2 < q_+ / \left(s_{\frac{1}{w}}(w)\right)'$$
 requires

$$r_w < (r'_w)' = \left(s_{\frac{1}{w}}(w)\right)' < \frac{q_+}{2}.$$

• In particular, if $r_w = 1$ ($w \in A_1$), the second condition is satisfied. For the first, we also need $\frac{n}{n+2} (s_w)' < 1$. i.e.:

$$\frac{n+2}{2} < s_w.$$

Thank you!