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ODE TO THE P-LAPLACIAN

“I used to be in love with the Laplacian so worked hard to please
her with beautiful theorems. However she often scorned me for the
likes of Björn Dahlberg, Gene Fabes, Carlos Kenig, and Thomas
Wolff. Gradually I became interested in her sister the p Laplacian,
1 < p <∞, p 6= 2. I did not find her as pretty as the Laplacian
and she was often difficult to handle because of her nonlinearity.
However over many years I took a shine to her and eventually
developed an understanding of her disposition. Today she is my
girl and the Laplacian pales in comparison to her.”

— John Lewis
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Part I: σ−finiteness of p-harmonic measure in space for p ≥ n
Let Ω ⊂ Rn be a bounded domain and let N be an open neighborhood of
∂Ω.

Fix p, 1 < p <∞ and suppose that u is p-harmonic in Ω ∩ N. That is,
u ∈W 1,p(Ω ∩ N) and∫

〈|∇u|p−2∇u,∇φ〉 dx = 0 for all φ ∈W 1,p
0 (Ω ∩ N).

If u has continuous second partials in Ω ∩ N and ∇u 6= 0 then u is a
classical solution to the p-Laplace equation in Ω ∩ N:

∇ ·
(
|∇u|p−2∇u

)
= 0



Part I: σ−finiteness of p-harmonic measure in space for p ≥ n
Let Ω ⊂ Rn be a bounded domain and let N be an open neighborhood of
∂Ω.

Fix p, 1 < p <∞ and suppose that u is p-harmonic in Ω ∩ N. That is,
u ∈W 1,p(Ω ∩ N) and∫

〈|∇u|p−2∇u,∇φ〉 dx = 0 for all φ ∈W 1,p
0 (Ω ∩ N).

If u has continuous second partials in Ω ∩ N and ∇u 6= 0 then u is a
classical solution to the p-Laplace equation in Ω ∩ N:

∇ ·
(
|∇u|p−2∇u

)
= 0



Part I: σ−finiteness of p-harmonic measure in space for p ≥ n
Let Ω ⊂ Rn be a bounded domain and let N be an open neighborhood of
∂Ω.

Fix p, 1 < p <∞ and suppose that u is p-harmonic in Ω ∩ N. That is,
u ∈W 1,p(Ω ∩ N) and∫

〈|∇u|p−2∇u,∇φ〉 dx = 0 for all φ ∈W 1,p
0 (Ω ∩ N).

If u has continuous second partials in Ω ∩ N and ∇u 6= 0 then u is a
classical solution to the p-Laplace equation in Ω ∩ N:

∇ ·
(
|∇u|p−2∇u

)
= 0



Assume that u > 0 in Ω ∩ N and u = 0 on ∂Ω in the Sobolev sense.

Set u ≡ 0 in N \ Ω. Then u is p-harmonic in N.

It is well know from [HKM, Chapter 21] that there is a finite, positive, Borel
measure µ associated with u satisfying∫

〈|∇u|p−2∇u,∇ψ〉 dx = −
∫
ψ dµ for all nonnegative ψ ∈ C∞0 (N).

µ has support contained in ∂Ω and is called p-harmonic measure.

[HKM]: Juha Heinonen, Tero Kilpeläinen, Olli Martio, Nonlinear Potential Theory of
Degenerate Elliptic Equations. Dover Publications Inc (2006).
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Let λ > 0 be a real valued, positive, and increasing function on (0, r0) with
lim
r→0

λ(r) = 0.

Let Hλ(E ) denote the Hausdorff measure of E ⊂ Rn relative to λ defined in
the following way;
for fixed 0 < δ < r0 let L(δ) = {B(zi , ri )} be such that E ⊆

⋃
B(zi , ri ) and

0 < ri < δ, i = 1, 2, ...

Set φλδ (E ) := inf
L(δ)

∑
λ(ri ). Then Hλ(E ) := lim

δ→0
φλδ (E ).

When λ(r) = rα we write Hα for Hλ. Define the Hausdorff dimension of a
Borel measure ν by

H− dim ν := inf{α | ∃ a Borel set E ⊂ ∂Ω; Hα(E ) = 0, ν(Rn \ E ) = 0}.

i.e., it is the “smallest dimension” of a set with full ν measure.

When everything is smooth,

dµ = |∇u|p−1 dHn−1|∂Ω.
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Results of interest for harmonic measure, ω

When p = 2 and u is the Green’s function with pole at z ∈ Ω then
µ = ω(z , ·) is harmonic measure with respect to z ∈ Ω.

Carleson: H− dim ω = 1 when ∂Ω is a snowflake in the plane and
H− dim ω ≤ 1 when Ω is the complement of a self similar Cantor set.

Jones-Wolff: Let Ω ⊂ C? be a domain whose complement has positive
capacity. Then there is a set F ⊂ ∂Ω with Hausdorff dimension ≤ 1, such
that ω(z ,F ) = 1 for z ∈ Ω.

Wolff: Let Ω = C? \ E where E is a compact set. Then there is a set
F ⊂ ∂Ω satisfying ω(z ,F ) = 1 with σ−finite one-dimensional Hausdorff
measure.

[C]: Lennart Carleson. On the support of harmonic measure for sets of Cantor type.
Ann. Acad. Sci. Fenn., 10:113123, 1985.

[JW]: Peter W. Jones and Thomas Wolff. Hausdorff dimension of harmonic measures
in the plane. Acta Math., 161(1-2):131144, 1988.

[W]: Thomas Wolff. Plane harmonic measures live on sets of -finite length. Ark.
Mat., 31(1):137-172, 1993.
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Bourgain: H− dim ω ≤ n − τ whenever Ω ⊂ Rn where τ = τ(n) > 0.

Wolff: There exists a Wolff snowflake in R3 for which H− dim ω < 2,
and there is another one for which H− dim ω > 2.

Lewis-Verchota-Vogel: Wolff’s result holds in Rn; Harmonic measure
on both sides of a Wolff snowflake, say ω+, ω− could have

max(H− dim ω+,H− dim ω−) < n − 1

or

min(H− dim ω+,H− dim ω−) > n − 1.

[B]: Jean Bourgain. On the Hausdorff dimension of harmonic measure in higher
dimension. Inv. Math., 87:477-483, 1987.

[W]: Thomas Wolff, Counterexamples with harmonic gradients in R3, In Essays on
Fourier analysis in honor of Elias M. Stein, 42:321-384, 1995.

[LVV]: John L. Lewis, Gregory C. Verchota, and Andrew L. Vogel. Wolff snowflakes.
Pacific J. Math., 218 (2005), no. 1, 139166.
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Results of interest for p-harmonic measure

For general p 6= 2, we call µ as p-harmonic measure associated with a
p-harmonic function.

Bennewitz-Lewis: If ∂Ω ⊂ R2 is a quasi circle in the plane then
H− dim µ ≥ 1 when 1 < p < 2 while H− dim µ ≤ 1 if 2 < p <∞.
Moreover, strict inequality holds for H− dim µ when ∂Ω is the Von Koch
snowflake.

Lewis-Nyström-Vogel:

• µ is concentrated on a set of σ−finite Hn−1 measure when ∂Ω is
sufficiently “flat” in the sense of Reifenberg and p ≥ n.

• All examples produced by Wolff snowflake has H− dim µ < n− 1 when
p ≥ n.

• There is a Wolff snowflake for which H− dim µ > n − 1 when p > 2,
near enough 2

[BL]: Björn Bennewitz and John Lewis. On the dimension of p-harmonic measure.
Ann. Acad. Sci. Fenn. Math., 30(2):459505, 2005.

[LNV]: John Lewis, Kaj Nyström, and Andrew Vogel. On the dimension of p-harmonic
measure in space. J. Eur. Math. Soc. (JEMS) 15 (2013), no. 6, 21972256.
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To state our recent work we need a notion of n capacity. If K ⊂ B(x , r) is a
compact set, define n capacity of K as

Cap(K ,B(x , 2r)) = inf

∫
Rn

|∇ψ|ndx

where the infimum is taken over all infinitely differentiable ψ with compact
support in B(x , 2r) and ψ ≡ 1 on K .

A compact set E ⊂ Rn is said to be locally (n, r0) uniformly fat or locally
uniformly (n, r0) thick provided there exists r0, β > 0 such that whenever
x ∈ E , 0 < r ≤ r0

Cap(E ∩ B(x , r),B(x , 2r)) ≥ β.
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Let O ⊂ Rn be an open set and ẑ ∈ ∂O, ρ > 0.

Let u > 0 be p-harmonic in O ∩ B(ẑ , ρ) with continuous zero boundary
values on ∂O ∩ B(ẑ , ρ).

Extend u to all B(ẑ , ρ) by defining u ≡ 0 on B(ẑ , ρ) \ O. Then u is
p-harmonic in B(ẑ , ρ).

Let µ be the p-harmonic measure associated with u.
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New result for p-harmonic measure in space

Theorem A (A.-Lewis-Vogel)

If p > n then µ is concentrated on a set of σ−finite Hn−1 measure.

Same result holds when p = n provided that ∂O ∩ B(ẑ , ρ) is locally
uniformly fat in the sense of n−capacity.

H− dim µ ≤ n − 1 when p ≥ n.

The main idea for our proof comes from the 1993 paper of Wolff mentioned
earlier.

[ALV]: Murat Akman, John Lewis, and Andrew Vogel, Hausdorff dimension and σ−
finiteness of p− harmonic measures in space when p ≥ n. arXiv:1306.5617, submitted.
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Some Remarks

If w ∈ ∂O and B(w , 4r) ⊂ B(ẑ , ρ) then there exists c = c(p, n) ≥ 1 with

1

c
rp−nµ(B(w , r/2)) ≤ max

B(w ,r)
up−1 ≤ crp−nµ(B(w , 2r)).

The left-hand side is true for any open set O and p ≥ n.

The right-hand side requires uniform fatness assumption when p = n and
it is the only place this assumption is used.

• Conjecture: Theorem A holds without uniform fatness assumption
when p = n.
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when p = n.
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The tools we have used requires to find a PDE in divergence form for which
u, uxk are both solutions and log |∇u| is a sub solution for p ≥ n at points
where ∇u 6= 0.

It is known that if

Lζ =
n∑

i ,j=1

∂

∂xi
(bijζj) where bij = |∇u|p−4[(p − 2)uxiuxj + δij |∇u|2]

then

min(p − 1, 1)|ξ|2|∇u|p−2 ≤
n∑

i ,k=1

bikξiξk ≤ max(1, p − 1)|∇u|p−2|ξ|2

ζ = u and ζ = uxk are both solutions for k = 1, . . . , n to Lζ = 0.

ζ = log |∇u| is a sub solution to Lζ = 0 when p ≥ n and ∇u 6= 0.

Is log |∇u| a super solution when p < n and |∇u| 6= 0?

• Conjecture: There is p0, 2 < p0 < n, such that if p0 ≤ p then
H− dim µ ≤ n − 1.
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Sketch of the Proof of Theorem A

Proposition

Let λ be a non decreasing function on [0, 1] with

lim
t→0

λ(t)

tn−1
= 0.

There exists c = c(p, n) and a set Q ⊂ ∂O ∩ B(ẑ , ρ) such that

µ(∂O ∩ B(ẑ , ρ) \ Q) = 0

and for every w ∈ Q there exists arbitrarily small r = r(w) > 0 and a
compact set F = F (w , r)such that

Hλ(F ) = 0 and µ(B(w , 100r)) ≤ cµ(F ).

We first show how our result follows from this proposition.
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First observation: Hn−1(Pm) <∞ for each positive integer m where

Pm :=

{
x ∈ ∂O ∩ B(ẑ , ρ) : lim sup

t→0

µ(B(x , t))

tn−1
>

1

m

}
.

Therefore, this set has

P=

{
x ∈ ∂O ∩ B(ẑ , ρ) : lim sup

t→0

µ(B(x , t))

tn−1
> 0

}
.

has σ−finite Hn−1 measure.

Second observation: From Proposition and measure theoretic arguments
there exists a Borel set Q1 ⊂ Q with

µ(∂O ∩ B(ẑ , ρ) \ Q1) = 0 and Hλ(Q1) = 0.
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Third observation: µ(Q \ P) = 0.

Otherwise, there is a compact set K ⊂ Q \ P and a positive non decreasing

λ0 with lim
t→0

λ0(t)
tn−1 = 0 satisfying

µ(K ) > 0 and lim
t→0

µ(B(x , t))

λ0(t)
= 0 uniformly for x ∈ K .

This tells us that µ� Hλ0 on K . Choose Q1 relative to λ0 to conclude that
Hλ0(K ∩ Q1) = 0 implies µ(K ∩ Q1) = µ(K ) = 0 �.

µ is concentrated on P which has σ−finite Hn−1 measure. This finishes
the proof of our result assuming Proposition.
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Sketch of the Proof of Proposition

Translation, dilation invariance of the p-Laplacian and a measure
theoretic argument to reduce the proof of Proposition to the situation when
w = 0, B(0, 100) ⊂ B(ẑ , ρ).

There is some c = c(p, n) and 2 ≤ t ≤ 50 such that

1

c
≤ µ(B(0, 1)) ≤ max

B(0,2)
u ≤ max

B(0,t)
u ≤ cµ(B(0, 100)) ≤ c2.

To finish the proof of Proposition, it suffices to show for given small ε, τ > 0
that there exists a Borel set E ⊂ ∂O ∩ B(0, 20) and c = c(p, n) ≥ 1 with

φλτ (E ) ≤ ε and µ(E ) ≥ 1

c
.
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A stopping time argument

Let M a large positive number and s < e−M .
For each z ∈ ∂O ∩ B(0, 15) there is t = t(z), 0 < t < 1 with either

(α) µ(B(z , t)) = Mtn−1, t > s

or

(β) t = s.

Use the Besicovitch covering theorem to get a covering B(zj , tj)
N
1 of

∂O ∩ B(0, 15) where tj = t(zj) is the maximal for which either (α) or (β)
holds.
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Ω := O ∩ B(0, 15) \
N⋃
i=1

B(zi , ti ) and D := Ω \ B(z̃ , 2r1)

B(zi , ti )

4pû = 0

û > 0

Let û be the p-harmonic function in D with continuous boundary values,
û = min

B(z̃,2r1)
u on ∂B(z̃ , 2r1) and û = 0 on ∂Ω. Let µ̂ be the p-harmonic

measure associated with û.



û ≤ u in D.

∂Ω is smooth except for a set of finite Hn−2

Using some barrier type estimate one can also show

|∇û| ≤ cM
1

p−1 in D

and

t1−n
j µ̂(B(zj , tj)) ≤ ct1−p

j max
B(zj ,2tj )

up−1 ≤ c2t1−n
j µ(B(zj , 4tj)).
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û ≤ u in D.

∂Ω is smooth except for a set of finite Hn−2

Using some barrier type estimate one can also show
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For a given A >> 1, {1, . . . ,N} can be divided into disjoint subsets G,B,U
as 

G := {j : tj > s}
B := {j : tj = s and |∇û|p−1 ≥ M−A for some x ∈ ∂Ω ∩ ∂B(zj , tj)}
U := {j : j is not inG orB}

We define

E := ∂O ∩
⋃

j∈G∪B
B(zj , tj)

Easy to show φλτ (E ) ≤ ε
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We show ∫
∂Ω

|∇û|p−1 |log |∇û|| dHn−1 ≤ c ′ logM

We use this to show

µ̂(∂Ω ∩
⋃
j∈U

B(zj , tj)) ≤ µ̂({x ∈ ∂Ω : |∇û(x)|p−1 ≤ M−A})

≤ (p − 1)

(AlogM)

∫
∂Ω

|∇û|p−1 |log |∇û|| dHn−1 ≤ c

A

A is ours to choose, and we choose it very large to make this set small.

Use this to prove µ(E ) ≥ 1/c .
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Part II: Example of domain in Rn for which H− dim µ < n − 1

There is an unpublished result of Jones-Wolff in [GM, Chapter IX, Theorem
3.1];

Jones-Wolff: Let Ω = C ∪ {∞} \ C where C is a certain compact set.
Then H− dim ω < 1.

We generalized this result to p-harmonic measure, µ, in Rn for p ≥ n ≥ 2
and for a certain domain.

[GM]: John B. Garnett and Donald E. Marshall, Harmonic Measure, volume 2 of New
Mathematical Monographs. Cambridge University Press, Cambridge, 2008.
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Let S ′ be the square with side length 1/2 and center 0 in Rn. Let C0 = S ′.

Let Q11, . . . ,Q14 be the squares of the four corners of C0 of side length a1,

0 < α < a1 < β < 1/4, and let C1 =
4⋃

i=1
Q1i .

Let {Q2j}, j = 1, . . . , 16 be the square of corners of each Q1i , i = 1, . . . , 4

of side length a1a2, α < a2 < β. Let C2 =
16⋃
j=1

Q2j .

S ′

C0 C1 C2

Continuing recursively, at the mth step we get 4m squares Qmj , 1 ≤ j ≤ 4m

of side length a1a2 . . . am, α < am < β and let Cm =
4m⋃
j=1

Qmj .

Then C is obtained as the limit in the Hausdorff metric of Cm as m→∞
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Continuing recursively, at the mth step we get 4m squares Qmj , 1 ≤ j ≤ 4m

of side length a1a2 . . . am, α < am < β and let Cm =
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j=1

Qmj .

Then C is obtained as the limit in the Hausdorff metric of Cm as m→∞
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Let S = 2S ′ ⊂ Rn and let u be a p-harmonic function in S \ C with
boundary values u = 1 on ∂S and u = 0 on C. Let µ be the p-harmonic
measure associated to u.

Following Jones-Wolff argument, using sub solution estimates, a stopping
time argument similar to the one we have used we show that

Theorem B (A.-Lewis-Vogel)

H− dim µ < n − 1 when p ≥ n.
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Is there any other measure or PDE that one can study the same problem?

In [HKM, Chapter 21], it was shown that the measure associated with a
positive weak solution u with 0 boundary values for a larger class of
qusailinear elliptic PDEs exists;

div A(x ,∇u) = 0

where A : Rn × Rn → Rn satisfies certain structural assumptions.

The measure is so called A-harmonic measure.

If A(ξ) = |ξ|p−2ξ, then the above PDE becomes the usual p-Laplace
equation.

In [BL, Closing remarks 10], the authors pointed out this fact and asked for
what PDE one can obtain dimension estimates on the associated measure.

{Laplace} ⊆ {p-Laplace}

⊆ {4f u = 0}

⊆ {A − Harmonic PDEs}.

[BL]: Björn Bennewitz and John Lewis. On the dimension of p-harmonic measure.
Ann. Acad. Sci. Fenn. Math., 30(2):459505, 2005.
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Introduction

Let p be fixed, 1 < p <∞. Let f be a function with following properties;

(a) f : Rn → (0,∞) is homogeneous of degree p.

That is, f (η) = |η|pf (
η

|η|
) > 0 when η ∈ Rn \ {0}.

(b) f is uniformly convex in B(0, 1) \ B(0, 1/2).

That is, Df is Lipschitz and ∃c ≥ 1 such that for a.e. η ∈ Rn,

1

2
< |η| < 1 and all ξ ∈ Rn we have c−1|ξ|2 ≤

n∑
j ,k=1

∂2f

∂ηjηk
(η)ξjξk ≤ c |ξ|2.
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We consider weak solutions, u, to the Euler Lagrange equation;

4f u :=
n∑

i=1

∂

∂xi

(
∂f (∇u)

∂ηi

)
= 0

in Ω ∩ N where N is an open neighborhood of ∂Ω. Assume also that u > 0
in N ∩ Ω with continuous boundary values on ∂Ω. Set u ≡ 0 in N \ Ω to
have u ∈W 1,p(N) and 4f u = 0 weakly in N. Then, there exists a unique
finite positive Borel measure µf associated with u having support contained
in ∂Ω satisfying∫

〈∇ηf (∇u),∇φ〉dx = −
∫
φ dµf whenever φ ∈ C∞0 (N).

• f (η) = |η|2 → Laplace equation, 4u = 0.

• f (η) = |η|p, 1 < p <∞ → p-Laplace equation, div(|∇u|p−2∇u) = 0.
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If we define

Lζ =
n∑

i=1

∂

∂xi

(
fηiηj ζj

)
Then

ζ = u is a weak solution to Lζ = 0
ζ = uxk for k = 1, . . . , n is weak solution to Lζ = 0
ζ = log f (∇u) is a weak sub solution and weak solution to Lζ = 0

respectively when p > n and p = n.

Using this sub solution estimate and following arguments we have used for p
harmonic measure we show that

Theorem C (A.-Lewis-Vogel)

Theorem A and Theorem B hold for µf .
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When n = 2 and Ω ⊂ R2 is a bounded simply connected domain then

Makarov: ω � Hλ where λ(r) := r exp{A
√

log 1/r log log log 1/r} if A
is large.

H− dim ω = 1.

Lewis-Nyström-Poggi Corradini: Let
λ̂(r) := r exp{A

√
log 1/r log log 1/r}.

a) µp � Hλ̂ when 1 < p < 2 for some A = A(p) ≥ 1.

b) µp is concentrated on a set of σ−finite Hλ̂ when 2 < p <∞ for some
A = A(p) ≤ −1.

[M]: Nikolai Makarov. On the distortion of boundary sets under conformal mappings.
Proc. London Math. Soc., 51(2):369384, 1985.

[LNP]: John Lewis, Kaj Nyström, and Pietro Poggi-Corradini. p-harmonic measure in
simply connected domains. Ann. Inst. Fourier Grenoble, 61(2):689715, 2011.
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Lewis:

a) If 1 < p < 2, then µ� Hλ for A = A(p) sufficiently large.

b) If 2 < p <∞, then µ is concentrated on a set of σ−finite H1.

H− dim µ

{
≥ 1 when 1 < p < 2,
≤ 1 when 2 < p <∞.

[L]: John Lewis. p-harmonic measure in simply connected domains revisited. Trans.
Amer. Math. Soc., 367 (2015), no. 3, 15431583.
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If we define

Lζ =
2∑

i=1

∂

∂xi

(
fηiηj ζj

)
Then

ζ = u and ζ = uxk for k = 1, 2 are both weak solutions to Lζ = 0
ζ = log f (∇u) is a weak super solution, solution, and sub solution to

Lζ = 0 respectively when 1 < p < 2, p = 2, and 2 < p <∞.

Theorem D (A.)

a) If 1 < p ≤ 2, there exists A = A(p, f ) ≥ 1 such that µf � Hλ.

b) If 2 ≤ p <∞, then µf is concentrated on a set of σ−finite H1.

H− dim µf


≥ 1 when 1 < p < 2,
= 1 when p = 2,
≤ 1 when 2 < p <∞.
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