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Set-up History and goals

Let Ω = B(0,1) ⊂ C and recall the Szegö projector,

S : L2(∂Ω) −→ H
2(∂Ω) →֒ L2(∂Ω),

the orthogonal projection onto the closed subspace H2(∂Ω) of L2(∂Ω).
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the orthogonal projection onto the closed subspace H2(∂Ω) of L2(∂Ω).

A famous result of M. Riesz: For each p ∈ (1,∞) S extends to

S : Lp(∂D) −→ H
p(∂D)

in a continuous and onto fashion.
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2(∂Ω) →֒ L2(∂Ω),

the orthogonal projection onto the closed subspace H2(∂Ω) of L2(∂Ω).

A famous result of M. Riesz: For each p ∈ (1,∞) S extends to

S : Lp(∂D) −→ H
p(∂D)

in a continuous and onto fashion.

A higher-dimensional variant of the planar case: let Ω = Bn, where

Bn :=
{

z = (z1, . . . , zn) ∈ Cn : |z|2 = |z1|
2 + · · ·+ |zn|

2 < 1
}

.
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2(∂Ω) →֒ L2(∂Ω),

the orthogonal projection onto the closed subspace H2(∂Ω) of L2(∂Ω).

A famous result of M. Riesz: For each p ∈ (1,∞) S extends to

S : Lp(∂D) −→ H
p(∂D)

in a continuous and onto fashion.

A higher-dimensional variant of the planar case: let Ω = Bn, where

Bn :=
{

z = (z1, . . . , zn) ∈ Cn : |z|2 = |z1|
2 + · · ·+ |zn|

2 < 1
}

.

Then for every f ∈ L2(∂Bn)

(Sf )(z) = 1
2 f (z) + PV

∫

∂Bn

f (ζ)

(1 − z · ζ)n
dσ(ζ), z ∈ ∂Bn.

A variant of the theory of Calderón-Zygmund-type operators implies

that S extends to a bounded operator on Lp(∂Bn) for every p ∈ (1,∞).
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Set-up History and goals

Work done to extend this to the setting of holomorphic functions on

strongly pseudoconvex domains: Fefferman, Boutet de

Monvel-Sjöstrand, and Kerzman-Stein.
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Goals:

work in the class of uniformly rectifiable subdomains (essentially

optimal from the SIO theory point of view) of a Riemannian

manifold
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Set-up History and goals

Work done to extend this to the setting of holomorphic functions on

strongly pseudoconvex domains: Fefferman, Boutet de

Monvel-Sjöstrand, and Kerzman-Stein.

Goals:

work in the class of uniformly rectifiable subdomains (essentially

optimal from the SIO theory point of view) of a Riemannian

manifold

replace the null space of ∂ by the null space of a first order elliptic

differential operator D which has coefficients exhibiting only a

limited amount of smoothness.
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Set-up Analytical conditions

Let M be a compact, connected, n-dimensional Riemannian manifold,

of class C 2, and assume that

D : C 1(M,F) → C 0(M,F) a first-order elliptic differential operator

acts between sections of a Hermitian vector bundle F → M of rank κ.
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Let M be a compact, connected, n-dimensional Riemannian manifold,

of class C 2, and assume that

D : C 1(M,F) → C 0(M,F) a first-order elliptic differential operator

acts between sections of a Hermitian vector bundle F → M of rank κ.

Assume that in each local coordinate chart U, and with respect to a

trivialization of F,

Du(x) =
∑

Aj(x)∂j u(x) + B(x)u(x)

with

Aj ∈ C
2
(

U,Cκ×κ
)

, B ∈ C
1
(

U,Cκ×κ
)

.
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∑

Aj(x)∂j u(x) + B(x)u(x)

with

Aj ∈ C
2
(

U,Cκ×κ
)

, B ∈ C
1
(

U,Cκ×κ
)

.

In particular, the principal symbol of D is given in this representation by

Sym(D, ξ) := i
∑

ξjAj(x) for ξ = (ξj)j ∈ T ∗
x M,
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Du(x) =
∑

Aj(x)∂j u(x) + B(x)u(x)

with

Aj ∈ C
2
(

U,Cκ×κ
)

, B ∈ C
1
(

U,Cκ×κ
)

.

In particular, the principal symbol of D is given in this representation by

Sym(D, ξ) := i
∑

ξjAj(x) for ξ = (ξj)j ∈ T ∗
x M,

The ellipticity of D amounts to having Sym(D, ξ) invertible if ξ 6= 0.
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Set-up Analytical conditions

Call the operator D of Dirac type provided D∗D has a scalar principal

symbol, i.e.,

Sym(D, ξ)∗Sym(D, ξ) is a scalar multiple of the identity.
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Set-up Analytical conditions

Call the operator D of Dirac type provided D∗D has a scalar principal

symbol, i.e.,

Sym(D, ξ)∗Sym(D, ξ) is a scalar multiple of the identity.

Examples of Dirac type operators

D := d + d∗, where d :=

n
∑

j=1

dxj ∧ ∂j is the exterior derivative.

Irina Mitrea (Temple University) Kerzman-Stein Formulas 01/13/2015 6 / 30



Set-up Analytical conditions

Call the operator D of Dirac type provided D∗D has a scalar principal

symbol, i.e.,

Sym(D, ξ)∗Sym(D, ξ) is a scalar multiple of the identity.

Examples of Dirac type operators

D := d + d∗, where d :=

n
∑

j=1

dxj ∧ ∂j is the exterior derivative.

d2 = (d∗)2 = 0, and ∆ = −dd∗ − d∗d is the Hodge-Laplacian. It

follows that D = D∗ and D2 = −∆. In particular, D is of Dirac type.
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dxj ∧ ∂j is the exterior derivative.

d2 = (d∗)2 = 0, and ∆ = −dd∗ − d∗d is the Hodge-Laplacian. It

follows that D = D∗ and D2 = −∆. In particular, D is of Dirac type.

D := ∂ + ∂
∗

on a complex manifold M. Here ∂ :=

n
∑

j=1

dzj ∧ ∂zj
.
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Set-up Analytical conditions

Call the operator D of Dirac type provided D∗D has a scalar principal

symbol, i.e.,

Sym(D, ξ)∗Sym(D, ξ) is a scalar multiple of the identity.

Examples of Dirac type operators

D := d + d∗, where d :=

n
∑

j=1

dxj ∧ ∂j is the exterior derivative.

d2 = (d∗)2 = 0, and ∆ = −dd∗ − d∗d is the Hodge-Laplacian. It

follows that D = D∗ and D2 = −∆. In particular, D is of Dirac type.

D := ∂ + ∂
∗

on a complex manifold M. Here ∂ :=

n
∑

j=1

dzj ∧ ∂zj
.

This time, ∂
2
= (∂

∗
)2 = 0 and � := −∂∂

∗
− ∂

∗
∂ has a scalar

principal symbol. Since D∗ = D and D2 = −�, it follows that D is

an operator of Dirac type.
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Set-up Analytical conditions

Examples of Dirac type operators (continued)

M = Rn and let Cℓ(Rn) be the Clifford algebra generated by the

standard orthonormal basis
{

ej

}

1≤j≤n
in Rn. Consider

D :=
n
∑

j=1

ej∂j ,

and note that D∗ = D and D2 = −∆, the flat-space Laplacian.

D is the original flat space Dirac operator.
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Set-up Geometrical conditions

Let Ω ⊂ M be open and of finite perimeter. This implies

d1Ω = −ν σ in the sense of distributions,

where ν ∈ T ∗M is the outward pointing unit conormal to ∂Ω and

σ = H
n−1⌊∂Ω

is the “surface area” on ∂Ω, carried by the measure-theoretic boundary

∂∗Ω ⊂ ∂Ω. To avoid pathologies we assume

H
n−1(∂Ω \ ∂∗Ω) = 0.
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where ν ∈ T ∗M is the outward pointing unit conormal to ∂Ω and

σ = H
n−1⌊∂Ω

is the “surface area” on ∂Ω, carried by the measure-theoretic boundary

∂∗Ω ⊂ ∂Ω. To avoid pathologies we assume

H
n−1(∂Ω \ ∂∗Ω) = 0.

Next, assume ∂Ω is Ahlfors-David regular (ADR) set, i.e., there exist

C0,C1 ∈ (0,∞) such that if x0 ∈ ∂Ω and r ∈ (0,diamΩ) then

C0rn−1 ≤ H
n−1
(

∂Ω ∩ Br (x0)
)

≤ C1rn−1.
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Let Ω ⊂ M be open and of finite perimeter. This implies

d1Ω = −ν σ in the sense of distributions,

where ν ∈ T ∗M is the outward pointing unit conormal to ∂Ω and

σ = H
n−1⌊∂Ω

is the “surface area” on ∂Ω, carried by the measure-theoretic boundary

∂∗Ω ⊂ ∂Ω. To avoid pathologies we assume

H
n−1(∂Ω \ ∂∗Ω) = 0.

Next, assume ∂Ω is Ahlfors-David regular (ADR) set, i.e., there exist

C0,C1 ∈ (0,∞) such that if x0 ∈ ∂Ω and r ∈ (0,diamΩ) then

C0rn−1 ≤ H
n−1
(

∂Ω ∩ Br (x0)
)

≤ C1rn−1.

Under the above two conditions: Ω called an Ahlfors regular domain.
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Set-up Geometrical conditions

Call Ω a UR domain if:
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Call Ω a UR domain if:

Ω is an Ahlfors regular domain

∂Ω is an uniformly rectifiable (UR) set (G. David and S. Semmes).
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Set-up Geometrical conditions

Call Ω a UR domain if:

Ω is an Ahlfors regular domain

∂Ω is an uniformly rectifiable (UR) set (G. David and S. Semmes).

That is, ∃ ε, M ∈ (0,∞) such that for each x ∈ ∂Ω and 0 < R < diamΩ
one can find a Lipschitz map ϕ : B′

R → Rn (where B′
R is a ball of radius

R in Rn−1) with Lipschitz constant ≤ M, and such that

H
n−1
(

B(x ,R) ∩ ∂Ω ∩ ϕ(B′
R)
)

≥ εRn−1.

Irina Mitrea (Temple University) Kerzman-Stein Formulas 01/13/2015 9 / 30



Set-up Geometrical conditions

Definition: Ω satisfies an interior corkscrew condition if exist M > 1

and r∗ > 0 s.t. for each x ∈ ∂Ω and r ∈ (0, r∗) there exists
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and r∗ > 0 s.t. for each x ∈ ∂Ω and r ∈ (0, r∗) there exists

Ar (x) ∈ Ω, s.t. |x − Ar (x)| < r and dist(Ar (x), ∂Ω) > M−1r .
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and r∗ > 0 s.t. for each x ∈ ∂Ω and r ∈ (0, r∗) there exists

Ar (x) ∈ Ω, s.t. |x − Ar (x)| < r and dist(Ar (x), ∂Ω) > M−1r .

Ω satisfies an exterior corkscrew condition if Ωc satisfies an interior

corkscrew condition.
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Ar (x) ∈ Ω, s.t. |x − Ar (x)| < r and dist(Ar (x), ∂Ω) > M−1r .

Ω satisfies an exterior corkscrew condition if Ωc satisfies an interior

corkscrew condition.

Definition: Ω is called an NTA domain provided:

• Ω - interior and exterior corkscrew (with constants M, r∗ as above).
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and r∗ > 0 s.t. for each x ∈ ∂Ω and r ∈ (0, r∗) there exists

Ar (x) ∈ Ω, s.t. |x − Ar (x)| < r and dist(Ar (x), ∂Ω) > M−1r .

Ω satisfies an exterior corkscrew condition if Ωc satisfies an interior

corkscrew condition.

Definition: Ω is called an NTA domain provided:

• Ω - interior and exterior corkscrew (with constants M, r∗ as above).

• Ω – Harnack chain.

If x1, x2 ∈ Ω are s.t. dist(xi , ∂Ω) ≥ ε for i = 1,2, and |x1 − x2| ≤ 2kε,
then ∃ Mk balls Bj ⊆ Ω, 1 ≤ j ≤ Mk, such that

(i) x1 ∈ B1, x2 ∈ BMk and Bj ∩ Bj+1 6= ∅ for 1 ≤ j ≤ Mk − 1;
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and r∗ > 0 s.t. for each x ∈ ∂Ω and r ∈ (0, r∗) there exists

Ar (x) ∈ Ω, s.t. |x − Ar (x)| < r and dist(Ar (x), ∂Ω) > M−1r .

Ω satisfies an exterior corkscrew condition if Ωc satisfies an interior

corkscrew condition.

Definition: Ω is called an NTA domain provided:

• Ω - interior and exterior corkscrew (with constants M, r∗ as above).

• Ω – Harnack chain.

If x1, x2 ∈ Ω are s.t. dist(xi , ∂Ω) ≥ ε for i = 1,2, and |x1 − x2| ≤ 2kε,
then ∃ Mk balls Bj ⊆ Ω, 1 ≤ j ≤ Mk, such that

(i) x1 ∈ B1, x2 ∈ BMk and Bj ∩ Bj+1 6= ∅ for 1 ≤ j ≤ Mk − 1;

(ii) each ball Bj has a radius rj satisfying

M−1rj ≤ dist(Bj , ∂Ω) ≤ Mrj and

rj ≥ M−1 min
{

dist(x1, ∂Ω), dist(x2, ∂Ω)
}

.
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Set-up Geometrical conditions

Definition: Ω open set in Rn is called a two-sided NTA domain

provided both Ω and Rn \ Ω are NTA domains.
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Definition: Ω open set in Rn is called a two-sided NTA domain

provided both Ω and Rn \ Ω are NTA domains.

Definition: Call an open set Ω a regular SKT domain provided:

Ω is a two-sided NTA domain;

∂Ω is ADR;

ν ∈ VMO(∂Ω).
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Definition: Call an open set Ω a regular SKT domain provided:

Ω is a two-sided NTA domain;
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ν ∈ VMO(∂Ω).

These classes of domains may be defined on Riemannian manifolds
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Set-up Geometrical conditions

Definition: Ω open set in Rn is called a two-sided NTA domain

provided both Ω and Rn \ Ω are NTA domains.

Definition: Call an open set Ω a regular SKT domain provided:

Ω is a two-sided NTA domain;

∂Ω is ADR;

ν ∈ VMO(∂Ω).

These classes of domains may be defined on Riemannian manifolds

and we have:
{

C 1 domains
}

(
{

domains locally given as upper-graphs

of functions with gradients in VMO ∩ L∞
}

=
{

Lipschitz domains with VMO normals
}

=
{

Lipschitz domains
}

∩
{

regular SKT domains
}

(
{

regular SKT domains
}

(
{

two-sided NTA domains
}

∩
{

Ahlfors regular domains
}

(
{

UR domains
}

.
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Main Results Hardy spaces

For each p ∈ (1,∞) it is natural to consider the Hardy space

associated with a Dirac type operator D in a UR domain Ω ⊂ M as

H
p(Ω,D) :=

{

u ∈ C
0(Ω,F) :Du = 0 in Ω, Nu ∈ Lp(∂Ω),

and u
∣

∣

n.t.

∂Ω
exists σ-a.e. on ∂Ω

}

,
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associated with a Dirac type operator D in a UR domain Ω ⊂ M as

H
p(Ω,D) :=

{

u ∈ C
0(Ω,F) :Du = 0 in Ω, Nu ∈ Lp(∂Ω),

and u
∣

∣

n.t.

∂Ω
exists σ-a.e. on ∂Ω

}

,

and equip it with the norm ‖u‖Hp(Ω,D) := ‖Nu‖Lp(∂Ω).
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For each p ∈ (1,∞) it is natural to consider the Hardy space

associated with a Dirac type operator D in a UR domain Ω ⊂ M as

H
p(Ω,D) :=

{

u ∈ C
0(Ω,F) :Du = 0 in Ω, Nu ∈ Lp(∂Ω),

and u
∣

∣

n.t.

∂Ω
exists σ-a.e. on ∂Ω

}

,

and equip it with the norm ‖u‖Hp(Ω,D) := ‖Nu‖Lp(∂Ω). Here, N and u
∣

∣

n.t.

∂Ω
are suitably defined relative to Ω. Also introduce the boundary Hardy

spaces

H
p(∂Ω,D) :=

{

u
∣

∣

n.t.

∂Ω
: u ∈ H

p(Ω,D)
}

.

Later we shall see that Hp(∂Ω,D) is a closed subspace of Lp(∂Ω) if Ω
is a UR domain.

Irina Mitrea (Temple University) Kerzman-Stein Formulas 01/13/2015 12 / 30
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For each p ∈ (1,∞) it is natural to consider the Hardy space

associated with a Dirac type operator D in a UR domain Ω ⊂ M as

H
p(Ω,D) :=

{

u ∈ C
0(Ω,F) :Du = 0 in Ω, Nu ∈ Lp(∂Ω),

and u
∣

∣

n.t.

∂Ω
exists σ-a.e. on ∂Ω

}

,

and equip it with the norm ‖u‖Hp(Ω,D) := ‖Nu‖Lp(∂Ω). Here, N and u
∣

∣

n.t.

∂Ω
are suitably defined relative to Ω. Also introduce the boundary Hardy

spaces

H
p(∂Ω,D) :=

{

u
∣

∣

n.t.

∂Ω
: u ∈ H

p(Ω,D)
}

.

Later we shall see that Hp(∂Ω,D) is a closed subspace of Lp(∂Ω) if Ω
is a UR domain. Assuming that this is the case, consider what would

be the natural notion of Szegö operator in this context, i.e., the

orthogonal projection

Irina Mitrea (Temple University) Kerzman-Stein Formulas 01/13/2015 12 / 30



Main Results Hardy spaces

For each p ∈ (1,∞) it is natural to consider the Hardy space

associated with a Dirac type operator D in a UR domain Ω ⊂ M as

H
p(Ω,D) :=

{

u ∈ C
0(Ω,F) :Du = 0 in Ω, Nu ∈ Lp(∂Ω),

and u
∣

∣

n.t.

∂Ω
exists σ-a.e. on ∂Ω

}

,

and equip it with the norm ‖u‖Hp(Ω,D) := ‖Nu‖Lp(∂Ω). Here, N and u
∣

∣

n.t.

∂Ω
are suitably defined relative to Ω. Also introduce the boundary Hardy

spaces

H
p(∂Ω,D) :=

{

u
∣

∣

n.t.

∂Ω
: u ∈ H

p(Ω,D)
}

.

Later we shall see that Hp(∂Ω,D) is a closed subspace of Lp(∂Ω) if Ω
is a UR domain. Assuming that this is the case, consider what would

be the natural notion of Szegö operator in this context, i.e., the

orthogonal projection

SD : L2(∂Ω) −→ H
2(∂Ω,D) →֒ L2(∂Ω).
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Main Results Statement of main results

Modulo the fact that H2(∂Ω,D) is a closed subspace of L2(∂Ω), the

definition and boundedness of SD on L2(∂Ω) are of a purely functional

analytic nature.
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definition and boundedness of SD on L2(∂Ω) are of a purely functional

analytic nature. In the case when M = C, Ω = B(0,1), and D = ∂, we

have already seen that SD extends to a bounded operator on Lp(∂Ω)
for every p ∈ (1,∞).

Irina Mitrea (Temple University) Kerzman-Stein Formulas 01/13/2015 13 / 30



Main Results Statement of main results

Modulo the fact that H2(∂Ω,D) is a closed subspace of L2(∂Ω), the

definition and boundedness of SD on L2(∂Ω) are of a purely functional

analytic nature. In the case when M = C, Ω = B(0,1), and D = ∂, we

have already seen that SD extends to a bounded operator on Lp(∂Ω)
for every p ∈ (1,∞).

Basic question: To what extent is this the case for more general M,

D, Ω?

Theorem

Let Ω ⊂ M be a UR domain and assume that D is a Dirac type operator

with top coefficients of class C 2 and lower coefficients of class C 1.
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analytic nature. In the case when M = C, Ω = B(0,1), and D = ∂, we

have already seen that SD extends to a bounded operator on Lp(∂Ω)
for every p ∈ (1,∞).

Basic question: To what extent is this the case for more general M,

D, Ω?

Theorem

Let Ω ⊂ M be a UR domain and assume that D is a Dirac type operator

with top coefficients of class C 2 and lower coefficients of class C 1.

Then ∃ q ∈ [1,2) such that, with q′ := q/(q − 1) ∈ (2,∞], the Szegö

projection SD extends to a bounded operator

SD : Lp(∂Ω) −→ Lp(∂Ω), ∀ p ∈ (q,q′).
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analytic nature. In the case when M = C, Ω = B(0,1), and D = ∂, we

have already seen that SD extends to a bounded operator on Lp(∂Ω)
for every p ∈ (1,∞).

Basic question: To what extent is this the case for more general M,

D, Ω?

Theorem

Let Ω ⊂ M be a UR domain and assume that D is a Dirac type operator

with top coefficients of class C 2 and lower coefficients of class C 1.

Then ∃ q ∈ [1,2) such that, with q′ := q/(q − 1) ∈ (2,∞], the Szegö

projection SD extends to a bounded operator

SD : Lp(∂Ω) −→ Lp(∂Ω), ∀ p ∈ (q,q′).

If, moreover, Ω is a regular SKT domain, then we may take q = 1, i.e.,

the above result is valid for every p ∈ (1,∞).

Irina Mitrea (Temple University) Kerzman-Stein Formulas 01/13/2015 13 / 30



Main Results Statement of main results

The Szegö projector may then be used to represent Lp(∂Ω) as a direct

twisted sum of boundary Hardy spaces.

Theorem

Let D be a Dirac type operator with top coefficients of class C 2, lower

coefficients of class C 1, and assume that Ω ⊂ M is a UR domain, with

geometric measure theoretic outward unit conormal ν.
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The Szegö projector may then be used to represent Lp(∂Ω) as a direct

twisted sum of boundary Hardy spaces.

Theorem

Let D be a Dirac type operator with top coefficients of class C 2, lower

coefficients of class C 1, and assume that Ω ⊂ M is a UR domain, with

geometric measure theoretic outward unit conormal ν.Then ∃ q ∈ [1,2)
such that, with q′ := q/(q − 1) ∈ (2,∞] so that for each p ∈ (q,q′)
there holds

Lp(∂Ω) = H
p(∂Ω,D)⊕ iSym(D∗, ν)Hp(∂Ω,D∗)
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Main Results Statement of main results

The Szegö projector may then be used to represent Lp(∂Ω) as a direct

twisted sum of boundary Hardy spaces.

Theorem

Let D be a Dirac type operator with top coefficients of class C 2, lower

coefficients of class C 1, and assume that Ω ⊂ M is a UR domain, with

geometric measure theoretic outward unit conormal ν.Then ∃ q ∈ [1,2)
such that, with q′ := q/(q − 1) ∈ (2,∞] so that for each p ∈ (q,q′)
there holds

Lp(∂Ω) = H
p(∂Ω,D)⊕ iSym(D∗, ν)Hp(∂Ω,D∗)

where the direct sum is topological, and also orthogonal when p = 2.

Moreover, if Ω is a regular SKT domain, then we may take q = 1, i.e.,

the above result is valid for every p ∈ (1,∞).
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Tools used in the proof of the main result The role of the Unique Continuation Property

A key tool is a certain type of Kerzman-Stein formula for a Cauchy type

operator associated to D. In its original format for the Cauchy-Riemann

operator ∂ in the complex plane, this reads

S∂ = (1
2 I + C∂)(I + C∂ − C∗

∂
)−1

where C∂ denotes the classical Cauchy operator

C∂ f (z) := PV
1

2πi

∫

∂Ω

f (ζ)

ζ − z
dζ, z ∈ ∂Ω.

When Ω ⊂ C is a bounded C 1 domain (the context considered by

Kerzman-Stein) it turns out that C∂ is “almost self adjoint". This

ensures the existence of the inverse and also gives that S∂ behaves

essentially like C∂ . In particular, the boundedness of C∂ in Lp(∂Ω)
implies the boundedness of S∂ in Lp(∂Ω).
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Tools used in the proof of the main result The role of the Unique Continuation Property

To proceed along similar lines in this more general case, need a

Cauchy operator CD associated with D much as C∂ was associated

with ∂. To set the stage write C∂ in a manner minimizing the

involvement of C, i.e.:

C∂ f (z) = i

∫

∂Ω
E(z − ζ)Sym(∂, ν(ζ))f (ζ)dσ(ζ), z ∈ C \ ∂Ω,

where E(z) := 1
2π

1
z

is the fundamental solution of the ∂ operator in C.
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To proceed along similar lines in this more general case, need a

Cauchy operator CD associated with D much as C∂ was associated

with ∂. To set the stage write C∂ in a manner minimizing the

involvement of C, i.e.:

C∂ f (z) = i

∫

∂Ω
E(z − ζ)Sym(∂, ν(ζ))f (ζ)dσ(ζ), z ∈ C \ ∂Ω,

where E(z) := 1
2π

1
z

is the fundamental solution of the ∂ operator in C.

When D replaces ∂ we need to construct E(x , y) fundamental solution

for D, i.e., Dx [E(x , y)] = δy (x).
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To proceed along similar lines in this more general case, need a

Cauchy operator CD associated with D much as C∂ was associated

with ∂. To set the stage write C∂ in a manner minimizing the

involvement of C, i.e.:

C∂ f (z) = i

∫

∂Ω
E(z − ζ)Sym(∂, ν(ζ))f (ζ)dσ(ζ), z ∈ C \ ∂Ω,

where E(z) := 1
2π

1
z

is the fundamental solution of the ∂ operator in C.

When D replaces ∂ we need to construct E(x , y) fundamental solution

for D, i.e., Dx [E(x , y)] = δy (x). In a first stage, it is useful to identify

such a fundamental solution under the assumption that

D : H1,2(M,F) → L2(M,F) is invertible.

Assuming that this is the case, D has an inverse,

D−1 : L2(M,F) → H1,2(M,F).
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Tools used in the proof of the main result The role of the Unique Continuation Property

Then the celebrated Schwartz Kernel Theorem yields the existence of

a “double" distribution E(x , y) ∈ D′(M × M,F ⊗ F) with the property

that if dV is the volume element on M then for any reasonable section

v in F,

D−1v(x) =

∫

M

E(x , y)v(y)dV (y), x ∈ M.

In particular, applying D to both sides gives

v(x) = DD−1v(x) =

∫

M

DxE(x , y)v(y)dV (y),

which shows that Dx [E(x , y)] is indeed a Dirac distribution with mass

at x , as wanted.
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Then the celebrated Schwartz Kernel Theorem yields the existence of

a “double" distribution E(x , y) ∈ D′(M × M,F ⊗ F) with the property

that if dV is the volume element on M then for any reasonable section

v in F,

D−1v(x) =

∫

M

E(x , y)v(y)dV (y), x ∈ M.

In particular, applying D to both sides gives

v(x) = DD−1v(x) =

∫

M

DxE(x , y)v(y)dV (y),

which shows that Dx [E(x , y)] is indeed a Dirac distribution with mass

at x , as wanted.

The bottom line is that we may take as a fundamental solution for D

the Schwartz kernel E(x , y) ∈ D′(M × M,F ⊗ F) of the operator

D−1 : L2(M,F) → H1,2(M,F), provided this inverse exists.
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Tools used in the proof of the main result The role of the Unique Continuation Property

The problem is that, in general,

D : H1,2(M,F) → L2(M,F)

may fail to be invertible,
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The problem is that, in general,

D : H1,2(M,F) → L2(M,F)

may fail to be invertible,though always

D elliptic =⇒ D : H1,2(M,F) → L2(M,F) is Fredholm

(via the existence of a parametrix).
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The problem is that, in general,

D : H1,2(M,F) → L2(M,F)

may fail to be invertible,though always

D elliptic =⇒ D : H1,2(M,F) → L2(M,F) is Fredholm

(via the existence of a parametrix).

Example: D := d + d∗ has a nontrivial null-space, whose dimension

may be expressed in terms of certain topological invariants (Betti

numbers) of the manifold M.
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The problem is that, in general,

D : H1,2(M,F) → L2(M,F)

may fail to be invertible,though always

D elliptic =⇒ D : H1,2(M,F) → L2(M,F) is Fredholm

(via the existence of a parametrix).

Example: D := d + d∗ has a nontrivial null-space, whose dimension

may be expressed in terms of certain topological invariants (Betti

numbers) of the manifold M. This being said, by a deep result of

N. Aronszajn, D (and also D∗ = D) enjoys a weaker (yet very useful)

property, namely Unique Continuation Property (UCP).
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The problem is that, in general,

D : H1,2(M,F) → L2(M,F)

may fail to be invertible,though always

D elliptic =⇒ D : H1,2(M,F) → L2(M,F) is Fredholm

(via the existence of a parametrix).

Example: D := d + d∗ has a nontrivial null-space, whose dimension

may be expressed in terms of certain topological invariants (Betti

numbers) of the manifold M. This being said, by a deep result of

N. Aronszajn, D (and also D∗ = D) enjoys a weaker (yet very useful)

property, namely Unique Continuation Property (UCP).

Definition: D has UCP provided if u ∈ H1,2(M,F) is such that Du = 0

on M and u
∣

∣

O
= 0 for some nonempty open set O ⊂ M then u = 0 on

M.
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The problem is that, in general,
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may fail to be invertible,though always

D elliptic =⇒ D : H1,2(M,F) → L2(M,F) is Fredholm

(via the existence of a parametrix).

Example: D := d + d∗ has a nontrivial null-space, whose dimension

may be expressed in terms of certain topological invariants (Betti

numbers) of the manifold M. This being said, by a deep result of

N. Aronszajn, D (and also D∗ = D) enjoys a weaker (yet very useful)

property, namely Unique Continuation Property (UCP).

Definition: D has UCP provided if u ∈ H1,2(M,F) is such that Du = 0

on M and u
∣

∣

O
= 0 for some nonempty open set O ⊂ M then u = 0 on

M.

Key: even in the case of structures with limited regularity, Dirac type

operators have UCP.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Assume in what follows that

D is an elliptic 1st-order operator such that D and D∗ have UCP.

A different route (compared with what was done when D−1 is known to

exist) is called for. We are motivated to consider

D :=

(

iMa D∗

D iMa

)

: F ⊕ F → F ⊕ F

where Ma denotes the operator of pointwise multiplication by a

nonnegative scalar function a ∈ C 1 (not identically zero).
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exist) is called for. We are motivated to consider

D :=

(

iMa D∗

D iMa

)

: F ⊕ F → F ⊕ F

where Ma denotes the operator of pointwise multiplication by a

nonnegative scalar function a ∈ C 1 (not identically zero). Since D

elliptic, we have

D : H1,2(M,F) → L2(M,F) is Fredholm.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Assume in what follows that

D is an elliptic 1st-order operator such that D and D∗ have UCP.

A different route (compared with what was done when D−1 is known to

exist) is called for. We are motivated to consider

D :=

(

iMa D∗

D iMa

)

: F ⊕ F → F ⊕ F

where Ma denotes the operator of pointwise multiplication by a

nonnegative scalar function a ∈ C 1 (not identically zero). Since D

elliptic, we have

D : H1,2(M,F) → L2(M,F) is Fredholm.

In addition, D differs by a compact operator from what one gets by

taking a ≡ 0, so

indexD = index

(

0 D∗

D 0

)

= index D + index D∗ = 0.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Thus, D is invertible iff has a trivial kernel.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Thus, D is invertible iff has a trivial kernel. In this regard, first note that

for each u = (v ,w) ∈ H1,2(M,F ⊕ F) we have

(Du,u)L2(M) = i

∫

M

a|u|2 dV + 2 Re

∫

M

〈Dv ,w〉dV.

Consequently, if u ∈ KerD it follows that

0 = Im (Du,u)L2(M) =

∫

M

a|u|2 dV.

Hence u = (v ,w) ∈ KerD satisfies u = 0 on O := {x : a(x) 6= 0}.

Thus, v = 0 on O and w = 0 on O so ultimately av = 0 on M and

aw = 0 on M. Given that on M we also have

0 = Du =

(

iav + D∗w

Dv + iaw

)

,

this also forces Dv = 0 and D∗w = 0 on M.
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Tools used in the proof of the main result The role of the Unique Continuation Property

At this stage, we may conclude that if D is an elliptic 1st-order operator

such that

D and D∗ have UCP

then

D :=

(

iMa D∗

D iMa

)

: H1,2(M,F ⊕ F) → L2(M,F ⊕ F)

is both Fredholm with index zero and one-to-one, thus an invertible

operator.
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Tools used in the proof of the main result The role of the Unique Continuation Property

At this stage, we may conclude that if D is an elliptic 1st-order operator

such that

D and D∗ have UCP

then

D :=

(

iMa D∗

D iMa

)

: H1,2(M,F ⊕ F) → L2(M,F ⊕ F)

is both Fredholm with index zero and one-to-one, thus an invertible

operator. Then the Schwartz kernel E(x , y) of the inverse D−1 is a

fundamental solution for the operator D.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Based on this fundamental solution, we then proceed to associate to

the operator D the following Cauchy-type integral operator

CDf (x) := PV i

∫

∂Ω
E(x , y)Sym(D, ν(y))f (y)dσ(y), x ∈ ∂Ω.

When M = Rn and D is homogeneous with constant coefficients (and

a = 0), then E(x , y) is of the form k(x − y) with k ∈ C∞(Rn \ {0}) odd

and homogeneous of degree −(n − 1). When Ω is a UR domain in Rn,

fundamental work of G. David and S. Semmes yields bounds on

Lp(∂Ω) with p ∈ (1,∞) for SIO’s of the form

Bf (x) := PV

∫

∂Ω

k(x − y)f (y)dσ(y), x ∈ ∂Ω.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Such estimates have been extended to a suitable class of variable

coefficient operators

Bf (x) := PV

∫

∂Ω

k(x , y)f (y)dσ(y), x ∈ ∂Ω,

for UR domains on manifolds, Ω ⊂ M, by S. Hofmann - M. Mitrea - M.

Taylor. This includes the case of CD.
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Such estimates have been extended to a suitable class of variable

coefficient operators

Bf (x) := PV

∫

∂Ω

k(x , y)f (y)dσ(y), x ∈ ∂Ω,

for UR domains on manifolds, Ω ⊂ M, by S. Hofmann - M. Mitrea - M.

Taylor. This includes the case of CD.

Recall that D plays only an auxiliary role in this business, since we are

primarily interested in the original (unperturbed) operator D.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Such estimates have been extended to a suitable class of variable

coefficient operators

Bf (x) := PV

∫

∂Ω

k(x , y)f (y)dσ(y), x ∈ ∂Ω,

for UR domains on manifolds, Ω ⊂ M, by S. Hofmann - M. Mitrea - M.

Taylor. This includes the case of CD.

Recall that D plays only an auxiliary role in this business, since we are

primarily interested in the original (unperturbed) operator D.

To attempt to remedy this, keep in mind that D is a “piece" of D. Idea:

work componentwise, and write E(x , y) ∈ Hom (Fy ⊕ Fy ,Fx ⊕ Fx ) as

E(x , y) =

(

E00(x , y) E01(x , y)

E10(x , y) E11(x , y)

)

, x , y ∈ M, x 6= y .
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Tools used in the proof of the main result The role of the Unique Continuation Property

where

E00(x , y) ∈ Hom (Fy ,Fx ), E01(x , y) ∈ Hom (Fy ,Fx ),

E10(x , y) ∈ Hom (Fy ,Fx ), E11(x , y) ∈ Hom (Fy ,Fx ).
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Tools used in the proof of the main result The role of the Unique Continuation Property

where

E00(x , y) ∈ Hom (Fy ,Fx ), E01(x , y) ∈ Hom (Fy ,Fx ),

E10(x , y) ∈ Hom (Fy ,Fx ), E11(x , y) ∈ Hom (Fy ,Fx ).

Then the fact that

Dx [E(x , y)] = δy (x) · I2×2

becomes equivalent to

ia(x)E00(x , y) + D∗
x [E10(x , y)] = δy (x),

ia(x)E01(x , y) + D∗
x [E11(x , y)] = 0,

ia(x)E10(x , y) + Dx [E00(x , y)] = 0,

a(x)E11(x , y) + Dx [E01(x , y)] = δy (x).

In particular, the last equality implies that

E01(·, y) is a fundamental solution (with pole at y)

for the operator D outside of the support of a.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Hence, if we now consider the Cauchy-type integral operator

CDf (x) := PV i

∫

∂Ω
E01(x , y)Sym(D, ν(y))f (y)dσ(y), x ∈ ∂Ω,

it follows that for every f ∈ L1(∂Ω,F),

CD

(

f

0

)

=

(

CDf

...

)

.
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Hence, if we now consider the Cauchy-type integral operator

CDf (x) := PV i

∫

∂Ω
E01(x , y)Sym(D, ν(y))f (y)dσ(y), x ∈ ∂Ω,

it follows that for every f ∈ L1(∂Ω,F),

CD

(

f

0

)

=

(

CDf

...

)

.

This allows us to transfer the entire Calderón-Zygmund theory

developed for the Cauchy operator CD associated with the auxiliary

operator D to the Cauchy operator CD associated with the original

operator D, in arbitrary UR subdomains of the manifold M.
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Tools used in the proof of the main result The role of the Unique Continuation Property

Moreover the integral kernel of the aforementioned Cauchy operator

plays a key role in the following

Theorem (Generalized Cauchy-Pompeiu Formula)

Let Ω ⊂ M be an Ahlfors regular domain. Also, let D : F → F be a

1st-order elliptic operator such that both D and D∗ have UCP and

assume

u ∈ C 0(Ω,F) is such that Du ∈ L1(Ω), Nu ∈ L1(∂Ω),

and u
∣

∣

n.t.

∂Ω
exists σ-a.e. on ∂Ω.
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Moreover the integral kernel of the aforementioned Cauchy operator

plays a key role in the following

Theorem (Generalized Cauchy-Pompeiu Formula)

Let Ω ⊂ M be an Ahlfors regular domain. Also, let D : F → F be a

1st-order elliptic operator such that both D and D∗ have UCP and

assume

u ∈ C 0(Ω,F) is such that Du ∈ L1(Ω), Nu ∈ L1(∂Ω),

and u
∣

∣

n.t.

∂Ω
exists σ-a.e. on ∂Ω.

Then for every x ∈ Ω,

u(x) = i

∫

∂Ω

E01(x , y)Sym(D, ν(y))
(

u
∣

∣

n.t.

∂Ω

)

(y)dσ(y)

+

∫

Ω

E01(x , y)(Du)(y)dV (y).
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Tools used in the proof of the main result The role of the Unique Continuation Property

This theorem immediately yields a Cauchy reproducing formula for

functions u ∈ H p(Ω,D) which, further, may be used to show that

H p(∂Ω,D) is a closed subspace of Lp(∂Ω) if Ω ⊂ M is a UR domain.
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functions u ∈ H p(Ω,D) which, further, may be used to show that

H p(∂Ω,D) is a closed subspace of Lp(∂Ω) if Ω ⊂ M is a UR domain.

This theorem is optimal both form a geometric and analytic point of

view. Consider the case when

M := C, Ω := B(0,1) \ {0} ⊂ C.
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M := C, Ω := B(0,1) \ {0} ⊂ C.

Then Ω is of finite perimeter and σ is simply the arclength measure.
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Tools used in the proof of the main result The role of the Unique Continuation Property

This theorem immediately yields a Cauchy reproducing formula for

functions u ∈ H p(Ω,D) which, further, may be used to show that

H p(∂Ω,D) is a closed subspace of Lp(∂Ω) if Ω ⊂ M is a UR domain.

This theorem is optimal both form a geometric and analytic point of

view. Consider the case when

M := C, Ω := B(0,1) \ {0} ⊂ C.

Then Ω is of finite perimeter and σ is simply the arclength measure.

In this context, take D := ∂ and

u : Ω −→ C given by u(z) :=
1

z
, ∀ z ∈ Ω.
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This theorem immediately yields a Cauchy reproducing formula for

functions u ∈ H p(Ω,D) which, further, may be used to show that

H p(∂Ω,D) is a closed subspace of Lp(∂Ω) if Ω ⊂ M is a UR domain.

This theorem is optimal both form a geometric and analytic point of

view. Consider the case when

M := C, Ω := B(0,1) \ {0} ⊂ C.

Then Ω is of finite perimeter and σ is simply the arclength measure.

In this context, take D := ∂ and

u : Ω −→ C given by u(z) :=
1

z
, ∀ z ∈ Ω.

Note that u satisfies all conditions listed in the statement (Du = 0 in Ω).
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Tools used in the proof of the main result The role of the Unique Continuation Property

This theorem immediately yields a Cauchy reproducing formula for

functions u ∈ H p(Ω,D) which, further, may be used to show that

H p(∂Ω,D) is a closed subspace of Lp(∂Ω) if Ω ⊂ M is a UR domain.

This theorem is optimal both form a geometric and analytic point of

view. Consider the case when

M := C, Ω := B(0,1) \ {0} ⊂ C.

Then Ω is of finite perimeter and σ is simply the arclength measure.

In this context, take D := ∂ and

u : Ω −→ C given by u(z) :=
1

z
, ∀ z ∈ Ω.

Note that u satisfies all conditions listed in the statement (Du = 0 in Ω).

However, the corresponding Cauchy-Pompeiu formula fails since it

reduces to

u(z) =
1

2πi

∫

∂B(0,1)

u(ζ)

ζ − z
dζ ∀ z ∈ Ω.

Irina Mitrea (Temple University) Kerzman-Stein Formulas 01/13/2015 27 / 30



Tools used in the proof of the main result The role of the Unique Continuation Property

This is false since
∫

|ζ|=1
dζ

ζ(ζ−z) = 0 whenever 0 < |z| < 1.
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ζ(ζ−z) = 0 whenever 0 < |z| < 1.

Root of this failure: near the point 0 ∈ ∂Ω there is no “boundary mass".
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This is false since
∫

|ζ|=1
dζ

ζ(ζ−z) = 0 whenever 0 < |z| < 1.

Root of this failure: near the point 0 ∈ ∂Ω there is no “boundary mass".

One may attempt to prevent such pathologies from happening by

requiring that

∂Ω is Ahlfors-David regular,

which, in the present context, amounts to

H
1(Br (z) ∩ ∂Ω) ≈ r , uniformly for z ∈ ∂Ω and r ∈ (0,1].

Nonetheless, problems persist since we can take a slit disk, say

Ω := B(0,1) \ {(x ,0) : x ≥ 0} ⊂ C,

while still retaining u and D as above.

Irina Mitrea (Temple University) Kerzman-Stein Formulas 01/13/2015 28 / 30



Tools used in the proof of the main result The role of the Unique Continuation Property

This is false since
∫

|ζ|=1
dζ

ζ(ζ−z) = 0 whenever 0 < |z| < 1.

Root of this failure: near the point 0 ∈ ∂Ω there is no “boundary mass".

One may attempt to prevent such pathologies from happening by

requiring that

∂Ω is Ahlfors-David regular,

which, in the present context, amounts to

H
1(Br (z) ∩ ∂Ω) ≈ r , uniformly for z ∈ ∂Ω and r ∈ (0,1].

Nonetheless, problems persist since we can take a slit disk, say

Ω := B(0,1) \ {(x ,0) : x ≥ 0} ⊂ C,

while still retaining u and D as above.

Then ∂Ω is ADR and yet the Cauchy-Pompeiu formula does not hold in

this case.
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Tools used in the proof of the main result The role of the Unique Continuation Property

The problem stems from the fact that σ acts according to

σ(A) = H
1(A ∩ ∂B(0,1)), A ⊆ ∂Ω,
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The problem stems from the fact that σ acts according to

σ(A) = H
1(A ∩ ∂B(0,1)), A ⊆ ∂Ω,

which means that σ does not charge the line segment

L := {(x ,0) : 0 ≤ x < 1} ⊂ ∂Ω.
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σ(A) = H
1(A ∩ ∂B(0,1)), A ⊆ ∂Ω,

which means that σ does not charge the line segment

L := {(x ,0) : 0 ≤ x < 1} ⊂ ∂Ω.

In the language of GMT the segment L has the following significance:

L = ∂Ω \ ∂∗Ω

where ∂∗Ω, the measure theoretic boundary of the finite perimeter set

Ω, is the support of the measure σ.
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The problem stems from the fact that σ acts according to

σ(A) = H
1(A ∩ ∂B(0,1)), A ⊆ ∂Ω,

which means that σ does not charge the line segment

L := {(x ,0) : 0 ≤ x < 1} ⊂ ∂Ω.

In the language of GMT the segment L has the following significance:

L = ∂Ω \ ∂∗Ω

where ∂∗Ω, the measure theoretic boundary of the finite perimeter set

Ω, is the support of the measure σ. Thus, in order to exclude this type

of anomalies, we also need:

H
1(∂Ω \ ∂∗Ω) = 0,

a condition incorporated into the definition of an Ahlfors regular

domain.
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Tools used in the proof of the main result A sharp Divergence Theorem on manifolds

Another basic ingredient in the proof of the generalized

Cauchy-Pompeiu formula is the following optimal version of the

Divergence Formula on Ahlfors regular domains on manifolds.

Theorem (Sharp Divergence Theorem)

Let Ω ⊂ M be an Ahlfors regular domain and set σ := Hn−1⌊∂Ω. In

particular, Ω is a set of finite perimeter, and its outward unit conormal

ν : ∂Ω → T ∗M is defined σ-a.e. on ∂Ω.
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Theorem (Sharp Divergence Theorem)

Let Ω ⊂ M be an Ahlfors regular domain and set σ := Hn−1⌊∂Ω. In

particular, Ω is a set of finite perimeter, and its outward unit conormal

ν : ∂Ω → T ∗M is defined σ-a.e. on ∂Ω. Also, suppose ~F ∈ L1
loc

(

Ω,TM
)

is a vector field satisfying the following three conditions:
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Let Ω ⊂ M be an Ahlfors regular domain and set σ := Hn−1⌊∂Ω. In

particular, Ω is a set of finite perimeter, and its outward unit conormal

ν : ∂Ω → T ∗M is defined σ-a.e. on ∂Ω. Also, suppose ~F ∈ L1
loc

(

Ω,TM
)

is a vector field satisfying the following three conditions:

(a) div ~F ∈ L1(Ω);
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Divergence Formula on Ahlfors regular domains on manifolds.

Theorem (Sharp Divergence Theorem)

Let Ω ⊂ M be an Ahlfors regular domain and set σ := Hn−1⌊∂Ω. In

particular, Ω is a set of finite perimeter, and its outward unit conormal

ν : ∂Ω → T ∗M is defined σ-a.e. on ∂Ω. Also, suppose ~F ∈ L1
loc

(

Ω,TM
)

is a vector field satisfying the following three conditions:

(a) div ~F ∈ L1(Ω);

(b) N~F ∈ L1(∂Ω);

(c) there exists ~F
∣

∣

n.t.

∂Ω
σ-a.e. in ∂Ω.
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Another basic ingredient in the proof of the generalized

Cauchy-Pompeiu formula is the following optimal version of the

Divergence Formula on Ahlfors regular domains on manifolds.

Theorem (Sharp Divergence Theorem)

Let Ω ⊂ M be an Ahlfors regular domain and set σ := Hn−1⌊∂Ω. In

particular, Ω is a set of finite perimeter, and its outward unit conormal

ν : ∂Ω → T ∗M is defined σ-a.e. on ∂Ω. Also, suppose ~F ∈ L1
loc

(

Ω,TM
)

is a vector field satisfying the following three conditions:

(a) div ~F ∈ L1(Ω);

(b) N~F ∈ L1(∂Ω);

(c) there exists ~F
∣

∣

n.t.

∂Ω
σ-a.e. in ∂Ω.

Then
∫

Ω
div ~F dV =

∫

∂Ω
T∗M

(

ν , ~F
∣

∣

n.t.

∂Ω

)

TM
dσ.
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