Characterizing Lyapunov domains via Riesz transforms on Hölder spaces

Dorina Mitrea

joint work with Marius Mitrea and Joan Verdera

Workshop on Harmonic Analysis, Partial Differential Equations and Geometric Measure Theory ICMAT, Madrid, Spain January 12–16, 2015 $\Omega \subseteq \mathbb{R}^n$ open set of locally finite perimeter ν outward unit normal to Ω (in the GMT sense) $\sigma := \mathcal{H}^{n-1} \lfloor \partial \Omega$ "surface measure" where \mathcal{H}^k is the k-dimensional Hausdorff measure in \mathbb{R}^n

Definition

 $\partial\Omega$ is called Ahlfors regular if at all scales and locations behaves like an (n-1)-dimensional surface, i.e., there exists $C \ge 1$ such that

 $C^{-1}R^{n-1} \le \mathcal{H}^{n-1}(B(x,R) \cap \partial\Omega) \le CR^{n-1}$

for each $x \in \partial \Omega$ and $R \in (0, \operatorname{diam} \partial \Omega)$.

Definition

 $\partial\Omega$ is called a UR set if it is Ahlfors regular and at all scales and locations contains big pieces of Lipschitz images, i.e., there exist ε , $M \in (0, \infty)$ such that for each $x \in \partial\Omega$ and $R \in (0, \operatorname{diam} \partial\Omega)$, there is a Lipschitz map $\Phi : B_R^{n-1} \to \mathbb{R}^n (B_R^{n-1} = \operatorname{ball} \operatorname{of} \operatorname{radius} R \operatorname{in} \mathbb{R}^{n-1})$ with Lipschitz constant $\leq M$, such that

 $\mathcal{H}^{n-1}(\partial\Omega \cap B(x,R) \cap \Phi(B_R^{n-1})) \ge \varepsilon R^{n-1}.$

Definition

 $\partial\Omega$ is called Ahlfors regular if at all scales and locations behaves like an (n-1)-dimensional surface, i.e., there exists $C \ge 1$ such that

$$C^{-1}R^{n-1} \le \mathcal{H}^{n-1}(B(x,R) \cap \partial\Omega) \le CR^{n-1},$$

for each $x \in \partial \Omega$ and $R \in (0, \operatorname{diam} \partial \Omega)$.

Definition

 $\partial\Omega$ is called a UR set if it is Ahlfors regular and at all scales and locations contains big pieces of Lipschitz images, i.e., there exist ε , $M \in (0, \infty)$ such that for each $x \in \partial\Omega$ and $R \in (0, \operatorname{diam} \partial\Omega)$, there is a Lipschitz map $\Phi : B_R^{n-1} \to \mathbb{R}^n (B_R^{n-1} = \operatorname{ball} \operatorname{of} \operatorname{radius} R \operatorname{in} \mathbb{R}^{n-1})$ with Lipschitz constant $\leq M$, such that

 $\mathcal{H}^{n-1}\big(\partial\Omega \cap B(x,R) \cap \Phi(B_R^{n-1})\big) \ge \varepsilon R^{n-1}.$

Definition

 $\partial\Omega$ is called Ahlfors regular if at all scales and locations behaves like an (n-1)-dimensional surface, i.e., there exists $C \ge 1$ such that

$$C^{-1}R^{n-1} \le \mathcal{H}^{n-1}(B(x,R) \cap \partial\Omega) \le CR^{n-1},$$

for each $x \in \partial \Omega$ and $R \in (0, \operatorname{diam} \partial \Omega)$.

Definition

 $\partial\Omega$ is called a UR set if it is Ahlfors regular and at all scales and locations contains big pieces of Lipschitz images, i.e., there exist ε , $M \in (0, \infty)$ such that for each $x \in \partial\Omega$ and $R \in (0, \operatorname{diam} \partial\Omega)$, there is a Lipschitz map $\Phi : B_R^{n-1} \to \mathbb{R}^n$ $(B_R^{n-1} = \operatorname{ball} \operatorname{of} \operatorname{radius} R \operatorname{in} \mathbb{R}^{n-1})$ with Lipschitz constant $\leq M$, such that

 $\mathcal{H}^{n-1}\big(\partial\Omega \cap B(x,R) \cap \Phi(B_R^{n-1})\big) \ge \varepsilon R^{n-1}.$

Definition

 $\partial\Omega$ is called Ahlfors regular if at all scales and locations behaves like an (n-1)-dimensional surface, i.e., there exists $C \ge 1$ such that

$$C^{-1}R^{n-1} \le \mathcal{H}^{n-1}(B(x,R) \cap \partial\Omega) \le CR^{n-1},$$

for each $x \in \partial \Omega$ and $R \in (0, \operatorname{diam} \partial \Omega)$.

Definition

 $\partial\Omega$ is called a UR set if it is Ahlfors regular and at all scales and locations contains big pieces of Lipschitz images, i.e., there exist ε , $M \in (0, \infty)$ such that for each $x \in \partial\Omega$ and $R \in (0, \operatorname{diam} \partial\Omega)$, there is a Lipschitz map $\Phi: B_R^{n-1} \to \mathbb{R}^n$ $(B_R^{n-1} = \operatorname{ball} \operatorname{of} \operatorname{radius} R \operatorname{in} \mathbb{R}^{n-1})$ with Lipschitz constant $\leq M$, such that

 $\mathcal{H}^{n-1}\big(\partial\Omega \cap B(x,R) \cap \Phi(B_R^{n-1})\big) \ge \varepsilon R^{n-1}.$

Assume that $\partial\Omega$ is Ahlfors regular. Then all "reasonable" Singular Integral Operators have truncated versions bounded on $L^2(\partial\Omega)$ uniform w.r.t. the truncation parameter $\Leftrightarrow \partial\Omega$ is a UR set.

Truncated version of reasonable SIO's:

$$(T_{\varepsilon}f)(x) := \int_{y \in \partial \Omega \setminus B(x,\varepsilon)} k(x-y)f(y) \, d\sigma(y), \quad x \in \partial \Omega,$$

k is odd, smooth in $\mathbb{R}^n \setminus \{0\}$, and $|\nabla^{\ell} k(x)| \leq |x|^{-(n-1+\ell)}, \forall \ell \in \mathbb{N}_0$. For homogeneous kernels, $\partial \Omega \ \mathrm{UR} \Rightarrow \lim_{\varepsilon \to 0^+} (T_{\varepsilon} f)(x)$ exists for σ -a.e. $x \in \partial \Omega$ and $f \in L^p(\partial \Omega), p \in (1, \infty)$ [Hofmann, Mitrea, Taylor, 2010]. Moral: For the study of SIO's on L^p spaces, the class of UR sets is the optimal environment.

Assume that $\partial\Omega$ is Ahlfors regular. Then all "reasonable" Singular Integral Operators have truncated versions bounded on $L^2(\partial\Omega)$ uniform w.r.t. the truncation parameter $\Leftrightarrow \partial\Omega$ is a UR set.

Truncated version of reasonable SIO's:

$$(T_{\varepsilon}f)(x) := \int_{y \in \partial \Omega \setminus B(x,\varepsilon)} k(x-y)f(y) \, d\sigma(y), \quad x \in \partial \Omega,$$

k is odd, smooth in $\mathbb{R}^n \setminus \{0\}$, and $|\nabla^{\ell} k(x)| \leq |x|^{-(n-1+\ell)}$, $\forall \ell \in \mathbb{N}_0$. For homogeneous kernels, $\partial \Omega \ \mathrm{UR} \Rightarrow \lim_{\varepsilon \to 0^+} (T_{\varepsilon}f)(x)$ exists for σ -a.e. $x \in \partial \Omega$ and $f \in L^p(\partial \Omega), p \in (1, \infty)$ [Hofmann, Mitrea, Taylor, 2010]. Moral: For the study of SIO's on L^p spaces, the class of UR sets is the optimal environment.

Assume that $\partial\Omega$ is Ahlfors regular. Then all "reasonable" Singular Integral Operators have truncated versions bounded on $L^2(\partial\Omega)$ uniform w.r.t. the truncation parameter $\Leftrightarrow \partial\Omega$ is a UR set.

Truncated version of reasonable SIO's:

$$(T_{\varepsilon}f)(x) := \int_{y \in \partial \Omega \setminus B(x,\varepsilon)} k(x-y)f(y) \, d\sigma(y), \quad x \in \partial \Omega,$$

k is odd, smooth in $\mathbb{R}^n \setminus \{0\}$, and $|\nabla^{\ell} k(x)| \leq |x|^{-(n-1+\ell)}, \forall \ell \in \mathbb{N}_0$. For homogeneous kernels, $\partial \Omega \text{ UR} \Rightarrow \lim_{\varepsilon \to 0^+} (T_{\varepsilon}f)(x)$ exists for σ -a.e. $x \in \partial \Omega$ and $f \in L^p(\partial \Omega), p \in (1, \infty)$ [Hofmann, Mitrea, Taylor, 2010]. Moral: For the study of SIO's on L^p spaces, the class of UR sets is the optimal environment.

Assume that $\partial\Omega$ is Ahlfors regular. Then all "reasonable" Singular Integral Operators have truncated versions bounded on $L^2(\partial\Omega)$ uniform w.r.t. the truncation parameter $\Leftrightarrow \partial\Omega$ is a UR set.

Truncated version of reasonable SIO's:

$$(T_{\varepsilon}f)(x) := \int_{y \in \partial \Omega \setminus B(x,\varepsilon)} k(x-y)f(y) \, d\sigma(y), \quad x \in \partial \Omega,$$

k is odd, smooth in $\mathbb{R}^n \setminus \{0\}$, and $|\nabla^{\ell} k(x)| \leq |x|^{-(n-1+\ell)}, \forall \ell \in \mathbb{N}_0$. For homogeneous kernels, $\partial \Omega \ \mathrm{UR} \Rightarrow \lim_{\varepsilon \to 0^+} (T_{\varepsilon}f)(x)$ exists for σ -a.e. $x \in \partial \Omega$ and $f \in L^p(\partial \Omega), p \in (1, \infty)$ [Hofmann, Mitrea, Taylor, 2010]. Moral: For the study of SIO's on L^p spaces, the class of UR sets is the optimal environment.

Question: Can one streamline the class of SIO's in the David-Semmes theorem to just Riesz transforms?

Truncated Riesz transforms: given $\varepsilon > 0$, for $j = 1, \ldots, n$,

$$(R_{j,\varepsilon}f)(x) := \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial\Omega \setminus B(x,\varepsilon)}} \frac{x_j - y_j}{|x - y|^n} f(y) \, d\sigma(y), \quad x \in \partial\Omega.$$

Note: $k_j(x) := \frac{x_j}{|x|^n}$ is of the type considered earlier and is homogeneous.

Difficult question! Answer: YES n = 2 proved by P. Mattila, M.S. Melnikov, and J. Verdera [Ann. of Math., 1996] and the higher dimensionl case by F. Nazarov, X. Tolsa, and A. Volberg [Acta Math., 2014].

Question: Can one streamline the class of SIO's in the David-Semmes theorem to just Riesz transforms?

Truncated Riesz transforms: given $\varepsilon > 0$, for $j = 1, \ldots, n$,

$$(R_{j,\varepsilon}f)(x) := \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \setminus B(x,\varepsilon)}} \frac{x_j - y_j}{|x - y|^n} f(y) \, d\sigma(y), \quad x \in \partial \Omega.$$

Note: $k_j(x) := \frac{x_j}{|x|^n}$ is of the type considered earlier and is homogeneous.

Difficult question! Answer: YES n = 2 proved by P. Mattila, M.S. Melnikov, and J. Verdera [Ann. of Math., 1996] and the higher dimensionl case by F. Nazarov, X. Tolsa, and A. Volberg [Acta Math., 2014].

Question: Can one streamline the class of SIO's in the David-Semmes theorem to just Riesz transforms?

Truncated Riesz transforms: given $\varepsilon > 0$, for $j = 1, \ldots, n$,

$$(R_{j,\varepsilon}f)(x) := \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial\Omega \setminus B(x,\varepsilon)}} \frac{x_j - y_j}{|x - y|^n} f(y) \, d\sigma(y), \quad x \in \partial\Omega.$$

Note: $k_j(x) := \frac{x_j}{|x|^n}$ is of the type considered earlier and is homogeneous.

Difficult question! Answer: YES n = 2 proved by P. Mattila, M.S. Melnikov, and J. Verdera [Ann. of Math., 1996] and the higher dimensionl case by F. Nazarov, X. Tolsa, and A. Volberg [Acta Math., 2014].

Question: Can one streamline the class of SIO's in the David-Semmes theorem to just Riesz transforms?

Truncated Riesz transforms: given $\varepsilon > 0$, for $j = 1, \ldots, n$,

$$(R_{j,\varepsilon}f)(x) := \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial\Omega \setminus B(x,\varepsilon)}} \frac{x_j - y_j}{|x - y|^n} f(y) \, d\sigma(y), \quad x \in \partial\Omega.$$

Note: $k_j(x) := \frac{x_j}{|x|^n}$ is of the type considered earlier and is homogeneous.

Difficult question! Answer: YES

n = 2 proved by P. Mattila, M.S. Melnikov, and J. Verdera [Ann. of Math., 1996] and the higher dimensionl case by F. Nazarov, X. Tolsa, and A. Volberg [Acta Math., 2014].

In fact, by using the T(1) theorem for SIO's with odd kernels (in spaces of homogeneous type), the L^p -boundedness of $R_{j,\varepsilon}$'s (uniform with respect to ε) reduces to just

 $R_j 1 \in BMO(\partial \Omega), \qquad 1 \le j \le n \qquad (*)$

where BMO($\partial\Omega$) is the John-Nirenberg space of functions of bounded mean oscillations on $\partial\Omega$ and $R_j : \mathcal{C}^{\alpha}(\partial\Omega) \to (\mathcal{C}^{\alpha}(\partial\Omega))^*$ is the linear mapping given by

 $\langle R_j f, g \rangle := \frac{1}{2} \int_{\partial \Omega} \int_{\partial \Omega} \frac{x_j - y_j}{|x - y|^n} [f(y)g(x) - f(x)g(y)] \, d\sigma(y) d\sigma(x)$

for every $f, g \in \mathcal{C}^{\alpha}(\partial \Omega)$.

As such, the Nazarov-Tolsa-Volberg result may be rephrased as:

Under the background assumption $\partial\Omega$ is Ahlfors regular, $\partial\Omega$ is a UR set $\iff (*)$ holds

In fact, by using the T(1) theorem for SIO's with odd kernels (in spaces of homogeneous type), the L^p -boundedness of $R_{j,\varepsilon}$'s (uniform with respect to ε) reduces to just

 $R_j 1 \in BMO(\partial \Omega), \qquad 1 \le j \le n \qquad (*)$

where BMO($\partial\Omega$) is the John-Nirenberg space of functions of bounded mean oscillations on $\partial\Omega$ and $R_j : \mathcal{C}^{\alpha}(\partial\Omega) \to (\mathcal{C}^{\alpha}(\partial\Omega))^*$ is the linear mapping given by

 $\langle R_j f, g \rangle := \frac{1}{2} \int_{\partial \Omega} \int_{\partial \Omega} \frac{x_j - y_j}{|x - y|^n} [f(y)g(x) - f(x)g(y)] \, d\sigma(y) d\sigma(x)$

for every $f, g \in \mathcal{C}^{\alpha}(\partial \Omega)$.

As such, the Nazarov-Tolsa-Volberg result may be rephrased as:

Under the background assumption $\partial\Omega$ is Ahlfors regular, $\partial\Omega$ is a UR set \iff (*) holds

So far, looked at SIO's on L^p spaces.

Next natural question: Will changing $BMO(\partial \Omega)$ to a more regular space in the equivalence

 $\partial \Omega$ is a UR set $\iff R_j 1 \in BMO(\partial \Omega), \qquad 1 \le j \le n,$

yield an equivalence where Ω is correspondingly more regular?

We are interested in replacing BMO($\partial \Omega$) with the Hölder space $\mathcal{C}^{\alpha}(\partial \Omega)$ for any $\alpha \in (0, 1)$.

So far, looked at SIO's on L^p spaces.

Next natural question: Will changing $BMO(\partial\Omega)$ to a more regular space in the equivalence

 $\partial \Omega$ is a UR set $\iff R_j 1 \in BMO(\partial \Omega), \qquad 1 \le j \le n,$

yield an equivalence where Ω is correspondingly more regular?

We are interested in replacing BMO($\partial \Omega$) with the Hölder space $\mathcal{C}^{\alpha}(\partial \Omega)$ for any $\alpha \in (0, 1)$.

So far, looked at SIO's on L^p spaces.

Next natural question: Will changing $BMO(\partial\Omega)$ to a more regular space in the equivalence

 $\partial \Omega$ is a UR set $\iff R_j 1 \in BMO(\partial \Omega), \qquad 1 \le j \le n,$

yield an equivalence where Ω is correspondingly more regular?

We are interested in replacing BMO($\partial \Omega$) with the Hölder space $\mathcal{C}^{\alpha}(\partial \Omega)$ for any $\alpha \in (0, 1)$.

Recall that the measure-theoretic boundary $\partial_*\Omega$ of $\Omega \subseteq \mathbb{R}^n$ is defined by

$$\partial_*\Omega := \Big\{ x \in \partial\Omega : \limsup_{r \to 0^+} \frac{\mathcal{H}^n(B(x,r) \cap \Omega)}{r^n} > 0$$

and
$$\limsup_{r \to 0^+} \frac{\mathcal{H}^n(B(x,r) \setminus \Omega)}{r^n} > 0 \Big\}.$$

GMT Fact: If Ω has locally finite perimeter, the outward unit normal ν is defined σ -a.e. on $\partial_*\Omega$. In particular, the condition

$$\mathcal{H}^{n-1}(\partial\Omega\setminus\partial_*\Omega)=0$$

is equivalent with having the outward unit normal ν defined σ -a.e. on $\partial\Omega$ (and it implies that $\partial\Omega$ is (n-1)-rectifiable).

Recall that the measure-theoretic boundary $\partial_*\Omega$ of $\Omega \subseteq \mathbb{R}^n$ is defined by

$$\partial_*\Omega := \Big\{ x \in \partial\Omega : \limsup_{r \to 0^+} \frac{\mathcal{H}^n(B(x,r) \cap \Omega)}{r^n} > 0$$

and
$$\limsup_{r \to 0^+} \frac{\mathcal{H}^n(B(x,r) \setminus \Omega)}{r^n} > 0 \Big\}.$$

GMT Fact: If Ω has locally finite perimeter, the outward unit normal ν is defined σ -a.e. on $\partial_*\Omega$. In particular, the condition

$$\mathcal{H}^{n-1}(\partial\Omega\setminus\partial_*\Omega)=0$$

is equivalent with having the outward unit normal ν defined σ -a.e. on $\partial\Omega$ (and it implies that $\partial\Omega$ is (n-1)-rectifiable).

Theorem (D.M., M. Mitrea, J. Verdera, 2014)

If $\alpha \in (0,1)$, $\partial\Omega$ compact Ahlfors regular, $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$, $\partial\Omega = \partial(\overline{\Omega})$, then $R_j 1 \in \mathcal{C}^{\alpha}(\partial\Omega)$, $1 \leq j \leq n \iff \Omega$ is a $\mathcal{C}^{1,\alpha}$ domain. Moreover, if Ω is a $\mathcal{C}^{1,\alpha}$ domain, then for every odd, homogeneous polynomial P in \mathbb{R}^n the generalized Riesz transform $T = T_P$ given by

$$Tf(x) := ext{p.v.} \int_{\partial\Omega} rac{P(x-y)}{|x-y|^{n-1+ ext{deg}P}} f(y) \, d\sigma(y), \quad x \in \partial\Omega$$

is bounded from $\mathcal{C}^{\alpha}(\partial\Omega)$ into $\mathcal{C}^{\alpha}(\partial\Omega)$, and if

$$\mathbb{T}f(x) := \int_{\partial\Omega} \frac{P(x-y)}{|x-y|^{n-1+\mathrm{deg}P}} f(y) \, d\sigma(y), \quad x \in \Omega,$$

then

 $\mathbb{T}: \mathcal{C}^{\alpha}(\partial\Omega) \to \mathcal{C}^{\alpha}(\overline{\Omega})$ is also bounded.

Theorem (D.M., M. Mitrea, J. Verdera, 2014)

If $\alpha \in (0,1)$, $\partial \Omega$ compact Ahlfors regular, $\mathcal{H}^{n-1}(\partial \Omega \setminus \partial_* \Omega) = 0$, $\partial \Omega = \partial(\overline{\Omega})$, then $R_j 1 \in \mathcal{C}^{\alpha}(\partial \Omega)$, $1 \leq j \leq n \iff \Omega$ is a $\mathcal{C}^{1,\alpha}$ domain. Moreover, if Ω is a $\mathcal{C}^{1,\alpha}$ domain, then for every odd, homogeneous polynomial P in \mathbb{R}^n the generalized Riesz transform $T = T_P$ given by

$$Tf(x) := \text{p.v.} \int_{\partial\Omega} \frac{P(x-y)}{|x-y|^{n-1+\deg P}} f(y) \, d\sigma(y), \quad x \in \partial\Omega$$

is bounded from $\mathcal{C}^{\alpha}(\partial\Omega)$ into $\mathcal{C}^{\alpha}(\partial\Omega)$, and if

$$\mathbb{T}f(x) := \int_{\partial\Omega} \frac{P(x-y)}{|x-y|^{n-1+\mathrm{deg}P}} f(y) \, d\sigma(y), \quad x \in \Omega,$$

then

 $\mathbb{T}: \mathcal{C}^{\alpha}(\partial \Omega) \to \mathcal{C}^{\alpha}(\overline{\Omega}) \text{ is also bounded.}$

A motivating example

The PDE modeling elastic deformation phenomena is described via the Lamé system in \mathbb{R}^n (where $\lambda, \mu \in \mathbb{R}$ are the Lamé moduli)

$$Lu := \mu \Delta u + (\lambda + \mu) \nabla \operatorname{div} u, \quad u = (u_1, ..., u_n) \in C^2.$$

One basic approach to solving BVPs for this system uses boundary SIO, such as the single layer associated with the Lamé system

$$\mathcal{S}_{Lame}f(x) := \left(\int_{\partial\Omega} \sum_{\beta=1}^{n} E_{\alpha\beta}(x-y) f_{\beta}(y) \, d\sigma(y)\right)_{1 \le \alpha \le n} \quad x \in \Omega,$$

where (assuming $n \ge 3$)

$$E_{\alpha\beta}(x) := \frac{-1}{2\mu(2\mu+\lambda)\omega_{n-1}} \left[\frac{3\mu+\lambda}{n-2} \frac{\delta_{\alpha\beta}}{|x|^{n-2}} + \frac{(\mu+\lambda)x_{\alpha}x_{\beta}}{|x|^{n}} \right]$$

A motivating example

The PDE modeling elastic deformation phenomena is described via the Lamé system in \mathbb{R}^n (where $\lambda, \mu \in \mathbb{R}$ are the Lamé moduli)

$$Lu := \mu \Delta u + (\lambda + \mu) \nabla \operatorname{div} u, \quad u = (u_1, ..., u_n) \in C^2.$$

One basic approach to solving BVPs for this system uses boundary SIO, such as the single layer associated with the Lamé system

$$\mathcal{S}_{Lame}f(x) := \left(\int_{\partial\Omega}\sum_{\beta=1}^{n} E_{\alpha\beta}(x-y)f_{\beta}(y)\,d\sigma(y)\right)_{1\leq\alpha\leq n} \quad x\in\Omega,$$

where (assuming $n \ge 3$)

$$E_{\alpha\beta}(x) := \frac{-1}{2\mu(2\mu+\lambda)\omega_{n-1}} \left[\frac{3\mu+\lambda}{n-2} \frac{\delta_{\alpha\beta}}{|x|^{n-2}} + \frac{(\mu+\lambda)x_{\alpha}x_{\beta}}{|x|^n} \right].$$

When such BVPs are considered in the context of Hölder spaces in Lyapunov domains the issue becomes whether this SIO behaves naturally on such a scale. Our previous theorem implies that the operator

$$\mathcal{S}_{Lame}: \mathcal{C}^{\alpha}(\partial\Omega) \to \mathcal{C}^{1,\alpha}(\overline{\Omega})$$

is well-defined and bounded.

A motivating example

To justify that the single layer for the Lamé system is smoothing of order one on the Hölder scale observe that for each j = 1, ..., n the previous theorem applies to the integral operator $\mathbb{T} := \partial_j \mathcal{S}_{Lame}$ and gives that $\partial_j \mathcal{S}_{Lame} : C^{\alpha}(\partial \Omega) \to C^{\alpha}(\overline{\Omega})$ boundedly. Indeed,

$$(\partial_j \mathcal{S}_{Lame} f)(x) = \left(\int_{\partial\Omega} \sum_{\beta=1}^n (\partial_j E_{\alpha\beta})(x-y) f_\beta(y) \, d\sigma(y)\right)_{1 \le \alpha \le n} \quad x \in \Omega$$

and its integral kernel is a matrix in which the (α, β) entry is given by $P(x-y)/|x-y|^{n-1+\deg P}$ with P the homogeneous, odd, polynomial of degree 3:

$$P(x) = \frac{(3\mu + \lambda)\delta_{\alpha\beta}x_j|x|^2 - (\mu + \lambda)(\delta_{\alphaj}x_\beta|x|^2 + \delta_{\betaj}x_\alpha|x|^2 - nx_jx_\alpha x_\beta)}{2\mu(2\mu + \lambda)\omega_{n-1}}$$

From this the desired conclusion follows using

$$\|\mathcal{S}_{Lame}f\|_{\mathcal{C}^{1,\alpha}(\overline{\Omega})} = \|\mathcal{S}_{Lame}f\|_{L^{\infty}(\Omega)} + \sum_{j=1}^{n} \|\partial_{j}\mathcal{S}_{Lame}f\|_{\mathcal{C}^{\alpha}(\overline{\Omega})}.$$

• $\partial\Omega$ compact Ahlfors regular and $\partial\Omega = \partial(\overline{\Omega})$, then $\nu \in \mathcal{C}^{\alpha}(\partial\Omega) \iff \Omega \ a \ \mathcal{C}^{1,\alpha}$ domain [Hofmann, Mitrea, Taylor, 2007]

• Clifford algebra $(\mathcal{C}_n, +, \odot)$ which is the minimal enlargement of \mathbb{R}^n to a unitary real algebra such that $x \odot x = -|x|^2$ for any $x \in \mathbb{R}^n$. Note that by identifying the canonical basis $\{e_j\}_{1 \leq j \leq n}$ from \mathbb{R}^n with the imaginary units in \mathcal{C}_n , we have $\mathbb{R}^n \hookrightarrow \mathcal{C}_n$ via

$$x = (x_1, \dots, x_n) \equiv \sum_{j=1}^n x_j e_j \in \mathcal{C}_n. \text{ Also, } u = \sum_{l=0}^n \sum_{|I|=l} u_I e_I \text{ with}$$
$$u_I \in \mathbb{C}, \text{ for each } u \in \mathcal{C}_n, \text{ where } e_I = e_{i_1} \odot e_{i_2} \odot \cdots \odot e_{i_l} \text{ if}$$

 $I = (i_1, i_2, \dots, i_l)$ for $1 \le i_1 < i_2 < \dots < i_l \le n$ and $e_0 := e_{\emptyset} := 1$.

• $\partial\Omega$ compact Ahlfors regular and $\partial\Omega = \partial(\overline{\Omega})$, then $\nu \in \mathcal{C}^{\alpha}(\partial\Omega) \iff \Omega \ a \ \mathcal{C}^{1,\alpha}$ domain [Hofmann, Mitrea, Taylor, 2007]

• Clifford algebra $(\mathcal{C}_n, +, \odot)$ which is the minimal enlargement of \mathbb{R}^n to a unitary real algebra such that $x \odot x = -|x|^2$ for any $x \in \mathbb{R}^n$. Note that by identifying the canonical basis $\{e_j\}_{1 \le j \le n}$ from \mathbb{R}^n with the imaginary units in \mathcal{C}_n , we have $\mathbb{R}^n \hookrightarrow \mathcal{C}_n$ via

$$x = (x_1, \dots, x_n) \equiv \sum_{j=1}^n x_j e_j \in \mathcal{C}_n. \text{ Also, } u = \sum_{l=0}^n \sum_{|I|=l} u_I e_I \text{ with } u_I \in \mathbb{C}, \text{ for each } u \in \mathcal{C}_n, \text{ where } e_I = e_i \odot e_i \odot \cdots \odot e_i \text{ if }$$

 $I = (i_1, i_2, \dots, i_l)$ for $1 \le i_1 < i_2 < \dots < i_l \le n$ and $e_0 := e_{\emptyset} := 1$.

• $\partial\Omega$ compact Ahlfors regular and $\partial\Omega = \partial(\overline{\Omega})$, then $\nu \in \mathcal{C}^{\alpha}(\partial\Omega) \iff \Omega \ a \ \mathcal{C}^{1,\alpha}$ domain [Hofmann, Mitrea, Taylor, 2007]

• Clifford algebra $(\mathcal{C}_n, +, \odot)$ which is the minimal enlargement of \mathbb{R}^n to a unitary real algebra such that $x \odot x = -|x|^2$ for any $x \in \mathbb{R}^n$. Note that by identifying the canonical basis $\{e_j\}_{1 \le j \le n}$ from \mathbb{R}^n with the imaginary units in \mathcal{C}_n , we have $\mathbb{R}^n \hookrightarrow \mathcal{C}_n$ via

$$x = (x_1, \dots, x_n) \equiv \sum_{j=1}^n x_j e_j \in \mathcal{C}_n$$
. Also, $u = \sum_{l=0}^n \sum_{|I|=l} u_I e_I$ with

 $u_I \in \mathbb{C}$, for each $u \in \mathcal{C}_n$, where $e_I = e_{i_1} \odot e_{i_2} \odot \cdots \odot e_{i_l}$ if $I = (i_1, i_2, \dots, i_l)$ for $1 \le i_1 < i_2 < \cdots < i_l \le n$ and $e_0 := e_{\emptyset} := 1$.

• $\partial\Omega$ compact Ahlfors regular and $\partial\Omega = \partial(\overline{\Omega})$, then $\nu \in \mathcal{C}^{\alpha}(\partial\Omega) \iff \Omega \ a \ \mathcal{C}^{1,\alpha}$ domain [Hofmann, Mitrea, Taylor, 2007]

• Clifford algebra $(\mathcal{C}\!\ell_n, +, \odot)$ which is the minimal enlargement of \mathbb{R}^n to a unitary real algebra such that $x \odot x = -|x|^2$ for any $x \in \mathbb{R}^n$. Note that by identifying the canonical basis $\{e_j\}_{1 \le j \le n}$ from \mathbb{R}^n with the imaginary units in $\mathcal{C}\!\ell_n$, we have $\mathbb{R}^n \hookrightarrow \mathcal{C}\!\ell_n$ via

$$x = (x_1, \dots, x_n) \equiv \sum_{j=1}^n x_j e_j \in \mathcal{C}_n. \text{ Also, } u = \sum_{l=0}^n \sum_{|I|=l} u_I e_I \text{ with}$$
$$u_I \in \mathbb{C}, \text{ for each } u \in \mathcal{C}_n, \text{ where } e_I = e_{i_1} \odot e_{i_2} \odot \dots \odot e_{i_l} \text{ if}$$

 $I = (i_1, i_2, \dots, i_l)$ for $1 \le i_1 < i_2 < \dots < i_l \le n$ and $e_0 := e_{\emptyset} := 1$.

• $\partial\Omega$ compact Ahlfors regular and $\partial\Omega = \partial(\overline{\Omega})$, then $\nu \in \mathcal{C}^{\alpha}(\partial\Omega) \iff \Omega \ a \ \mathcal{C}^{1,\alpha}$ domain [Hofmann, Mitrea, Taylor, 2007]

• Clifford algebra $(\mathcal{C}\!\ell_n, +, \odot)$ which is the minimal enlargement of \mathbb{R}^n to a unitary real algebra such that $x \odot x = -|x|^2$ for any $x \in \mathbb{R}^n$. Note that by identifying the canonical basis $\{e_j\}_{1 \le j \le n}$ from \mathbb{R}^n with the imaginary units in $\mathcal{C}\!\ell_n$, we have $\mathbb{R}^n \hookrightarrow \mathcal{C}\!\ell_n$ via

$$x = (x_1, \dots, x_n) \equiv \sum_{j=1}^n x_j e_j \in \mathcal{C}_n. \text{ Also, } u = \sum_{l=0}^n \sum_{|I|=l} u_I e_I \text{ with}$$

 $u_I \in \mathbb{C}$, for each $u \in \mathcal{C}_n$, where $e_I = e_{i_1} \odot e_{i_2} \odot \cdots \odot e_{i_l}$ if $I = (i_1, i_2, \dots, i_l)$ for $1 \le i_1 < i_2 < \cdots < i_l \le n$ and $e_0 := e_{\emptyset} := 1$.

• The Cauchy-Clifford operator

$$\mathbf{C}f(x) := \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot f(y) \, d\sigma(y), \quad x \in \partial \Omega,$$

where f is a $\mathcal{C}\ell_n$ -valued function defined on $\partial\Omega$.

• The Cauchy-Clifford operator

$$\mathbf{C}f(x) := \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot f(y) \, d\sigma(y), \quad x \in \partial \Omega,$$

where f is a $\mathcal{C}\ell_n$ -valued function defined on $\partial\Omega$.

• The Cauchy-Clifford operator

$$\mathbf{C}f(x) := \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot f(y) \, d\sigma(y), \quad x \in \partial \Omega,$$

where f is a $\mathcal{C}\ell_n$ -valued function defined on $\partial\Omega$.

• The Cauchy-Clifford operator

$$\mathbf{C}f(x) := \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot f(y) \, d\sigma(y), \quad x \in \partial \Omega,$$

where f is a $\mathcal{C}\ell_n$ -valued function defined on $\partial\Omega$.
Theorem (D. M., M. Mitrea, J. Verdera, 2014)

Fix $\alpha \in (0,1)$. Suppose $\Omega \subset \mathbb{R}^n$ is such that $\partial\Omega$ is compact Ahlfors regular with $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$. Then for every $f \in \mathcal{C}^{\alpha}(\partial\Omega) \otimes \mathcal{C}_n$ the limit

$$\mathbf{C}f(x) := \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot f(y) \, d\sigma(y)$$

exists for σ -a.e. $x \in \partial \Omega$, the operator

$$\mathbf{C}: \mathcal{C}^{\alpha}(\partial\Omega) \otimes \mathcal{C}\ell_n \to \mathcal{C}^{\alpha}(\partial\Omega) \otimes \mathcal{C}\ell_n$$

is bounded and

$$\mathbf{C}^2 = \frac{1}{4}I \quad on \ \mathcal{C}^{lpha}(\partial\Omega) \otimes \mathcal{C}\ell_n.$$

Theorem (cont.)

Moreover, if also $R_j 1 \in \text{BMO}(\partial \Omega)$ for $1 \leq j \leq n$, then for every $p \in (1, \infty)$ the pointwise limit above for $\mathbf{C}f(x)$ exists for σ -a.e. $x \in \partial \Omega$ whenever $f \in L^p(\partial \Omega) \otimes \mathcal{C}l_n$ and the operator \mathbf{C} , originally defined on $\mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}l_n$, extends boundedly to an operator

 $\mathbf{C}: L^p(\partial\Omega) \otimes \mathcal{C}\ell_n \to L^p(\partial\Omega) \otimes \mathcal{C}\ell_n$

with the property that $\mathbf{C}^2 = \frac{1}{4}I$ in $L^p(\partial\Omega) \otimes \mathcal{C}\ell_n$, and it also extends to a bounded operator

 $\mathbf{C} : \mathrm{BMO}(\partial\Omega) \otimes \mathcal{C}\ell_n \to \mathrm{BMO}(\partial\Omega) \otimes \mathcal{C}\ell_n$

with the property that $\mathbf{C}^2 = \frac{1}{4}I$ in $BMO(\partial\Omega) \otimes \mathcal{C}\ell_n$.

• There exists

p.v.
$$\int_{\partial\Omega} \frac{x_j - y_j}{|x - y|^n} d\sigma(y) \quad \sigma$$
-a.e. $x \in \partial\Omega$.

This can be seen either by relying on the fact that $\partial\Omega$ is (n-1)-rectifiable (given that $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$) and invoking [X. Tolsa, 2008], or, alternatively, assuming that $R_j 1 \in \text{BMO}(\partial\Omega)$, make use of the T(1) Theorem and the pointwise existence of the p.v. Cauchy-Clifford operator on Hölder functions.

• Assuming that $R_j 1 \in BMO(\partial \Omega)$, with $R_j 1$ originally defined as a functional in $(\mathcal{C}^{\alpha}(\partial \Omega))^*$, we have

$$(R_j 1)(x) = \text{p.v.} \int_{\partial\Omega} \frac{x_j - y_j}{|x - y|^n} \, d\sigma(y) \quad \sigma\text{-a.e. } x \in \partial\Omega.$$

• There exists

p.v.
$$\int_{\partial\Omega} \frac{x_j - y_j}{|x - y|^n} d\sigma(y) \quad \sigma$$
-a.e. $x \in \partial\Omega$.

This can be seen either by relying on the fact that $\partial\Omega$ is (n-1)-rectifiable (given that $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$) and invoking [X. Tolsa, 2008], or, alternatively, assuming that $R_j 1 \in \text{BMO}(\partial\Omega)$, make use of the T(1) Theorem and the pointwise existence of the p.v. Cauchy-Clifford operator on Hölder functions.

• Assuming that $R_j 1 \in BMO(\partial \Omega)$, with $R_j 1$ originally defined as a functional in $(\mathcal{C}^{\alpha}(\partial \Omega))^*$, we have

$$(R_j 1)(x) = \text{p.v.} \int_{\partial\Omega} \frac{x_j - y_j}{|x - y|^n} \, d\sigma(y) \quad \sigma\text{-a.e. } x \in \partial\Omega.$$

• There exists

p.v.
$$\int_{\partial\Omega} \frac{x_j - y_j}{|x - y|^n} d\sigma(y) \quad \sigma$$
-a.e. $x \in \partial\Omega$.

This can be seen either by relying on the fact that $\partial\Omega$ is (n-1)-rectifiable (given that $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$) and invoking [X. Tolsa, 2008], or, alternatively, assuming that $R_j 1 \in \text{BMO}(\partial\Omega)$, make use of the T(1) Theorem and the pointwise existence of the p.v. Cauchy-Clifford operator on Hölder functions.

• Assuming that $R_j 1 \in BMO(\partial \Omega)$, with $R_j 1$ originally defined as a functional in $(\mathcal{C}^{\alpha}(\partial \Omega))^*$, we have

$$(R_j 1)(x) = \text{p.v.} \int_{\partial\Omega} \frac{x_j - y_j}{|x - y|^n} d\sigma(y) \quad \sigma\text{-a.e. } x \in \partial\Omega.$$

• Since $\nu \in L^{\infty}(\partial \Omega) \subset L^{2}(\partial \Omega)$ and $\nu \odot \nu = -1$ we obtain

$$\mathbf{C}\nu(x) = \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot \nu(y) \, d\sigma(y)$$

$$= -\sum_{j=1}^{n} \left(\text{p.v.} \int_{\partial \Omega} \frac{x_j - y_j}{|x - y|^n} \, d\sigma(y) \right) \mathbf{e}_j = -\sum_{j=1}^{n} (R_j \mathbf{1})(x) \mathbf{e}_j$$

for σ -a.e. $x \in \partial \Omega$.

• The previous formula and $\mathbf{C}^2 = \frac{1}{4}I$ in $L^2(\partial\Omega) \otimes \mathcal{C}_n$ yield

$$\nu = 4\mathbf{C}^2(\nu) = 4\mathbf{C}\Big(-\sum_{j=1}^n (R_j 1)\mathbf{e}_j\Big) \quad \text{in } L^2(\partial\Omega) \otimes \mathcal{C}_n.$$

• If also $R_j 1 \in \mathcal{C}^{\alpha}(\partial \Omega)$ then $\nu \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$. Thus, Ω is $\mathcal{C}^{1,\alpha}$.

• Since $\nu \in L^{\infty}(\partial \Omega) \subset L^{2}(\partial \Omega)$ and $\nu \odot \nu = -1$ we obtain

$$\mathbf{C}\nu(x) = \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot \nu(y) \, d\sigma(y)$$

$$= -\sum_{j=1}^{n} \left(\text{p.v.} \int_{\partial \Omega} \frac{x_j - y_j}{|x - y|^n} \, d\sigma(y) \right) \mathbf{e}_j = -\sum_{j=1}^{n} (R_j \mathbf{1})(x) \mathbf{e}_j$$

for σ -a.e. $x \in \partial \Omega$.

• The previous formula and $\mathbf{C}^2 = \frac{1}{4}I$ in $L^2(\partial\Omega) \otimes \mathcal{C}\ell_n$ yield

$$\boldsymbol{\nu} = 4\mathbf{C}^2(\boldsymbol{\nu}) = 4\mathbf{C}\Big(-\sum_{j=1}^n (R_j 1)\mathbf{e}_j\Big) \quad \text{in } L^2(\partial\Omega)\otimes \mathcal{C}_n.$$

• If also $R_j 1 \in \mathcal{C}^{\alpha}(\partial \Omega)$ then $\nu \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$. Thus, Ω is $\mathcal{C}^{1,\alpha}$.

• Since $\nu \in L^{\infty}(\partial \Omega) \subset L^{2}(\partial \Omega)$ and $\nu \odot \nu = -1$ we obtain

$$\mathbf{C}\nu(x) = \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot \nu(y) \, d\sigma(y)$$

$$= -\sum_{j=1}^{n} \left(\text{p.v.} \int_{\partial \Omega} \frac{x_j - y_j}{|x - y|^n} \, d\sigma(y) \right) \mathbf{e}_j = -\sum_{j=1}^{n} (R_j \mathbf{1})(x) \mathbf{e}_j$$

for σ -a.e. $x \in \partial \Omega$.

• The previous formula and $\mathbf{C}^2 = \frac{1}{4}I$ in $L^2(\partial\Omega) \otimes \mathcal{C}\ell_n$ yield

$$\nu = 4\mathbf{C}^2(\nu) = 4\mathbf{C}\Big(-\sum_{j=1}^n (R_j 1)\mathbf{e}_j\Big) \quad \text{in } L^2(\partial\Omega) \otimes \mathcal{C}_n.$$

• If also $R_j 1 \in \mathcal{C}^{\alpha}(\partial \Omega)$ then $\nu \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$. Thus, Ω is $\mathcal{C}^{1,\alpha}$.

• Since $\nu \in L^{\infty}(\partial \Omega) \subset L^{2}(\partial \Omega)$ and $\nu \odot \nu = -1$ we obtain

$$\mathbf{C}\nu(x) = \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot \nu(y) \, d\sigma(y)$$

$$= -\sum_{j=1}^{n} \left(\text{p.v.} \int_{\partial \Omega} \frac{x_j - y_j}{|x - y|^n} \, d\sigma(y) \right) \mathbf{e}_j = -\sum_{j=1}^{n} (R_j \mathbf{1})(x) \mathbf{e}_j$$

for σ -a.e. $x \in \partial \Omega$.

• The previous formula and $\mathbf{C}^2 = \frac{1}{4}I$ in $L^2(\partial\Omega) \otimes \mathcal{C}\ell_n$ yield

$$\nu = 4\mathbf{C}^2(\nu) = 4\mathbf{C}\Big(-\sum_{j=1}^n (R_j 1)\mathbf{e}_j\Big)$$
 in $L^2(\partial\Omega) \otimes \mathcal{C}_n$.

• If also $R_j 1 \in \mathcal{C}^{\alpha}(\partial \Omega)$ then $\nu \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$. Thus, Ω is $\mathcal{C}^{1,\alpha}$.

• Since $\nu \in L^{\infty}(\partial \Omega) \subset L^{2}(\partial \Omega)$ and $\nu \odot \nu = -1$ we obtain

$$\mathbf{C}\nu(x) = \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot \nu(y) \, d\sigma(y)$$

$$= -\sum_{j=1}^{n} \left(\text{p.v.} \int_{\partial \Omega} \frac{x_j - y_j}{|x - y|^n} \, d\sigma(y) \right) \mathbf{e}_j = -\sum_{j=1}^{n} (R_j \mathbf{1})(x) \mathbf{e}_j$$

for σ -a.e. $x \in \partial \Omega$.

• The previous formula and $\mathbf{C}^2 = \frac{1}{4}I$ in $L^2(\partial\Omega) \otimes \mathcal{C}\ell_n$ yield

$$\nu = 4\mathbf{C}^2(\nu) = 4\mathbf{C}\Big(-\sum_{j=1}^n (R_j 1)\mathbf{e}_j\Big) \quad \text{in } L^2(\partial\Omega) \otimes \mathcal{C}_n.$$

• If also $R_j 1 \in \mathcal{C}^{\alpha}(\partial \Omega)$ then $\nu \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$. Thus, Ω is $\mathcal{C}^{1,\alpha}$.

Main step: Assuming the odd, homogeneous polynomial P is also harmonic, show that $\exists C = C(n, \alpha, \Omega) > 1$ such that $\forall f \in C^{\alpha}(\partial \Omega)$ we have, with $\rho(x) := \text{dist}(x, \partial \Omega)$,

$$\sup_{x \in \Omega} |\mathbb{T}f(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}f)(x)| \right\} \le C^l 2^{l^2} ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega)}$$

where l is the degree of P.

Achieved via an induction over the degree $l \in 2\mathbb{N} - 1$ of P.

• When
$$l = 1$$
 we have $P(x) = \sum_{j=1}^{n} a_j x_j$, hence $\mathbb{T} = \sum_{j=1}^{n} a_j \partial_j S$ where

S is the boundary-to-domain single layer operator associated with the Laplacian, which we handle by proving a T(1) type theorem well-adapted to Hölder spaces.

Main step: Assuming the odd, homogeneous polynomial P is also harmonic, show that $\exists C = C(n, \alpha, \Omega) > 1$ such that $\forall f \in C^{\alpha}(\partial \Omega)$ we have, with $\rho(x) := \text{dist}(x, \partial \Omega)$,

$$\sup_{x \in \Omega} |\mathbb{T}f(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}f)(x)| \right\} \le C^l 2^{l^2} ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega)}$$

where l is the degree of P.

Achieved via an induction over the degree $l \in 2\mathbb{N} - 1$ of P.

• When
$$l = 1$$
 we have $P(x) = \sum_{j=1}^{n} a_j x_j$, hence $\mathbb{T} = \sum_{j=1}^{n} a_j \partial_j \mathcal{S}$ where

S is the boundary-to-domain single layer operator associated with the Laplacian, which we handle by proving a T(1) type theorem well-adapted to Hölder spaces.

Main step: Assuming the odd, homogeneous polynomial P is also harmonic, show that $\exists C = C(n, \alpha, \Omega) > 1$ such that $\forall f \in C^{\alpha}(\partial \Omega)$ we have, with $\rho(x) := \text{dist}(x, \partial \Omega)$,

$$\sup_{x \in \Omega} |\mathbb{T}f(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}f)(x)| \right\} \le C^l 2^{l^2} ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega)}$$

where l is the degree of P.

Achieved via an induction over the degree $l \in 2\mathbb{N} - 1$ of P.

• When
$$l = 1$$
 we have $P(x) = \sum_{j=1}^{n} a_j x_j$, hence $\mathbb{T} = \sum_{j=1}^{n} a_j \partial_j S$ where

S is the boundary-to-domain single layer operator associated with the Laplacian, which we handle by proving a T(1) type theorem well-adapted to Hölder spaces.

Main step: Assuming the odd, homogeneous polynomial P is also harmonic, show that $\exists C = C(n, \alpha, \Omega) > 1$ such that $\forall f \in C^{\alpha}(\partial \Omega)$ we have, with $\rho(x) := \text{dist}(x, \partial \Omega)$,

$$\sup_{x \in \Omega} |\mathbb{T}f(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}f)(x)| \right\} \le C^l 2^{l^2} ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega)}$$

where l is the degree of P.

Achieved via an induction over the degree $l \in 2\mathbb{N} - 1$ of P.

• When
$$l = 1$$
 we have $P(x) = \sum_{j=1}^{n} a_j x_j$, hence $\mathbb{T} = \sum_{j=1}^{n} a_j \partial_j S$ where

S is the boundary-to-domain single layer operator associated with the Laplacian, which we handle by proving a T(1) type theorem well-adapted to Hölder spaces.

• In the inductive step we use elements of Clifford Algebra. For $l \ge 3$ write (refining work of S.W. Semmes)

$$\frac{P(x)}{|x|^{n-1+l}} = \sum_{r,s=1}^{n} [k_{rs}(x)]_s \quad \forall x \in \mathbb{R}^n \setminus \{0\},$$

where $k_{rs} : \mathbb{R}^n \setminus \{0\} \longrightarrow \mathbb{R}^n \hookrightarrow \mathcal{C}\ell_n$ are odd, \mathcal{C}^{∞} , homogeneous of degree -(n-1), and

$$(Dk_{rs})(x) = \frac{l-1}{n+l-3} \frac{\partial}{\partial x_r} \left(\frac{P_{rs}(x)}{|x|^{n+l-3}} \right), \quad 1 \le r, s \le n,$$

for some family $\{P_{rs}\}_{r,s}$ of harmonic, homogeneous polynomials of degree l-2, where $D = \sum_{j=1}^{n} e_j \partial_j$ is the Dirac operator.

If f is a Clifford-valued function set for each $r, s \in \{1, \ldots, n\}$

$$\mathbb{T}_{rs}f(x) := \int_{\partial\Omega} k_{rs}(x-y) \odot f(y) \, d\sigma(y), \quad x \in \Omega,$$

and

$$\mathbb{T}^{rs}f(x) = \int_{\partial\Omega} \frac{P_{rs}(x-y)}{|x|^{n+l-3}} f(y) \, d\sigma(y), \quad x \in \Omega.$$

Note that: • $\mathbb{T}f = \sum_{r,s=1}^{n} [\mathbb{T}_{rs}f]_s$ if $f : \partial\Omega \to \mathbb{R} \hookrightarrow \mathcal{C}\ell_n$

• we may apply the induction hypothesis component-wise to each $\mathbb{T}^{rs}f$ to estimate

If f is a Clifford-valued function set for each $r, s \in \{1, \ldots, n\}$

$$\mathbb{T}_{rs}f(x) := \int_{\partial\Omega} k_{rs}(x-y) \odot f(y) \, d\sigma(y), \quad x \in \Omega,$$

and

$$\mathbb{T}^{rs}f(x) = \int_{\partial\Omega} \frac{P_{rs}(x-y)}{|x|^{n+l-3}} f(y) \, d\sigma(y), \quad x \in \Omega.$$

Note that:

•
$$\mathbb{T}f = \sum_{r,s=1} \left[\mathbb{T}_{rs}f \right]_s$$
 if $f: \partial \Omega \to \mathbb{R} \hookrightarrow \mathcal{C}\ell_n$

• we may apply the induction hypothesis component-wise to each $\mathbb{T}^{rs}f$ to estimate

If f is a Clifford-valued function set for each $r, s \in \{1, \ldots, n\}$

$$\mathbb{T}_{rs}f(x) := \int_{\partial\Omega} k_{rs}(x-y) \odot f(y) \, d\sigma(y), \quad x \in \Omega,$$

and

$$\mathbb{T}^{rs}f(x) = \int_{\partial\Omega} \frac{P_{rs}(x-y)}{|x|^{n+l-3}} f(y) \, d\sigma(y), \quad x \in \Omega.$$

Note that:

•
$$\mathbb{T}f = \sum_{r,s=1}^{n} \left[\mathbb{T}_{rs}f \right]_{s}$$
 if $f : \partial \Omega \to \mathbb{R} \hookrightarrow \mathcal{C}\ell_{n}$

 \bullet we may apply the induction hypothesis component-wise to each $\mathbb{T}^{rs}f$ to estimate

$$\sup_{x\in\Omega} |(\mathbb{T}^{rs}f)(x)| + \sup_{x\in\Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}^{rs}f)(x)| \right\}$$
$$\leq c_n C^{l-2} 2^{(l-2)^2} 2^l ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega)\otimes\mathcal{C}_n}$$

for every $f \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$, where C is the constant in the estimate given by the induction hypothesis.

• The operators \mathbb{T}^{rs} and \mathbb{T}_{rs} are related. For $x \in \Omega$ write

$$\begin{aligned} (\mathbb{T}_{rs}\nu)(x) &= \int_{\partial\Omega} k_{rs}(x-y) \odot \nu(y) \, d\sigma(y) = -\int_{\Omega} (Dk_{rs})(x-y) \, dy \\ &= \frac{l-1}{n+l-3} \int_{\Omega} \frac{\partial}{\partial y_r} \left(\frac{P_{rs}(x-y)}{|x-y|^{n+l-3}} \right) \, dy \\ &= \frac{l-1}{n+l-3} \int_{\partial\Omega} \frac{P_{rs}(x-y)}{|x-y|^{n+l-3}} \nu_r(y) \, d\sigma(y) = \frac{l-1}{n+l-3} (\mathbb{T}^{rs}\nu_r)(x) \end{aligned}$$

$$\sup_{x\in\Omega} |(\mathbb{T}^{rs}f)(x)| + \sup_{x\in\Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}^{rs}f)(x)| \right\}$$
$$\leq c_n C^{l-2} 2^{(l-2)^2} 2^l ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega)\otimes\mathcal{C}_n}$$

for every $f \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$, where C is the constant in the estimate given by the induction hypothesis.

• The operators \mathbb{T}^{rs} and \mathbb{T}_{rs} are related. For $x \in \Omega$ write

$$\begin{aligned} (\mathbb{T}_{rs}\nu)(x) &= \int_{\partial\Omega} k_{rs}(x-y) \odot \nu(y) \, d\sigma(y) = -\int_{\Omega} (Dk_{rs})(x-y) \, dy \\ &= \frac{l-1}{n+l-3} \int_{\Omega} \frac{\partial}{\partial y_r} \left(\frac{P_{rs}(x-y)}{|x-y|^{n+l-3}} \right) \, dy \\ &= \frac{l-1}{n+l-3} \int_{\partial\Omega} \frac{P_{rs}(x-y)}{|x-y|^{n+l-3}} \nu_r(y) \, d\sigma(y) = \frac{l-1}{n+l-3} (\mathbb{T}^{rs}\nu_r)(x) \end{aligned}$$

Hence,

$$(\mathbb{T}_{rs}\nu)(x)=\frac{l-1}{n+l-3}(\mathbb{T}^{rs}\nu_r)(x),\quad x\in\Omega,$$

which when combined with the estimate we proved for \mathbb{T}^{rs} used with $f = \nu \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ yields

$$\implies \sup_{x \in \Omega} |(\mathbb{T}_{rs}\nu)(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}_{rs}\nu)(x)| \right\}$$
$$\leq c_n C^{l-2} 2^{(l-2)^2} 2^l ||P||_{L^1(S^{n-1})} ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)}. \quad (**)$$

• Since $\mathbb{T}f(x) = \sum_{r,s=1}^{n} [\mathbb{T}_{rs}f(x)]_s$ to return to the original \mathbb{T} we need (**) with ν replaced by f.

Hence,

$$(\mathbb{T}_{rs}\nu)(x) = \frac{l-1}{n+l-3}(\mathbb{T}^{rs}\nu_r)(x), \quad x \in \Omega,$$

which when combined with the estimate we proved for \mathbb{T}^{rs} used with $f = \nu \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ yields

$$\implies \sup_{x \in \Omega} |(\mathbb{T}_{rs}\nu)(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}_{rs}\nu)(x)| \right\}$$
$$\leq c_n C^{l-2} 2^{(l-2)^2} 2^l ||P||_{L^1(S^{n-1})} ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)}. \quad (**)$$

• Since $\mathbb{T}f(x) = \sum_{r,s=1}^{n} [\mathbb{T}_{rs}f(x)]_s$ to return to the original \mathbb{T} we need (**) with ν replaced by f.

Hence,

$$(\mathbb{T}_{rs}\nu)(x) = \frac{l-1}{n+l-3}(\mathbb{T}^{rs}\nu_r)(x), \quad x \in \Omega,$$

which when combined with the estimate we proved for \mathbb{T}^{rs} used with $f = \nu \in \mathcal{C}^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ yields

$$\implies \sup_{x \in \Omega} |(\mathbb{T}_{rs}\nu)(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}_{rs}\nu)(x)| \right\}$$
$$\leq c_n C^{l-2} 2^{(l-2)^2} 2^l ||P||_{L^1(S^{n-1})} ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)}. \quad (**)$$

• Since $\mathbb{T}f(x) = \sum_{r,s=1}^{n} [\mathbb{T}_{rs}f(x)]_s$ to return to the original \mathbb{T} we need (**) with ν replaced by f.

For $f: \partial \Omega \to \mathcal{C}\!\ell_n$ with Hölder scalar components consider

$$\widetilde{\mathbb{T}}_{rs}f(x) := \int_{\partial\Omega} \left(k_{rs}(x-y) \odot \nu(y) \right) \odot f(y) \, d\sigma(y), \qquad x \in \Omega.$$

Recall that

$$\mathbb{T}_{rs}f(x) := \int_{\partial\Omega} k_{rs}(x-y) \odot f(y) \, d\sigma(y), \quad x \in \Omega,$$

thus $\mathbb{T}_{rs} \mathbf{1} = \mathbb{T}_{rs} \nu$ and the estimate (**) for $\mathbb{T}_{rs} \nu$ rewrites as

$$\sup_{x\in\Omega} |(\widetilde{\mathbb{T}}_{rs}1)(x)| + \sup_{x\in\Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\widetilde{\mathbb{T}}_{rs}1)(x)| \right\}$$
$$\leq c_n C^{l-2} 2^{(l-2)^2} 2^l ||P||_{L^1(S^{n-1})} ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)}.$$

Now use the T(1) theorem for Hölder spaces mentioned earlier (the integral kernel of $\widetilde{\mathbb{T}}_{rs}$ is "good") to obtain the estimate

For $f: \partial \Omega \to \mathcal{C}\!\ell_n$ with Hölder scalar components consider

$$\widetilde{\mathbb{T}}_{rs}f(x) := \int_{\partial\Omega} \left(k_{rs}(x-y) \odot \nu(y) \right) \odot f(y) \, d\sigma(y), \qquad x \in \Omega.$$

Recall that

$$\mathbb{T}_{rs}f(x) := \int_{\partial\Omega} k_{rs}(x-y) \odot f(y) \, d\sigma(y), \quad x \in \Omega,$$

thus $\widetilde{\mathbb{T}}_{rs} 1 = \mathbb{T}_{rs} \nu$ and the estimate (**) for $\mathbb{T}_{rs} \nu$ rewrites as

$$\sup_{x\in\Omega} |(\widetilde{\mathbb{T}}_{rs}1)(x)| + \sup_{x\in\Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\widetilde{\mathbb{T}}_{rs}1)(x)| \right\}$$
$$\leq c_n C^{l-2} 2^{(l-2)^2} 2^l ||P||_{L^1(S^{n-1})} ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)}.$$

Now use the T(1) theorem for Hölder spaces mentioned earlier (the integral kernel of $\widetilde{\mathbb{T}}_{rs}$ is "good") to obtain the estimate

For $f: \partial \Omega \to \mathcal{C}\!\ell_n$ with Hölder scalar components consider

$$\widetilde{\mathbb{T}}_{rs}f(x) := \int_{\partial\Omega} \left(k_{rs}(x-y) \odot \nu(y) \right) \odot f(y) \, d\sigma(y), \qquad x \in \Omega.$$

Recall that

$$\mathbb{T}_{rs}f(x) := \int_{\partial\Omega} k_{rs}(x-y) \odot f(y) \, d\sigma(y), \quad x \in \Omega,$$

thus $\widetilde{\mathbb{T}}_{rs} 1 = \mathbb{T}_{rs} \nu$ and the estimate (**) for $\mathbb{T}_{rs} \nu$ rewrites as

$$\sup_{x \in \Omega} |(\widetilde{\mathbb{T}}_{rs}1)(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\widetilde{\mathbb{T}}_{rs}1)(x)| \right\}$$
$$\leq c_n C^{l-2} 2^{(l-2)^2} 2^l ||P||_{L^1(S^{n-1})} ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)}$$

Now use the T(1) theorem for Hölder spaces mentioned earlier (the integral kernel of $\widetilde{\mathbb{T}}_{rs}$ is "good") to obtain the estimate

$$\sup_{x\in\Omega} |\widetilde{\mathbb{T}}_{rs}f(x)| + \sup_{x\in\Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\widetilde{\mathbb{T}}_{rs}f)(x)| \right\}$$

$$\leq C_{n,\alpha,\Omega} \left\{ C^{l-2} 2^{(l-2)^2} 2^l \|\nu\|_{\mathcal{C}^{\alpha}(\partial\Omega)} + 2^l \right\} \|P\|_{L^1(S^{n-1})} \|f\|_{\mathcal{C}^{\alpha}(\partial\Omega)\otimes\mathcal{C}_n}$$

for every $f \in \mathcal{C}^{\alpha}(\partial\Omega) \otimes \mathcal{C}_n$.

Key observation: $\nu \odot \nu = -1$. Two consequences of interest: first $f \in C^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ implies $\nu \odot f \in C^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ with comparable norm, and second $\widetilde{\mathbb{T}}_{rs}(\nu \odot f) = -\mathbb{T}_{rs}f$. In the context of the above inequality these yield a similar estimate for $\mathbb{T}_{rs}f$.

Recalling that
$$\mathbb{T}f(x) = \sum_{r,s=1}^{n} [\mathbb{T}_{rs}f(x)]_s$$
 we may further combine all these to arrive at the following estimate for \mathbb{T} :

$$\sup_{x\in\Omega} |\widetilde{\mathbb{T}}_{rs}f(x)| + \sup_{x\in\Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\widetilde{\mathbb{T}}_{rs}f)(x)| \right\}$$

$$\leq C_{n,\alpha,\Omega} \left\{ C^{l-2} 2^{(l-2)^2} 2^l ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)} + 2^l \right\} ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega) \otimes \mathcal{C}_n}$$

for every $f \in \mathcal{C}^{\alpha}(\partial\Omega) \otimes \mathcal{C}_n$.

Key observation: $\nu \odot \nu = -1$. Two consequences of interest: first $f \in C^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ implies $\nu \odot f \in C^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ with comparable norm, and second $\widetilde{\mathbb{T}}_{rs}(\nu \odot f) = -\mathbb{T}_{rs}f$. In the context of the above inequality these yield a similar estimate for $\mathbb{T}_{rs}f$.

Recalling that
$$\mathbb{T}f(x) = \sum_{r,s=1}^{n} [\mathbb{T}_{rs}f(x)]_s$$
 we may further combine all these to arrive at the following estimate for \mathbb{T} :

$$\sup_{x\in\Omega} |\widetilde{\mathbb{T}}_{rs}f(x)| + \sup_{x\in\Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\widetilde{\mathbb{T}}_{rs}f)(x)| \right\}$$

$$\leq C_{n,\alpha,\Omega} \left\{ C^{l-2} 2^{(l-2)^2} 2^l ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)} + 2^l \right\} ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega)\otimes\mathcal{C}_n}$$

for every $f \in \mathcal{C}^{\alpha}(\partial\Omega) \otimes \mathcal{C}_n$.

Key observation: $\nu \odot \nu = -1$. Two consequences of interest: first $f \in C^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ implies $\nu \odot f \in C^{\alpha}(\partial \Omega) \otimes \mathcal{C}_n$ with comparable norm, and second $\widetilde{\mathbb{T}}_{rs}(\nu \odot f) = -\mathbb{T}_{rs}f$. In the context of the above inequality these yield a similar estimate for $\mathbb{T}_{rs}f$.

Recalling that
$$\mathbb{T}f(x) = \sum_{r,s=1}^{n} \left[\mathbb{T}_{rs}f(x)\right]_{s}$$
 we may further combine all

these to arrive at the following estimate for \mathbb{T} :

$$\sup_{x \in \Omega} |\mathbb{T}f(x)| + \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla(\mathbb{T}f)(x)| \right\}$$
$$\leq n^2 C_{n,\alpha,\Omega} \left\{ C^{l-2} 2^{(l-2)^2} 2^l ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)} + 2^l \right\} \times$$
$$\times 2 ||\nu||_{\mathcal{C}^{\alpha}(\partial\Omega)} ||P||_{L^1(S^{n-1})} ||f||_{\mathcal{C}^{\alpha}(\partial\Omega)}, \quad f \in \mathcal{C}^{\alpha}(\partial\Omega)$$

Keeping careful tabs on the dependence of the degree l (to ensure that the above structural constant has the desired format) then completes the induction on l of the estimate

$$\sup_{x\in\Omega} \left|\mathbb{T}f(x)\right| + \sup_{x\in\Omega} \left\{ \rho(x)^{1-\alpha} \left| \nabla(\mathbb{T}f)(x) \right| \right\} \le C^l 2^{l^2} \|P\|_{L^1(S^{n-1})} \|f\|_{\mathcal{C}^\alpha(\partial\Omega)}$$

when the polynomial P is also harmonic.

• To remove the assumption that P is harmonic write $P(x) = \sum_{j=1}^{N+1} |x|^{2(j-1)} P_j(x) \text{ in } \mathbb{R}^n, \text{ where each } P_j \text{ is a harmonic}$

homogeneous polynomial of degree l - 2(j - 1).

• Recall that the original goal was to show $\mathbb{T} : \mathcal{C}^{\alpha}(\partial\Omega) \to \mathcal{C}^{\alpha}(\overline{\Omega})$ is well-defined and bounded. To arrive at this conclusion from what we have just established, as a final step we use a general real-variable result to the effect that, in the current geometric setting, for every $\alpha \in (0, 1)$ there exists $C = C(\Omega, \alpha) \in (0, \infty)$ such that

$$\|u\|_{\mathcal{C}^{\alpha}(\overline{\Omega})} \leq C \sup_{x \in \Omega} |u(x)| + C \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla u(x)| \right\}$$

for every function $u \in \mathcal{C}^1(\Omega)$.

• To remove the assumption that P is harmonic write $P(x) = \sum_{j=1}^{N+1} |x|^{2(j-1)} P_j(x) \text{ in } \mathbb{R}^n, \text{ where each } P_j \text{ is a harmonic}$

homogeneous polynomial of degree l - 2(j - 1).

• Recall that the original goal was to show $\mathbb{T} : \mathcal{C}^{\alpha}(\partial\Omega) \to \mathcal{C}^{\alpha}(\overline{\Omega})$ is well-defined and bounded. To arrive at this conclusion from what we have just established, as a final step we use a general real-variable result to the effect that, in the current geometric setting, for every $\alpha \in (0, 1)$ there exists $C = C(\Omega, \alpha) \in (0, \infty)$ such that

$$\|u\|_{\mathcal{C}^{\alpha}(\overline{\Omega})} \leq C \sup_{x \in \Omega} |u(x)| + C \sup_{x \in \Omega} \left\{ \rho(x)^{1-\alpha} |\nabla u(x)| \right\}$$

for every function $u \in \mathcal{C}^1(\Omega)$.

Question: What can we say about the limiting case $\alpha = 0$ of the equivalence

$R_j 1 \in \mathcal{C}^{\alpha}(\partial \Omega), \ 1 \leq j \leq n \iff \Omega \text{ is a } \mathcal{C}^{1,\alpha} \text{ domain.}$

The space $C^{0}(\partial \Omega)$ is replaced by (the larger space) VMO($\partial \Omega$), the Sarason space of functions of vanishing mean oscillations on $\partial \Omega$ (viewed as a space of homogeneous type, in the sense of Coifman-Weiss, when equipped with the measure σ and the Euclidean distance).

Question: What can we say about the limiting case $\alpha = 0$ of the equivalence

$R_j 1 \in \mathcal{C}^{\alpha}(\partial \Omega), \ 1 \leq j \leq n \iff \Omega \text{ is a } \mathcal{C}^{1,\alpha} \text{ domain.}$

The space $C^{0}(\partial \Omega)$ is replaced by (the larger space) VMO($\partial \Omega$), the Sarason space of functions of vanishing mean oscillations on $\partial \Omega$ (viewed as a space of homogeneous type, in the sense of Coifman-Weiss, when equipped with the measure σ and the Euclidean distance).

The case $\alpha = 0$.

Theorem (D. M., M. Mitrea, J. Verdera, 2014)

If $\Omega \subseteq \mathbb{R}^n$ is open with $\partial\Omega$ compact Ahlfors regular and $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$, then

$$\begin{array}{l} \nu \in \mathrm{VMO}(\partial\Omega, \mathbb{R}^n) \\ and \ \partial\Omega \ is \ a \ \mathrm{UR} \ set \end{array} \right\} \Longleftrightarrow \left\{ \begin{array}{l} R_j 1 \in \mathrm{VMO}(\partial\Omega) \\ for \ all \ j \in \{1, \dots, n\} \end{array} \right.$$

The fact that $R_j 1 \in \text{VMO}(\partial \Omega) (\subseteq \text{BMO}(\partial \Omega))$ implies $\partial \Omega$ is a UR set is a consequence of the T(1) theorem and the Nazarov-Tolsa-Volberg theorem. Another ingredient is the earlier formula

$$\mathbf{C}\nu = -\sum_{j=1}^{n} (R_j 1) \mathbf{e}_j$$

and the following theorem:

The case $\alpha = 0$.

Theorem (D. M., M. Mitrea, J. Verdera, 2014)

If $\Omega \subseteq \mathbb{R}^n$ is open with $\partial\Omega$ compact Ahlfors regular and $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$, then

$$\begin{array}{c} \nu \in \mathrm{VMO}(\partial\Omega, \mathbb{R}^n) \\ and \ \partial\Omega \ is \ a \ \mathrm{UR} \ set \end{array} \right\} \Longleftrightarrow \left\{ \begin{array}{c} R_j 1 \in \mathrm{VMO}(\partial\Omega) \\ for \ all \ j \in \{1, \dots, n\} \end{array} \right.$$

The fact that $R_j 1 \in \text{VMO}(\partial \Omega) (\subseteq \text{BMO}(\partial \Omega))$ implies $\partial \Omega$ is a UR set is a consequence of the T(1) theorem and the Nazarov-Tolsa-Volberg theorem.

Another ingredient is the earlier formula

$$\mathbf{C}\nu = -\sum_{j=1}^{n} (R_j 1) \mathbf{e}_j$$

and the following theorem:
The case $\alpha = 0$.

Theorem (D. M., M. Mitrea, J. Verdera, 2014)

If $\Omega \subseteq \mathbb{R}^n$ is open with $\partial\Omega$ compact Ahlfors regular and $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$, then

$$\begin{array}{l} \nu \in \mathrm{VMO}(\partial\Omega, \mathbb{R}^n) \\ and \ \partial\Omega \ is \ a \ \mathrm{UR} \ set \end{array} \right\} \Longleftrightarrow \left\{ \begin{array}{l} R_j 1 \in \mathrm{VMO}(\partial\Omega) \\ for \ all \ j \in \{1, \dots, n\} \end{array} \right.$$

The fact that $R_j 1 \in \text{VMO}(\partial \Omega) (\subseteq \text{BMO}(\partial \Omega))$ implies $\partial \Omega$ is a UR set is a consequence of the T(1) theorem and the Nazarov-Tolsa-Volberg theorem. Another ingredient is the earlier formula

$$\mathbf{C}\nu = -\sum_{j=1}^{n} (R_j 1) \mathbf{e}_j$$

and the following theorem: D. Mitrea (MU)

Another ingredient in the proof

Theorem

Suppose $\Omega \subset \mathbb{R}^n$ is such that $\partial\Omega$ is compact Ahlfors regular with $\mathcal{H}^{n-1}(\partial\Omega \setminus \partial_*\Omega) = 0$ and $R_j 1 \in BMO(\partial\Omega)$ for $1 \leq j \leq n$. Then for every $f \in VMO(\partial\Omega) \otimes \mathcal{C}_n$ the limit

$$\mathbf{C}f(x) := \lim_{\varepsilon \to 0^+} \frac{1}{\omega_{n-1}} \int_{\substack{y \in \partial \Omega \\ |x-y| > \varepsilon}} \frac{x-y}{|x-y|^n} \odot \nu(y) \odot f(y) \, d\sigma(y)$$

exists for σ -a.e. $x \in \partial \Omega$, the operator

 $\mathbf{C}: \mathrm{VMO}(\partial \Omega) \otimes \mathcal{C}\ell_n \to \mathrm{VMO}(\partial \Omega) \otimes \mathcal{C}\ell_n$

is bounded and

$$\mathbf{C}^2 = \frac{1}{4}I$$
 on $\mathrm{VMO}(\partial\Omega) \otimes \mathcal{C}\ell_n$.

D. Mitrea (MU)