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Q C R" open set of locally finite perimeter
v outward unit normal to € (in the GMT sense)
o :=H""10Q “surface measure”

where HF is the k-dimensional Hausdorff measure in R”
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09 is called Ahlfors regular if at all scales and locations behaves like
an (n — 1)-dimensional surface, i.e., there exists C' > 1 such that

C'R" ' <H" ' (B(z,R)n9Q) < CR" ',
for each z € 9Q and R € (0, diam 99).

0N is called a UR set if it is Ahlfors regular and at all scales and
locations contains big pieces of Lipschitz images, i.e., there exist ¢,
M € (0,00) such that for each z € 902 and R € (0, diam 012), there is
a Lipschitz map ® : Bg_l — R" (Bz,‘_1 = ball of radius R in ]R"_l)
with Lipschitz constant < M, such that

H" (092N B(z,R)N®(BL ")) >eR™ L.
" D. Mitrea (MU) a8



Assume that 02 is Ahlfors reqular. Then all “reasonable” Singular
Integral Operators have truncated versions bounded on L?(9S)
uniform w.r.t. the truncation parameter < 0S) is a UR set.
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Assume that 02 is Ahlfors reqular. Then all “reasonable” Singular
Integral Operators have truncated versions bounded on L?(9S)
uniform w.r.t. the truncation parameter < 0S) is a UR set.

Truncated version of reasonable SIO’s:

@) = | Ko=) f@) doty), € 09,
y€ON\B(z,e)
k is odd, smooth in R™\ {0}, and |V’k(z)| < |z|~ ™19, V¢ e Ny.
For homogeneous kernels, 92 UR = li%l+ (T-f)(z) exists for o-a.e.
e—
x €0 and f € LP(09Q), p € (1,00) [Hofmann, Mitrea, Taylor, 2010].

Moral: For the study of SIO’s on LP spaces, the class of UR sets is
the optimal environment.
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Question: Can one streamline the class of SIO’s in the
David-Semmes theorem to just Riesz transforms?

Truncated Riesz transforms: given € > 0, for j =1,...,n,

(Rjef)(x) = ! / LY f(y)do(y), =€ .

Wn—1 |$ - y|n
y€OO\B(z,¢)

2
Note: kj(x) := — is of the type considered earlier and is
! ||

homogeneous.

Difficult question! Answer: YES

n = 2 proved by P. Mattila, M.S. Melnikov, and J. Verdera [Ann. of
Math., 1996] and the higher dimensionl case by F. Nazarov, X.
Tolsa, and A. Volberg [Acta Math., 2014].



In fact, by using the T'(1) theorem for SIO’s with odd kernels (in
spaces of homogeneous type), the LP-boundedness of R;.’s (uniform
with respect to €) reduces to just

R,1eBMO(OQ), 1<j<n (¥

where BMO(99) is the John-Nirenberg space of functions of
bounded mean oscillations on 02 and R; : C*(092) — (CQ(OQ))* is
the linear mapping given by

(R;f,g) /a ) /a R w)ele) - f@o(w) de(w)do @)
for every f,g € CY(09Q).



In fact, by using the T'(1) theorem for SIO’s with odd kernels (in
spaces of homogeneous type), the LP-boundedness of R;.’s (uniform
with respect to €) reduces to just

R,1eBMO(OQ), 1<j<n (¥

where BMO(99) is the John-Nirenberg space of functions of
bounded mean oscillations on 02 and R; : C*(092) — (CQ(OQ))* is
the linear mapping given by

(R;f.g) /a ) /a R w)ele) - f@o(w) de(w)do @)
for every f,g € CY(09Q).

As such, the Nazarov-Tolsa-Volberg result may be rephrased as:

Under the background assumption 0f2 is Ahlfors regular,
0f is a UR set <= (x) holds
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So far, looked at SIO’s on L spaces.

Next natural question: Will changing BMO(9S2) to a more
regular space in the equivalence

0 is a UR set <= R;1 € BMO(012), 1<j<n,

yield an equivalence where 2 is correspondingly more regular?

We are interested in replacing BMO(092) with the Holder space
C*(0Q) for any a € (0,1).
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Recall that the measure-theoretic boundary 9, of Q C R" is
defined by

n
r—0+ r

>0

and limsup A (Bx,r) \ Q) > 0}.

n
r—0t r

GMT Fact: If € has locally finite perimeter, the outward unit
normal v is defined g-a.e. on 0,2. In particular, the condition

HP LN\ 9,Q) =0

is equivalent with having the outward unit normal v defined
o-a.e. on 092 (and it implies that 0 is (n — 1)-rectifiable).



Ifa € (0,1), dQ compact Ahlfors regular, H"*(9Q \ 8.9) = 0,
o0 = 9(Q), then Rj1 €C*(0Q), 1 <j<n <= Qis aC"* domain.




Ifa € (0,1), dQ compact Ahlfors regular, H"*(9Q \ 8.9) = 0,

o0 = 9(Q), then Rj1 €C*(0Q), 1 <j<n <= Qis aC"* domain.
Moreover, if Q is a CY® domain, then for every odd, homogeneous
polynomial P in R™ the generalized Riesz transform T = Tp given by

Tf(x) = p.v./ Pl —y) fly)do(y), =€ 0

90 |$ _ yln—l—l-degP

is bounded from C*(02) into C*(0N2), and if

19l —
Ti@) = [ e S et doty), e

then T : C*(09) — C*() is also bounded.
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the Lamé system in R" (where A, u € R are the Lamé moduli)
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The PDE modeling elastic deformation phenomena is described via
the Lamé system in R" (where A, u € R are the Lamé moduli)

Lu = pAu+ N+ p)Vdivu, ©= (u1,...,u,) € C2.

One basic approach to solving BVPs for this system uses boundary
SIO, such as the single layer associated with the Lamé system

SLamef / ZEaB xr — fﬁ( )dO'( )>l<a<n x €,

where (assuming n > 3)

-1 3u+ A da + Nxox

2020+ Nwp—q | n—2 |z[?2 [



When such BVPs are considered in the context of Holder spaces in
Lyapunov domains the issue becomes whether this SIO behaves
naturally on such a scale. Our previous theorem implies that the
operator

Stame : C(0Q) — CH(Q)
is well-defined and bounded.



To justify that the single layer for the Lamé system is smoothing of
order one on the Holder scale observe that for each j = 1,...,n the
previous theorem applies to the integral operator T := 0;Srume and
gives that 9;SLame : C*(02) — C*(2) boundedly. Indeed,

OsStmes)@) = [ > 0iE)x s o), <0

9]

=1
and its integral kernel is a matrix in which the («, 8) entry is given
by P(x —y)/|x — y\”*HdegP with P the homogeneous, odd,
polynomial of degree 3:
(31t + Mdagzj|z* — (1 + N)(Sajzplal® + dgjzala|” — najzazs)

2020 4+ Nwn—1 '
From this the desired conclusion follows using

n

||8Lamef||cl,a(§) = ||8Lamef||L°°(Q) + Z ||8jSLamef||Ca(§)

=1
~ D. Mitrea (MU) - 12/30
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o Clifford algebra (Cly,,+,®) which is the minimal enlargement of
R™ to a unitary real algebra such that z ® z = —|z|? for any z € R™.
Note that by identifying the canonical basis {e;}1<j<p from R" with
the imaginary units in (/,,, we have R" — (/,, via
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R;j1€C*09Q),1<j<n= Qisa C domain

o 09 compact Ahlfors regular and 9Q2 = 9(12), then
v € CYON) <= Q a CY* domain [Hofmann, Mitrea, Taylor, 2007]

o Clifford algebra (Cly,,+,®) which is the minimal enlargement of
R™ to a unitary real algebra such that z ® z = —|z|? for any z € R™.
Note that by identifying the canonical basis {e;}1<j<p from R" with

the imaginary units in (/,,, we have R" — (/,, via
n n

x=(x1,...,2y) = Za:jej e ,. Also, u= Z Zu; er with
Jj=1 1=0 |I|=l

ur € C, for each u € (/,,, where e; = ¢;; ©® e;, ©--- O ¢y, if

IZ(il,iQ,...,il) for 1 <ip<ig<--- <4 <nand e =ep = 1.

Moreover, we consider X ® (¥, by allowing u; € X some Banach

space, such as X = C*(0Q) or X = LP(99Q), etc.



o The Cauchy-Clifford operator
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where f is a (f,-valued function defined on 0f).
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o The Cauchy-Clifford operator

Cf(x):= lim b / uG)u(y)@f(y)da(y), x € 09,

where f is a (/,-valued function defined on 0f).

o Mapping properties for C under minimal smoothness assumptions
on 9. While for mapping properties of SIO’s on L? the class of UR
sets is the optimal environment, the Cauchy-Clifford operator
behaves naturally on Holder spaces on a much larger class of sets
(essentially, Ahlfors regular will do). This is surprising since the
boundedness of all Riesz transforms on Holder spaces forces the
domain to be Lyapunov. More precisely, we prove the following
result.



Fiz o € (0,1). Suppose Q C R"™ is such that O is compact Ahlfors
regular with H"1(0Q \ 9,Q) = 0. Then for every f € C*(00Q) ® C/y,
the limit

T = / TV 9 u(y) @ f(y) doly)

exists for o-a.e. x € 0N), the operator
C:CYN) @y, — CHON) @ Ly,

is bounded and



Moreover, if also R;1 € BMO(0R2) for 1 < j < n, then for every
p € (1,00) the pointwise limit above for Cf(x) exists for o-a.e.

x € 02 whenever f € LP(02) ® Cl,, and the operator C, originally
defined on C*(0Q2) ® Cly,, extends boundedly to an operator

C: LP(3Q) ® ¢y, — LP(0Q) @ Cl

with the property that C* = ;ILI in LP(09Q) ® Cly,, and it also extends
to a bounded operator

C : BMO(89) ® Cf,, — BMO(99) ® Cly,

with the property that C* = ;111 in BMO(0Q) ® Cly,.



o There exists

—Y
p.v. do o-a.e. x € 0.
/09 |z —y|" )

This can be seen either by relying on the fact that 952 is
(n — 1)-rectifiable (given that H"~1(0Q\ 8,Q) = 0) and invoking
[X. Tolsa, 2008],
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o There exists

—Y
p.v. / do o-a.e. x € 0.
o9 |9U —y|" )

This can be seen either by relying on the fact that 952 is

(n — 1)-rectifiable (given that H"~1(0Q\ 8,Q) = 0) and invoking
[X. Tolsa, 2008], or, alternatively, assuming that R;1 € BMO(09),
make use of the 7'(1) Theorem and the pointwise existence of the
p.v. Cauchy-Clifford operator on Holder functions.

o Assuming that R;1 € BMO(99), with R;1 originally defined as a
functional in (Ca(OQ))*, we have

(R;1)(x) = p.v. / — Y do(y) o-ae. x € .
o0 |90 -y



o Since v € L®(90) C L*(9Q) and v ® v = —1 we obtain

Cu(z) = lim — / T u(y) O v(y) do(y)

e—0t Wp—1 |z —y|™
yeoN
lz—y|>e
y n
= _ J 1
> (o [ =R dot))es = =SB @e,

for g-a.e. z € 99).
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for o-a.e. z € 0.
o The previous formula and C* = 17 in L?(9Q) ® ¢/, yield
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o Since v € L®(90) C L*(9Q) and v ® v = —1 we obtain

Cu(z) = lim — / T u(y) O v(y) do(y)

e—0+ Wp—1 |z —y|™
y€eoN
lz—y|>e
y n
=— J 1
> (o [ =R dot))es = =SB @e,

for o-a.e. x € 09Q.
o The previous formula and C? = 17 in L*(99Q) ® C/,, yield

v =4C2(v) = 40( - i(le)ej) in L2(09) ® Cly.
j=1

o If also R;1 € C%(09) then v € C*(02) @ CUy,.
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o Since v € L®(90) C L*(9Q) and v ® v = —1 we obtain

Cu(z) = lim — / T u(y) O v(y) do(y)

e—0+ Wp—1 |z —y|™
y€eoN
lz—y|>e
y n
=— J 1
> (o [ =R dot))es = =SB @e,

for o-a.e. x € 09Q.
o The previous formula and C? = 17 in L*(99Q) ® C/,, yield

v =4C2(v) = 40( - i(le)ej) in L2(09) ® Cly.
j=1

o If also R;1 € C*(9Q) then v € C*(9Q) ® C/y,. Thus, Q is CH*.
"~ D. Mitrea (MU) o 187/30
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Qis a CH* domain = T : C%(9Q) — C*(Q) is bounded

Main step: Assuming the odd, homogeneous polynomial P is also
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we have, with p(z) := dist (z, 99),
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where [ is the degree of P.
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Qis a CH* domain = T : C%(9Q) — C*(Q) is bounded

Main step: Assuming the odd, homogeneous polynomial P is also
harmonic, show that 3C = C(n, o, Q) > 1 such that V f € C%(09)
we have, with p(z) := dist (z, 09),

a 2
sup [T (2)| + sup { p(@)' = |V(TS)(@)|} < C2 I Pllps sy lewomy

where [ is the degree of P.
Achieved via an induction over the degree | € 2N — 1 of P.

o When [ = 1 we have P(x Zaja:], hence T = Zaja ;S where
j=1 7j=1

S is the boundary-to-domain single layer operator associated with

the Laplacian, which we handle by proving a T'(1) type theorem

well-adapted to Holder spaces.



o In the inductive step we use elements of Clifford Algebra. For
[ > 3 write (refining work of S.W. Semmes)

ﬁ—_ﬁ)ﬂ = D [ks(@)ls Vo eR"\ {0},

where ks : R"\ {0} — R" — (¥, are odd, C*°, homogeneous of
degree —(n — 1), and

-1 0 Prs(x)

DkTS e P — 9 1 S 9 S 9
( (@) n+1— 30z, (|a:|"+l3) he=n

for some family { P4}, s of harmonic, homogeneous polynomials of
n

degree [ — 2, where D = Z e;0; is the Dirac operator.
j=1



If f is a Clifford-valued function set for each r,s € {1,...,n}

T, f(x) == /8 k(o= 1) © [ doly). weq

and P
T f(x /89 (;|n+l 3 (y)do(y), = €.



If f is a Clifford-valued function set for each r,s € {1,...,n}

T, f(x) == /8 k(o= 1) © [ doly). weq

and P
T"s rs Q.
e /8 e Y () doly), e
Note that'
o Tf = Z Tpsf], if f: 02 = R <y,

r,s=1



If f is a Clifford-valued function set for each r,s € {1,...,n}

T, f(x) == /8 k(o= 1) © [ doly). weq

and P
T"s rs Q.
e /m ‘xwg, ) doly), = e
Notethat'
o Tf = Z Tpsf], if f: 02 = R <y,

r,s=1

e we may apply the induction hypothesis component-wise to each
T f to estimate



sup |(17° ) (&) |+sup { p(e)' =V (T7° ) ()|}
e

e
_ _9)\2
< ¢, C7225072Y | P | L1 g1y || fllco (o),

for every f € C*(0Q) ® Cl,, where C'is the constant in the estimate
given by the induction hypothesis.



sup |(T7° ) () [+sup { ple)' =V (T7 ) ()|}
zEeQ

z€Q

_ _9)\2
< ¢, C7225072Y | P | L1 g1y || fllco (o),

for every f € C*(0Q) ® Cl,, where C'is the constant in the estimate
given by the induction hypothesis.

e The operators T and T, are related. For x € Q write

(Tr)(o)= |

o0

krs(z —y) © v(y) do(y)= — / (Dkrs)(z —y) dy

Q
_ -1 /i Ps(z —vy) dy
n+1-3Jq 0y \|z—y/nt3

-1 Ps(x—y) -1 s
S n+l-3 /aQ |z — y’n+l_3w(y) doly)= 73 +1— 3 (T (@)




Hence,
-1 s
(Trsv)(z) = il 3(T v)(z), z€4Q,



Hence,
-1
(Toar)(@) = — (T 0)(a), w €,
which when combined with the estimate we proved for T"® used with
[ =veC*(I0) @, yields

— sup [(Tps)(2) -+ sup {p(e)! 2|V (Tror) ()]}
e e

< ¢, C220=D%9 | P|| 11 gnny [IV]leacomy - (++)



Hence,
-1
(Toar)(@) = — (T 0)(a), w €,
which when combined with the estimate we proved for T"® used with
[ =veC*(I0) @, yields

= sup |(Tyor) @)+ sup { pl)! = |V (Tru0)(2)|}
z€Q e

< ¢, C220=D%9 | P|| 11 gnny [IV]leacomy - (++)

n
e Since Tf(x) = Z [T, f (:v)]s to return to the original T we need
r,s=1

() with v replaced by f.



For f: 0Q — C, with Holder scalar components consider

Tuf@) = [ (o -y 0vw) © W), e

o0
Recall that

T, (x) == /6 k(e =9) 0 f)do(y). w e

thus 'f‘rsl =T,sv



For f: 0Q — C, with Holder scalar components consider

Tuf@) = [ (bule =9 ©v) 0 f)dotw), v

o0
Recall that

T,sf(z) := /{m krs(z —y) © f(y)do(y), z€Q,
thus 'f‘rsl = T,sv and the estimate (xx) for T,sv rewrites as

sup |(Tys1) (@) 4+ sup { ple)' = |V(T,1) ()|}
e} €N

_ —_9)2
< ¢ O 7220772 Pl o sy [l o) -



For f: 0Q — C, with Holder scalar components consider

Tuf@) = [ (bule =9 ©v) 0 f)dotw), v

o0
Recall that

T,sf(z) := /{m krs(z —y) © f(y)do(y), z€Q,
thus 'ﬁ‘rsl = T,sv and the estimate (xx) for T,sv rewrites as

sup ]('ﬁ“rsl)(xﬂ—i— sup {p(x)l_a‘V(ﬁ‘f,«sl)(a:) ‘ }
e e

< e C' 22| Pl sy [V e omy.
Now use the T'(1) theorem for Holder spaces mentioned earlier (the

integral kernel of T,, is “good”) to obtain the estimate



sup [T,/ ()] + sup { p(2)! =V (T, ) ()] |
z€) z€N

_ _9)2
< Cn,a,Q{Cl 2207272 vl ca a0 +21}||P||L1(S"—1)||f||Ca(BQ)®CZn

for every f € C*(092) & Cly,.



sup [T,/ ()] + sup { p(2)! =V (T, ) ()] |
z€) z€N

_ _9)2
< Cn,a,Q{Cl 2207272 vl ca a0 +21}HPHLl(S"—l)||f||Ca(BQ)®C€n
for every f € C*(092) & Cly,.

Key observation: v © v = —1. Two consequences of interest: first
feC*(0o9) ®y, implies v & f € C*(092) @ Cl,, with comparable
norm, and second ']T,«S(I/ © f) = —=T,sf. In the context of the above
inequality these yield a similar estimate for T, f.



sup [T,/ ()] + sup { p(2)! =V (T, ) ()] |
z€) z€N

_ _9)2
< Cn,a,Q{Cl 2207272 vl ca a0 +21}||P||L1(Sn—1)||f||Ca(aQ)®cen
for every f € C*(092) & Cly,.

Key observation: v © v = —1. Two consequences of interest: first
feC¥(02) ® ¢, implies v © f € C*(09Q2) @ C/,, with comparable
norm, and second T,4(v ® f) = —T,sf. In the context of the above
inequality these yield a similar estimate for T, f.

Recalling that Tf(x) = Z [T, f(x)], we may further combine all

r,s=1
these to arrive at the following estimate for T:



-«
sup [T (2) -+ sup { p(a) [ V(TS)(2)] }

z€Q

< n2 Cn,a,ﬂ{cl_22(l_2)22l||V||(,’D¢(8Q) + 21} %

x2||v|lca@a) I PllLt(sn-1)ll fllcaany, f € C(ORQ)

Keeping careful tabs on the dependence of the degree [ (to ensure
that the above structural constant has the desired format) then
completes the induction on [ of the estimate

sup [T/ ()] +sup { p@)'~*|V(TS)(@)|} < C'2° | Plpssnn | fllewony
z€Q e

when the polynomial P is also harmonic.



o To remove the assumption that P is harmonic write
N+1

P(z) = Z 2|20 Pj(z) in R", where each P; is a harmonic
j=1
homogeneous polynomial of degree [ —2(j — 1).



o To remove the assumption that P is harmonic write
N+1
x) = Z 2|20 Pj(z) in R", where each P; is a harmonic

homogeneous polynomial of degree [ —2(j — 1).

o Recall that the original goal was to show T : C*(9Q) — C*(Q) is
well-defined and bounded. To arrive at this conclusion from what we
have just established, as a final step we use a general real-variable
result to the effect that, in the current geometric setting, for every

€ (0,1) there exists C' = C(2,a) € (0,00) such that

ey < Csup u(z)| + Csup { ()~ |Vu(a)

z€Q

for every function u € C*(f).



Question: What can we say about the limiting case o = 0 of the
equivalence

R;1€C*09), 1 <j<n <= QisaC"" domain.



Question: What can we say about the limiting case o = 0 of the
equivalence

R;1€C*09), 1 <j<n <= QisaC"" domain.

The space C°(99) is replaced by (the larger space) VMO(9), the
Sarason space of functions of vanishing mean oscillations on 052
(viewed as a space of homogeneous type, in the sense of
Coifman-Weiss, when equipped with the measure o and the
Euclidean distance).



If Q C R" is open with 02 compact Ahlfors reqular and
H LN\ 9,Q) = 0, then

v € VMO(99, R™) R;1 € VMO(99)
<~
and 0X2 is a UR set forall j€{1,...,n}.



If Q C R" is open with 02 compact Ahlfors reqular and
H LN\ 9,Q) = 0, then

v € VMO(99, R™) R;1 € VMO(99)
<~
and 0X2 is a UR set forall j€{1,...,n}.

The fact that R;1 € VMO(92)( € BMO(99)) implies 02 is a UR
set is a consequence of the T'(1) theorem and the
Nazarov-Tolsa-Volberg theorem.



If Q C R" is open with 02 compact Ahlfors reqular and
H LN\ 9,Q) = 0, then

v € VMO(99, R™) R;1 € VMO(99)
<~
and 0X2 is a UR set forall j€{1,...,n}.

The fact that R;1 € VMO(92)( € BMO(99)) implies 02 is a UR
set is a consequence of the T'(1) theorem and the
Nazarov-Tolsa-Volberg theorem.

Another ingredient is the earlier formula

n

Cv=-— Z(le)ej

j=1

and the following theorem:



Suppose  C R"™ is such that 0S) is compact Ahlfors regular with
H" 100\ 0.Q) = 0 and R;1 € BMO(0RQ) for 1 < j < n. Then for
every f € VMO(9Q) @ Cly, the limit

Cf(x) = lm —— / LY o u(y) @ f(y) do(y)

e—=0T Wp—1 |m — y|"
yeoN
lz—y|>e

exists for o-a.e. x € 0X), the operator
C : VMO(09) ® Cl,, — VMO(9Q) & Cly,
is bounded and

C?*=1I on VMO(9Q) ® (L.



