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Dorina Mitrea
joint work with Marius Mitrea and Joan Verdera

Workshop on Harmonic Analysis, Partial Differential Equations
and Geometric Measure Theory

ICMAT, Madrid, Spain

January 12–16, 2015



Setting

Ω ⊆ Rn open set of locally finite perimeter

ν outward unit normal to Ω (in the GMT sense)

σ := Hn−1b∂Ω “surface measure”

where Hk is the k-dimensional Hausdorff measure in Rn
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Ahlfors regular and UR sets

Definition

∂Ω is called Ahlfors regular if at all scales and locations behaves like
an (n− 1)-dimensional surface, i.e., there exists C ≥ 1 such that

C−1Rn−1 ≤ Hn−1
(
B(x,R) ∩ ∂Ω

)
≤ C Rn−1,

for each x ∈ ∂Ω and R ∈ (0,diam ∂Ω).

Definition

∂Ω is called a UR set if it is Ahlfors regular and at all scales and
locations contains big pieces of Lipschitz images, i.e., there exist ε,
M ∈ (0,∞) such that for each x ∈ ∂Ω and R ∈ (0,diam ∂Ω), there is
a Lipschitz map Φ : Bn−1

R → Rn (Bn−1
R = ball of radius R in Rn−1)

with Lipschitz constant ≤M , such that

Hn−1
(
∂Ω ∩B(x,R) ∩ Φ(Bn−1

R )
)
≥ εRn−1.
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The case when ∂Ω is a UR set

Theorem (G. David and S. Semmes, 1991)

Assume that ∂Ω is Ahlfors regular. Then all “reasonable” Singular
Integral Operators have truncated versions bounded on L2(∂Ω)
uniform w.r.t. the truncation parameter ⇔ ∂Ω is a UR set.

Truncated version of reasonable SIO’s:

(Tεf)(x) :=

∫
y∈∂Ω\B(x,ε)

k(x− y)f(y) dσ(y), x ∈ ∂Ω,

k is odd, smooth in Rn \ {0}, and |∇`k(x)| . |x|−(n−1+`), ∀ ` ∈ N0.

For homogeneous kernels, ∂Ω UR ⇒ lim
ε→0+

(Tεf)(x) exists for σ-a.e.

x ∈ ∂Ω and f ∈ Lp(∂Ω), p ∈ (1,∞) [Hofmann, Mitrea, Taylor, 2010].

Moral: For the study of SIO’s on Lp spaces, the class of UR sets is
the optimal environment.
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The role of Riesz transforms

Question: Can one streamline the class of SIO’s in the
David-Semmes theorem to just Riesz transforms?

Truncated Riesz transforms: given ε > 0, for j = 1, . . . , n,

(Rj,εf)(x) :=
1

ωn−1

∫
y∈∂Ω\B(x,ε)

xj − yj
|x− y|n

f(y) dσ(y), x ∈ ∂Ω.

Note: kj(x) :=
xj
|x|n

is of the type considered earlier and is

homogeneous.

Difficult question! Answer: YES
n = 2 proved by P. Mattila, M.S. Melnikov, and J. Verdera [Ann. of
Math., 1996] and the higher dimensionl case by F. Nazarov, X.
Tolsa, and A. Volberg [Acta Math., 2014].
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The role of Riesz transforms

In fact, by using the T (1) theorem for SIO’s with odd kernels (in
spaces of homogeneous type), the Lp-boundedness of Rj,ε’s (uniform
with respect to ε) reduces to just

Rj1 ∈ BMO(∂Ω), 1 ≤ j ≤ n (∗)
where BMO(∂Ω) is the John-Nirenberg space of functions of
bounded mean oscillations on ∂Ω and Rj : Cα(∂Ω)→

(
Cα(∂Ω)

)∗
is

the linear mapping given by

〈Rjf, g〉 := 1
2

∫
∂Ω

∫
∂Ω

xj − yj
|x− y|n

[f(y)g(x)− f(x)g(y)] dσ(y)dσ(x)

for every f, g ∈ Cα(∂Ω).

As such, the Nazarov-Tolsa-Volberg result may be rephrased as:

Under the background assumption ∂Ω is Ahlfors regular,
∂Ω is a UR set ⇐⇒ (∗) holds
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Riesz transforms on Hölder spaces

So far, looked at SIO’s on Lp spaces.

Next natural question: Will changing BMO(∂Ω) to a more
regular space in the equivalence

∂Ω is a UR set ⇐⇒ Rj1 ∈ BMO(∂Ω), 1 ≤ j ≤ n,

yield an equivalence where Ω is correspondingly more regular?

We are interested in replacing BMO(∂Ω) with the Hölder space
Cα(∂Ω) for any α ∈ (0, 1).
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A bit more GMT

Recall that the measure-theoretic boundary ∂∗Ω of Ω ⊆ Rn is
defined by

∂∗Ω :=
{
x ∈ ∂Ω : lim sup

r→0+

Hn(B(x, r) ∩ Ω)

rn
> 0

and lim sup
r→0+

Hn(B(x, r) \ Ω)

rn
> 0
}
.

GMT Fact: If Ω has locally finite perimeter, the outward unit
normal ν is defined σ-a.e. on ∂∗Ω. In particular, the condition

Hn−1(∂Ω \ ∂∗Ω) = 0

is equivalent with having the outward unit normal ν defined
σ-a.e. on ∂Ω (and it implies that ∂Ω is (n− 1)-rectifiable).
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Riesz transforms on Hölder spaces

Theorem (D.M., M. Mitrea, J. Verdera, 2014)

If α ∈ (0, 1), ∂Ω compact Ahlfors regular, Hn−1(∂Ω \ ∂∗Ω) = 0,
∂Ω = ∂(Ω), then Rj1 ∈ Cα(∂Ω), 1 ≤ j ≤ n ⇐⇒ Ω is a C1,α domain.
Moreover, if Ω is a C1,α domain, then for every odd, homogeneous
polynomial P in Rn the generalized Riesz transform T = TP given by

Tf(x) := p.v.

∫
∂Ω

P (x− y)

|x− y|n−1+degP
f(y) dσ(y), x ∈ ∂Ω

is bounded from Cα(∂Ω) into Cα(∂Ω), and if

Tf(x) :=

∫
∂Ω

P (x− y)

|x− y|n−1+degP
f(y) dσ(y), x ∈ Ω,

then T : Cα(∂Ω)→ Cα(Ω) is also bounded.
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A motivating example

The PDE modeling elastic deformation phenomena is described via
the Lamé system in Rn (where λ, µ ∈ R are the Lamé moduli)

Lu := µ∆u+ (λ+ µ)∇div u, u = (u1, ..., un) ∈ C2.

One basic approach to solving BVPs for this system uses boundary
SIO, such as the single layer associated with the Lamé system

SLamef(x) :=
(∫

∂Ω

n∑
β=1

Eαβ(x− y)fβ(y) dσ(y)
)

1≤α≤n
x ∈ Ω,

where (assuming n ≥ 3)

Eαβ(x) :=
−1

2µ(2µ+ λ)ωn−1

[
3µ+ λ

n− 2

δαβ
|x|n−2

+
(µ+ λ)xαxβ
|x|n

]
.
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A motivating example

When such BVPs are considered in the context of Hölder spaces in
Lyapunov domains the issue becomes whether this SIO behaves
naturally on such a scale. Our previous theorem implies that the
operator

SLame : Cα(∂Ω)→ C1,α(Ω)

is well-defined and bounded.
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A motivating example

To justify that the single layer for the Lamé system is smoothing of
order one on the Hölder scale observe that for each j = 1, . . . , n the
previous theorem applies to the integral operator T := ∂jSLame and
gives that ∂jSLame : Cα(∂Ω)→ Cα(Ω) boundedly. Indeed,

(∂jSLamef)(x) =
(∫

∂Ω

n∑
β=1

(∂jEαβ)(x− y)fβ(y) dσ(y)
)

1≤α≤n
x ∈ Ω

and its integral kernel is a matrix in which the (α, β) entry is given
by P (x− y)/|x− y|n−1+degP with P the homogeneous, odd,
polynomial of degree 3:

P (x) =
(3µ+ λ)δαβxj |x|2 − (µ+ λ)(δαjxβ|x|2 + δβjxα|x|2 − nxjxαxβ)

2µ(2µ+ λ)ωn−1
.

From this the desired conclusion follows using

‖SLamef‖C1,α(Ω) = ‖SLamef‖L∞(Ω) +

n∑
j=1

‖∂jSLamef‖Cα(Ω).
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Some ingredients in the proof

Rj1 ∈ Cα(∂Ω), 1 ≤ j ≤ n =⇒ Ω is a C1,α domain

∂Ω compact Ahlfors regular and ∂Ω = ∂(Ω), then
ν ∈ Cα(∂Ω) ⇐⇒ Ω a C1,α domain [Hofmann, Mitrea, Taylor, 2007]

Clifford algebra (C̀ n,+,�) which is the minimal enlargement of
Rn to a unitary real algebra such that x� x = −|x|2 for any x ∈ Rn.
Note that by identifying the canonical basis {ej}1≤j≤n from Rn with
the imaginary units in C̀ n, we have Rn ↪→ C̀ n via

x = (x1, . . . , xn) ≡
n∑
j=1

xjej ∈ C̀ n. Also, u =

n∑
l=0

∑
|I|=l

uI eI with

uI ∈ C, for each u ∈ C̀ n, where eI = ei1 � ei2 � · · · � eil if
I = (i1, i2, . . . , il) for 1 ≤ i1 < i2 < · · · < il ≤ n and e0 := e∅ := 1.

Moreover, we consider X ⊗ C̀ n by allowing uI ∈ X some Banach
space, such as X = Cα(∂Ω) or X = Lp(∂Ω), etc.

D. Mitrea (MU) 13 / 30



Some ingredients in the proof

Rj1 ∈ Cα(∂Ω), 1 ≤ j ≤ n =⇒ Ω is a C1,α domain

∂Ω compact Ahlfors regular and ∂Ω = ∂(Ω), then
ν ∈ Cα(∂Ω) ⇐⇒ Ω a C1,α domain [Hofmann, Mitrea, Taylor, 2007]

Clifford algebra (C̀ n,+,�) which is the minimal enlargement of
Rn to a unitary real algebra such that x� x = −|x|2 for any x ∈ Rn.
Note that by identifying the canonical basis {ej}1≤j≤n from Rn with
the imaginary units in C̀ n, we have Rn ↪→ C̀ n via

x = (x1, . . . , xn) ≡
n∑
j=1

xjej ∈ C̀ n. Also, u =

n∑
l=0

∑
|I|=l

uI eI with

uI ∈ C, for each u ∈ C̀ n, where eI = ei1 � ei2 � · · · � eil if
I = (i1, i2, . . . , il) for 1 ≤ i1 < i2 < · · · < il ≤ n and e0 := e∅ := 1.

Moreover, we consider X ⊗ C̀ n by allowing uI ∈ X some Banach
space, such as X = Cα(∂Ω) or X = Lp(∂Ω), etc.

D. Mitrea (MU) 13 / 30



Some ingredients in the proof

Rj1 ∈ Cα(∂Ω), 1 ≤ j ≤ n =⇒ Ω is a C1,α domain

∂Ω compact Ahlfors regular and ∂Ω = ∂(Ω), then
ν ∈ Cα(∂Ω) ⇐⇒ Ω a C1,α domain [Hofmann, Mitrea, Taylor, 2007]

Clifford algebra (C̀ n,+,�) which is the minimal enlargement of
Rn to a unitary real algebra such that x� x = −|x|2 for any x ∈ Rn.
Note that by identifying the canonical basis {ej}1≤j≤n from Rn with
the imaginary units in C̀ n, we have Rn ↪→ C̀ n via

x = (x1, . . . , xn) ≡
n∑
j=1

xjej ∈ C̀ n. Also, u =

n∑
l=0

∑
|I|=l

uI eI with

uI ∈ C, for each u ∈ C̀ n, where eI = ei1 � ei2 � · · · � eil if
I = (i1, i2, . . . , il) for 1 ≤ i1 < i2 < · · · < il ≤ n and e0 := e∅ := 1.

Moreover, we consider X ⊗ C̀ n by allowing uI ∈ X some Banach
space, such as X = Cα(∂Ω) or X = Lp(∂Ω), etc.

D. Mitrea (MU) 13 / 30



Some ingredients in the proof

Rj1 ∈ Cα(∂Ω), 1 ≤ j ≤ n =⇒ Ω is a C1,α domain

∂Ω compact Ahlfors regular and ∂Ω = ∂(Ω), then
ν ∈ Cα(∂Ω) ⇐⇒ Ω a C1,α domain [Hofmann, Mitrea, Taylor, 2007]

Clifford algebra (C̀ n,+,�) which is the minimal enlargement of
Rn to a unitary real algebra such that x� x = −|x|2 for any x ∈ Rn.
Note that by identifying the canonical basis {ej}1≤j≤n from Rn with
the imaginary units in C̀ n, we have Rn ↪→ C̀ n via

x = (x1, . . . , xn) ≡
n∑
j=1

xjej ∈ C̀ n. Also, u =

n∑
l=0

∑
|I|=l

uI eI with

uI ∈ C, for each u ∈ C̀ n, where eI = ei1 � ei2 � · · · � eil if
I = (i1, i2, . . . , il) for 1 ≤ i1 < i2 < · · · < il ≤ n and e0 := e∅ := 1.

Moreover, we consider X ⊗ C̀ n by allowing uI ∈ X some Banach
space, such as X = Cα(∂Ω) or X = Lp(∂Ω), etc.

D. Mitrea (MU) 13 / 30



Some ingredients in the proof

Rj1 ∈ Cα(∂Ω), 1 ≤ j ≤ n =⇒ Ω is a C1,α domain

∂Ω compact Ahlfors regular and ∂Ω = ∂(Ω), then
ν ∈ Cα(∂Ω) ⇐⇒ Ω a C1,α domain [Hofmann, Mitrea, Taylor, 2007]

Clifford algebra (C̀ n,+,�) which is the minimal enlargement of
Rn to a unitary real algebra such that x� x = −|x|2 for any x ∈ Rn.
Note that by identifying the canonical basis {ej}1≤j≤n from Rn with
the imaginary units in C̀ n, we have Rn ↪→ C̀ n via

x = (x1, . . . , xn) ≡
n∑
j=1

xjej ∈ C̀ n. Also, u =

n∑
l=0

∑
|I|=l

uI eI with

uI ∈ C, for each u ∈ C̀ n, where eI = ei1 � ei2 � · · · � eil if
I = (i1, i2, . . . , il) for 1 ≤ i1 < i2 < · · · < il ≤ n and e0 := e∅ := 1.

Moreover, we consider X ⊗ C̀ n by allowing uI ∈ X some Banach
space, such as X = Cα(∂Ω) or X = Lp(∂Ω), etc.

D. Mitrea (MU) 13 / 30



Some ingredients in the proof

The Cauchy-Clifford operator

Cf(x) := lim
ε→0+

1

ωn−1

∫
y∈∂Ω

|x−y|>ε

x− y
|x− y|n

� ν(y)� f(y) dσ(y), x ∈ ∂Ω,

where f is a C̀ n-valued function defined on ∂Ω.

Mapping properties for C under minimal smoothness assumptions
on ∂Ω. While for mapping properties of SIO’s on Lp the class of UR
sets is the optimal environment, the Cauchy-Clifford operator
behaves naturally on Hölder spaces on a much larger class of sets
(essentially, Ahlfors regular will do). This is surprising since the
boundedness of all Riesz transforms on Hölder spaces forces the
domain to be Lyapunov. More precisely, we prove the following
result.
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behaves naturally on Hölder spaces on a much larger class of sets
(essentially, Ahlfors regular will do). This is surprising since the
boundedness of all Riesz transforms on Hölder spaces forces the
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Some ingredients in the proof

Theorem (D. M., M. Mitrea, J. Verdera, 2014)

Fix α ∈ (0, 1). Suppose Ω ⊂ Rn is such that ∂Ω is compact Ahlfors
regular with Hn−1(∂Ω \ ∂∗Ω) = 0. Then for every f ∈ Cα(∂Ω)⊗ C̀ n
the limit

Cf(x) := lim
ε→0+

1

ωn−1

∫
y∈∂Ω

|x−y|>ε

x− y
|x− y|n

� ν(y)� f(y) dσ(y)

exists for σ-a.e. x ∈ ∂Ω, the operator

C : Cα(∂Ω)⊗ C̀ n → Cα(∂Ω)⊗ C̀ n

is bounded and
C2 = 1

4I on Cα(∂Ω)⊗ C̀ n.
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Some ingredients in the proof

Theorem (cont.)

Moreover, if also Rj1 ∈ BMO(∂Ω) for 1 ≤ j ≤ n, then for every
p ∈ (1,∞) the pointwise limit above for Cf(x) exists for σ-a.e.
x ∈ ∂Ω whenever f ∈ Lp(∂Ω)⊗ C̀ n and the operator C, originally
defined on Cα(∂Ω)⊗ C̀ n, extends boundedly to an operator

C : Lp(∂Ω)⊗ C̀ n → Lp(∂Ω)⊗ C̀ n

with the property that C2 = 1
4I in Lp(∂Ω)⊗ C̀ n, and it also extends

to a bounded operator

C : BMO(∂Ω)⊗ C̀ n → BMO(∂Ω)⊗ C̀ n

with the property that C2 = 1
4I in BMO(∂Ω)⊗ C̀ n.
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Some ingredients in the proof

There exists

p.v.

∫
∂Ω

xj − yj
|x− y|n

dσ(y) σ-a.e. x ∈ ∂Ω.

This can be seen either by relying on the fact that ∂Ω is
(n− 1)-rectifiable (given that Hn−1(∂Ω \ ∂∗Ω) = 0) and invoking
[X. Tolsa, 2008], or, alternatively, assuming that Rj1 ∈ BMO(∂Ω),
make use of the T (1) Theorem and the pointwise existence of the
p.v. Cauchy-Clifford operator on Hölder functions.

Assuming that Rj1 ∈ BMO(∂Ω), with Rj1 originally defined as a
functional in

(
Cα(∂Ω)

)∗
, we have

(Rj1)(x) = p.v.

∫
∂Ω

xj − yj
|x− y|n

dσ(y) σ-a.e. x ∈ ∂Ω.
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Some ingredients in the proof

Since ν ∈ L∞(∂Ω) ⊂ L2(∂Ω) and ν � ν = −1 we obtain

Cν(x) = lim
ε→0+

1

ωn−1

∫
y∈∂Ω

|x−y|>ε

x− y
|x− y|n

� ν(y)� ν(y) dσ(y)

= −
n∑
j=1

(
p.v.

∫
∂Ω

xj − yj
|x− y|n

dσ(y)
)
ej = −

n∑
j=1

(Rj1)(x)ej

for σ-a.e. x ∈ ∂Ω.
The previous formula and C2 = 1

4I in L2(∂Ω)⊗ C̀ n yield

ν = 4C2(ν) = 4C
(
−

n∑
j=1

(Rj1)ej

)
in L2(∂Ω)⊗ C̀ n.

If also Rj1 ∈ Cα(∂Ω) then ν ∈ Cα(∂Ω)⊗ C̀ n. Thus, Ω is C1,α.
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Some ingredients in the proof

Ω is a C1,α domain =⇒ T : Cα(∂Ω)→ Cα(Ω) is bounded

Main step: Assuming the odd, homogeneous polynomial P is also
harmonic, show that ∃C = C(n, α,Ω) > 1 such that ∀ f ∈ Cα(∂Ω)
we have, with ρ(x) := dist (x, ∂Ω),

sup
x∈Ω
|Tf(x)|+ sup

x∈Ω

{
ρ(x)1−α∣∣∇(Tf)(x)

∣∣} ≤ C l2l2‖P‖L1(Sn−1)‖f‖Cα(∂Ω)

where l is the degree of P .

Achieved via an induction over the degree l ∈ 2N− 1 of P .

When l = 1 we have P (x) =

n∑
j=1

ajxj , hence T =

n∑
j=1

aj∂jS where

S is the boundary-to-domain single layer operator associated with
the Laplacian, which we handle by proving a T (1) type theorem
well-adapted to Hölder spaces.
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Some ingredients in the proof

In the inductive step we use elements of Clifford Algebra. For
l ≥ 3 write (refining work of S.W. Semmes)

P (x)

|x|n−1+l
=

n∑
r,s=1

[krs(x)]s ∀x ∈ Rn \ {0},

where krs : Rn \ {0} −→ Rn ↪→ C̀ n are odd, C∞, homogeneous of
degree −(n− 1), and

(Dkrs)(x) =
l − 1

n+ l − 3

∂

∂xr

(
Prs(x)

|x|n+l−3

)
, 1 ≤ r, s ≤ n,

for some family {Prs}r,s of harmonic, homogeneous polynomials of

degree l − 2, where D =

n∑
j=1

ej∂j is the Dirac operator.
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Some ingredients in the proof

If f is a Clifford-valued function set for each r, s ∈ {1, . . . , n}

Trsf(x) :=

∫
∂Ω
krs(x− y)� f(y) dσ(y), x ∈ Ω,

and

Trsf(x) =

∫
∂Ω

Prs(x− y)

|x|n+l−3
f(y) dσ(y), x ∈ Ω.

Note that:

• Tf =

n∑
r,s=1

[
Trsf

]
s

if f : ∂Ω→ R ↪→ C̀ n

• we may apply the induction hypothesis component-wise to each
Trsf to estimate
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Some ingredients in the proof

sup
x∈Ω
|(Trsf)(x)|+sup

x∈Ω

{
ρ(x)1−α∣∣∇(Trsf)(x)

∣∣}
≤ cnC l−22(l−2)2

2l‖P‖L1(Sn−1)‖f‖Cα(∂Ω)⊗C̀ n

for every f ∈ Cα(∂Ω)⊗ C̀ n, where C is the constant in the estimate
given by the induction hypothesis.
• The operators Trs and Trs are related. For x ∈ Ω write

(Trsν)(x)=

∫
∂Ω
krs(x− y)� ν(y) dσ(y)= −

∫
Ω

(Dkrs)(x− y) dy

=
l − 1

n+ l − 3

∫
Ω

∂

∂yr

(
Prs(x− y)

|x− y|n+l−3

)
dy

=
l − 1

n+ l − 3

∫
∂Ω

Prs(x− y)

|x− y|n+l−3
νr(y) dσ(y)=

l − 1

n+ l − 3
(Trsνr)(x)
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Some ingredients in the proof

Hence,

(Trsν)(x) =
l − 1

n+ l − 3
(Trsνr)(x), x ∈ Ω,

which when combined with the estimate we proved for Trs used with
f = ν ∈ Cα(∂Ω)⊗ C̀ n yields

=⇒ sup
x∈Ω
|(Trsν)(x)|+ sup

x∈Ω

{
ρ(x)1−α∣∣∇(Trsν)(x)

∣∣}
≤ cnC l−22(l−2)2

2l‖P‖L1(Sn−1)‖ν‖Cα(∂Ω). (∗∗)

• Since Tf(x) =

n∑
r,s=1

[
Trsf(x)

]
s

to return to the original T we need

(∗∗) with ν replaced by f .

D. Mitrea (MU) 23 / 30



Some ingredients in the proof

Hence,

(Trsν)(x) =
l − 1

n+ l − 3
(Trsνr)(x), x ∈ Ω,

which when combined with the estimate we proved for Trs used with
f = ν ∈ Cα(∂Ω)⊗ C̀ n yields

=⇒ sup
x∈Ω
|(Trsν)(x)|+ sup

x∈Ω

{
ρ(x)1−α∣∣∇(Trsν)(x)

∣∣}
≤ cnC l−22(l−2)2

2l‖P‖L1(Sn−1)‖ν‖Cα(∂Ω). (∗∗)

• Since Tf(x) =

n∑
r,s=1

[
Trsf(x)

]
s

to return to the original T we need

(∗∗) with ν replaced by f .

D. Mitrea (MU) 23 / 30



Some ingredients in the proof

Hence,

(Trsν)(x) =
l − 1

n+ l − 3
(Trsνr)(x), x ∈ Ω,

which when combined with the estimate we proved for Trs used with
f = ν ∈ Cα(∂Ω)⊗ C̀ n yields

=⇒ sup
x∈Ω
|(Trsν)(x)|+ sup

x∈Ω

{
ρ(x)1−α∣∣∇(Trsν)(x)

∣∣}
≤ cnC l−22(l−2)2

2l‖P‖L1(Sn−1)‖ν‖Cα(∂Ω). (∗∗)

• Since Tf(x) =

n∑
r,s=1

[
Trsf(x)

]
s

to return to the original T we need

(∗∗) with ν replaced by f .

D. Mitrea (MU) 23 / 30



Some ingredients in the proof

For f : ∂Ω→ C̀ n with Hölder scalar components consider

T̃rsf(x) :=

∫
∂Ω

(
krs(x− y)� ν(y)

)
� f(y) dσ(y), x ∈ Ω.

Recall that

Trsf(x) :=

∫
∂Ω
krs(x− y)� f(y) dσ(y), x ∈ Ω,

thus T̃rs1 = Trsν and the estimate (∗∗) for Trsν rewrites as

sup
x∈Ω
|(T̃rs1)(x)|+ sup

x∈Ω

{
ρ(x)1−α∣∣∇(T̃rs1)(x)

∣∣}
≤ cnC l−22(l−2)2

2l‖P‖L1(Sn−1)‖ν‖Cα(∂Ω).

Now use the T (1) theorem for Hölder spaces mentioned earlier (the
integral kernel of T̃rs is “good”) to obtain the estimate
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Some ingredients in the proof

sup
x∈Ω
|T̃rsf(x)|+ sup

x∈Ω

{
ρ(x)1−α∣∣∇(T̃rsf)(x)

∣∣}
≤ Cn,α,Ω

{
C l−22(l−2)2

2l‖ν‖Cα(∂Ω) + 2l
}
‖P‖L1(Sn−1)‖f‖Cα(∂Ω)⊗C̀ n

for every f ∈ Cα(∂Ω)⊗ C̀ n.

Key observation: ν � ν = −1. Two consequences of interest: first
f ∈ Cα(∂Ω)⊗ C̀ n implies ν � f ∈ Cα(∂Ω)⊗ C̀ n with comparable
norm, and second T̃rs(ν � f) = −Trsf . In the context of the above
inequality these yield a similar estimate for Trsf .

Recalling that Tf(x) =

n∑
r,s=1

[
Trsf(x)

]
s

we may further combine all

these to arrive at the following estimate for T:
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Some ingredients in the proof

sup
x∈Ω
|Tf(x)|+ sup

x∈Ω

{
ρ(x)1−α∣∣∇(Tf)(x)

∣∣}
≤ n2Cn,α,Ω

{
C l−22(l−2)2

2l‖ν‖Cα(∂Ω) + 2l
}
×

×2‖ν‖Cα(∂Ω)‖P‖L1(Sn−1)‖f‖Cα(∂Ω), f ∈ Cα(∂Ω)

Keeping careful tabs on the dependence of the degree l (to ensure
that the above structural constant has the desired format) then
completes the induction on l of the estimate

sup
x∈Ω
|Tf(x)|+ sup

x∈Ω

{
ρ(x)1−α∣∣∇(Tf)(x)

∣∣} ≤ C l2l2‖P‖L1(Sn−1)‖f‖Cα(∂Ω)

when the polynomial P is also harmonic.
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Some ingredients in the proof

To remove the assumption that P is harmonic write

P (x) =

N+1∑
j=1

|x|2(j−1)Pj(x) in Rn, where each Pj is a harmonic

homogeneous polynomial of degree l − 2(j − 1).

Recall that the original goal was to show T : Cα(∂Ω)→ Cα(Ω) is
well-defined and bounded. To arrive at this conclusion from what we
have just established, as a final step we use a general real-variable
result to the effect that, in the current geometric setting, for every
α ∈ (0, 1) there exists C = C(Ω, α) ∈ (0,∞) such that

‖u‖Cα(Ω) ≤ C sup
x∈Ω
|u(x)|+ C sup

x∈Ω

{
ρ(x)1−α|∇u(x)|

}
for every function u ∈ C1(Ω).
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The case α = 0.

Question: What can we say about the limiting case α = 0 of the
equivalence

Rj1 ∈ Cα(∂Ω), 1 ≤ j ≤ n ⇐⇒ Ω is a C1,α domain.

The space C0(∂Ω) is replaced by (the larger space) VMO(∂Ω), the
Sarason space of functions of vanishing mean oscillations on ∂Ω
(viewed as a space of homogeneous type, in the sense of
Coifman-Weiss, when equipped with the measure σ and the
Euclidean distance).
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The case α = 0.

Theorem (D. M., M. Mitrea, J. Verdera, 2014)

If Ω ⊆ Rn is open with ∂Ω compact Ahlfors regular and
Hn−1(∂Ω \ ∂∗Ω) = 0, then

ν ∈ VMO(∂Ω,Rn)

and ∂Ω is a UR set

}
⇐⇒

{
Rj1 ∈ VMO(∂Ω)

for all j ∈ {1, . . . , n}.

The fact that Rj1 ∈ VMO(∂Ω)
(
⊆ BMO(∂Ω)

)
implies ∂Ω is a UR

set is a consequence of the T (1) theorem and the
Nazarov-Tolsa-Volberg theorem.
Another ingredient is the earlier formula

Cν = −
n∑
j=1

(Rj1)ej

and the following theorem:
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Another ingredient in the proof

Theorem

Suppose Ω ⊂ Rn is such that ∂Ω is compact Ahlfors regular with
Hn−1(∂Ω \ ∂∗Ω) = 0 and Rj1 ∈ BMO(∂Ω) for 1 ≤ j ≤ n. Then for
every f ∈ VMO(∂Ω)⊗ C̀ n the limit

Cf(x) := lim
ε→0+

1

ωn−1

∫
y∈∂Ω

|x−y|>ε

x− y
|x− y|n

� ν(y)� f(y) dσ(y)

exists for σ-a.e. x ∈ ∂Ω, the operator

C : VMO(∂Ω)⊗ C̀ n → VMO(∂Ω)⊗ C̀ n

is bounded and

C2 = 1
4I on VMO(∂Ω)⊗ C̀ n.
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