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Maximum principle, Positivity

What properties do harmonic functions have in rough domains?

Ω - arbitrary domain
Maximum principle:

the maximum of a harmonic function is achieved on the
boundary
for positive data the solution is positive
the Green function (∆xG (x , y) = δy (x),G |∂Ω = 0) is positive
harmonic functions continuous up to the boundary satisfy

‖u‖L∞(Ω) ≤ ‖u‖L∞(∂Ω)

These results extend to general 2nd order equations:
Stampacchia, 1962 divergence form equations

H. Berestycki, L. Nirenberg, S.R.S. Varadhan, 1994 non-divergence

form elliptic equations
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Estimates (well-posedness)

The maximum principle provides the sharp estimates for solutions
with data in L∞. What about Lp? What exactly is the dependence
on the data (estimates)? Which data is allowed?

Well-posedness = existence + uniqueness + sharp estimates

Consider the solution to ∆u = 0, u|∂Ω = f , f ∈ Lp(∂Ω)
(Dirichlet problem) Ω Lipschitz – well-posed for 2− ε < p <∞
Dahlberg, 77 (and the range of p is sharp)

3



Estimates (well-posedness)

The maximum principle provides the sharp estimates for solutions
with data in L∞. What about Lp? What exactly is the dependence
on the data (estimates)? Which data is allowed?

Well-posedness = existence + uniqueness + sharp estimates

Consider the solution to ∆u = 0, u|∂Ω = f , f ∈ Lp(∂Ω)
(Dirichlet problem) Ω Lipschitz – well-posed for 2− ε < p <∞
Dahlberg, 77 (and the range of p is sharp)

4



Estimates (well-posedness)

The maximum principle provides the sharp estimates for solutions
with data in L∞. What about Lp? What exactly is the dependence
on the data (estimates)? Which data is allowed?

Well-posedness = existence + uniqueness + sharp estimates

Consider the solution to ∆u = 0, u|∂Ω = f , f ∈ Lp(∂Ω)
(Dirichlet problem) Ω Lipschitz – well-posed for 2− ε < p <∞
Dahlberg, 77 (and the range of p is sharp)

“well-posed in Lp” means that there is a unique solution with
‖Nu‖Lp(∂Ω) ≤ C‖f ‖Lp

Nu = sup
Γ(x)
|u|, Γ(x) is a non-tangential cone
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Harmonic measure

The well-posedness in Lp for −∆ on Ω is equivalent to ω ∈ A∞ –
quantifiable absolute continuity of harmonic measure.

Recall: for E ⊂ ∂Ω, X ∈ Ω, ωX (E ) is a solution to

−∆u = 0 in Ω, u
∣∣∣
∂Ω

= 1E

evaluated at point X , that is, u(X ).

Equivalently, ωX (E ) is the probability for a Brownian motion
starting at X ∈ Ω to exit through the set E ⊂ ∂Ω.

We say that ω ∈ A∞, or, more precisely, that for each cube
Q ⊂ Rn, the harmonic measure ωXQ ∈ A∞(Q), with constants
that are uniform in Q if the following holds.
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Harmonic measure

We say that ω ∈ A∞, or, more precisely, that for each cube
Q ⊂ Rn, the harmonic measure ωXQ ∈ A∞(Q), with constants
that are uniform in Q if the following holds.

∀Q ⊆ ∂Ω and every Borel set F ⊂ Q, we have

ωXQ (F ) ≤ C

(
|F |
|Q|

)θ
ωXQ (Q), (1)

where XQ is the “corkscrew point” relative to Q.

In other words, Brownian travelers “see” portions of the boundary
proportionally to their Lebesgue size.

A∞ property is a qualitative version of the condition that ω is
absolutely continuous with respect to Lebesgue measure
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Variable coefficients

Laplacian −∆ = −div∇ corresponds to a perfectly uniform
material. Real materials are inhomogeneous: L = −divA(x)∇
A is an elliptic (in some sense, positive) matrix

Moreover, if
Ω – domain above the Lipschitz graph ϕ

{
∆u = 0 in Ω,
u|∂Ω = f ∈ Lp

7→

{
Lu = 0 in Rn+1

+ ,
u|∂Rn+1

+
= f ∈ Lp

using the mapping (x , t) 7→ (x , t − ϕ(x))

L = −divx ,t A(x)∇x ,t

Hence, considering such matrices accounts both for rough
materials and rough domains
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Variable coefficients

L = −divx ,t A(x , t)∇x ,t in Rn+1
+ = {(x , t) : x ∈ Rn, t > 0}

For what A the boundary problems are well-posed in Lp?
Is smoothness an issue?
Recall that the maximum principle (p =∞) holds for all elliptic A

Ω – domain above the Lipschitz graph ϕ{
∆u = 0 in Ω,
u|∂Ω = f ∈ Lp

7→

{
Lu = 0 in Rn+1

+ ,
u|∂Rn+1

+
= f ∈ Lp

using the mapping (x , t) 7→ (x , t − ϕ(x))

L = −divx ,t A(x)∇x ,t

the matrix of A has NO smoothness: bounded coefficients
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Known results: REAL SYMMETRIC case

L = −divx ,t A(x , t)∇x ,t in Rn+1
+ = {(x , t) : x ∈ Rn, t > 0}

For what A the BVP’s are well-posed?
Some smoothness in t is necessary: Caffarelli, Fabes, Kenig, ’81
(recall: the change of variables from ∆ gives a t-independent A)

If A is real and symmetric:

Well-posedness for t-independent matrices:
D. Jerison, C. Kenig, 1981 (Dirichlet);
C. Kenig, J. Pipher, 1993 (Neumann)
Perturbation: roughly, if |A1(x , t)− A0(x , t)|2 dxdt

t is Carleson
and well-posedness holds for A0 then it holds for A1

B. Dahlberg, 1986;
R. Fefferman, C. Kenig, J. Pipher, 1991 (Dirichlet)
C. Kenig, J. Pipher, 1993-95 (Regularity, Neumann+Regularity
with small Carleson measure)
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Known results: REAL SYMMETRIC case

If A is real and symmetric:

Well-posedness for t-independent matrices:
D. Jerison, C. Kenig, 1981;
C. Kenig, J. Pipher, 1993

Perturbation: roughly, if |A1(x , t)− A0(x , t)|2 dxdt
t is Carleson

sup
Q

1

|Q|

∫
Q

∫ l(Q)

0
|A1(x , t)− A0(x , t)|2 dxdt

t
<∞

and well-posedness holds for A0 then it holds for A1

B. Dahlberg, 1986;
R. Fefferman, C. Kenig, J. Pipher, 1991 (Dirichlet)
C. Kenig, J. Pipher, 1993-95 (Regularity, Neumann+Regularity
with small Carleson measure)

What does it imply for a given matrix A = A(x , t)?
Note: A(x , 0) is t-independent. Thus, if |A(x , t)− A(x , 0)|2 dxdt

t is
Carleson then we have well-posedness. Carleson condition is sharp.
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Real non-symmetric or complex case: obstacles

What if A is complex or even just real non-symmetric?
(Among applications: real non-symmetric - homogenization,

living cells; complex - porous media; gateway to systems and
higher order operators etc)

Recall that for ∆ on a Lipschitz domain the Dirichlet problem is
well-posed for 2− ε < p <∞

p =∞ – Maximum Principle

p = 2 – integral identity (Hilbert space AND symmetry!)

2 < p <∞ – interpolation

Plus harmonic measure techniques or layer potentials

Similarly for the real symmetric case;
Neumann and regularity - “dual” 1 < p < 2 + ε
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Real non-symmetric or complex case: obstacles

General complex matrices:

no positivity =⇒ no harmonic measure techniques

no maximum principle (hence, no p =∞)

(u /∈ L∞, even for f ∈ C∞0 ; e−tLf , e−t
√
Lf are not bounded)

n ≥ 5 – V. G. Maz’ya, S. A. Nazarov and B. A. Plamenevskĭı,
1982; P. Auscher, T. Coulhon, Ph. Tchamitchian, 1996;
E.B. Davies, 1997; n ≥ 3 – S. Hofmann, A. McIntosh, S.M.,
2011 (based on an example of Frehse)

no integral identity (because of lack of symmetry)
hence, cannot approach L2

no well-posedness in L2 – C. Kenig, H. Koch, J. Pipher, T.
Toro, 2000

the solutions, potentials, e−tL, e−t
√
L, Riesz transform

∇L−1/2 are beyond Calderón-Zygmund theory
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Real non-symmetric or complex case: results

L = −divx ,t A(x , t)∇x ,t in Rn+1
+ = {(x , t) : x ∈ Rn, t > 0}

For what A the BVP’s are well-posed?

Perturbation: roughly, |A1(x , t)−A0(x)|2 dxdt
t has a small Carleson

norm. Then well-posedness for L0 implies the well-posedness for L1

I will not discuss the questions of perturbation today
S. Hofmann, S.M., M. Mourgoglou, 2010-11
P. Auscher, A. Axelsson, 2010

The problem is: we don’t know well-posedness for a t-independent
A(x , 0), aside from the real symmetric case
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Real non-symmetric or complex case: results

L = −divx ,t A(x , t)∇x ,t in Rn+1
+ = {(x , t) : x ∈ Rn, t > 0}

For what A the BVP’s are well-posed?

Well-posedness for t-independent matrices:

real non-symmetric, R2 (only R2!):
C. Kenig, H. Koch, J. Pipher, T. Toro, 2000 (Dirichlet);
C. Kenig, D. Rule, 2009 (Neumann, regularity)

real non-symmetric, Rn (any n ≥ 2):
S. Hofmann, C. Kenig, S.M., J. Pipher (Dirichlet), 2013
S. Hofmann, C. Kenig, S.M., J. Pipher (Regularity), 2014
A. Barton, S.M. (fractional Sobolev/Besov spaces), 2014
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Real non-symmetric case: Dirichlet problem

Theorem (S. Hofmann, C. Kenig, S.M., J. Pipher, 2013)

Let A = A(x) be an elliptic matrix with real bounded measurable
coefficients (possibly non-symmetric), and L = −divx ,tA(x)∇x ,t .

Then there is a p <∞ such that the Dirichlet problem with the
data in Lp is well-posed.
Equivalently, for each cube Q ⊂ Rn, the L-harmonic measure

ω
XQ

L ∈ A∞(Q), with constants that are uniform in Q.

Here XQ := (xQ , `(Q)) is the “Corkscrew point” relative to Q and
a non-negative Borel measure ω ∈ A∞(Q0), if there are C , θ > 0
such that ∀Q ⊆ Q0 and every Borel set F ⊂ Q, we have

ω(F ) ≤ C

(
|F |
|Q|

)θ
ω(Q). (2)

A∞ property is a qualitative version of the condition that ω is
absolutely continuous with respect to Lebesgue measure
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Real non-symmetric case: Dirichlet problem

Theorem (S. Hofmann, C. Kenig, S.M., J. Pipher, 2013)

Let A = A(x) be an elliptic matrix with real bounded measurable
coefficients (possibly non-symmetric), and L = −divx ,tA(x)∇x ,t .

Then there is a p <∞ such that the Dirichlet problem with the
data in Lp is well-posed.
Equivalently, for each cube Q ⊂ Rn, the L-harmonic measure

ω
XQ

L ∈ A∞(Q), with constants that are uniform in Q.

Note: the result is sharp, in the sense that ∀p0 > 0 there is an L
such that the Dirichlet problem is not well-posed in Lp0

(C. Kenig, H. Koch, J. Pipher, T. Toro, 2000)

L = div

(
1 m(x)
−m(x) 1

)
∇, m(x) =

{
k , x > 0
−k , x < 0
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Real non-symmetric case: Dirichlet problem

Theorem (S. Hofmann, C. Kenig, S.M., J. Pipher, 2013)

Let A = A(x) be an elliptic matrix with real bounded measurable
coefficients (possibly non-symmetric), and L = −divx ,tA(x)∇x ,t .

Then there is a p <∞ such that the Dirichlet problem with the
data in Lp is well-posed.
Equivalently, for each cube Q ⊂ Rn, the L-harmonic measure

ω
XQ

L ∈ A∞(Q), with constants that are uniform in Q.

The result is also sharp in the sense that it cannot be generalized
to all complex matrices [H. Koch, S.M., 2014]
– more about this later
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Strategy

Recall: the Dirichlet problem is well-posed in Lp if there is a unique
solution with ‖Nu‖Lp(∂Ω) ≤ C‖f ‖Lp ,
N is the non-tangential maximal function

Nu = sup
Γ(x)
|u|, Γ(x) is a non-tangential cone

Recall also: the square function

S(u)(x) :=

(∫∫
Γ(x)
|∇u(y , t)|2 dydt

tn−1

)1/2

Strategy:

1 “S < N” (in Lq, 0 < q <∞, and localized)

2 “N < S” (in Lq, 0 < q <∞, and localized)

3 S ≈ N implies ωL ∈ A∞ (localized)
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Strategy

1 “S < N” (in Lq, 0 < q <∞, and localized)
2 “N < S” (in Lq, 0 < q <∞, and localized)
3 S ≈ N implies ωL ∈ A∞ (localized)

Note 1: According to [Dahlberg, Jerison, Kenig, 84], if the
Lebesgue measure is A∞ with respect to the L-harmonic measure,
then S ≈ N. But A∞ is exactly what we are trying to prove!

Note 2: N < S in L2 only was proved by Auscher and Axelsson

Note 3: the fact that S ≈ N on all Lipschitz domains implies
ωL ∈ A∞ was known [Kenig, Koch, Pipher, Toro]. We will not be
able to use that literally (orientation matters!) but still... Also,
again in [Kenig, Koch, Pipher, Toro] the entire scheme was
successfully used in dimension 2.

Note 4: How can one possibly approach S < N in general???
22



S < N estimates: dream case

Let u be a solution to Lu = −divx ,tA(x)∇x ,tu = 0 in Rn+1. Then

‖Su‖2
L2(Rn)

Fubini
=

∫∫
Rn+1

+

|∇u(x , t)|2 t dtdx

ellipticity
≈ 2

∫∫
Rn+1

+

〈A∇u,∇u〉 t dtdx =

∫∫
Rn+1

+

L(u2) t dtdx

Int by parts
=

∫∫
Rn+1

+

u2 L∗(t) dtdx +

∫
Rn

|u(x , 0)|2An+1,n+1 dx

≈
∫
Rn

|u(x , 0)|2dx . ‖Nu‖2
L2(Rn).

IF L∗(t) = 0!!! (as it is in the case of the Laplacian)
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S < N estimates: reality

Need L∗(t) = 0 (as it is in the case of the Laplacian)

What is L∗(t)? Let us write A =

[
A‖ b

c d

]
, where A‖ is n × n.

Observation 1: L∗(t) = −divx ,tA∗(x)∇x ,t(t) = −
∑

i .j ∂iAji∂j(t) =
−
∑

i ∂iAn+1,i = −divxc− ∂tAn+1,n+1 = −divxc
Hence, div-free part is harmless.

Observation 2: Let us map Rn+1
+ into the graph domain

Ωϕ := {(x , t) : t > ϕ(x)}, via the mapping t → t − ϕ(x). Then
Lu = 0 in Rn+1

+ iff Lϕv = 0 in Ωϕ, v(x , t) := u(x , t − ϕ(x)), with

Aϕ =

[
A‖ b + A‖∇xϕ

c + A∗‖∇xϕ 〈Ap,p〉

]
, p := (∇xϕ, 1)
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S < N estimates: reality

Need L∗(t) = 0 (as it is in the case of the Laplacian)
Observation 1: L∗(t) = −divxc
Observation 2: Let us map Rn+1

+ into the graph domain
Ωϕ := {(x , t) : t > ϕ(x)}, via the mapping t → t − ϕ(x). Then
Lu = 0 in Rn+1

+ iff Lϕv = 0 in Ωϕ, v(x , t) := u(x , t − ϕ(x)), with

Aϕ =

[
A‖ b + A‖∇xϕ

c + A∗‖∇xϕ 〈Ap,p〉

]
, p := (∇xϕ, 1)

Recall: if c ∈ L2, then it has an adapted Hodge decomposition:
c = A∗‖∇x f + h, with div h = 0. Hence, taking ϕ = −f above we
are left with div-free h only!

THERE IS A MILLION OF PROBLEMS WITH THIS ARGUMENT
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S < N estimates: reality

THERE IS A MILLION OF PROBLEMS WITH THIS ARGUMENT

Problem 1 (huge): you are now not on Rn+1
+ , but on Ωϕ, and if

you calculate what it means in the above integration by parts, it
means that you gained nothing (of course!)
If you come back to Rn+1

+ using the same change of variables, it
will again show that you gained nothing (of course!)

BUT you can maybe pull back using a smarter change of variables
Adapted pull-back: L‖ := − divx A‖∇x , Pt = e−t

2L‖ . Then

ρ(x , t) := (x , t + P∗εt ϕ(x))

is a bijective map from the upper half space onto Ωϕ for ε small.

Why is it any better? A toy thought: if L = −∆, then Ptϕ is
smooth, even for bad ϕ, it decays as t →∞... but there is more
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S < N estimates: what we actually do

Consider the pullback of L under the mapping

ρ(x , t) :=
(
x , t − ϕ(x) + P∗ηtϕ(x)

)
: Rn+1

+ −→ Rn+1
+

where η > 0 small, and ϕ from the Hodge decomposition of c.
Then Lu = 0 in Rn+1

+ iff L1u1 = 0, u1 := u ◦ ρ, where

A1 :=


J A‖ b + A‖∇xϕ− A‖∇xP∗ηtϕ

h− A∗‖∇xP∗ηtϕ
〈A p,p〉

J

 .
Here, divh = 0 and p(x , t) = (∇xP∗ηtϕ(x)−∇xϕ(x),−1).
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S < N estimates: what we actually do

After the pull-back dictated by Hodge decomposition... Lu = 0 in
Rn+1

+ iff L1u1 = 0, u1 := u ◦ ρ, where

A1 :=


J A‖ b + A‖∇xϕ− A‖∇xP∗ηtϕ

h− A∗‖∇xP∗ηtϕ
〈A p,p〉

J

 .
Here, divh = 0 and p(x , t) = (∇xP∗ηtϕ(x)−∇xϕ(x),−1).

Why −A∗‖∇xP∗ηtϕ = −A∗‖∇xe
−(ηt)2L∗‖ϕ does not ruin everything

(as opposed to −A∗‖∇xϕ)?
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S < N estimates: what we actually do

Why −A∗‖∇xP∗ηtϕ = −A∗‖∇xe
−(ηt)2L∗‖ϕ does not ruin everything

(as opposed to −A∗‖∇xϕ)?

both the adapted Hodge decomposition (where A∗‖ appears)

and P∗ηt = e
−(ηt)2L∗‖ “talk” to the operator L, hence, to the

solutions

by the solution of the Kato problem [Auscher, Hofmann,
Lacey, McIntosh, Tchamitchian, 2002], it satisfies the square
function estimates itself:

‖S(tPηtdivxϕ)‖L2 . ‖ϕ‖L2

(and a variety of similar estimates holds)

More generally, the solution of the Kato problem plays a major role
in the argument
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S < N estimates: what we actually do

THERE IS HALF A MILLION OF PROBLEMS WITH THE
REMAINING ARGUMENT

Problem 2 (also big): ϕ coming from the adapted Hodge

decomposition is W 1,2 (∇ϕ ∈ L2) and we need it to be Lipschitz!

Otherwise, there are too many L2 functions under one integral...
and even worse, our change of variables
ρ(x , t) :=

(
x , t − ϕ(x) + P∗ηtϕ(x)

)
is not 1-1.

∇ϕ,∇P∗ηtϕ, etc. ∈ L2, so we can extract big sets where they are
(almost) L∞, but we still have to get to those sets!

If ϕ is Lipschitz, |ϕ(x)−ϕ(x0)| ≤ M|x − x0| for x bad and x0 good.

Magically, PDE helps!
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S < N estimates: what we actually do

Magically, PDE helps! ϕ is a W 1,2 weak solution of

L∗‖ϕ = div(c) , (since div(c) = div(h− A∗∇ϕ) = − divA∗∇ϕ)

and the same is true with ϕ replaced by ϕ− ϕ(x0), for a fixed x0.
Thus, by Moser-type interior estimates,

sup
Q(x0)

|ϕ−ϕ(x0)| .

(∫
−

2Q(x0)
|ϕ(z)− ϕ(x0)|2 dz

)1/2

+ l(Q(x0))| ‖c‖∞

roughly, bounded for ϕ ∈W 1,2.

36



S < N estimates: what we actually do

The remaining 1/4 million of problems include: recall

A1 :=


J A‖ b + A‖∇xϕ− A‖∇xP∗ηtϕ

h− A∗‖∇xP∗ηtϕ
〈A p,p〉

J

 ,
with p(x , t) = (∇xP∗ηtϕ(x)−∇xϕ(x),−1)

ϕ is still not quite Lipschitz and so the new matrix, A1, is
not elliptic

c is not L2 (needed for Hodge), but only L∞, hence, L2
loc

An+1,n+1
1 is not t-independent any more (hence, will

contribute to L∗(t))

localize ⇒ introduce cutoff Φ ⇒ handle the entire A1

interacting with ∇Φ

Somehow, in the end, it all works
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N < S

P. Auscher, A. Axelsson, 2011

‖N (u)‖L2(Rn) . ‖S(u)‖L2(Rn) .

we use a localization procedure AND S < N to show that for
each cube Q, and each 0 < θ < 1, there is a set
KQ = KQ(θ) ⊂⊂ RQ , RQ = Q × (0, l(Q)/2), with
dist(KQ, ∂RQ) ≈ `(Q) (depending upon θ), such that∫
−
θQ
|u(x)|2 dx ≤ Cθ

(
1

|Q|

∫∫
RQ

|∇u(x , t)|2tdtdx + sup
KQ

|u|2
)

then, in particular, using a good-lambda argument,

‖N (u)‖Lq(Rn) . ‖S(u)‖Lq(Rn) 0 < q <∞.
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ω ∈ A∞

N ≈ S on Lipschitz graph domains with transversal direction t

⇓

ε-approximability: Given ε > 0, we say that u, ‖u‖∞ ≤ 1, is ε-
approximable if for every cube Q0 ⊂ Rn, there is a
ϕ = ϕQ0 ∈W 1,1(TQ0) such that ‖u − ϕ‖L∞(TQ0

) < ε and

|∇ϕ| dxdt is a Carleson measure in Q0.

⇓

ω ∈ A∞
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N ≈ S on Lipschitz graph domains with transversal
direction t ⇒ ε-approximability ⇒ ω ∈ A∞

Known: if ∆u = 0 and u is bounded, then |∇u|2 tdxdt is Carleson.
Question: is |∇u| dxdt Carleson?
Answer: No. But it can be approximated arbitrarily well...

Garnett; Varopoulos – harmonic function in Rn+1
+ is

ε-approximable
Dahlberg – harmonic function in a Lipschitz domain is
ε-approximable; S ≈ N on all bounded Lipschitz domains
implies ε-approximability
Kenig, Koch, Pipher, Toro, 2000 – S ≈ N on all bounded
Lipschitz domains implies ε-approximability for general elliptic
operators, which implies ωL ∈ A∞

In contrast to the above, our approach does not require S/N
estimates on Lipschitz sub-domains of arbitrary orientation, but
rather only local S/N estimates on Lipschitz graph domains, for
which the t direction is transverse to ∂Ω.
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What about complex coefficients?

Theorem (H. Koch, S.M., 2014)

There exists an elliptic operator with complex t-independent
bounded measurable coefficients such that the Dirichlet problem is
not well-posed for any 1 < p <∞.

This uses a certain “combination” of counterexamples from
[Frehse, 2008], [S.M., 2010], and [Kenig, Koch, Pipher, Toro, 2000]

Word of caution: the Dirichlet problem is defined in the same way
as throughout this talk, while using a different maximal function
(averaging?) might change the situation.
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Extended summary

We proved that for any elliptic operator with real t-independent
coefficients on any graph Lipschitz domain the following holds:

The Dirichlet problem is well posed in Lp for some p

L-harmonic measure is A∞, in particular, absolutely
continuous w.r.t. dσ

ε-approximability for solutions

S ≈ N estimates for solutions

Carleson measure estimates for solutions

Rellich: boundedness of the Dirichlet-to-Neumann operator in
Lp (a posteriori)

Regularity problem (S. Hofmann, C. Kenig, S.M., J. Pipher,
2014) and all intermediate problems in Besov/Sobolev spaces
(A. Barton, S.M., 2015)

How far can this be pushed beyond Lipschitz domains?
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Extended summary

How far can this be pushed beyond Lipschitz domains?

(e.g., for harmonic functions) – a few highlights

F.&M. Riesz, 1916 – rectifiable, simply connected domain in C
One says that the set E is n-rectifiable, if there is a countable
family of n-dimensional C 1 submanifolds {Mi}i≥1 such that
Hn (E \ ∪iMi ) = 0
Quantitative version: Lavrent’ev
Jerison, Kenig, 1982 – non-tangentially accessible domains in
Rn: have corkscrew points (openness) and Harnack chains
(connectivity)
ω ∈ A∞, S ≈ N, ε-approximability, etc. all hold
Bishop, Jones, 1990 – NOT to uniformly rectifiable domains:
A∞ fails, even for harmonic measure, even in C
– one needs connectivity!
Hofmann, Martell, S.M., 2014 – to uniformly rectifiable
domains: square function estimates, ε-approximability,
Carleson measure estimates all hold (while A∞ fails)
In fact, for general operators they carry over from Lipschitz
domains
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