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Maximum principle, Positivity

What properties do harmonic functions have in rough domains?

Q - arbitrary domain
Maximum principle:
@ the maximum of a harmonic function is achieved on the
boundary
o for positive data the solution is positive
e the Green function (A,G(x,y) = d,(x), Glag = 0) is positive
@ harmonic functions continuous up to the boundary satisfy

lull o) < llull Lo (a0)
These results extend to general 2" order equations:
Stampacchia, 1962 divergence form equations

H. Berestycki, L. Nirenberg, S.R.S. Varadhan, 1994 non-divergence
form elliptic equations
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Estimates (well-posedness)

The maximum principle provides the sharp estimates for solutions
with data in L°°. What about LP? What exactly is the dependence
on the data (estimates)? Which data is allowed?

Well-posedness = existence 4 uniqueness + sharp estimates

Consider the solution to Au =0, ulgpg = f, f € LP(0RQ)
(Dirichlet problem)
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Estimates (well-posedness)

The maximum principle provides the sharp estimates for solutions
with data in L°°. What about LP? What exactly is the dependence
on the data (estimates)? Which data is allowed?

Well-posedness = existence + uniqueness + sharp estimates

Consider the solution to Au =0, ulgpg = f, f € LP(0Q)
(Dirichlet problem) Q Lipschitz — well-posed for 2 — & < p < 0o
Dahlberg, 77 (and the range of p is sharp)

“well-posed in LP" means that there is a unique solution with
INulliea) < ClIfllee

Nu=sup|u|, T(x)isa non-tangential cone
r(x)




Harmonic measure

The well-posedness in LP for —A on  is equivalent to w € A% —
quantifiable absolute continuity of harmonic measure.

Recall: for E C 99, X € Q, wX(E) is a solution to

—Au=0 inQ, u =1
0N

evaluated at point X, that is, u(X).

Equivalently, wX(E) is the probability for a Brownian motion
starting at X € £ to exit through the set E C 99Q.

We say that w € A, or, more precisely, that for each cube
Q C R”, the harmonic measure wX@ € A,(Q), with constants
that are uniform in @ if the following holds.




Harmonic measure

We say that w € A°°, or, more precisely, that for each cube
Q C R”, the harmonic measure wX@ € A,(Q), with constants
that are uniform in @ if the following holds.

V Q C 09 and every Borel set F C @, we have

o )<c('g|) Xa(Q), M

where Xq is the “corkscrew point” relative to Q.

In other words, Brownian travelers “see” portions of the boundary
proportionally to their Lebesgue size.

Aso property is a qualitative version of the condition that w is
absolutely continuous with respect to Lebesgue measure
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Variable coefficients

Laplacian —A = —divV corresponds to a perfectly uniform
material. Real materials are inhomogeneous: L = —divA(x)V
A'is an elliptic (in some sense, positive) matrix

Moreover, if
Q — domain above the Lipschitz graph ¢

Au=0 in Q Lu=0 in RTM,
—

using the mapping (x, t) — (x,t — ¢(x))

L = —divys A(X) Vit

Hence, considering such matrices accounts both for rough
materials and rough domains

TS S >SS



Variable coefficients

L= —dive: A(x,t)Vyr in RTT = {(x,t): x € R", t > 0}

For what A the boundary problems are well-posed in LP?
Is smoothness an issue?
Recall that the maximum principle (p = c0) holds for all elliptic A

Q — domain above the Lipschitz graph ¢

Au=0 in Q, Lu=0 in R

using the mapping (x, t) — (x, t — ¢(x))

L = —diVX‘t A(X)fot

the matrix of A has NO smoothness: bounded-coefficients
O




Known results: REAL SYMMETRIC case

L= —divyx ¢ A(x,t) V¢ in RTT = {(x,t): x € R", t > 0}

For what A the BVP's are well-posed?
Some smoothness in t is necessary: Caffarelli, Fabes, Kenig, '81
(recall: the change of variables from A gives a t-independent A)

If Ais real and symmetric:

@ Well-posedness for t-independent matrices:
D. Jerison, C. Kenig, 1981 (Dirichlet);
C. Kenig, J. Pipher, 1993 (Neumann)
o Perturbation: roughly, if |A;(x, t) — Ao(x, t)[? 2 is Carleson
and well-posedness holds for Ag then it holds for A;
B. Dahlberg, 1986;
R. Fefferman, C. Kenig, J. Pipher, 1991 (Dirichlet)
C. Kenig, J. Pipher, 1993-95 (Regularity, Neumann+Regularity
with small Carleson measure)
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Known results: REAL SYMMETRIC case

If Ais real and symmetric:

@ Well-posedness for t-independent matrices:
D. Jerison, C. Kenig, 1981;
C. Kenig, J. Pipher, 1993

o Perturbation: roughly, if |A1(x, t) — Ao(x, t)[? 2 is Carleson

1 (@) dxdt
sup// Ar(x, £) — Ao(x, )2 29 < o
Q 1Rl JoJo t

and well-posedness holds for Ag then it holds for A;
B. Dahlberg, 1986;
R. Fefferman, C. Kenig, J. Pipher, 1991 (Dirichlet)
C. Kenig, J. Pipher, 1993-95 (Regularity, Neumann+Regularity
with small Carleson measure)
What does it imply for a given matrix A = A(x, t)?
Note: A(x,0) is t-independent. Thus, if |A(x, t) — A(x, 0)|? # is
Carleson then we have well-posedness. Carleson condition is sharp.
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Real non-symmetric or complex case: obstacles

What if A is complex or even just real non-symmetric?

(Among applications: real non-symmetric - homogenization,
living cells; complex - porous media; gateway to systems and
higher order operators etc)




Real non-symmetric or complex case: obstacles

What if A is complex or even just real non-symmetric?

(Among applications: real non-symmetric - homogenization,
living cells; complex - porous media; gateway to systems and
higher order operators etc)

Recall that for A on a Lipschitz domain the Dirichlet problem is
well-posed for 2 — e < p < 00

@ p = oo — Maximum Principle
e p =2 — integral identity (Hilbert space AND symmetry!)
@ 2 < p < 0o — interpolation

Plus harmonic measure techniques or layer potentials

Similarly for the real symmetric case;
Neumann and regularity - “dual” 1 < p<2+4¢




Real non-symmetric or complex case: obstacles

General complex matrices:

@ no positivity = no harmonic measure techniques

@ no maximum principle (hence, no p = o)
(u ¢ L, even for f € C§°; e tLf e~ tVLFf are not bounded)
n>5-V. G.Maz'ya, S. A. Nazarov and B. A. Plamenevskii,
1982; P. Auscher, T. Coulhon, Ph. Tchamitchian, 1996;
E.B. Davies, 1997: n > 3 — S. Hofmann, A. Mclntosh, S.M.,
2011 (based on an example of Frehse)

@ no integral identity (because of lack of symmetry)
hence, cannot approach L?

@ no well-posedness in L% — C. Kenig, H. Koch, J. Pipher, T.
Toro, 2000

o the solutions, potentials, e~tt, e~tVL, Riesz transform
VL=1/2 are beyond Calderén-Zygmund theory

tL




Real non-symmetric or complex case: obstacles

General complex matrices:

@ no positivity = no harmonic measure techniques

@ no maximum principle (hence, no p = c0)
(u ¢ L=, even for f € C§°; e tLf, e~tVLf are not bounded)
n>5-V. G. Maz'ya, S. A. Nazarov and B. A. Plamenevskii,
1982; P. Auscher, T. Coulhon, Ph. Tchamitchian, 1996;
E.B. Davies, 1997: n > 3 — S. Hofmann, A. Mclntosh, S.M.,
2011 (based on an example of Frehse)

@ no integral identity (because of lack of symmetry)
hence, cannot approach L2

@ no well-posedness in 2= Kenig, H. Koch, J. Pipher, T. Toro,
2000

o the solutions, potentials, e~t5, e~tVL, Riesz transform

VL=1/2 are beyond Calderén-Zygmund theory




Real non-symmetric or complex case: results

L= —divet A(x,t) V¢ in RTT = {(x,t): x € R", t > 0}
For what A the BVP's are well-posed?

Perturbation: roughly, |A1(x, t) — Ag(x)|?> 29 has a small Carleson
norm. Then well-posedness for L% implies the well-posedness for L!

| will not discuss the questions of perturbation today
S. Hofmann, S.M., M. Mourgoglou, 2010-11
P. Auscher, A. Axelsson, 2010

The problem is: we don't know well-posedness for a t-independent
A(x,0), aside from the real symmetric case




Real non-symmetric or complex case: results

L= —dive A(x, t)Vyr in RTT = {(x,t): x € R, t > 0}
For what A the BVP's are well-posed?

Well-posedness for t-independent matrices:

real non-symmetric, R? (only R?!):
C. Kenig, H. Koch, J. Pipher, T. Toro, 2000 (Dirichlet);
C. Kenig, D. Rule, 2009 (Neumann, regularity)

real non-symmetric, R” (any n > 2):

S. Hofmann, C. Kenig, S.M., J. Pipher (Dirichlet), 2013
S. Hofmann, C. Kenig, S.M., J. Pipher (Regularity), 2014
A. Barton, S.M. (fractional Sobolev/Besov spaces), 2014




Real non-symmetric case: Dirichlet problem

Theorem (S. Hofmann, C. Kenig, S.M., J. Pipher, 2013)

Let A = A(x) be an elliptic matrix with real bounded measurable
coefficients (possibly non-symmetric), and L = —divy +A(x)Vxt.

Then there is a p < oo such that the Dirichlet problem with the

data in LP is well-posed.

Equivalently, for each cube Q C R", the L-harmonic measure
XQ € Ax(Q), with constants that are uniform in Q.

Here Xo = (x@,4(Q)) is the “Corkscrew point” relative to Q and
a non-negative Borel measure w € A (Qo), if there are C,0 > 0
such that V Q C Qg and every Borel set F C Q, we have

o= (1) ) @)

A~ property is a qualitative version of the condition that w is
absolutely continuous with respect to Lebesgue measure

TR




Real non-symmetric case: Dirichlet problem

Theorem (S. Hofmann, C. Kenig, S.M., J. Pipher, 2013)

Let A = A(x) be an elliptic matrix with real bounded measurable
coefficients (possibly non-symmetric), and L = —divy +A(x)Vx.t.

Then there is a p < oo such that the Dirichlet problem with the
data in LP is well-posed.

Equivalently, for each cube Q C R", the L-harmonic measure
wa € Ax(Q), with constants that are uniform in Q.

Note: the result is sharp, in the sense that Vpg > 0 there is an L
such that the Dirichlet problem is not well-posed in Lo
(C. Kenig, H. Koch, J. Pipher, T. Toro, 2000)

Lo (L") v me = {50




Real non-symmetric case: Dirichlet problem

Theorem (S. Hofmann, C. Kenig, S.M., J. Pipher, 2013)

Let A = A(x) be an elliptic matrix with real bounded measurable
coefficients (possibly non-symmetric), and L = —divy +A(x)Vxt.

Then there is a p < oo such that the Dirichlet problem with the
data in LP is well-posed.

Equivalently, for each cube Q@ C R", the L-harmonic measure
wa € Ax(Q), with constants that are uniform in Q.

The result is also sharp in the sense that it cannot be generalized
to all complex matrices [H. Koch, S.M., 2014]
— more about this later
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Recall: the Dirichlet problem is well-posed in LP if there is a unique

solution with [N ullpa0) < C|If|lce,
N is the non-tangential maximal function

Nu=sup|ul, T(x)isa non-tangential cone
r(x)

Recall also: the square function
dydt Y2
S(u)(x (// IVu(y |2y )
Strategy:

Q@ "S<N (inLl90<qg< o0, and localized)
@ 'N<S" (inl9 0< q< oo, and localized)
@ S~ N implies w; € A> (localized)

’



Q@ "S< N (inL90< q< oo, and localized)
Q@ "N <S" (in L9 0 < g < oo, and localized)
© S~ N implies w; € A (localized)

Note 1: According to [Dahlberg, Jerison, Kenig, 84], if the
Lebesgue measure is A> with respect to the L-harmonic measure,
then S = N. But A% is exactly what we are trying to prove!

Note 2: N < S in L? only was proved by Auscher and Axelsson

Note 3: the fact that S = N on all Lipschitz domains implies

wy € A% was known [Kenig, Koch, Pipher, Toro]. We will not be
able to use that literally (orientation matters!) but still... Also,
again in [Kenig, Koch, Pipher, Toro] the entire scheme was
successfully used in dimension 2.

Note 4: How can one possibly approach S < N in'general???
)




S < N estimates: dream case

Let u be a solution to Lu = —divy tA(x)Vx tu =0 in R™1. Then
Fubini
HSUH%Q(R,;) = //R"+1 ’VU(X, t)|2 t dtdx

elliptici
PO // (AVu, Vu) t dtdx = // ) t dtdx
Rn+1 Rn+1

Int by:parts // u2 L*(t) dtdx + |U(X7 0)|2An+1,n+1 dx
RT—l Rn
~ /R |u(x,0)Pdx < |V ullZ2 g0

IF L*(t) = 0!l (as it is in the case of the Laplacian)

’




S < N estimates: reality

Need L*(t) = 0 (as it is in the case of the Laplacian)

A | b
What is L*(t)? Let us write A = [ I y ] , where A is n x n.
c

Observation 1: [_*(t‘) = —diVX’tA*(X)VXJ(t) = — Zi.j 8,-Aj,-8j(t) =
— Zi 8,‘An+1,,' = —diVXC — 8tAn+17n+1 = *diVXC
Hence, div-free part is harmless.

Observation 2: Let us map Rffl into the graph domain

Q, = {(x,t) : t > ¢(x)}, via the mapping t — t — (x). Then

Lu=0in RTiff Lov =0in Qyp, v(x,t) := u(x, t — ¢(x)), with
A” ‘ b+ AHVXQO

c+AVe | (App) |

Ay = p:=(Vxp,1)




S < N estimates: reality

Need L*(t) = 0 (as it is in the case of the Laplacian)

Observation 1: L*(t) = —divyc

Observation 2: Let us map Rffl into the graph domain

Q, = {(x,t) : t > ¢(x)}, via the mapping t — t — (x). Then
Lu=0in RTiff Lov =0in Qp, v(x,t) := u(x, t — p(x)), with

A” ‘ b+ A”VXSO

. pi=(Vxp,1)
C"‘AH ‘ (Ap,p)

A, =

Recall: if ¢ € L?, then it has an adapted Hodge decomposition:
c= AT“VXf + h, with divh = 0. Hence, taking ¢ = —f above we
are left with div-free h only!

THERE IS A MILLION OF PROBLEMS WITH THIS ARGUMENT

’
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S < N estimates: reality

THERE IS A MILLION OF PROBLEMS WITH THIS ARGUMENT

Problem 1 (huge): you are now not on R7"*, but on Q, and if
you calculate what it means in the above integration by parts, it
means that you gained nothing (of course!)
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S < N estimates: reality

THERE IS A MILLION OF PROBLEMS WITH THIS ARGUMENT

Problem 1 (huge): you are now not on R7"*, but on Q, and if
you calculate what it means in the above integration by parts, it
means that you gained nothing (of course!)

If you come back to IR{T’I using the same change of variables, it
will again show that you gained nothing (of course!)

BUT you can maybe pull back using a smarter ch2ange of variables
Adapted pull-back: L := —divx A|Vx, Pr = e Hi. Then

P(X, t) = (Xa t+ 'De*t QO(X))
is a bijective map from the upper half space onto €, for ¢ small.

Why is it any better? A toy thought: if L = —A, then Py is
smooth, even for bad ¢, it decays as t — co... but there is more

0)
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S < N estimates: what we actually do

Consider the pullback of L under the mapping
p(x,t) == (x, t — p(x) + Prrp(x)) - R — RO

where 17 > 0 small, and ¢ from the Hodge decomposition of c.
Then Lu =0 in R iff Ly = 0, u1 := uop, where

JA| ‘ b+ A Vi — A ViPrp

A =

(Ap,p)
J

h— AV, Prep

Here, divh = 0 and p(x, t) = (VxPpp(x) — Vxp(x), —1).




S < N estimates: what we actually do

After the pull-back dictated by Hodge decomposition... Lu =0 in
Rfﬁ'l iff Lyup =0, ug := v o p, where

JAH ‘ b+ AHvx(p — A”VX ;;ttp

Al =

(Ap,p)
J

h— AtV Py

Here, divh = 0 and p(x, t) = (VxPpp(x) — Vxp(x), —1).

(nt)2L* ) ]
Why —AiV, Prp = —Aj Ve M°Li , does not ruin everything
(as opposed to —AiVp)?

-




S < N estimates: what we actually do

*

Why —A‘*‘VXP;tcp = —A‘*‘Vxe_(nt)q\\gp does not ruin everything
(as opposed to —A’ﬂvx%@)?
@ both the adapted Hodge decomposition (where AT“ appears)

_ 2 %
and 73;';f —e (ne)°Lj “talk” to the operator L, hence, to the
solutions

@ by the solution of the Kato problem [Auscher, Hofmann,
Lacey, Mclntosh, Tchamitchian, 2002], it satisfies the square
function estimates itself:

1S(tPyedivip)| 2 < 1ol 12

(and a variety of similar estimates holds)

More generally, the solution of the Kato problem plays a major role
in the argument

e EEEEEOSTSTSSSSSS-—




S < N estimates: what we actually do

THERE IS HALF A MILLION OF PROBLEMS WITH THE
REMAINING ARGUMENT

Problem 2 (also big): ¢ coming from the adapted Hodge
decomposition is W12 (Vi € L?) and we need it to be Lipschitz!

Otherwise, there are too many L? functions under one integral...
and even worse, our change of variables
p(x,t) = (x, t — p(x) + Pyrp(x)) is not 1-1.

Vo, VP, etc. € L2, so we can extract big sets where they are
(almost) L, but we still have to get to those sets!

If ¢ is Lipschitz, |p(x) —¢(x0)| < M|x — xp| for x bad and xp good.
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Otherwise, there are too many L? functions under one integral...
and even worse, our change of variables
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Vo, VP, etc. € L2, so we can extract big sets where they are
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If ¢ is Lipschitz, |p(x) —¢(x0)| < M|x — xp| for x bad and xp good.
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S < N estimates: what we actually do

Magically, PDE helps! ¢ is a W12 weak solution of
Ljp =div(c), (since div(c) = div(h — A"Vp) = —divA"Vyp)

and the same is true with ¢ replaced by ¢ — ¢(xp), for a fixed xg.
Thus, by Moser-type interior estimates,

1/2
sup [o—p(x0)| < <][20( )I@(Z)—so(Xo)l2dZ> +1(Q(x0))! llelloo

Q(x0)

roughly, bounded for p € W12,




S < N estimates: what we actually do

The remaining 1/4 million of problems include: recall

JAH ‘ b+ A”VXQO — AHVXP;tQO

A1 =

(Ap.p)
J

h— AV P

with p(x, t) = (VxPpeo(x) — Vep(x), —1)

@ o is still not quite Lipschitz and so the new matrix, Aj, is
not elliptic

@ cis not L? (needed for Hodge), but only L>°, hence, L2

loc
° ATH’"H is not t-independent any more (hence, will

contribute to L*(t))

@ localize = introduce cutoff ® = handle the entire A
interacting with V&

Somehow, in the end, it all works

-




N<S

@ P.Auscher, A. Axelsson, 2011

IV (W)l 2@y < 15 () 2(rr -

@ we use a localization procedure AND S < N to show that for
each cube @, and each 0 < 6 < 1, there is a set
KQ = KQ(Q) CC RQ, RQ =Q x (0, /(Q)/2), with
dist(Kq, 0Rq) ~ £(Q) (depending upon ), such that

][ ()R dx < G, 1// Vu(x, t)Redtdx + sup [uf?
0Q QIS /R, Ko

@ then, in particular, using a good-lambda argument,

IV ()lleaqey S IS(0)llLaeny 0 < g < oo

-




N =~ S on Lipschitz graph domains with transversal direction t

4

e-approximability: Given ¢ > 0, we say that u, ||uflo <1, is -
approximable if for every cube Qg C R”, there is a

© =g, € WH(Tg,) such that |ju— ¢ll1oo(Tq,) < € and
V| dxdt is a Carleson measure in Qp.

4

w €€ A®

-




N =~ S on Lipschitz graph domains with transversal

direction t = c-approximability = w € A™®

Known: if Au =0 and u is bounded, then |Vu|? tdxdt is Carleson.
Question: is |Vu| dxdt Carleson?
Answer: No. But it can be approximated arbitrarily well...
@ Garnett; Varopoulos — harmonic function in Rfl is
g-approximable
@ Dahlberg — harmonic function in a Lipschitz domain is
g-approximable; S = A on all bounded Lipschitz domains
implies e-approximability
e Kenig, Koch, Pipher, Toro, 2000 — S ~ N on all bounded
Lipschitz domains implies e-approximability for general elliptic
operators, which implies w; € A®

In contrast to the above, our approach does not require S/N
estimates on Lipschitz sub-domains of arbitrary orientation, but
rather only local S/N estimates on Lipschitz graph domains, for
which the t direction is transverse to 0f).

AQ)




What about complex coefficients?

Theorem (H. Koch, S.M., 2014)

There exists an elliptic operator with complex t-independent
bounded measurable coefficients such that the Dirichlet problem is
not well-posed for any 1 < p < oo.

This uses a certain “combination” of counterexamples from
[Frehse, 2008], [S.M., 2010], and [Kenig, Koch, Pipher, Toro, 2000]

Word of caution: the Dirichlet problem is defined in the same way
as throughout this talk, while using a different maximal function
(averaging?) might change the situation.




Extended summary

We proved that for any elliptic operator with real t-independent
coefficients on any graph Lipschitz domain the following holds:

@ The Dirichlet problem is well posed in LP for some p

@ [-harmonic measure is A, in particular, absolutely
continuous w.r.t. do

e-approximability for solutions
S ~ N estimates for solutions

Carleson measure estimates for solutions

Rellich: boundedness of the Dirichlet-to-Neumann operator in
LP (a posteriori)
@ Regularity problem (S. Hofmann, C. Kenig, S.M., J. Pipher,

2014) and all intermediate problems in Besov/Sobolev spaces
(A. Barton, S.M., 2015)

How far can this be pushed beyond Lipschitz domains? J
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Extended summary

How far can this be pushed beyond Lipschitz domains? )

(e.g., for harmonic functions) — a few highlights

o F.&M. Riesz, 1916 — rectifiable, simply connected domain in C
One says that the set E is n-rectifiable, if there is a countable
family of n-dimensional C! submanifolds {M;}i>1 such that
H"(E\U;M;)=0
Quantitative version: Lavrent'ev
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R™: have corkscrew points (openness) and Harnack chains

(connectivity)
w € A®, S ~ N, e-approximability, etc. all hold
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Extended summary

How far can this be pushed beyond Lipschitz domains? )

(e.g., for harmonic functions) — a few highlights

o F.&M. Riesz, 1916 — rectifiable, simply connected domain in C
o Jerison, Kenig, 1982 — non-tangentially accessible domains in
R™: have corkscrew points (openness) and Harnack chains

(connectivity)
w € A®, S ~ N, e-approximability, etc. all hold

@ Bishop, Jones, 1990 — NOT to uniformly rectifiable domains:
A° fails, even for harmonic measure, even in C
— one needs connectivity!

@ Hofmann, Martell, S.M., 2014 — to uniformly rectifiable
domains: square function estimates, e-approximability,
Carleson measure estimates all hold (while A> fails)

In fact, for general operators they carry over from Lipschitz
domains

AG



