The Dirichlet boundary problem for second order parabolic operators satisfying Carleson condition

Martin Dindoš

Workshop on Harmonic Analysis, Partial Differential Equations and Geometric Measure Theory, Madrid, January 2015

Table of contents Parabolic Dirichlet boundary value problem

Admissible Domains Nontangential maximal function The *L^p* Dirichlet problem Parabolic measure

Overview of known results

Solvability of L^p Dirichlet boundary value problem and properties of ω^X

Rivera's result on A_∞

New progress

 L^p solvability for operators satisfying small Carleson condition L^p solvability for operators satisfying large Carleson condition Boundary value problem associated with A_{∞} parabolic measure *BMO* boundary value problem BMO solvability under A_{∞} assumption Reverse direction

Parabolic Dirichlet boundary value problem

Admissible Domains

Admissible Domains

We introduce class of time-varying domains whose boundaries are given locally as functions $\psi(x, t)$, Lipschitz in the spatial variable and satisfying Lewis-Murray condition in the time variable.

It was conjectured at one time that ψ should be $Lip_{1/2}$ in the time variable, but subsequent counterexamples of Kaufmann and Wu showed that this condition does not suffice. (the caloric measure corresponding to $\partial_t - \Delta$ on such domain might not be absolutely continuous w.r.t the surface measure).

$$|\psi(x,t) - \psi(y,\tau)| \le L\left(|x-y| + |t-\tau|^{1/2}\right).$$

Parabolic Dirichlet boundary value problem

Admissible Domains

Admissible Domains

We introduce class of time-varying domains whose boundaries are given locally as functions $\psi(x, t)$, Lipschitz in the spatial variable and satisfying Lewis-Murray condition in the time variable.

It was conjectured at one time that ψ should be $Lip_{1/2}$ in the time variable, but subsequent counterexamples of Kaufmann and Wu showed that this condition does not suffice. (the caloric measure corresponding to $\partial_t - \Delta$ on such domain might not be absolutely continuous w.r.t the surface measure).

$$|\psi(\mathbf{x},t)-\psi(\mathbf{y}, au)|\leq L\left(|\mathbf{x}-\mathbf{y}|+|t- au|^{1/2}
ight).$$

Lewis-Murray came with extra additional assumption that ψ has half-time derivative in *BMO*.

Parabolic Dirichlet boundary value problem

Admissible Domains

Admissible Domains

We introduce class of time-varying domains whose boundaries are given locally as functions $\psi(x, t)$, Lipschitz in the spatial variable and satisfying Lewis-Murray condition in the time variable.

It was conjectured at one time that ψ should be $Lip_{1/2}$ in the time variable, but subsequent counterexamples of Kaufmann and Wu showed that this condition does not suffice. (the caloric measure corresponding to $\partial_t - \Delta$ on such domain might not be absolutely continuous w.r.t the surface measure).

$$|\psi(\mathsf{x},t)-\psi(\mathsf{y}, au)|\leq L\left(|\mathsf{x}-\mathsf{y}|+|t- au|^{1/2}
ight)$$
 .

Lewis-Murray came with extra additional assumption that ψ has half-time derivative in *BMO*.

Admissible Domains

Domains satisfying Lewis-Murray condition will be called *admissible*. We consider the following natural "surface measure" supported on boundary of such domain Ω .

For $A \subset \partial \Omega$ let

$$\sigma(A) = \int_{-\infty}^{\infty} \mathcal{H}^{n-1} \left(A \cap \{ (X, t) \in \partial \Omega \} \right) dt.$$

Here \mathcal{H}^{n-1} is the n-1 dimensional Hausdorff measure on the Lipschitz boundary $\partial \Omega_t = \{(X, t) \in \partial \Omega\}.$

Domains satisfying Lewis-Murray condition will be called *admissible*. We consider the following natural "surface measure" supported on boundary of such domain Ω .

For $A \subset \partial \Omega$ let

$$\sigma(A) = \int_{-\infty}^{\infty} \mathcal{H}^{n-1} \left(A \cap \{ (X, t) \in \partial \Omega \} \right) dt.$$

Here \mathcal{H}^{n-1} is the n-1 dimensional Hausdorff measure on the Lipschitz boundary $\partial \Omega_t = \{(X, t) \in \partial \Omega\}.$

Parabolic Dirichlet boundary value problem

-Nontangential maximal function

Let $\Gamma(.)$ be a collection of nontangential cones with vertices at boundary points $Q \in \partial \Omega$.

 $\Gamma(Q) = \{(X, t) \in \Omega : d((X, t), Q) < (1 + \alpha) dist((X, t), \partial \Omega)\}$ for some $\alpha > 0$. Here d is the parabolic distance function

$$d[(X,t),(Y,s)] = |X - Y| + |t - s|^{1/2}.$$

Parabolic Dirichlet boundary value problem

Nontangential maximal function

Let $\Gamma(.)$ be a collection of nontangential cones with vertices at boundary points $Q \in \partial \Omega$.

 $\Gamma(Q) = \{(X, t) \in \Omega : d((X, t), Q) < (1 + \alpha) dist((X, t), \partial \Omega)\}$ for some $\alpha > 0$. Here *d* is the parabolic distance function

$$d[(X, t), (Y, s)] = |X - Y| + |t - s|^{1/2}$$

We define the non-tangential maximal function at Q relative to $\ensuremath{\mathsf{\Gamma}}$ by

$$N(u)(Q) = \sup_{X \in \Gamma(Q)} |u(X)|.$$

Parabolic Dirichlet boundary value problem

Nontangential maximal function

Let $\Gamma(.)$ be a collection of nontangential cones with vertices at boundary points $Q \in \partial \Omega$.

 $\Gamma(Q) = \{(X, t) \in \Omega : d((X, t), Q) < (1 + \alpha) dist((X, t), \partial \Omega)\}$ for some $\alpha > 0$. Here *d* is the parabolic distance function

$$d[(X, t), (Y, s)] = |X - Y| + |t - s|^{1/2}$$

We define the non-tangential maximal function at Q relative to $\ensuremath{\mathsf{\Gamma}}$ by

$$N(u)(Q) = \sup_{X \in \Gamma(Q)} |u(X)|.$$

Parabolic Dirichlet boundary value problem

Nontangential maximal function

Let $\Gamma(.)$ be a collection of nontangential cones with vertices at boundary points $Q \in \partial \Omega$.

 $\Gamma(Q) = \{(X, t) \in \Omega : d((X, t), Q) < (1 + \alpha) dist((X, t), \partial \Omega)\}$ for some $\alpha > 0$. Here *d* is the parabolic distance function

$$d[(X,t),(Y,s)] = |X - Y| + |t - s|^{1/2}$$

We define the non-tangential maximal function at Q relative to $\ensuremath{\mathsf{\Gamma}}$ by

$$N(u)(Q) = \sup_{X \in \Gamma(Q)} |u(X)|.$$

Parabolic Dirichlet boundary value problem

 \Box The L^p Dirichlet problem

The L^p Dirichlet problem

Definition

Let $1 and <math display="inline">\Omega$ be an admissible parabolic domain. Consider the parabolic Dirichlet boundary value problem

$$\begin{cases} v_t = \operatorname{div}(A\nabla v) & \text{in } \Omega, \\ v = f \in L^p & \text{on } \partial\Omega, \\ N(v) \in L^p(\partial\Omega, d\sigma). \end{cases}$$
(1)

where the matrix $A = [a_{ij}(X, t)]$ satisfies the uniform ellipticity condition and σ is the measure supported on $\partial\Omega$ defined above. We say that Dirichlet problem with data in $L^p(\partial\Omega, d\sigma)$ is solvable if the (unique) solution u with continuous boundary data fsatisfies the estimate

Parabolic Dirichlet boundary value problem

The *L^p* Dirichlet problem

The L^{p} Dirichlet problem

Definition

Let $1 and <math display="inline">\Omega$ be an admissible parabolic domain. Consider the parabolic Dirichlet boundary value problem

$$\begin{cases} v_t = \operatorname{div}(A\nabla v) & \text{in } \Omega, \\ v = f \in L^p & \text{on } \partial\Omega, \\ N(v) \in L^p(\partial\Omega, d\sigma). \end{cases}$$
(1)

where the matrix $A = [a_{ij}(X, t)]$ satisfies the uniform ellipticity condition and σ is the measure supported on $\partial\Omega$ defined above. We say that Dirichlet problem with data in $L^p(\partial\Omega, d\sigma)$ is solvable if the (unique) solution u with continuous boundary data fsatisfies the estimate

Parabolic Dirichlet boundary value problem

 \Box The L^p Dirichlet problem

$$\|N(v)\|_{L^{p}(\partial\Omega,d\sigma)} \lesssim \|f\|_{L^{p}(\partial\Omega,d\sigma)}.$$
 (2)

The implied constant depends only the operator L, p, and the the domain Ω .

Remark. It is well-know that the parabolic PDE (1) with continuous boundary data is uniquely solvable. This can be established by considering approximation of bounded measurable coefficients of matrix A by a sequence of smooth matrices A_j and then taking the limit $j \to \infty$. This limit will exits in $L^{\infty}(\Omega) \cap W_{loc}^{1,2}(\Omega)$ using the the maximum principle and the L^2 theory. Uniqueness follows from the maximum principle.

Parabolic Dirichlet boundary value problem

The *L^p* Dirichlet problem

$$\|N(v)\|_{L^{p}(\partial\Omega,d\sigma)} \lesssim \|f\|_{L^{p}(\partial\Omega,d\sigma)}.$$
 (2)

The implied constant depends only the operator L, p, and the the domain Ω .

Remark. It is well-know that the parabolic PDE (1) with continuous boundary data is uniquely solvable. This can be established by considering approximation of bounded measurable coefficients of matrix A by a sequence of smooth matrices A_j and then taking the limit $j \to \infty$. This limit will exits in $L^{\infty}(\Omega) \cap W_{loc}^{1,2}(\Omega)$ using the the maximum principle and the L^2 theory. Uniqueness follows from the maximum principle.

Parabolic Dirichlet boundary value problem

Parabolic measure

Parabolic measure

Thanks to the unique solvability of the continuous boundary value problem for each interior point $(X, t) \in \Omega$ we can define a unique measure ω^X supported on $\partial\Omega$ for which we have

$$u(X,t) = \int_{\partial\Omega} f(Z) d\omega^{(X,t)}(Z).$$

Here *u* is a solution of the Dirichlet boundary value problem with continuous data $f \in C(\partial \Omega)$.

Remark. This is similar in spirit to the elliptic measure defined for the elliptic operators.

Parabolic Dirichlet boundary value problem

Parabolic measure

Parabolic measure

Thanks to the unique solvability of the continuous boundary value problem for each interior point $(X, t) \in \Omega$ we can define a unique measure ω^X supported on $\partial\Omega$ for which we have

$$u(X,t) = \int_{\partial\Omega} f(Z) d\omega^{(X,t)}(Z).$$

Here *u* is a solution of the Dirichlet boundary value problem with continuous data $f \in C(\partial \Omega)$.

Remark. This is similar in spirit to the elliptic measure defined for the elliptic operators.

Overview of known results

 \square Solvability of L^p Dirichlet boundary value problem and properties of ω^X

Negative result

Theorem

There exists a bounded measurable matrix A on a unit disk D satisfying the ellipticity condition such that the L^p Dirichlet problem $(D)_p$ is not solvable for any $p \in (1, \infty)$.

Hence solvability requires extra assumption on the regularity of coefficients of the matrix *A*.

Overview of known results

 \square Solvability of L^p Dirichlet boundary value problem and properties of ω^X

Negative result

Theorem

There exists a bounded measurable matrix A on a unit disk D satisfying the ellipticity condition such that the L^p Dirichlet problem $(D)_p$ is not solvable for any $p \in (1, \infty)$.

Hence solvability requires extra assumption on the regularity of coefficients of the matrix *A*.

-Overview of known results

 \sqcup Solvability of L^p Dirichlet boundary value problem and properties of ω^X

A_{∞} condition

Let ω be doubling.

Recall that a measure ω is said to be A_{∞} with respect to measure σ if for every $\epsilon > 0$ there exists $\delta > 0$ such that whenever $E \subset \Delta$ and

$$rac{\omega({\cal E})}{\omega(\Delta)} < \epsilon, \qquad {
m then} \qquad rac{\sigma({\cal E})}{\sigma(\Delta)} < \delta$$

The class A_{∞} is related to another class of measures B_p , p > 1 which are classes of measures satisfying *Reverse Hölder* inequality.

-Overview of known results

 \sqcup Solvability of L^p Dirichlet boundary value problem and properties of ω^X

A_{∞} condition

Let ω be doubling.

Recall that a measure ω is said to be A_{∞} with respect to measure σ if for every $\epsilon > 0$ there exists $\delta > 0$ such that whenever $E \subset \Delta$ and

$$rac{\omega({\cal E})}{\omega(\Delta)} < \epsilon, \qquad {
m then} \qquad rac{\sigma({\cal E})}{\sigma(\Delta)} < \delta$$

The class A_{∞} is related to another class of measures B_p , p > 1 which are classes of measures satisfying *Reverse Hölder* inequality.

We have

$$A_{\infty} = \bigcup_{p>1} B_p.$$

Overview of known results

 \square Solvability of L^p Dirichlet boundary value problem and properties of ω^X

A_{∞} condition

Let ω be doubling.

Recall that a measure ω is said to be A_{∞} with respect to measure σ if for every $\epsilon > 0$ there exists $\delta > 0$ such that whenever $E \subset \Delta$ and

$$rac{\omega({\cal E})}{\omega(\Delta)} < \epsilon, \qquad {
m then} \qquad rac{\sigma({\cal E})}{\sigma(\Delta)} < \delta$$

The class A_{∞} is related to another class of measures B_p , p > 1 which are classes of measures satisfying *Reverse Hölder* inequality.

We have

$$A_{\infty} = \bigcup_{p>1} B_p.$$

-Overview of known results

 \square Solvability of L^p Dirichlet boundary value problem and properties of ω^X

How are the A_{∞} and B_p classes related to solvability of Dirichlet boundary value problems?

The L^p , $p \in (1, \infty)$ Dirichlet boundary value problem for operator L is solvable **if and only if** the corresponding parabolic measure for the operator L belongs to $B_{p'}(d\sigma)$.

 \square Solvability of L^p Dirichlet boundary value problem and properties of ω^X

How are the A_{∞} and B_p classes related to solvability of Dirichlet boundary value problems?

The L^p , $p \in (1, \infty)$ Dirichlet boundary value problem for operator L is solvable **if and only if** the corresponding parabolic measure for the operator L belongs to $B_{p'}(d\sigma)$.

Here p' = p/(p-1).

How are the A_{∞} and B_p classes related to solvability of Dirichlet boundary value problems?

The L^p , $p \in (1, \infty)$ Dirichlet boundary value problem for operator L is solvable **if and only if** the corresponding parabolic measure for the operator L belongs to $B_{p'}(d\sigma)$.

Here
$$p' = p/(p - 1)$$
.

If follows that

 $\omega \in A_{\infty}(d\sigma)$ if and only if the L^p is solvable for some p > 1.

 \square Solvability of L^p Dirichlet boundary value problem and properties of ω^X

How are the A_{∞} and B_p classes related to solvability of Dirichlet boundary value problems?

The L^p , $p \in (1, \infty)$ Dirichlet boundary value problem for operator L is solvable **if and only if** the corresponding parabolic measure for the operator L belongs to $B_{p'}(d\sigma)$.

Here
$$p' = p/(p - 1)$$
.

If follows that

 $\omega \in A_{\infty}(d\sigma)$ if and only if the L^{p} is solvable for some p > 1.

Overview of known results

 \square Rivera's result on A_{∞}

Rivera's result on A_{∞}

Consider the distance function δ of a point (X, t) to the boundary $\partial \Omega$

$$\delta(X,t) = \inf_{(Y, au)\in\partial\Omega} d[(X,t),(Y, au)].$$

lf

$$\delta(X,t)^{-1} \left(\operatorname{osc}_{B_{\delta(X,t)/2}(X,t)} a_{ij} \right)^2$$

is a density of a parabolic Carleson measures with small norm,

l -

 \square Rivera's result on A_{∞}

Rivera's result on A_{∞}

Consider the distance function δ of a point (X, t) to the boundary $\partial \Omega$

$$\delta(X,t) = \inf_{(Y,\tau)\in\partial\Omega} d[(X,t),(Y,\tau)].$$

lf

$$\delta(X,t)^{-1} \left(\operatorname{osc}_{B_{\delta(X,t)/2}(X,t)} a_{ij} \right)^2$$

is a density of a parabolic Carleson measures with small norm, then the parabolic measure of the operator $\partial_t - \operatorname{div}(A\nabla \cdot)$ belongs to A_{∞} .

 \square Rivera's result on A_{∞}

Rivera's result on A_{∞}

Consider the distance function δ of a point (X, t) to the boundary $\partial \Omega$

$$\delta(X,t) = \inf_{(Y,\tau)\in\partial\Omega} d[(X,t),(Y,\tau)].$$

lf

$$\delta(X,t)^{-1} \left(\operatorname{osc}_{B_{\delta(X,t)/2}(X,t)} a_{ij} \right)^2$$

is a density of a parabolic Carleson measures with small norm,then the parabolic measure of the operator $\partial_t - \operatorname{div}(A\nabla \cdot)$ belongs to A_{∞} .

Overview of known results

 \square Rivera's result on A_{∞}

Carleson measures

A nonnegative measure $\mu : \Omega \to [0, \infty)$ is called Carleson if it is compatible with the "surface" measure σ we have defined. That is there exists a constant $C = C(r_0)$ such that for all $r \leq r_0$ and all surface balls $\Delta_r \subset \partial \Omega$ we have

Overview of known results

 \square Rivera's result on A_{∞}

Carleson measures

A nonnegative measure $\mu : \Omega \to [0, \infty)$ is called Carleson if it is compatible with the "surface" measure σ we have defined. That is there exists a constant $C = C(r_0)$ such that for all $r \le r_0$ and all surface balls $\Delta_r \subset \partial \Omega$ we have

$$\mu(\Omega \cap B_r) \leq C\sigma(\Delta_r).$$

(Here $\Delta_r = B_r \cap \partial \Omega$, where the ball B_r has center at $\partial \Omega$)

Overview of known results

 \square Rivera's result on A_{∞}

Carleson measures

A nonnegative measure $\mu : \Omega \to [0, \infty)$ is called Carleson if it is compatible with the "surface" measure σ we have defined. That is there exists a constant $C = C(r_0)$ such that for all $r \leq r_0$ and all surface balls $\Delta_r \subset \partial\Omega$ we have

$$\mu(\Omega \cap B_r) \leq C\sigma(\Delta_r).$$

(Here $\Delta_r = B_r \cap \partial \Omega$, where the ball B_r has center at $\partial \Omega$)The best possible constant C will be called the Carleson norm and shall be denoted by $\|\mu\|_{C,r_0}$. We write $\mu \in C$.

Overview of known results

 \square Rivera's result on A_{∞}

Carleson measures

A nonnegative measure $\mu : \Omega \to [0, \infty)$ is called Carleson if it is compatible with the "surface" measure σ we have defined. That is there exists a constant $C = C(r_0)$ such that for all $r \le r_0$ and all surface balls $\Delta_r \subset \partial \Omega$ we have

$$\mu(\Omega \cap B_r) \leq C\sigma(\Delta_r).$$

(Here $\Delta_r = B_r \cap \partial \Omega$, where the ball B_r has center at $\partial \Omega$)The best possible constant C will be called the Carleson norm and shall be denoted by $\|\mu\|_{C,r_0}$. We write $\mu \in C$.

If $\lim_{r_0 \to 0} \|\mu\|_{C,r_0} = 0$, we say that the measure μ satisfies the

vanishing Carleson condition and write $\mu \in C_V$.

Overview of known results

 \square Rivera's result on A_{∞}

Carleson measures

A nonnegative measure $\mu : \Omega \to [0, \infty)$ is called Carleson if it is compatible with the "surface" measure σ we have defined. That is there exists a constant $C = C(r_0)$ such that for all $r \leq r_0$ and all surface balls $\Delta_r \subset \partial\Omega$ we have

$$\mu(\Omega \cap B_r) \leq C\sigma(\Delta_r).$$

(Here $\Delta_r = B_r \cap \partial\Omega$, where the ball B_r has center at $\partial\Omega$)The best possible constant C will be called the Carleson norm and shall be denoted by $\|\mu\|_{C,r_0}$. We write $\mu \in C$.

If $\lim_{r_0\to 0} \|\mu\|_{C,r_0} = 0$, we say that the measure μ satisfies the

vanishing Carleson condition and write $\mu \in C_V$.

Overview of known results

 \square Rivera's result on A_{∞}

Few thoughts:

Observe that Rivera's result does not state for which p the L^p Dirichlet problem is solvable. Such $p < \infty$ can be potentially very large.

We expect that there should be a relation between p and the size of Carleson norm $\|\mu\|_C$ of the coefficients.

Overview of known results

 \square Rivera's result on A_{∞}

Few thoughts:

Observe that Rivera's result does not state for which p the L^p Dirichlet problem is solvable. Such $p < \infty$ can be potentially very large.

We expect that there should be a relation between p and the size of Carleson norm $\|\mu\|_C$ of the coefficients.

What about large Carleson norm? Is there a solvability for some $p < \infty ?$
Overview of known results

 \square Rivera's result on A_{∞}

Few thoughts:

Observe that Rivera's result does not state for which p the L^p Dirichlet problem is solvable. Such $p < \infty$ can be potentially very large.

We expect that there should be a relation between p and the size of Carleson norm $\|\mu\|_C$ of the coefficients.

What about large Carleson norm? Is there a solvability for some $p<\infty?$

Can a drift term, i.e., a parabolic operator of the form $\partial_t - \operatorname{div}(A\nabla \cdot) - B \cdot \nabla$ be also handled?

Overview of known results

 \square Rivera's result on A_{∞}

Few thoughts:

Observe that Rivera's result does not state for which p the L^p Dirichlet problem is solvable. Such $p < \infty$ can be potentially very large.

We expect that there should be a relation between p and the size of Carleson norm $\|\mu\|_C$ of the coefficients.

What about large Carleson norm? Is there a solvability for some $p<\infty?$

Can a drift term, i.e., a parabolic operator of the form $\partial_t - \operatorname{div}(A\nabla \cdot) - B \cdot \nabla$ be also handled?

Is there a natural boundary value problem associated directly with the A_{∞} condition (c.f. M.D.-Kenig-Pipher for such elliptic result)?

Overview of known results

 \square Rivera's result on A_{∞}

Few thoughts:

Observe that Rivera's result does not state for which p the L^p Dirichlet problem is solvable. Such $p < \infty$ can be potentially very large.

We expect that there should be a relation between p and the size of Carleson norm $\|\mu\|_C$ of the coefficients.

What about large Carleson norm? Is there a solvability for some $p < \infty$?

Can a drift term, i.e., a parabolic operator of the form $\partial_t - \operatorname{div}(A\nabla \cdot) - B \cdot \nabla$ be also handled?

Is there a natural boundary value problem associated directly with the A_{∞} condition (c.f. M.D.-Kenig-Pipher for such elliptic result)?

-New progress

 L^p solvability for operators satisfying small Carleson condition

L^p solvability for operators satisfying small Carleson condition

This is a joint result with Sukjung Hwang (Edinburgh).

Theorem

Let Ω be an admissible parabolic domain with character (L, N, C_0) . Let $A = [a_{ij}]$ be a matrix with bounded measurable coefficients defined on Ω satisfying the uniform ellipticity and boundedness with constants λ and Λ and $\mathbf{B} = [b_i]$ be a vector with measurable coefficients defined on Ω . In addition, assume that

$$d\mu = \left[\delta(X,t)^{-1} \left(osc_{B_{\delta(X,t)/2}(X,t)} A \right)^2 + \delta(X,t) \sup_{B_{\delta(X,t)/2}(X,t)} |\boldsymbol{B}|^2 \right] dX dt$$

is the density of a Carleson measure on Ω with Carleson norm $\|\mu\|_{C}$.

 L^p solvability for operators satisfying small Carleson condition

Then there exists C(p) > 0 such that if for some $r_0 > 0$ max{ $L, \|\mu\|_{C,r_0}$ } < C(p) then the L^p boundary value problem

$$\begin{cases} v_t = \operatorname{div}(A\nabla v) + \boldsymbol{B} \cdot \nabla v & \text{in } \Omega, \\ v = f \in L^p & \text{on } \partial\Omega, \\ N(v) \in L^p(\partial\Omega), \end{cases}$$

is solvable for all $2 \le p < \infty$. Moreover, the estimate

$$\|N(v)\|_{L^p(\partial\Omega,d\sigma)} \leq C_p \|f\|_{L^p(\partial\Omega,d\sigma)},$$

holds with $C_p = C_p(L, N, C_0, \lambda, \Lambda)$.

 L^p solvability for operators satisfying small Carleson condition

Then there exists C(p) > 0 such that if for some $r_0 > 0$ max $\{L, \|\mu\|_{C,r_0}\} < C(p)$ then the L^p boundary value problem

$$\begin{cases} v_t = \operatorname{div}(A\nabla v) + \boldsymbol{B} \cdot \nabla v & \text{in } \Omega, \\ v = f \in L^p & \text{on } \partial\Omega, \\ N(v) \in L^p(\partial\Omega), \end{cases}$$

is solvable for all $2 \leq p < \infty$. Moreover, the estimate

$$\|N(v)\|_{L^p(\partial\Omega,d\sigma)} \leq C_p \|f\|_{L^p(\partial\Omega,d\sigma)},$$

holds with $C_p = C_p(L, N, C_0, \lambda, \Lambda)$. It also follows that the parabolic measure of the operator $L = \partial_t - \operatorname{div}(A\nabla \cdot) - \boldsymbol{B} \cdot \nabla$ is doubling and belongs to $B_2(d\sigma) \subset A_{\infty}(d\sigma)$.

 L^p solvability for operators satisfying small Carleson condition

Then there exists C(p) > 0 such that if for some $r_0 > 0$ max{ $L, ||\mu||_{C,r_0}$ } < C(p) then the L^p boundary value problem

$$\begin{cases} v_t = \operatorname{div}(A\nabla v) + \boldsymbol{B} \cdot \nabla v & \text{in } \Omega, \\ v = f \in L^p & \text{on } \partial\Omega, \\ N(v) \in L^p(\partial\Omega), \end{cases}$$

is solvable for all $2 \le p < \infty$. Moreover, the estimate

$$\|N(v)\|_{L^p(\partial\Omega,d\sigma)} \leq C_p \|f\|_{L^p(\partial\Omega,d\sigma)},$$

holds with $C_p = C_p(L, N, C_0, \lambda, \Lambda)$. It also follows that the parabolic measure of the operator $L = \partial_t - \operatorname{div}(A\nabla \cdot) - \boldsymbol{B} \cdot \nabla$ is doubling and belongs to $B_2(d\sigma) \subset A_{\infty}(d\sigma)$.

-New progress

 L^p solvability for operators satisfying large Carleson condition

L^{p} solvability for operators satisfying large Carleson condition

This is a joint work with Jill Pipher (Brown) and Stefanie Petermichl (Toulouse).

Theorem

Let Ω and L be as in the previous theorem with (B = 0). The constant C(p) > 0 in the condition

 $\max\{L, \|\mu\|_{C,r_0}\} < C(p)$

-New progress

 L^p solvability for operators satisfying large Carleson condition

L^p solvability for operators satisfying large Carleson condition

This is a joint work with Jill Pipher (Brown) and Stefanie Petermichl (Toulouse).

Theorem

Let Ω and L be as in the previous theorem with (B = 0). The constant C(p) > 0 in the condition

$$\max\{L, \|\mu\|_{C,r_0}\} < C(p)$$

for which the L^p Dirichlet problem is solvable satisfies

 $C(p) \to \infty$, as $p \to \infty$.

-New progress

 L^p solvability for operators satisfying large Carleson condition

L^p solvability for operators satisfying large Carleson condition

This is a joint work with Jill Pipher (Brown) and Stefanie Petermichl (Toulouse).

Theorem

Let Ω and L be as in the previous theorem with (B = 0). The constant C(p) > 0 in the condition

$$\max\{L, \|\mu\|_{C,r_0}\} < C(p)$$

for which the L^p Dirichlet problem is solvable satisfies

$$C(p) \to \infty$$
, as $p \to \infty$.

Hence if $L < \infty$ and $\|\mu\|_{C,r_0} < \infty$ then the L^p Dirichlet problem is solvable for some (large) $p < \infty$.

-New progress

 L^p solvability for operators satisfying large Carleson condition

L^p solvability for operators satisfying large Carleson condition

This is a joint work with Jill Pipher (Brown) and Stefanie Petermichl (Toulouse).

Theorem

Let Ω and L be as in the previous theorem with (B = 0). The constant C(p) > 0 in the condition

 $\max\{L, \|\mu\|_{C,r_0}\} < C(p)$

for which the L^p Dirichlet problem is solvable satisfies

$$C(p) o \infty$$
, as $p \to \infty$.

Hence if $L < \infty$ and $\|\mu\|_{C,r_0} < \infty$ then the L^p Dirichlet problem is solvable for some (large) $p < \infty$.

-New progress

 \square Boundary value problem associated with A_∞ parabolic measure

Boundary value problem associated with A_{∞} parabolic measure

A natural question arises. Is there any boundary value problem that is equivalent with parabolic measure being A_{∞} ?

Elliptic case: YES!

-New progress

 \square Boundary value problem associated with A_∞ parabolic measure

Boundary value problem associated with A_{∞} parabolic measure

A natural question arises. Is there any boundary value problem that is equivalent with parabolic measure being A_{∞} ?

Elliptic case: YES!

M.D.-Keing-Pipher (2009).

```
The elliptic measure \omega \in A_{\infty}(d\sigma)
```

if and only if the BMO Dirichlet boundary value problem is solvable.

-New progress

Boundary value problem associated with A_∞ parabolic measure

Boundary value problem associated with A_{∞} parabolic measure

A natural question arises. Is there any boundary value problem that is equivalent with parabolic measure being A_{∞} ?

Elliptic case: YES!

M.D.-Keing-Pipher (2009).

```
The elliptic measure \omega \in A_{\infty}(d\sigma)
```

if and only if the BMO Dirichlet boundary value problem is solvable.

Our goal: Determine whether analogous result holds for parabolic operators.

-New progress

Boundary value problem associated with A_∞ parabolic measure

Boundary value problem associated with A_{∞} parabolic measure

A natural question arises. Is there any boundary value problem that is equivalent with parabolic measure being A_{∞} ?

Elliptic case: YES!

M.D.-Keing-Pipher (2009).

```
The elliptic measure \omega \in A_{\infty}(d\sigma)
```

if and only if the BMO Dirichlet boundary value problem is solvable.

Our goal: Determine whether analogous result holds for parabolic operators.

-New progress

BMO boundary value problem

BMO boundary value problem

What is the *BMO* boundary value problem? The problem is that the non-tangential maximal function is not convenient. Instead we consider another object called *the square function*.

-New progress

BMO boundary value problem

BMO boundary value problem

What is the *BMO* boundary value problem? The problem is that the non-tangential maximal function is not convenient. Instead we consider another object called *the square function*.

$$S(u)(Q) = \left(\int_{\Gamma(Q)} \delta(Z)^{-n} |\nabla u|^2(Z) \, dZ\right)^{1/2}$$

Here $\delta(Z)$ is the parabolic distance between $Z \in \Omega$ and the boundary $\partial \Omega$.

-New progress

BMO boundary value problem

BMO boundary value problem

What is the *BMO* boundary value problem? The problem is that the non-tangential maximal function is not convenient. Instead we consider another object called *the square function*.

$$S(u)(Q) = \left(\int_{\Gamma(Q)} \delta(Z)^{-n} |\nabla u|^2(Z) \, dZ\right)^{1/2}$$

Here $\delta(Z)$ is the parabolic distance between $Z \in \Omega$ and the boundary $\partial \Omega$.

It can be established: If $\omega \in A_{\infty}$ then

 $\|N(u)\|_{L^p}\approx\|S(u)\|_{L^p}$

for all $p \in (1,\infty)$ and all solutions u to Lu = 0.

-New progress

BMO boundary value problem

BMO boundary value problem

What is the *BMO* boundary value problem? The problem is that the non-tangential maximal function is not convenient. Instead we consider another object called *the square function*.

$$S(u)(Q) = \left(\int_{\Gamma(Q)} \delta(Z)^{-n} |\nabla u|^2(Z) \, dZ\right)^{1/2}$$

Here $\delta(Z)$ is the parabolic distance between $Z \in \Omega$ and the boundary $\partial \Omega$.

It can be established: If $\omega \in A_{\infty}$ then

$$\|N(u)\|_{L^p}\approx\|S(u)\|_{L^p}$$

for all $p \in (1,\infty)$ and all solutions u to Lu = 0.

-New progress

BMO boundary value problem

The BMO Dirichlet problem

Definition

Let Ω be an admissible parabolic domain. Consider the parabolic Dirichlet boundary value problem

$$\begin{cases} v_t = \operatorname{div}(A\nabla v) & \text{in } \Omega, \\ v = f \in BMO(d\sigma) & \text{on } \partial\Omega. \end{cases}$$
(3)

where the matrix $A = [a_{ij}(X, t)]$ satisfies the uniform ellipticity condition and σ is the measure supported on $\partial\Omega$ defined above. We say that Dirichlet problem with data in $BMO(\partial\Omega, d\sigma)$ is solvable if the (unique) solution u with continuous boundary data f satisfies the estimate

-New progress

BMO boundary value problem

The BMO Dirichlet problem

Definition

Let Ω be an admissible parabolic domain. Consider the parabolic Dirichlet boundary value problem

$$\begin{cases} v_t = \operatorname{div}(A\nabla v) & \text{in } \Omega, \\ v = f \in BMO(d\sigma) & \text{on } \partial\Omega. \end{cases}$$
(3)

where the matrix $A = [a_{ij}(X, t)]$ satisfies the uniform ellipticity condition and σ is the measure supported on $\partial\Omega$ defined above. We say that Dirichlet problem with data in $BMO(\partial\Omega, d\sigma)$ is solvable if the (unique) solution u with continuous boundary data f satisfies the estimate

-New progress

BMO boundary value problem

The BMO Dirichlet problem

$$\sigma(\Delta)^{-1}\int_{\mathcal{T}(\Delta)}|
abla u(Z)|^2\delta(Z)\,dZ\lesssim \|f\|^2_{BMO}$$

for all parabolic surface balls $\Delta \subset \partial \Omega$.

Here $T(\Delta)$ is a Carleson region over the ball Δ .

-New progress

BMO boundary value problem

The BMO Dirichlet problem

$$\sigma(\Delta)^{-1} \int_{\mathcal{T}(\Delta)} |
abla u(Z)|^2 \delta(Z) \, dZ \lesssim \|f\|_{BMO}^2$$

for all parabolic surface balls $\Delta \subset \partial \Omega$.

Here $T(\Delta)$ is a Carleson region over the ball Δ .

-New progress

 \square BMO solvability under A_{∞} assumption

BMO solvability under A_∞ assumption

Theorem

Let Ω be an admissible parabolic domain and $L = \partial_t - div(A\nabla \cdot)$ a parabolic operator defined above. Assume that the parabolic measure for the operator L is in $A_{\infty}(d\sigma)$.

Then the BMO Dirichlet problem for the operator L is solvable and the estimate

$$\sup_{\Delta \subset \partial \Omega} \sigma(\Delta)^{-1} \int_{\mathcal{T}(\Delta)} |\nabla u(Z)|^2 \delta(Z) \, dZ \lesssim \|f\|_{BMO}^2,$$

holds uniformly for all solutions u of the Dirichlet boundary value problem with boundary data f.

-New progress

 \square BMO solvability under A_{∞} assumption

BMO solvability under A_∞ assumption

Theorem

Let Ω be an admissible parabolic domain and $L = \partial_t - div(A\nabla \cdot)$ a parabolic operator defined above. Assume that the parabolic measure for the operator L is in $A_{\infty}(d\sigma)$.

Then the BMO Dirichlet problem for the operator L is solvable and the estimate

$$\sup_{\Delta\subset\partial\Omega}\sigma(\Delta)^{-1}\int_{\mathcal{T}(\Delta)}|\nabla u(Z)|^2\delta(Z)\,dZ\lesssim \|f\|_{BMO}^2,$$

holds uniformly for all solutions u of the Dirichlet boundary value problem with boundary data f.

-New progress

Reverse direction

Reverse direction

Theorem

Let Ω be an admissible parabolic domain and $L = \partial_t - div(A\nabla \cdot)$ a parabolic operator defined above. Assume that there exists C > 0 such that for all solutions u of the parabolic boundary value problem Lu = 0 with Dirichlet data f we have

$$\sup_{\Delta\subset\partial\Omega}\sigma(\Delta)^{-1}\int_{\mathcal{T}(\Delta)}|\nabla u(Z)|^2\delta(Z)\,dZ\lesssim \|f\|_{L^\infty(d\sigma)}^2.$$

Then the parabolic measure ω_L associated with the operator L belongs to $A_{\infty}(d\sigma)$.

-New progress

Reverse direction

Reverse direction

Theorem

Let Ω be an admissible parabolic domain and $L = \partial_t - div(A\nabla \cdot)$ a parabolic operator defined above. Assume that there exists C > 0 such that for all solutions u of the parabolic boundary value problem Lu = 0 with Dirichlet data f we have

$$\sup_{\Delta\subset\partial\Omega}\sigma(\Delta)^{-1}\int_{\mathcal{T}(\Delta)}|\nabla u(Z)|^2\delta(Z)\,dZ\lesssim \|f\|^2_{L^\infty(d\sigma)}.$$

Then the parabolic measure ω_L associated with the operator L belongs to $A_{\infty}(d\sigma)$.

-New progress

Reverse direction

Remark:

Observe that we have on the right hand side the L^∞ norm, not the BMO norm! Clearly

 $\|f\|_{BMO} \le C \|f\|_{L^{\infty}},$

hence our assumption we weaker than originally expected!

-New progress

Reverse direction

Remark:

Observe that we have on the right hand side the L^∞ norm, not the BMO norm! Clearly

 $\|f\|_{BMO} \leq C \|f\|_{L^{\infty}},$

hence our assumption we weaker than originally expected! This is also an improvement over the paper M.D.-Kenig-Pipher.

-New progress

Reverse direction

Remark:

Observe that we have on the right hand side the L^∞ norm, not the BMO norm! Clearly

 $\|f\|_{BMO} \leq C \|f\|_{L^{\infty}},$

hence our assumption we weaker than originally expected! This is also an improvement over the paper M.D.-Kenig-Pipher.

A similar improvement is also possible in the elliptic case (Kircheim, Pipher, Toro),

-New progress

Reverse direction

Remark:

Observe that we have on the right hand side the L^∞ norm, not the BMO norm! Clearly

 $\|f\|_{BMO} \leq C \|f\|_{L^{\infty}},$

hence our assumption we weaker than originally expected! This is also an improvement over the paper M.D.-Kenig-Pipher.

A similar improvement is also possible in the elliptic case (Kircheim, Pipher, Toro), see also M.D.-Pipher-Petermichl for significant simplification of the argument.

-New progress

Reverse direction

Remark:

Observe that we have on the right hand side the L^∞ norm, not the BMO norm! Clearly

 $\|f\|_{BMO} \leq C \|f\|_{L^{\infty}},$

hence our assumption we weaker than originally expected! This is also an improvement over the paper M.D.-Kenig-Pipher.

A similar improvement is also possible in the elliptic case (Kircheim, Pipher, Toro), see also M.D.-Pipher-Petermichl for significant simplification of the argument.

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

Obtaining A_{∞} for the parabolic measure

We are assuming that the estimate

$$\sup_{\Delta \subset \partial \Omega} \sigma(\Delta)^{-1} \int_{\mathcal{T}(\Delta)} |\nabla u(Z)|^2 \delta(Z) \, dZ \lesssim \|f\|_{L^{\infty}(d\sigma)}^2$$

holds.

Our goal is to show that the measure is A_{∞} . That is, we want to show that for every $\epsilon > 0$ there exists $\delta > 0$ such that whenever $E \subset \Delta$ and

$$\frac{\omega(E)}{\omega(\Delta)} < \epsilon,$$
 then $\frac{\sigma(E)}{\sigma(\Delta)} < \delta.$

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

Obtaining A_∞ for the parabolic measure

We are assuming that the estimate

$$\sup_{\Delta\subset\partial\Omega}\sigma(\Delta)^{-1}\int_{\mathcal{T}(\Delta)}|\nabla u(Z)|^2\delta(Z)\,dZ\lesssim \|f\|_{L^\infty(d\sigma)}^2$$

holds.

Our goal is to show that the measure is A_{∞} . That is, we want to show that for every $\epsilon > 0$ there exists $\delta > 0$ such that whenever $E \subset \Delta$ and

$$rac{\omega(E)}{\omega(\Delta)} < \epsilon, \qquad ext{then} \qquad rac{\sigma(E)}{\sigma(\Delta)} < \delta$$

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

First idea comes from Kenig-Pipher-Toro. Whenever $\frac{\omega(E)}{\omega(\Delta)} < \epsilon$ there exists a good " ϵ -cover" of E of length k $(k \approx \epsilon \log(\omega(\Delta)/\omega(E)))$ such that

$$E \subset \mathcal{O}_k \subset \mathcal{O}_{k-1} \subset \cdots \subset \mathcal{O}_0 \subset = \Delta.$$

The sets \mathcal{O}_i are all open and \mathcal{O}_i is "small" (in a precise sense) related to \mathcal{O}_{i-1} .

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

First idea comes from Kenig-Pipher-Toro. Whenever $\frac{\omega(E)}{\omega(\Delta)} < \epsilon$ there exists a good " ϵ -cover" of E of length k $(k \approx \epsilon \log(\omega(\Delta)/\omega(E)))$ such that

$$E \subset \mathcal{O}_k \subset \mathcal{O}_{k-1} \subset \cdots \subset \mathcal{O}_0 \subset = \Delta.$$

The sets \mathcal{O}_i are all open and \mathcal{O}_i is "small" (in a precise sense) related to \mathcal{O}_{i-1} .
Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

First idea comes from Kenig-Pipher-Toro. Whenever $\frac{\omega(E)}{\omega(\Delta)} < \epsilon$ there exists a good " ϵ -cover" of E of length k $(k \approx \epsilon \log(\omega(\Delta)/\omega(E)))$ such that

$$E \subset \mathcal{O}_k \subset \mathcal{O}_{k-1} \subset \cdots \subset \mathcal{O}_0 \subset = \Delta.$$

The sets \mathcal{O}_i are all open and \mathcal{O}_i is "small" (in a precise sense) related to \mathcal{O}_{i-1} .

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

Key idea: Function f is taken of the form

$$f = \sum_{i=0}^k (-1)^i f_i,$$

where each $0 \le f_i \le 1$ and for *i* odd $f_i = f_{i-1}\chi_{\mathcal{O}_i}$. Here χ_A is the characteristic function of the set *A*.

This makes $0 \leq f \leq 1$.

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

Key idea: Function f is taken of the form

$$f = \sum_{i=0}^k (-1)^i f_i,$$

where each $0 \le f_i \le 1$ and for *i* odd $f_i = f_{i-1}\chi_{\mathcal{O}_i}$. Here χ_A is the characteristic function of the set *A*.

This makes $0 \le f \le 1$.

When *i* is even, f_i is chosen so that the square function $S(u_i)(Q)$ is large O(1) for $Q \in O_i$.

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

Key idea: Function f is taken of the form

$$f = \sum_{i=0}^k (-1)^i f_i,$$

where each $0 \le f_i \le 1$ and for *i* odd $f_i = f_{i-1}\chi_{\mathcal{O}_i}$. Here χ_A is the characteristic function of the set *A*.

This makes $0 \le f \le 1$.

When *i* is even, f_i is chosen so that the square function $S(u_i)(Q)$ is large O(1) for $Q \in O_i$. Here one has to be careful where the square function is large, we want for different even *i*'s to have

 $S^{2}(u)(Q) \ge S^{2}(u_{0})(Q) + S^{2}(u_{2})(Q) + S^{2}(u_{4})(Q) + \dots$

so that for $Q \in E$ we have $S^2(u)(Q) \ge Ck/2$.

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

Key idea: Function f is taken of the form

$$f = \sum_{i=0}^k (-1)^i f_i,$$

where each $0 \le f_i \le 1$ and for *i* odd $f_i = f_{i-1}\chi_{\mathcal{O}_i}$. Here χ_A is the characteristic function of the set *A*.

This makes $0 \le f \le 1$.

When *i* is even, f_i is chosen so that the square function $S(u_i)(Q)$ is large O(1) for $Q \in O_i$. Here one has to be careful where the square function is large, we want for different even *i*'s to have

$$S^{2}(u)(Q) \geq S^{2}(u_{0})(Q) + S^{2}(u_{2})(Q) + S^{2}(u_{4})(Q) + \dots$$

so that for $Q \in E$ we have $S^2(u)(Q) \ge Ck/2$.

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

It follows that

$$\sigma(E) \leq \frac{C}{k} \int_{E} S^{2}(u)(Q) \, d\sigma(Q) \lesssim k^{-1} \int_{\Delta} S^{2}(u)(Q) \, d\sigma(Q)$$

$$\approx k^{-1} \int_{\mathcal{T}(\Delta)} |\nabla u|^2 \delta(X) \, dX \leq C k^{-1} \|f\|_{L^{\infty}}^2 \sigma(\Delta) \approx k^{-1} \sigma(\Delta).$$

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

It follows that

$$\sigma(E) \leq \frac{C}{k} \int_{E} S^{2}(u)(Q) \, d\sigma(Q) \lesssim k^{-1} \int_{\Delta} S^{2}(u)(Q) \, d\sigma(Q)$$

$$pprox k^{-1}\int_{\mathcal{T}(\Delta)}|
abla u|^2\delta(X)\,dX\leq Ck^{-1}\|f\|^2_{L^\infty}\sigma(\Delta)pprox k^{-1}\sigma(\Delta).$$

Hence

$$\frac{\sigma(E)}{\sigma(\Delta)} \lesssim k^{-1}.$$

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

It follows that

$$\sigma(E) \leq \frac{C}{k} \int_{E} S^{2}(u)(Q) \, d\sigma(Q) \lesssim k^{-1} \int_{\Delta} S^{2}(u)(Q) \, d\sigma(Q)$$

$$pprox k^{-1}\int_{\mathcal{T}(\Delta)}|
abla u|^2\delta(X)\,dX\leq Ck^{-1}\|f\|^2_{L^\infty}\sigma(\Delta)pprox k^{-1}\sigma(\Delta).$$

Hence

$$rac{\sigma(E)}{\sigma(\Delta)} \lesssim k^{-1}.$$

As k depends on $\frac{\omega(E)}{\omega(\Delta)}$ and $k \to \infty$ as $\frac{\omega(E)}{\omega(\Delta)} \to 0$ we have that

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

It follows that

$$\sigma(E) \leq \frac{C}{k} \int_{E} S^{2}(u)(Q) \, d\sigma(Q) \lesssim k^{-1} \int_{\Delta} S^{2}(u)(Q) \, d\sigma(Q)$$

$$pprox k^{-1} \int_{\mathcal{T}(\Delta)} |
abla u|^2 \delta(X) \, dX \leq C k^{-1} \|f\|_{L^{\infty}}^2 \sigma(\Delta) pprox k^{-1} \sigma(\Delta).$$

Hence

$$rac{\sigma(E)}{\sigma(\Delta)} \lesssim k^{-1}.$$

As k depends on $rac{\omega(E)}{\omega(\Delta)}$ and $k \to \infty$ as $rac{\omega(E)}{\omega(\Delta)} \to 0$ we have that
 $rac{\sigma(E)}{\sigma(\Delta)} \to 0,$ as desired.

Proof - main ideas

 \Box Obtaining A_{∞} for the parabolic measure

It follows that

$$\sigma(E) \leq \frac{C}{k} \int_{E} S^{2}(u)(Q) \, d\sigma(Q) \lesssim k^{-1} \int_{\Delta} S^{2}(u)(Q) \, d\sigma(Q)$$

$$pprox k^{-1} \int_{\mathcal{T}(\Delta)} |
abla u|^2 \delta(X) \, dX \leq C k^{-1} \|f\|_{L^{\infty}}^2 \sigma(\Delta) pprox k^{-1} \sigma(\Delta).$$

Hence

$$rac{\sigma(E)}{\sigma(\Delta)} \lesssim k^{-1}.$$

As k depends on $rac{\omega(E)}{\omega(\Delta)}$ and $k \to \infty$ as $rac{\omega(E)}{\omega(\Delta)} \to 0$ we have that
 $rac{\sigma(E)}{\sigma(\Delta)} \to 0,$ as desired.