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Introduction

Two main topics:

Riesz transforms on Riemannian manifolds

Hardy spaces on metric measure spaces

Assumptions: Volume growth, heat kernel estimates
The doubling volume property: (M,d, µ): a metric measure space. Set
V (x, r) = µ(B(x, r)). There exists a constant C > 0 such that

V (x, 2r) ≤ CV (x, r), ∀x ∈M, r > 0. (D)

A simple consequence of (D):

V (x, r)

V (x, s)
≤ C

(r
s

)ν
, ∀x ∈M, r ≥ s > 0.

If M is non-compact, we also have a reverse inequality.
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Riesz transforms on Riemannian manifolds

Background

Strichartz (1983): For which kind of non-compact Riemannian manifold
M and for which p ∈ (1,∞), the two semi-norms ‖|∇f |‖p and ‖∆1/2f‖p
are equivalent, ∀f ∈ C∞c (M)?

The Riesz transform ∇∆−1/2 is Lp bounded on M if

‖|∇f |‖p ≤ C‖∆1/2f‖p, ∀f ∈ C∞0 (M). (Rp)

The reverse Riesz transform is Lp bounded on M if

‖∆1/2f‖p ≤ C‖∇f‖p, ∀f ∈ C∞0 (M). (RRp)

By duality, we have (Rp)⇒ (RRp′), where p′ is the conjugate of p.
Well-known results: On Rn, Riemannian manifolds with non-negative
Ricci curvature, Lie groups with polynomial growth etc, Riesz transforms
are Lp bounded for 1 < p <∞.
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Gaussian heat kernel estimates on Riemannian manifolds

(M,d, µ): a complete non-compact Riemannian manifold.
(e−t∆)t>0: heat semigroup; pt(x, y): the heat kernel.
Most familiar heat kernel estimates:

On-diagonal upper estimate

pt(x, x) ≤ C

V (x,
√
t)
,∀x ∈M, t > 0. (DUE)

Off-diagonal upper estimate:

pt(x, y) ≤ C

V (x,
√
t)

exp
(
− cd

2(x, y)

t

)
, ∀x, y ∈M, t > 0. (UE)

Gradient upper estimate:

|∇pt(x, y)| ≤ C√
tV (y,

√
t)
,∀x ∈M, t > 0. (G)



Riesz transforms on Riemannian manifolds

Gaussian heat kernel estimates and Riesz transforms

Theorem (Coulhon-Duong 99)

Let M be a complete non-compact Riemannian manifold satisfying (D)
and (DUE). Then the Riesz transform ∇∆−1/2 is of weak type (1, 1) and
thus Lp bounded for 1 < p ≤ 2.

Remark: Under the same assumptions, (Rp) may not hold for p > 2. For
example: on the connected sum of Rn (consisting of two copies of
Rn\{B(0, 1)}, n ≥ 2), the Riesz transform is Lp bounded for 1 < p < n,
but not Lp bounded for p ≥ n, see [Coulhon-Duong 99],
[Carron-Coulhon-Hassell 06].

Theorem (Auscher-Coulhon-Duong-Hofmann 04, Coulhon-Sikora 10)

Let M be a complete non-compact Riemannian manifold satisfying (D)
and (G). Then (Rp) and (RRp) hold for all 1 < p <∞.



Riesz transforms on Riemannian manifolds

Questions

It is not known whether the two conditions (D) and (DUE) are necessary
for the Lp (1 < p < 2) boundedness of the Riesz transform. The are two
natural questions:

1 Can we remove (one of) the two conditions?

2 Can we replace the Gaussian heat kernel estimate by some other
natural heat kernel estimates?
For example, on manifolds satisfying (D) and sub-Gaussian heat
kernel estimates, are the Riesz transforms Lp bounded for 1 < p < 2?

Localisation of the Riesz transform
The Riesz transform ∇∆−1/2 is Lp bounded on M if and only if the local
Riesz transform ∇(I + ∆)−1/2 and the Riesz transform at infinity
∇e−∆∆−1/2 are Lp bounded.
[Coulhon-Duong 99]: Under local doubling property and local Gaussian
heat kernel upper bound (very weak), the local Riesz transform is Lp

bounded for 1 < p ≤ 2.
Quasi Riesz transforms: ∇(I + ∆)−1/2 +∇e−∆∆−α with α ∈ (0, 1/2).
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Quasi Riesz transforms on general Riemannian manifolds

Proposition

Let M be a complete manifold. Then, for any fixed α ∈ (0, 1/2), the
operator ∇e−∆∆−α is bounded on Lp for all 1 < p ≤ 2.

The proof easily follows from the fact below:

Proposition

Let M be a complete Riemannian manifold. Then for 1 < p ≤ 2, we have

‖|∇e−t∆|‖p→p ≤ Ct−1/2. (Gp)

Note that (Gp) is also equivalent to the multiplicative inequality

‖|∇f |‖2p ≤ C‖f‖p‖∆f‖p,

see [Coulhon-Duong 03, Coulhon-Sikora 10].
A simple proof: using Stein’s approach to show the Lp boundedness of the
Littlewood-Paley-Stein function.
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Sub-Gaussian heat kernel estimates

Let m > 2.
Sub-Gaussian heat kernel upper estimate on a Riemannian manifold:

pt(x, y) ≤ C

V (x, ρ−1(t))
exp (−cG(d(x, y), t)), (UE2,m)

where ρ(t) =

{
t2, 0 < t < 1,

tm, t ≥ 1;
and G(r, t) =

{ r2

t
, t ≤ r,(rm
t

)1/(m−1)
, t ≥ r.

Examples: fractal manifolds.
Construction of Vicsek manifolds from Vicsek graphs: replacing the edges
with tubes, and gluing them smoothly at the vertices.
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A typical examples

Figure: A fragment of the Vicsek graph in R2

Generally in Rn, let D = log3(2n + 1). The Vicsek manifold satisfies
µ(B(x, r)) ' rD and (UE2,m) with m = D + 1.
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Comparing Sub-Gaussian and Gaussian heat kernel
estimates

The Gaussian heat kernel upper bound coincides with (UE2,2).
Let m > 2. For t > 1,

V (x, t1/2) > V (x, t1/m).

That means pt(x, x) decays with t more slowly in the sub-Gaussian case
than in the Gaussian case.
For t ≥ max{1, d(x, y)},(

dm(x, y)

t

)1/(m−1)

≥ d2(x, y)

t
,

then pt(x, y) decays with d(x, y) faster in the sub-Gaussian case than in
the Gaussian case.
But on the whole, the two kinds of pointwise estimates are incomparable.
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Sub-Gaussian heat kernel upper estimates and quasi Riesz
transforms

Theorem

Let M be a complete manifold satisfying (D) and (UE2,m), then the quasi
Riesz transform ∇e−∆∆−α +∇(I + ∆)−1/2 is weak (1, 1) bounded and
Lp bounded for 1 < p ≤ 2.

Proof: the Calderón-Zygmund theory, the weighted estimate for the
gradient of the heat kernel, similarly as in [Coulhon-Duong 99].
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Counterexample for p > 2

For p > 2, the Riesz transform is not Lp bounded on Vicsek manifolds.

Proposition

Let M be a Vicsek manifolds, then the Riesz transform is not Lp bounded
for p > 2.

This is an improvement of the result in [Coulhon-Duong 03], where (RRp)
was shown to be false for 1 < p < 2D

D+1 .
Idea of the Proof: show that (RRp) is not true for 1 < p < 2.
Take D′ = 2D

D+1 . If (RRp) holds, the heat kernel estimate

pt(x, x) ≤ Ct−
D
D+1 (t ≥ 1) implies that (see [Coulhon 92]) for all

f ∈ C∞0 (M) such that ‖f‖p/‖f‖1 ≤ 1,

‖f‖
1+ p

(p−1)D′
p ≤ C‖f‖

p
(p−1)D′
1 ‖∆1/2f‖p ≤ C‖f‖

p
(p−1)D′
1 ‖|∇f |‖p.

Choose {Fn} to contradict the above inequality.
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Construction for {Fn}
[Barlow-Coulhon-Grigor’yan 2001]: Let Ωn = Γ

⋂
[0, 3n]N and

q = 2N + 1 = 3D. Denote by z0 the centre of Ωn and by zi, i ≥ 1 its
corners. Define Fn as follows: Fn(z0) = 1, Fn(zi) = 0, i ≥ 1, and extend
Fn as a harmonic function in the rest of Ωn. If z belongs to some γz0,zi ,
then Fn(z) = 3−nd(zi, z). If not, then Fn(z) = Fn(z′), where z′ is the
nearest vertex in certain line of z0 and zi.

Figure: The function F2
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Hardy spaces associated with operators Backgrounds

Hardy spaces associated with the Laplacian

References:
[Auscher-McIntosh-Russ 08]: Hardy spaces of differential forms of all
degrees on complete Riemannian manifolds satisfying the doubling volume
property.
[Hofmann-Lu-Mitrea-Mitrea-Yan 11]: metric measure space with doubling
measure, and with a non-negative self-adjoint operator satisfying the
Davies-Gaffney estimate:

| < e−tLf1, f2 > | ≤ C exp
(
− d2(U1, U2)

ct

)
‖f1‖2‖f2‖2, ∀t > 0,

[Uhl 11]: metric measure space with doubling measure, and with an
injective non-negative self-adjoint operator satisfying the generalised
Davies-Gaffney estimate.
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Lp0 − Lp
′
0 off-diagonal heat kernel estimates on metric

measure spaces

Let 1 ≤ p0 < 2. Let β1 < β2. We say that M satisfies the generalised
Lp0 − Lp′0 off-diagonal estimate if for x, y ∈M and t > 0,

‖1B(x,t)e
−ρ(t)L

1B(y,t)‖p0→p′0

≤



C

V
1
p0
− 1
p′0 (x, t)

exp
(
− c
(d(x, y)

t

) β1
β1−1

)
0 < t < 1,

C

V
1
p0
− 1
p′0 (x, t)

exp
(
− c
(d(x, y)

t

) β2
β2−1

)
, t ≥ 1,

(DG
p0,p′0
β1,β2

)

where

ρ(t) =

{
tβ1 , 0 < t < 1,

tβ2 , t ≥ 1;
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Some consequences

For p0 = 2,

‖1B(x,t)e
−ρ(t)L

1B(y,t)‖2→2 ≤

{
C exp

(
− c
(d(x, y)

t

) β1
β1−1

)
0 < t < 1,

C exp
(
− c
(d(x, y)

t

) β2
β2−1

)
, t ≥ 1,

.

(DGβ1,β2)
For p0 = 1,

pρ(t)(x, y) ≤

{ C

V (x, t)
exp

(
− c
(d(x, y)

t

) β1
β1−1

)
0 < t < 1,

C

V (x, t)
exp

(
− c
(d(x, y)

t

) β2
β2−1

)
, t ≥ 1.

.

(UEβ1,β2)

(UEβ1,β2) ⇒ (DG
p0,p′0
β1,β2

) ⇒ (DGβ1,β2).
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Examples

Euclidean spaces with higher order divergence form operators;

Some fractals. For example, Sierpinski carpets, Sierpinski gaskets,
Vicsek sets etc.

Riemannian manifolds. For any D ≥ 1 and any 2 ≤ m ≤ D+ 1, there
exists Riemannian manifold satisfying the polynomial volume growth
V (x, r) ' rD, r ≥ 1, and (UE2,m).
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Outline

1 Define Hardy spaces via molecules H1
L,ρ,mol(M) and via square

functions Hp
L,Sρh

(M) which are adapted to the heat kernel estimate.

2 The two H1 spaces defined via molecules and via square function are
the same: H1

L,ρ,mol(M) = H1
L,Sρh

(M).

3 The comparison between Hardy spaces Hp
L,Sρh

(M), Hp
L,Sh

(M) and

Lp(M).

4 Application: the H1 − L1 boundedness of (quasi) Riesz transforms on
Riemannian manifolds with sub-Gaussian heat kernel estimates.
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Hardy spaces defined via molecules

Let M be a metric measure space satisfying (D) and (DGβ1,β2).

Definition

Let ε > 0 and K > ν
2β1

. A function a ∈ L2(M) is called a
(1, 2, ε)−molecule associated to L if there exist a function b ∈ D(L) and a
ball B with radius rB such that

1 a = LKb;

2 It holds for every k = 0, 1, · · · ,K and i = 0, 1, 2, · · · , we have

‖(ρ(rB)L)kb‖L2(Ci(B)) ≤ ρ(rB)2−iεV (2iB)−1/2,

where C0(B) = B, and Ci(B) = 2iB\2i−1B for i = 1, 2, · · · .
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Hardy spaces defined via molecules

Definition

We say that f =
∑∞

n=0 λnan is a molecular (1, 2, ε)−representation of f if
(λn)n∈N ∈ l1, each an is a molecule, and the sum converges in the L2

sense. We denote by H1
L,ρ,mol the collection of all the functions with a

molecular representation, where the norm of ‖f‖H1
L,ρ,mol(M) is given by

inf
{ ∞∑
n=0

|λn| : f =

∞∑
n=0

λnan is a molecular (1, 2, ε)− representation
}
.

The Hardy space H1
L,ρ,mol(M) is defined as the completion of

H1
L,ρ,mol(M) with respect to this norm.
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Hardy spaces defined via square functions

Consider the quadratic operator associated with the heat kernel defined by
the following conical square function

Sρhf(x) =
(∫∫

Γ(x)
|ρ(t)Le−ρ(t)Lf(y)|2 dµ(y)

V (x, t)

dt

t

)1/2
,

where the cone Γ(x) = {(y, t) ∈M × (0,∞) : d(y, x) < t}.

Definition

The Hardy space Hp
L,Sρh

(M), p ≥ 1 is defined as the completion of the set

{f ∈ R(L) : ‖Sρhf‖Lp <∞} with respect to the norm ‖Sρhf‖Lp . The
Hp
L,Sρh

(M) norm is defined by ‖f‖Hp

L,S
ρ
h

(M) := ‖Sρhf‖Lp(M).
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H1
L,ρ,mol(M) = H1

L,Sρh
(M)

Theorem

Let M be a metric measure space satisfying the doubling volume property
(D) and the heat kernel estimate (DGβ1,β2), β1 ≤ β2. Then
H1
L,ρ,mol(M) = H1

L,Sρh
(M). Moreover, ‖f‖H1

L,ρ,mol(M) ' ‖f‖H1
L,S

ρ
h

(M).
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Comparison of Hp and Lp

Theorem

Let M be a non-compact metric measure space satisfying the doubling

volume property (D) and the heat kernel estimate (DG
p0,p′0
β1,β2

). Then

Hp
L,Sρh

(M) = R(L) ∩ Lp(M)
Lp(M)

for p0 < p < p′0.

Show that the adapted conical square functions is weak Lp0 bounded. The
tools include the Calderón-Zygmund decomposition, functional calculus,
and the Lp − Lq theory for operators.

Corollary

Let M be a non-compact metric measure space satisfying the doubling
volume property (D) and the following pointwise heat kernel estimate
(UEβ1,β2). Then H1

L,ρ,mol(M) = H1
L,Sρh

(M), and Hp
L,Sρh

(M) = Lp(M) for

1 < p <∞.
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Lp(M) 6= Hp
∆,Sh

(M)

Theorem

Let M be a Riemannian manifold with polynomial volume growth
V (x, r) ' rd, r ≥ 1, as well as two-sided sub-Gaussian heat kernel
estimate (HK2,m) with 2 < m < d/2, that is, (UE2,m) and the matching

lower bound. Then Lp(M) ⊂ Hp
∆,Sh

(M) doesn’t hold for p ∈
(

d
d−m , 2

)
.

Remark 1 Vicsek manifolds satisfy (HK2,m) with m = d+ 1.
Remark 2 The Hardy space Hp

∆,Sh
(M) is defined via

Shf(x) =
(∫∫

Γ(x)
|t2Le−t2Lf(y)|2 dµ(y)

V (x, t)

dt

t

)1/2
.

Idea for the proof: Using obolev inequality, Green operator and the lower
estimate of the heat kernel to prove by contradiction.
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Application

Theorem

Let M be a manifold satisfying the doubling volume property (D) and the
heat kernel estimate (UE2,m), m > 2. Then for any fixed α ∈ (0, 1/2), the
operator ∇e−∆∆−α is H1

∆,m − L1 bounded.

We can recover again the Lp boundedness of quasi Riesz transforms from
the complex interpolation theorem over Hardy spaces Hp

∆,Smh
(M)



The end

Thanks for your attention!
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