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based on two joint works with my student Sebastian
Stahlhut and with Mihalis Mourgoglou, available on arXiv.
development of Dirac operators for BVP from earlier works
with Andreas Axelsson, Alan McIntosh, Steve Hofmann.
Nothing could be done without the methodology of the
solution of the Kato conjecture.
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Systems

Ω = Rn+1
+ . Same analysis works in unit ball and every domain

obtained by bilipschitz change of variables.
Points in Ω: (t , x), t > 0, x ∈ Rn.
Measurable, bounded, with Mm×m(C)-valued coefficients
Ai,j , i , j = 0, . . .n, m ≥ 1. + Ellipticity (later)
Weak solution: u ∈W 1,2

loc (Ω; Cm) and Lu = 0 holds in D′(Ω; Cm):
with summation convention

Re
∫

Ω
Aα,βi,j ∂juβ ∂iϕαdxdt = 0, ∀ϕ ∈ C∞0 (Ω; Cm).

Short notation: Aα,βi,j ∂juβ ∂iϕα = A∇u · ∇ϕ and Lu = divA∇u in
Ω.
i = 0 corresponds to the vertical direction, i = 1, . . . ,n to the
horizontal directions.
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Strongly elliptic real equations

• local regularity theory (Nash-Moser)
• Maximum principle: the classical Dirichlet problem with data
f ∈ Cc(Rn) can be uniquely solved: u ∈ C(Ω) is bounded with
‖u‖∞ ≤ ‖f‖∞ and can be represented by applying the Riesz
representation theorem:

u(t , x) =

∫
Rn

f dωt ,x
L

Probability measure ωt ,x
L is the L-harmonic measure for L at

pole (t , x).
• Possible ansatz by using layer potential methods from the
fundamental solution.
• Many results starting in the late ’70s for real symmetric
equations: Dahlberg, Jerison, Kenig, Verchota, R. Fefferman,
Pipher.... and recently for real non-symmetric equations:
Hofmann, Kenig, Mayboroda, Pipher.
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Complex equations or systems

• no local regularity
• no maximum principle
• no fundamental solution
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BVP problems in Lp, 1 < p <∞

Typical problems in harmonic analysis (for example for the
Laplace equation).
• (Dir, A, p): Solve Lu = 0 with ‖Ñ(u)‖p <∞ and u0 = f given
in Lp(Rn; Cm).
• (Reg, A, p): Solve Lu = 0 with ‖Ñ(∇u)‖p <∞ and
∇tanu0 = ∇tanf , f given in Ẇ 1,p(Rn; Cm).
• (Neu, A, p): Solve Lu = 0 with ‖Ñ(∇u)‖p <∞ and
∂νAu|t=0 = g given in Lp(Rn; Cm).
Ñ(h) is non-tangential maximal interior control of h defined in
Ω: it comes up quite naturally.
Not always solvable nor well-posed. No comprehensive theory
at this time.
Find trace and representation not on u but on its full gradient.
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non-tangential maximal function

Whitney ball:

W (t , x) := [(1− c0)t , (1 + c0)t ]× B(x ; c1t),

for fixed c0 ∈ (0,1), c1 > 0.

Ñ(h)(x) := sup
t>0

t−(n+1)/2‖h‖L2(W (t ,x))

It is the L2-variant of the usual pointwise maximal function

h∗(x) = sup
|x−y |<t

|h(t , y)|.
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Classical Dirichlet problem

Theory for Lp, 1 < p <∞ well-known from Fatou type results.
Fefferman-Stein extended this to p ≤ 1 using the real Hardy
space Hp (which agrees with Lp when p > 1).

Theorem
Let 0 < p <∞. Let u be harmonic in Ω. The following are
equivalent

1 ‖u∗‖p <∞.
2 ‖S(t∇u)‖p <∞ and u vanishes as t →∞.
3 There exists a unique f ∈ Hp such that u(t , x) = Pt ∗ f (x),

where Pt is the Poisson kernel.
Moreover, ‖f‖Hp ∼ ‖u∗‖p ∼ ‖S(t∇u)‖p.

Lusin area functional: S(F )(x) =
( ∫∫

|x−y |<t

∣∣F (t , y)
∣∣2 dtdy

tn+1

) 1
2
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Solving via Cauchy-Riemann

• ∆u = 0 on Ω = {(t , x); t > 0, x ∈ R}, u0 = g ∈ L2(R) via
Hardy spaces.
• ∆u = 0⇐⇒ u = Re v , ∂z̄v = 0 (Cauchy-Riemann)

•Write v = a + ib =

[
a
b

]
. Then

∂z̄v = 0⇐⇒ ∂tv + Dv = 0, D =

[
0 ∂x
−∂x 0

]
.

D = D∗ and sp(D) = R. To solve for v , need initial value v0 to
be in R(χ+(D)) = H̃+ where χ+ = 1(0,∞). Now

v0 ∈ H̃+ ⇐⇒ v0 =

[
a

H(a)

]
where H is the Hilbert transform: H(a) is the conjugate function
of a.
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• The space H̃+ is thus the classical (holomorphic) Hardy
space: L2 functions that have a (controlled) holomorphic
extension to the upper half-space. If v0 ∈ H̃+, then

vt (x) = (e−tDv0)(x)

is nothing but the Cauchy extension formula.
• Conversely H̃+ is the trace space of holomorphic functions v
in the upper half-space with control ‖v∗‖2 <∞ (Fatou theory).
• Scheme for solving the Dirichlet problem is

g(= Dir .data)→ v0 =

[
g

H(g)

]
∈ H̃+ → vt = e−tDv0 → u = Re v

• In higher dimensions and for various spaces of data, similar
strategy following Stein and Weiss: introduction of the real
Hardy spaces on Euclidean spaces.
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Assumptions

1 A measurable, bounded, with Mm×m(C)-valued coefficients
2 We assume A be t-independent: t-dependence can be

considered but some regularity in t is required (otherwise,
counterexamples to solvability exist: Cwikel-Fabes-Kenig)

3 strict accretivity in the sense of Gårding: there exists κ > 0
s.t. ∀u ∈ C1

c (Rn+1; Cm)

Re
∫

Rn
A(x)∇t ,xu · ∇t ,xu dx ≥ κ

∫
Rn
|∇t ,xu|2 dx .

From now on m = 1 (same results): ellipticity is equivalent to
the usual pointwise lower estimate Re A(x)ξ · ξ ≥ κ|ξ|2.
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Conormal gradient

Write

Lu = ∂t (a∂tu + b · ∇xu) + divx (c∂t + d∇xu)

A =

[
a b
c d

]
∂νAu(t , x) := a(x)∂tu(t , x) + b(x) · ∇xu(t , x)

Conormal gradient of u :

∇Au(t , x) =

[
∂νAu(t , x)
∇xu(t , x)

]
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Dirac operator

∇Au(t , x) =

[
∂νAu(t , x)
∇xu(t , x)

]
Lu = 0⇐⇒ ∂t∇Au + DB∇Au = 0

D =

[
0 divx
−∇x 0

]
, B =

[
1 0
c d

] [
a b
0 I

]−1

.

Lemma (A., Axelsson, McIntosh)
u 7→ ∇Au correspondence between weak solutions of Lu = 0
and distributional solutions F ∈ L2

loc(Ω; Cn+1) of

∂tF + DBF = 0, curlxF‖ = 0.

Notation: F =

[
F⊥
F‖

]
, with F⊥ C-valued, F‖ Cn-valued.
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Functional calculus

D self-adjoint on L2(Rn; Cn+1), R(D) = {F ; curlxF‖ = 0}.

Theorem
(AAM) B is bounded and accretive iff A is bounded and
accretive.
(Classical) DB bi-sectorial operator of type ω < π/2 on L2

with R(DB) = R(D): hence L2 = R(D)⊕ N(DB).
(Axelsson-Keith-McIntosh) DB has H∞(Sµ)-functional
calculus on R(D) for bi-sectors Sµ, ω < µ < π/2.

∫ ∞
0
‖ψt (DB)h‖22

dt
t
∼ ‖h‖22, ∀h ∈ R(D), ∀ψ ∈ Ψ6=0(Sµ)

‖b(DB)h‖2 . ‖b‖∞‖h‖2, ∀b ∈ H∞(Sµ),∀h ∈ R(D).
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Lp analog: Hardy space

Let 0 < p <∞. Define Hp
DB as the completion of the space of

those h ∈ R(D) for which S(F ) ∈ Lp with F (t , x) = ψt (DB)h(x).
For p = 2, H2

DB = R(D) (by H∞-fc). For p 6= 2, this space
depends on ψ ∈ Ψ(Sµ) but one can show that for fixed p, there
is a large class of ψ for which these spaces are all the same
with equivalent (quasi-)norms ‖S(F )‖p <∞.
Functions b(DB) with b ∈ H∞(Sµ) have bounded extensions to
Hp

DB. In particular, for χ+ = 1<z>0, we have a natural closed
spectral subspace Hp,+

DB defined as the range of χ+
p = bounded

extension of χ+(DB). For χ− = 1<z<0, we obtain Hp,−
DB . In fact,

(χ+
p , χ

−
p ) forms a pair of bounded complementary projections

on Hp
DB.

Also, analytic semigroup (e−t |DB|)t≥0 extends to Hp
DB, with

|DB| =
√

(DB)2 = DB(χ+(DB)− χ−(DB)).

.
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those h ∈ R(D) for which S(F ) ∈ Lp with F (t , x) = ψt (DB)h(x).
For p = 2, H2

DB = R(D) (by H∞-fc). For p 6= 2, this space
depends on ψ ∈ Ψ(Sµ) but one can show that for fixed p, there
is a large class of ψ for which these spaces are all the same
with equivalent (quasi-)norms ‖S(F )‖p <∞.
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What is the Hardy space?

Difficulty: A completion is an abstract object.
The space Hp

D (when A = I) is naturally identified to a subspace
of Hp with the restriction n

n+1 < p. What about Hp
DB?

Theorem (A., Stahlhut)

There is an open interval IL ⊂ ( n
n+1 ,∞) of values p for which

Hp
DB = Hp

D with equivalent norms. This interval contains [ 2n
n+2 ,2].

Remark: for real equations, one can show that IL contains
[1,2]. For dimensions n = 1 or for constant systems, one can
show that IL = ( n

n+1 ,∞).
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Classification thm for Reg and Neu

Theorem (A., Mourgoglou)

Let p ∈ IL. Then, for any weak solution u to Lu = 0 on Ω, the
followings are equivalent:

(i) ‖Ñ(∇u)‖p <∞.
(ii) ‖S(t∂t∇u)‖p <∞ and ∇Au(t , ·) converges to 0 in the

sense of distributions as t →∞.
(iii) ∃!F0 ∈ Hp,+

DB , called the conormal gradient of u at t = 0 and
denoted by ∇Au|t=0, such that ∇Au(t , . ) = Sp(t)F0.

(iv) ∃F0 ∈ Hp
D such that ∇Au(t , . ) = Sp(t)χ+

p F0.

Here, Sp(t) is the bounded extension to Hp
D = Hp

DB of e−t |DB|.
Moreover,

‖Ñ(∇u)‖p ∼ ‖S(t∂t∇u)‖p ∼ ‖∇Au|t=0‖Hp ∼ ‖χ+
p F0‖Hp .
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Consequences

The previous theorem shows semigroup representation for
conormal gradients of weak solutions u with conditions (i) or (ii)
and that Hp,+

DB is the trace space of those conormal gradients.

Proofs are complicated: one can not apply the Fatou type
results based on the maximum principle. They are
independent of well-posedness of the BVPs.

Well-posedness of the BVPs can be shown to be equivalent to
invertibility of boundary maps. Fix p ∈ IL.

1 The regularity problem (Reg,A,p) is well-posed iff the map
Hp,+

DB → Hp
∇ : ∇Au|t=0 → ∇xu|t=0 is invertible.

2 The Neumann problem (Neu,A,p) is well-posed iff the
map Hp,+

DB → Hp : ∇Au|t=0 → ∂νAu|t=0 is invertible.

Establishing invertibility is another story.
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Sobolev spaces adapted to DB

Theory of Sobolev spaces adapted to DB. Define Ẇ−1,p
DB as the

completion of the space of those h ∈ R(D) for which S(tF ) ∈ Lp

with F (t , x) = ψt (DB)h(x).
Independence on ψ in a large subclass of Ψ(Sµ).
Functions b(DB) with b ∈ H∞(Sµ) have bounded extensions on
Ẇ−1,p

DB . In particular, for χ+ = 1<z>0, we have a natural closed
spectral subspace Ẇ−1,p,+

DB defined as the range of χ̃+
p =

extension of χ+(DB). For χ− = 1<z<0, we obtain Ẇ−1,p,−
DB . In

fact, χ̃+
p , χ̃

−
p form a pair of bounded complementary projections

on Ẇ−1,p
DB .

Version with area functional replaced by Carleson measures
spaces T∞2,α leads to BMO−1 and Hölder Λ−s spaces: Λ̇α−1

DB for
0 ≤ α < 1.
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Classification thm for Dir 1

Theorem (A., Mourgoglou)

Let q ∈ IL∗ , assume q > 1 and let p = q′. Let u be a weak
solution to Lu = 0 on Ω. The followings are equivalent:
(α) ‖S(t∇u)‖p <∞ and, if p ≥ 2∗, u(t , ·) converges to 0 in D′

modulo constants as t →∞.
(β) ∃!F0 ∈ Ẇ−1,p,+

DB , called the conormal gradient of u at t = 0
and denoted by ∇Au|t=0, such that ∇Au(t , . ) = S̃p(t)F0.

(γ) ∃F0 ∈ Ẇ−1,p
D such that ∇Au(t , . ) = S̃p(t)χ̃+

p F0.

Here, S̃p(t) is the extension of e−t |DB| on Ẇ−1,p
DB = Ẇ−1,p

D .
Moreover,

‖S(t∇u)‖p ∼ ‖∇Au|t=0‖Ẇ−1,p ∼ ‖χ̃+
p F0‖Ẇ−1,p .
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Classification thm for Dir 2

Theorem (A., Mourgoglou)

Let q ∈ IL∗ , assume q ≤ 1 and let α = n( 1
q − 1). Let u be a

weak solution to Lu = 0 on Ω. The followings are equivalent:
(α) ‖t∇u‖T∞2,α <∞ and u(t , ·) converges to 0 in D′ modulo

constants as t →∞.
(β) ∃!F0 ∈ Λ̇α−1,+

DB , called the conormal gradient of u at t = 0
and denoted by ∇Au|t=0, such that ∇Au(t , . ) = S̃α(t)F0.

(γ) ∃F0 ∈ Λ̇α−1
D such that ∇Au(t , . ) = S̃α(t)χ̃+

αF0.

Here, S̃α(t), χα, are the extensions of e−t |DB| on Λ̇α−1
DB = Λ̇α−1

D
and χ+(DB) (obtained by duality). Moreover,

‖t∇u‖T∞2,α ∼ ‖∇Au|t=0‖Λ̇α−1 ∼ ‖χ̃+
p F0‖Λ̇α−1 .
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Well-posedness of the Dirichlet problem can be shown to be
equivalent to invertibility of boundary maps provided we change
‖Ñ(u)‖p <∞ to ‖S(t∇u)‖p <∞. We dub this new problem
(Dir ′,A,p). Fix q ∈ IL∗ , q > 1 and p = q′.

1 The modified problem (Dir ′,A,p) is well-posed iff the map
Ẇ−1,p,+

DB →W−1,p
∇ : ∇Au|t=0 → ∇xu|t=0 is invertible.

2 This is equivalent to Ẇ−1,p,+
DB → Lp : ∇Au|t=0 → u|t=0 is

invertible.

Result: for p as above, one has ‖Ñ(u)‖p . ‖S(t∇u)‖p provided
we pick the solution that vanishes when t →∞ (in a certain
sense). So this new Dirichlet problem is a priori more
restrictive. The converse inequality in unclear.

In case of real equations, this result applies with p ∈ [2,∞).
There is a version for u|t=0 ∈ BMO, and u|t=0 ∈ Λ̇α for α < α0.
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Conclusions

Elimination of DGN conditions
Clarification of a number of issues concerning representation
and trace, not for solutions themselves but their conormal
gradients
Characterisation of uniqueness and existence, separately
Refining of results on duality principles
All solutions in natural classes have (abstract) layer potential
representation: this follows from the fact proved by A. Rosén
that in classical situation, semigroups for DB and BD give layer
potential formulæ
Consistency with the theory of energy solutions. Energy
solutions are representable by our semigroups. Leads to results
on compatible well-posedness (as in Barton-Mayboroda).
Example: solvability with energy solutions implies compatible
well-posedness (except, maybe, for Hardy data)
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Thank you!
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