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The Strominger System
(X ,Ω) Calabi-Yau n-fold: X complex n-dimensional smooth manifold
with holomorphic volume form Ω ∈ Ωn,0(X )
G compact semi-simple Lie group
PG → X principal G -bundle

Unknowns: g hermitian metric (ω = g(J·, ·)), A connection on PG , ∇
unitary connection on (TX , g).

Strominger System (ST)

FA ∧ ωn−1 = 0, F 0,2
A = 0, (1)

R∇ ∧ ωn−1 = 0, R0,2
∇ = 0, (2)

d∗ω − i(∂ − ∂) log ‖Ω‖ω = 0, (3)

i∂∂ω − α′(tr R∇ ∧ R∇ − tr FA ∧ FA) = 0, (4)

Remarks: 1) typically ω non Kähler, 2) topological constraints

c1(PG ) = c1(X ) = 0, c2(PG ) = c2(X ).
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Today, n = 3.
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Basic example

Candelas–Horowitz–Strominger-Witten [CHSW ’85] considered solutions
on a Calabi-Yau 3-fold (X ,Ω) with the ansatz: PG = (TX , g) and A = ∇
(so R = F )

Ivanov-Papadopoulos’ no-go Theorem [IP ’01], implies that solutions
with this ansatz are precisely metrics with SU(3) holonomy (X needs
to be Kählerian in this case).

By Yau’s solution of the Calabi Conjecture ’78, such metrics are in one to
one correspondence with the Kähler cone of X

K ⊂ H1,1(X ,R).
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A glimpse on the geometry ...

(1) HYM: polystable holomorphic vector bundle over (X ,Ω) (degree
measured with respect to ‖Ω‖ωω2).

(2) HYM: non-standard holomorphic structure on TX (also
polystable).

(3) Dilatino: torsion connection with SU(3) holonomy (Ricci-flat)

∇+ = ∇LC + 1/2g−1dcω (Bismut)

(4) Bianchi identity: Flat connection on a line bundle over
C∞(Σ2,C2 × X ) [Freed ’86], Twisted string structures [SSS ’12],
Quantum sheaf cohomology [DGKS ’11].

Physics: Bianchi ∼ Green-Schwarz mechanism ’84 for anomaly
cancellation in heterotic string. ST ∼ supersymmetric compatification
with non-trivial NS 3-form flux H = dcω (4D, N = 1).
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In a nutshell.

The Strominger system provides:

a natural generalization of the condition of SU(3)-holonomy for a
metric (Kähler-Ricci flat) in a non-Kähler Calabi-Yau 3-fold.

supersymmetric compactifications of the heterotic string (to
4-dimensions) in the presence of fluxes.
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Three problems

Existence problem: characterize existence of solutions ∼ Yau’s
Conjecture.

Moduli problem: construct a moduli space and endowe it with a
natural geometry.

(0, 2)-mirror symmetry: identify pairs of solutions which are
physically equivalent.
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The existence problem: Yau’s Conjecture
The existence problem for the Strominger system is widely open, mainly
due to our lack of understanding of the Bianchi Identity.

Conjecture (Yau ’06)

Let ((X ,Ω),V ) be a pair given by a bundle V over a balanced CY3
(X ,Ω, ω0) such that

c1(V ) = 0, c2(V ) = c2(X ) (Bott–Chern).

Then, ((X ,Ω),V ) admits a solution of the Strominger system provided
that V is [ω0 ∧ ω0]-polystable.

Remark: Does not specify ‘where’ does the metric-solution live. General
expectation: [‖Ω‖ωω2] = [ω2

0] (Bott-Chern).

Evidence: provided by following examples (ad hoc constructions, lack of
general method).
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The existence problem: Kähler case

Assume (X ,Ω) Kählerian.

[Li–Yau (’05)]: Non-Kähler solutions via perturbation of [CHSW ’85]
solution on TX ⊕OX . Examples on SU(4), SU(5) bundles over
generic quintic in P4.

[Andreas & GF ’10]: Any stable holomorphic vector bundle V over a
Kähler manifold with holonomy = SU(3), such that c1(V ) = 0,
c2(V ) = c2(X ), can be perturbed to a solution of ST.

Remarks:

AGF solves Yau’s conjecture for X Kählerian. However, method has
no control on [‖Ω‖ωω2].

Recovers Li-Yau. Huybrechts’ Theorem: ‘For a generic quintic,
TX ⊕OX admits stable deformations with non-trivial restriction to
embedded rational curves’ (∼ superpotential).

Both results conjetured by [Witten ’86] (α′-expansion).
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The existence problem: non Kähler case

Some existence results:

[Fu & Yau ’08]: Goldstein–Prokushkin non Kählerian fibration
(elliptic fibrations over K 3, Monge-Ampère eq).

[Fernandez-Ivanov-Ugarte-Villacampa ’08]: Invariant solutions on
nilmanifolds.

[Fei-Yau ’14]: invariant solutions on parallelizable manifolds X = G/Γ
(Wang Th.).

[Fei-1 ’15]: Singular solution on K 3 fibration over Riemann surface.

[Fei-2 ’15]: Solution on complement of a fibre in twistor space.

Remark: for G = SL(2,C), considered by Biswas–Mukerjee ’13 and
Andreas–GF ’14 (parameterised by real hyperbolic 3-manifolds).

Uniqueness? How many solutions are there?
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The Moduli Problem

The moduli space of solutions of the Strominger system MST is a
fundamental gadget in string theory, where it describes basic pieces
(scalar massless fields) of the 4D effective field theory induced by a
N = 1 supersymmetric heterotic string compactification.

Mathematically, MST has to be constructed. Conjectured (physics
prediction) to be endowed with an interesting Kähler-Hodge metric.

Understading the Kähler geometry of MST should lead us to new
insight for the existence and uniqueness problem (∼ Yau’s
Conjecture).

MST provides a potential ground where to study a generalization of
classical mirror symmetry.
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The moduli problem: Elliptic curves

On an elliptic curve E = (X ,Ω), the Strominger system reduces to
(∇ = ∇LC

g )
FA = 0, Sg = 0.

Theorem (Atiyah ’57, Tu ’93): Moduli of degree 0, rank r , polystable
holomorphic vector bundles over E , isomorphic to S rE .

Moduli space:

MST = M̃ST × C× R>0

where

M̃ST

��

(M̃ST )[τ ]
∼= S r (C/Z + τZ)

��
H/ SL(2,Z) [τ ]

Observation (GF–Shahbazi): dimension 2r + 5 + 1 equal to dimension
of R>0 × SO(2, r + 2)/SO(2)× SO(2 + r) (N = 1, 8D-sugra).
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The Moduli Problem: n = 3

(Becker–Tseng ’06, Cyrier-Lapan ’07, Becker–Tseng–Yau ’07) partial
results on infinitesimal structure. Fixed complex structure on X

(Melnikov–Sharpe ’11, De la Ossa–Svanes / Anderson–Gray–Sharpe
’14) calculation of infinitesimal variations of Strominger and relation
with first Dolbeault cohomology H1(Q) of a holomorphic double
extension

Let us discuss de la Ossa–Svanes and Anderson–Gray–Sharpe Method ...
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The AGSOS method

Consider a holomorphic double extension for a suitable holomorphic
Atiyah Lie algebroid V over X , constructed from a solution of ST.

0→ T ∗X → Q→ V → 0

0→ ad Pc → V → TX → 0

Calculate infinitesimal variations of ST using the stronger anomaly
cancellation condition (vs Bianchi identity) and prove they give
co-cycles for the Dolbeault complex of Q

H := dcω = dB − α′(CS(∇)− CS(A)), (locally)

postulate H1(Q) as an ‘approximation’ to tangent of moduli.

Drawback: Needs X to be a ∂∂-manifold.

Analogue: H1(TX ⊕ T ∗X ) ∼= H1(TX )⊕ H1,1(X ,C).
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The brute-force method

To discuss the method in arXiv:1503.07562 (GF, Rubio, Tipler), we
simplify ST to an ’Abelianized Strominger system’ (AST).

M compact, oriented, 6d manifold, L→ M a hermitian line bundle, A
space of unitary connections on L

Unknowns: P = {(Ω,A, ω) : satisfying (1), (2)} ⊂ Ω3(C)×A× Ω2

1 Ω ∈ Ω3(C) determines an almost complex structure JΩ

2 ω is JΩ − compatible, positive

dΩ = 0

F 0,2
A = 0,

FA ∧ ω2 = 0,

d(‖Ω‖ωω ∧ ω) = 0,

i∂∂ω + α′(FA ∧ FA) = 0,
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Symmetries: The natural Lie group G̃, given by automorphisms of L
covering a diffeomorphism on M, acts on P preserving the solutions.

MAST := {p ∈ P : AST (p) = 0}/G̃.
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The brute-force method

Given p = (Ω,A, ω) ∈ P a solution of AST, consider the tangent space

TpP ⊂ Ω3,0+2,1 ⊕ Ω1(M, iR)⊕ Ω2

The gauge group, induces infinitesimal action of Lie G̃

P : Ω0(TM)⊕ Ω0(iR)→ T0P
P(V , φ) = (dιV 1,0Ω, ιV FA + dAφ, LVω),

Linearisation of AST induces a complex of differential operators

0→ Lie G̃ → T0P → Ω4(C)⊕ Ω0,2
JΩ
⊕ Ω6(iR)⊕ Ω5 ⊕ Ω4 → 0

Remark: Multidegree operators! (Douglis & Niremberg ’55)
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The brute-force method

Linearisation of AST induces a complex of differential operators (3rd arrow
L = ⊕4

i=0Li )

0→ Lie G̃ → T0P → Ω4(C)⊕ Ω0,2
JΩ
⊕ Ω6(iR)⊕ Ω5 ⊕ Ω4 → 0

L0(Ω̇, ȧ, ω̇) =dΩ̇

L1(Ω̇, ȧ, ω̇) =∂a0,1 +
i

2
F J̇
A

L2(Ω̇, ȧ, ω̇) =dȧ ∧ ω2 + 2FA ∧ ω̇ ∧ ω

L3(Ω̇, ȧ, ω̇) =d
(

2||Ω0||ω0ω̇ ∧ ω0 + ˙(||Ω||ω)ω2
0

)
L4(Ω̇, ȧ, ω̇) =

1

2
d
(

J0d ω̇ − J0(dω)J̇J0 + 4α′(ȧ ∧ FA)
)
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L4(Ω̇, ȧ, ω̇) =

1

2

here!↘
d
(
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)

MGF (ICMAT) Recent developments Strominger ICMAT, 11 September 19 / 34



Space of infinitesimal deformations/obstructions

Theorem ( ,Rubio,Tipler)

The complex is elliptic. A suitable modification of L leads to an extension
of the complex S∗ with identical first cohomology group

0→ Lie G̃ → T0P → S3 → S4 → . . .

Definition: the space of infinitesimal deformations of ST is defined as
H1(S∗). The space of obstruction for ST is defined as H2(S∗).

To keep in mind! There is a well-defined map

H1(S∗)→ H3(X ,R)

[(Ω̇, ȧ, ω̇)]→ [
1

2
J0d ω̇ − 1

2
J0(dω)J̇J0 + 2α′ tr(ȧ ∧ FA)].

Remark: For ST, compatibility of ∇ with (Ω, ω) lead us to difficulties
(gauge grupoid, T0P modified).
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Heuristics of the flux map

Suppose p0 = (Ω,A, ω) ∈ P is a solution with unobstructed deformations:
a neighbourhood 0 ∈ U ⊂ H1(S∗) provides smooth coordinates around
[p0] in the moduli space

H1(S∗) ⊃ U ⊂MAST := {p ∈ P : AST (p) = 0}/G̃

Using the transgression formula for the Chern-Simons three-form: well
defined map

MAST ⊃ U → H3(M,R)

given by (A′ = A + a)

flux : (Ω′,A′, ω′) 7→ [dc
J′ω
′ − dcω + 2α′a ∧ FA′ ]

Flux quantization principle: flux(U) ⊂ H3(M,Z) (Physics)
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Using the transgression formula for the Chern-Simons three-form: well
defined map

MAST ⊃ U → H3(M,R)

given by (A′ = A + a)

flux : (Ω′,A′, ω′) 7→ [dc
J′ω
′ − dcω + 2α′a ∧ FA′ ]

Flux quantization principle: flux(U) ⊂ H3(M,Z) (Physics)

The exterior derivative δ = dflux defines a closed H3(M,R)-valued 1-form

δ ∈ Ω1(MAST ,H
3(M,R)),

and hence natural foliation on the moduli space integrating Ker δ (the flux
only defined up to equivariant-mapping class group of L).
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Anomaly cancellation and flux quantization

Want to understand the leaves of this natural foliation: try infinitesimally

0 // H1(S̊∗) // H1(S∗)
δ // H3(X ,R).

The refined space of variations H1(S̊∗) comes closer to the physics
approach (De la Ossa–Svanes/Anderson–Gray–Sharpe).

require flux quantization.

versus the Bianchi identity, they use the anomaly equation: local,
Green-Schwarz mechanism,

H := dcω = dB − α′(CS(∇)− CS(A))

H1(S̊∗) interpreted as space of variations compatible with the
Green-Schwarz mechanism and the flux quantization.
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Down the rabbit hole ...

As notation suggests, H1(S̊∗) is the cohomology of a complex, such that

S̊0
here!↗⊂ S0 ⊕ Ω2, S̊1 = S1 ⊕ Ω2.

2-forms: play role of symmetries, but also as additional data for the
objects parameterised

Sustitute operator L4 : S1 → Ω4 by L̊4 : S̊1 → Ω3 (linearized
Green-Schwarz)

L̊4(Ω̇, ȧ, ω̇, b) = db − 1

2

(
J0d ω̇ − J0(dω)J̇J0 + 4α′ȧ ∧ F

)
Observation: P̊(V , r ,B) = (P(V , r),B) and L̊ = L0 ⊕ . . .⊕ L3 ⊕ L̊4

define a complex with first coholomogy H1(S̊∗), provided that

L̊5 ◦ P̊(V , r ,B) = dB + LV (dcω) + 2α′((dr + ιV F ) ∧ F ) = 0

What is the meaning of this condition?
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)
Observation: P̊(V , r ,B) = (P(V , r),B) and L̊ = L0 ⊕ . . .⊕ L3 ⊕ L̊4

define a complex with first coholomogy H1(S̊∗), provided that

L̊5 ◦ P̊(V , r ,B) = dB + LV (dcω) + 2α′((dr + ιV F ) ∧ F ) = 0

What is the meaning of this condition?
MGF (ICMAT) Recent developments Strominger ICMAT, 11 September 24 / 34



Down the rabbit hole ...

As notation suggests, H1(S̊∗) is the cohomology of a complex, such that

S̊0
here!↗⊂ S0 ⊕ Ω2, S̊1 = S1 ⊕ Ω2.

2-forms: play role of symmetries, but also as additional data for the
objects parameterised

Sustitute operator L4 : S1 → Ω4 by L̊4 : S̊1 → Ω3 (linearized
Green-Schwarz)
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Strominger meets generalized geometry

(∗) L̊5 ◦ P̊(V , r ,B) = dB + LV (dcω) + 2α′((dr + ιV F ) ∧ F ) = 0

Defining equation for infinitesimal symmetries of smooth transitive
Courant algebroid (Baraglia, Rubio, Hitchin) constructed from fixed
solution of AST

E = T ⊕ iR⊕ T ∗.

〈V + r + ξ,W + t + η〉 =
1

2
(η(V ) + ξ(W ))− α′rt

[V + r + ξ,W + t + η] = [V ,W ] + LV η − iW dξ + iW iV (dcω)

− F (V ,W ) + iV dt − iW dr

− 2α′(dr)t − 2α′tiV F + 2α′riW F

Inf. symmetries: Lie ˚Aut E ⊂⊂ Ω0(T ⊕ iR)⊕ Ω1(iR)⊕ Ω2 given by
(V , r , a,B) such that a = dr + iV F and satisfy (∗).
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Strominger meets generalized geometry

S̊0 = Lie ˚Aut E → S̊1 = S1 ⊕ Ω2 → . . .

Elements in S̊1 can be interpreted as infinitesimal variations of (in
particular) generalized metrics V+ ⊂ E (here g = ω(·, J·))

V+ = eb{V + r + g(X )} ⊂ T ⊕ iR⊕ T ∗.

Remark: a priori, no analytical tools to prove that H1(S̊∗) is finite due to
defining differential equation (∗) for Lie ˚Aut E , but

0 // H1(S̊∗) // H1(S∗)
δ // H3(X ,R).

Remark: the refined space of variations H1(S̊∗) comes closer to the
physics of the heterotic string, but it is not the right space: constains a
single copy of H1,1(X ,R) (potentially odd dimensional).
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Complexification of the ‘Kähler moduli’

Using inner symmetries of E , we construct an elliptic complex Ŝ∗ of
differential operators of degree 1, such that

0→ H2(M,R)→ H1(Ŝ∗)→ H1(S̊∗)→ 0

We expect H1(Ŝ∗) to be even-dimensional, providing natural
complexification of the ‘Kähler moduli’ (done by hand for moduli of
Calabi-Yau metrics).
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The AGSOS map

Provided that X = (M,Ω) is ∂∂-manifold, we interpret the physical
construction of Anderson–Gray–Sharpe–De la Ossa–Svanes as

0

��
0 // H2(M,R) // H1(Ŝ∗) //

AGSOS

��

H1(S̊∗) //

��

0

H1(Q) H1(S∗)

��
H3(M,R)
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The holomorphic Courant algebroid Q
Observation: Every solution of the following system determines a
(transitive) holomorphic Courant algebroid. In particular, every solution of
the Strominger system (Ω,∇,A, ω) determines a holomorphic Courant
algebroid over (X ,Ω).

ddcτ1,1 = α′(tr R ∧ R − tr F ∧ F ), F 0,2 = 0, R0,2 = 0.

Definition: Complexify E , and consider the integrable lift L = e−iωT 0,1 of
T 0,1. Then, Gualtieri proves that the following defines a holomorphic
Courant algebroid

Q = L⊥/L, iV 0,1∂Qs = [e−iωV 0,1, s̃] mod L

(s̃ lift of s to L⊥) given by a double holomorphic extension

0→ T ∗X → Q→W → 0

0→ ad Pc →W → TX → 0
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The holomorphic Courant algebroid Q
Explicitely: (abelian case) (Ω,A, ω) a solution. Take

Q = T 1,0 ⊕ C⊕ T 1,0∗

and define

∂Q(V + r + ξ) = ∂V + ∂r +
i

2
iV F + ∂ξ − i(iV ∂ω) + α′rF

〈V + r + ξ,W + t + η〉 =
1

2
(η(V ) + ξ(W )) + α′rt

[V + r + ξ,W + t + η] = [V ,W ] + LV η − iW dξ

+ [r , t]− F (V ,W ) + ∂V t − ∂W r

+ 2α′(∂r)t + 2α′tiV F − 2α′riW F

Remark: Unlike H1(Ŝ∗), H1(Q) has a natural complex structure

AGSOS([Ω̇, ȧ, ω̇, b]) := [(J̇1,0, ȧ0,1, i ω̇1,1 − b1,1 + ∂σ0,1)]

where ∂∂σ0,1 = ∂(b0,2 − 1
2ω

J̇1,0
)
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Testing the new framework

From the point of view of physics, solutions of the Strominger system and
metrics with SU(3)-holonomy are two different incarnations of the same
phenomenon: a N = 1 supersymmetric compactification of the heterotic
string to 4 dimensions.
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Generalized Killing spinors
M compact 6-dimensional spin manifold and E transitive Courant
algebroid. For E obtained from reduction, E ∼= T ⊕ ad P ⊕ T ∗.

Generalized metric
E = V+ ⊕ V−

Gualtieri’s (generalized) connection

DG
e e ′ = [e−, e+]+ + [e+, e−]− + [Ce−, e−]− + [Ce+, e+]+

where V+
∼= {X + r + gX} and C (X + r + gX ) = X − gX , g Riemannian

Levi-Civita connection

DLC = DG − 1

3
TDG

Given φ ∈ C∞(M), DLC modified canonically to Dφ, comp., torsion-free.

Killing spinor equations

Dφ
+η = 0, /D

φ
−η = 0, for η ∈ S+(V−)
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A unifying framework

Theorem ( ,Rubio,Tipler)

On a trasitive Courant algebroid obtained from reduction, the Killing
spinor equations are equivalent to the Strominger system. When E is
exact, a solution of the Killing spinor equations is equivalent to a metric
with SU(3)-holonomy. In particular, leaves of the flux foliation can be
interpreted as moduli spaces of solutions of the killing spinor equations.

Dφ
+η = 0, /D

φ
−η = 0, for η ∈ S+(V−)

Generalized geometry provides a unifying framework for the theory of the
Strominger system and the well-stablished theory for metrics with
SU(3)-holonomy. Bringing in techniques from the latter, by embedding
the theory into generalized geometry, is a promising approach to the
existence, uniqueness and moduli problem for the Strominger system.
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Thank you!
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