Spherical double flag varieties

Evgeny Smirnov

Higher School of Economics Department of Mathematics

Independent University of Moscow

International Conference on Geometry and Quantization September 17, 2015

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Outline

General definitions

- Flag varieties
- Schubert varieties

Spherical double flags of type A

- Double Grassmannians
- Combinatorics of B-orbits in double Grassmannians

3 Cominuscule flag varieties

- Definition
- Combinatorial and geometric results

Notation

• G reductive algebraic group;

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Notation

- G reductive algebraic group;
- *B* fixed Borel subgroup;

A (10) > A (10) > A (10)

Notation

- G reductive algebraic group;
- *B* fixed Borel subgroup;
- T maximal torus contained in B;

.

< 4 →

Notation

- G reductive algebraic group;
- *B* fixed Borel subgroup;
- T maximal torus contained in B;
- *P* parabolic subgroup, $P \supset B$;

4 A N

Notation

- G reductive algebraic group;
- *B* fixed Borel subgroup;
- T maximal torus contained in B;
- *P* parabolic subgroup, $P \supset B$;
- *G*/*P* (generalized) partial flag variety.

< 4 →

Notation

- G reductive algebraic group;
- *B* fixed Borel subgroup;
- T maximal torus contained in B;
- *P* parabolic subgroup, $P \supset B$;
- *G*/*P* (generalized) partial flag variety.

•
$$G = GL(n);$$

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- *P* parabolic subgroup, $P \supset B$;
- *G*/*P* (generalized) partial flag variety.

- G = GL(n);
- B upper-triangular matrices;

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- *P* parabolic subgroup, $P \supset B$;
- *G*/*P* (generalized) *partial flag variety*.

- G = GL(n);
- B upper-triangular matrices;
- T diagonal matrices;

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- *P* parabolic subgroup, $P \supset B$;
- *G*/*P* (generalized) *partial flag variety*.

- G = GL(n);
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- *P* parabolic subgroup, $P \supset B$;
- *G*/*P* (generalized) *partial flag variety*.

- G = GL(n);
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:
 - P = B: full flag variety G/B = Fl(n).;

Notation

- G reductive algebraic group;
- B fixed Borel subgroup;
- T maximal torus contained in B;
- *P* parabolic subgroup, $P \supset B$;
- G/P (generalized) partial flag variety.

- G = GL(n);
- B upper-triangular matrices;
- T diagonal matrices;
- Two important subcases:
 - P = B: full flag variety G/B = Fl(n).;
 - $P = P_{max}^{(k)}$: Grassmannian of k-planes $G/P_{max} = Gr(k, n)$.

Schubert cells

 G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);

A (10) A (10) A (10)

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique *T*-stable point;

.

4 A N

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique *T*-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;

4 A N

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique *T*-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_w are indexed by the cosets W/W_l ;

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique *T*-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_w are indexed by the cosets W/W_l ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

A B b 4 B b

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique *T*-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_w are indexed by the cosets W/W_l ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert varieties

Useful for enumerative geometry;

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique *T*-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_w are indexed by the cosets W/W_l ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique *T*-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_w are indexed by the cosets W/W_l ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...
- ...however, still nice!

Schubert cells

- G/P has finitely many B-orbits Ω_w (G/P is a spherical variety);
- Each Ω_w has a unique *T*-stable point;
- $G/P = \bigsqcup \Omega_w$ is a Białynicki-Birula decomposition;
- Ω_w are indexed by the cosets W/W_l ;
- $X_w = \overline{\Omega_w}$ are called *Schubert varieties*.

Schubert varieties

- Useful for enumerative geometry;
- Have interesting geometry: they are usually singular...
- ...however, still nice!
 - normal;
 - Cohen–Macaulay;
 - have rational singularities...

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by B.

< ロ > < 同 > < 回 > < 回 >

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by *B*. Then $X_w \subset Gr(k, n)$ are given by conditions of type

$$\dim(U\cap V_i)\geq d_i, \qquad d_i-d_{i-1}\in\{0,1\}, \quad d_n=k.$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by *B*. Then $X_w \subset Gr(k, n)$ are given by conditions of type

$$\dim(U\cap V_i)\geq d_i, \qquad d_i-d_{i-1}\in\{0,1\}, \quad d_n=k.$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times (n - k)$ -rectangle.

< ロ > < 同 > < 回 > < 回 >

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by *B*. Then $X_w \subset Gr(k, n)$ are given by conditions of type

$$\dim(U\cap V_i)\geq d_i, \qquad d_i-d_{i-1}\in\{0,1\}, \quad d_n=k.$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times (n - k)$ -rectangle.

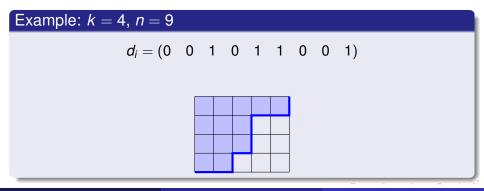
Example:
$$k = 4$$
, $n = 9$

$$d_i = (0 \ 0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 1)$$

Let $U \in Gr(k, n)$, and let (V_i) be the flag fixed by *B*. Then $X_w \subset Gr(k, n)$ are given by conditions of type

$$\dim(U\cap V_i)\geq d_i, \qquad d_i-d_{i-1}\in\{0,1\}, \quad d_n=k.$$

Such sequences of 0's and 1's correspond to Young diagrams inside a $k \times (n - k)$ -rectangle.



Evgeny Smirnov (HSE & IUM)

Spherical double flag varieties

• Consider the direct product of several flag varieties:

• Consider the direct product of several flag varieties:

 $X = G/P_1 \times \cdots \times G/P_r$.

< ロ > < 同 > < 回 > < 回 >

• Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

• G acts diagonally.

• Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- *G* acts diagonally.
- X is not G-homogeneous anymore!

H N

• Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- *G* acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

.

4 A N

• Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- *G* acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

• *r* = 1: always;

• Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- *G* acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

• r = 1: always; r = 2: sometimes;

• Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- *G* acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

• r = 1: always; r = 2: sometimes; $r \ge 3$: never.

• Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- *G* acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

- r = 1: always; r = 2: sometimes; $r \ge 3$: never.
- ...classification given by P. Littelmann, J. Stembridge;

Spherical multiple flags

• Consider the direct product of several flag varieties:

$$X = G/P_1 \times \cdots \times G/P_r$$
.

- *G* acts diagonally.
- X is not G-homogeneous anymore!

Main question

When is X a G-spherical variety?

I.e., when does $B \subset G$ have a finite number of orbits on X?

Answer

- r = 1: always; r = 2: sometimes; $r \ge 3$: never.
- ...classification given by P. Littelmann, J. Stembridge;
- Types A and C: interpretation in terms of quivers by P. Magyar, J. Weyman, A. Zelevinsky.

Type A: double Grassmannians

If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

 $X = Gr(k, n) \times Gr(l, n).$

(4) (5) (4) (5)

Type A: double Grassmannians

If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

$$X = Gr(k, n) \times Gr(l, n).$$

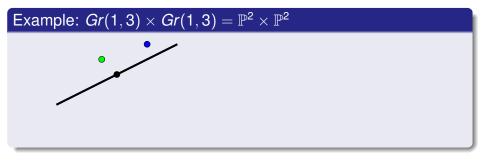
B-orbits correspond to configurations of two subspaces and a full flag, up to GL(n)-action.

If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

 $X = Gr(k, n) \times Gr(l, n).$

B-orbits correspond to configurations of two subspaces and a full flag, up to GL(n)-action.

Combinatorics becomes more involved!

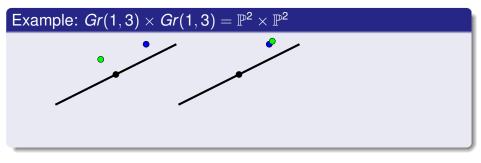


If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

$$X = Gr(k, n) \times Gr(l, n).$$

B-orbits correspond to configurations of two subspaces and a full flag, up to GL(n)-action.

Combinatorics becomes more involved!

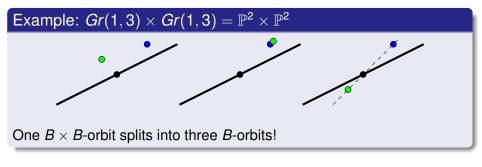


If G = GL(n), all spherical double flag varieties correspond to P_1, P_2 maximal:

$$X = Gr(k, n) \times Gr(l, n).$$

B-orbits correspond to configurations of two subspaces and a full flag, up to GL(n)-action.

Combinatorics becomes more involved!



Evgeny Smirnov (HSE & IUM)

< < >>

• Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

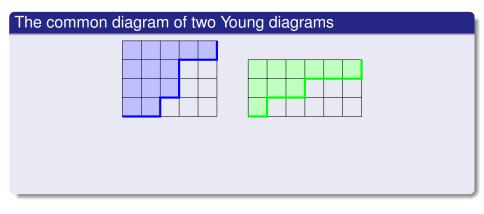
- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.

A D M A A A M M

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...

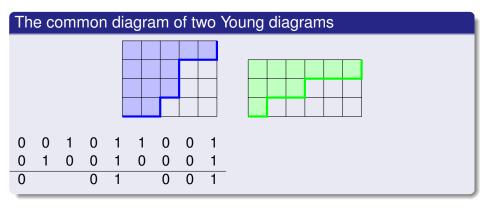
.

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...



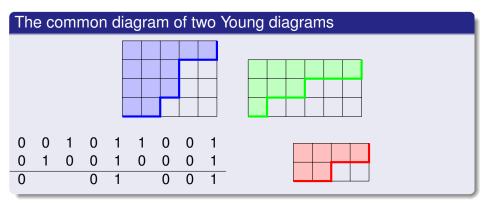
.

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...



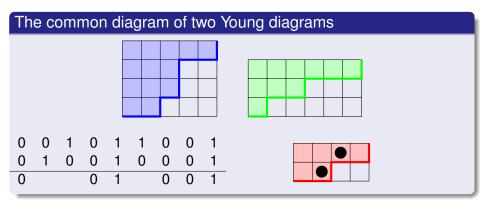
글 🕨 🖌 글

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...



Consider rook placements in the common diagram.

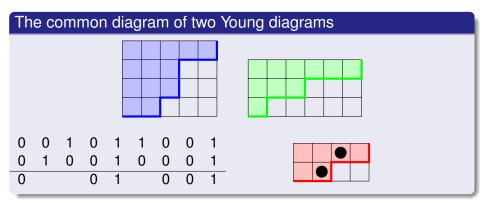
- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...



.

A D M A A A M M

- Our next goal is to describe *B*-orbits on $Gr(k, n) \times Gr(l, n)$.
- $B \times B$ -orbits are indexed by pairs of Young diagrams.
- But we need some extra data...



Consider rook placements in the common diagram.

Evgeny Smirnov (HSE & IUM)

B-orbits in $Gr(k, n) \times Gr(I, n)$ are indexed by triples (Y_1, Y_2, R) , where:

< 47 ▶

B-orbits in $Gr(k, n) \times Gr(l, n)$ are indexed by triples (Y_1, Y_2, R) , where: • $Y_1 \subset k \times (n - k)$ and $Y_2 \subset l \times (n - l)$ are Young diagrams;

A B F A B F

B-orbits in $Gr(k, n) \times Gr(I, n)$ are indexed by triples (Y_1, Y_2, R) , where:

- $Y_1 \subset k \times (n-k)$ and $Y_2 \subset l \times (n-l)$ are Young diagrams;
- *R* is a rook placement in the common diagram of Y_1 and Y_2 .

A B A A B A

A D M A A A M M

B-orbits in $Gr(k, n) \times Gr(I, n)$ are indexed by triples (Y_1, Y_2, R) , where:

- $Y_1 \subset k \times (n-k)$ and $Y_2 \subset l \times (n-l)$ are Young diagrams;
- *R* is a rook placement in the common diagram of Y_1 and Y_2 .

• Dimension and rank of orbits can be read from this description;

< 3 > 4 3 >

B-orbits in $Gr(k, n) \times Gr(I, n)$ are indexed by triples (Y_1, Y_2, R) , where:

- $Y_1 \subset k \times (n-k)$ and $Y_2 \subset l \times (n-l)$ are Young diagrams;
- *R* is a rook placement in the common diagram of Y_1 and Y_2 .
- Dimension and rank of orbits can be read from this description;
- This allows to construct resolutions of singularities of orbit closures à la Bott–Samelson–Demazure–Hansen.

A B b 4 B b

Definition

A partial flag variety is *cominuscule* if it belongs to the following list:

< 47 ▶

Definition

A partial flag variety is *cominuscule* if it belongs to the following list:

Variety	
<i>Gr</i> (<i>k</i> , <i>n</i>)	Grassmannian
Q^{2n-1}	quadric
LGr(n)	Lagrangian Grassmannian
OGr(n)	orthogonal Grassmannian
Q^{2n}	quadric
\mathbb{OP}^2	Cayley plane
$G_{\!\omega}(\mathbb{O}^3,\mathbb{O}^6)$	Lagrangian octonion Grassmannian
	$Gr(k, n)$ Q^{2n-1} $LGr(n)$ $OGr(n)$ Q^{2n} \mathbb{OP}^{2}

∃ >

Definition

A partial flag variety is *cominuscule* if it belongs to the following list:

Group type	Variety	
A_{n-1}	Gr(k, n)	Grassmannian
B _n	Q^{2n-1}	quadric
C _n	LGr(n)	Lagrangian Grassmannian
D _n	OGr(n)	orthogonal Grassmannian
	Q^{2n}	quadric
E ₆	\mathbb{OP}^2	Cayley plane
<i>E</i> ₇	$G_{\!\omega}(\mathbb{O}^3,\mathbb{O}^6)$	Lagrangian octonion Grassmannian

We will consider *double cominuscule flag varieties* (they are all spherical).

• There is a combinatorial indexing of *B*-orbits in double cominuscule flag varieties of *classical groups*, similar to the one we had in the type *A*. (S.)

- There is a combinatorial indexing of *B*-orbits in double cominuscule flag varieties of *classical groups*, similar to the one we had in the type *A*. (S.)
- Still open for E_6 and E_7 .

- There is a combinatorial indexing of *B*-orbits in double cominuscule flag varieties of *classical groups*, similar to the one we had in the type *A*. (S.)
- Still open for E_6 and E_7 .

Geometry

 If G is simply laced, then the B-orbit closures in double cominuscule flag varieties are normal, Cohen–Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).

・ロト ・ 同ト ・ ヨト ・ ヨ

- There is a combinatorial indexing of *B*-orbits in double cominuscule flag varieties of *classical groups*, similar to the one we had in the type *A*. (S.)
- Still open for E_6 and E_7 .

Geometry

- If *G* is simply laced, then the *B*-orbit closures in double cominuscule flag varieties are normal, Cohen–Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).
- In type A was proved by methods of quiver theory (G.Bobiński, G.Zwara, 2001)

11/12

- There is a combinatorial indexing of *B*-orbits in double cominuscule flag varieties of *classical groups*, similar to the one we had in the type *A*. (S.)
- Still open for E_6 and E_7 .

Geometry

- If *G* is simply laced, then the *B*-orbit closures in double cominuscule flag varieties are normal, Cohen–Macaulay, and have rational singularities (P.Achinger, N.Perrin, 2013).
- In type A was proved by methods of quiver theory (G.Bobiński, G.Zwara, 2001)
- Normality can fail for nonsimply laced G.

11/12

< ロ > < 同 > < 回 > < 回 >

¡Gracias por su atención!

Evgeny Smirnov (HSE & IUM)

Spherical double flag varieties

GeoQuant, 17.09.2015 12 / 12

A B F A B F

< 17 ▶