Abstract

In this work, by solving a d-Geronimus problem, we introduce new examples of basic hypergeometric d-orthogonal polynomials which are useful to construct similar table to the q-Askey-scheme in the context of d-orthogonality. That, for $d = 1$, leads to a characterization theorem involving all polynomials belonging to the q-Askey-scheme, except the continuous q-Hermite ones. From some limit relations, we show that, the obtained q-polynomials represent the q-analogs of some known d-orthogonal polynomials.