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Abstract

The problem of determining when the flow of a non-singular vector
field on a closed 3-manifold has a periodic orbit has a long history. On
one side, there are examples of vector fields whose flow has no periodic
orbits on any closed 3-manifold. These were first constructed by P. A.
Schweitzer for C1 vector fields [6], and then by K. Kuperberg in the C∞

category, and even real analytic [4]. Schweitzer’s construction was then
achieved in the volume preserving category by G. Kuperberg, giving C1

volume preserving vector fields without periodic orbits [3].
On the other side, results by H. Hofer and C. H. Taubes guarantee

the existence of a periodic orbit for the flow of a Reeb vector field on any
3-manifold [1, 7]. Recently, the existence of a periodic orbit was stated for
a larger class of vector fields [2, 5].

In this course, I will present Schweitzer and K. Kuperberg’s construc-
tions, both are based on the use of plugs. A plug is a manifold with
boundary of the form D× [0, 1], with D a disc, endowed with a flow that is
inward transverse to D× {0} and outward transverse to D× {1}, and has
the property that there are orbits entering the plug and trapped. As an
introduction to these constructions, I will explain F. W. Wilson’s construc-
tion of a plug with periodic orbits. The latter was the first construction
of a plug and gives the existence of vector field with exactly two periodic
orbits on any closed 3-manifold [8].
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