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nated spaces by hyperbolic surfaces, which was initiated by Matilde
Martinez and Alberto Verjovsky.
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hyperbolic surface S = IN'\H.
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Aim: Study of the dynamics of the horocycle flow on compact lami-
nated spaces by hyperbolic surfaces, which was initiated by Matilde
Martinez and Alberto Verjovsky.

m Hedlund’'s Theorem

m Hedlund's Theorem for X = T\PSL(2,R) x G

m The foliation point of view

m Some progress in the non-homogeneous case
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LDescription and statement

m Hyperbolic surface § = IN\H

—H={zeC|Im(z) >0}

with the Riemannian metric

|dz[?

2 _
ds® = Imiz"

— I" cocompact discrete (torsion-free) subgroup of

b
PSL(2,R) = {f(z) = 222 |a b c,d € R, ad — bc = 1}.
cz+d
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LDescription and statement

m Unitary tangent bundle T'S = '\T'H = I"\PSL(2,R)

PSL(2,R) ~ T'H is free and transitive
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A
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YO g (M) =T ()
ge(v) = (v(t),v(¢)) right action of the diagonal group D
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m Geodesic flow:

v =v(0) r\PSL(z,R)sz{(Si )[A>0}
A

z=v(0) y ab ab et/2 0

YO g (M) =T ()
ge(v) = (v(t),v(¢)) right action of the diagonal group D

m Horocycle flow:

z = h(0) h(s) M\PSL(2,R) ~ U ={( 43 )]sk}
ho(P(2 ) =T(28)(L%)

right action of the unipotent group U
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LDescription and statement

m Affine action: M\PSL(2,R) ~~ B = DU = affine group

gtohs = h—setogt

Theorem (Hedlund, 1936)

Let S =T"\H be a compact hyperbolic surface. Then the U-action
X =T'S=T\PSL(2,R) ~ U

is minimal (with dense orbits).
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m First Step: B-action is minimal

X =T\PSL(2,R) ~ B is minimal

T duality

'~ PSL(2,R)/B =0H is minimal

& = v(+o0) = v/(+00)
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m First Step: B-action is minimal
X =T\PSL(2,R) ~ B is minimal
T duality

'~ PSL(2,R)/B =0H is minimal

- T non-elementary = ' ~ A(T) minimal.

- I cocompact = A(T") = 0H.
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m Second step: B-action is minimal = U-action is minimal

X compact = I M # () minimal closed U-invariant (U-minimal
for short) subset of X.

Aim
M is B-invariant + X v~ B minimal = M = X.
Consider x =T'f € M represented by f € PSL(2,R) so that

xU=TfU =M
s

1t ) with t, — +00 such that

Iyael Juy=(3"

fo =t f My nfu, — |
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L Proof

Thus, we have:
x € M and xf, = Py, fu, = T'fu, = xu, € xU C M

i
fo € Hy = {f" € PSL(2,R) |MFf' N M # 0}
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L Hedlund’s Theorem

L Proof

Thus, we have:
x € M and xf, = Py, fu, = T'fu, = xu, € xU C M

T
fo€ Hy = {f' € PSL(2,R) [IMFf' N M#£D}

Lemma

Ha is a closed U-bi-invariant subset of PSL(2,R).
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ny > k such that
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There exists k € N such that f, ¢ B for n > k.

Proof. Assume on the contrary that for all k € N, there exists
ny > k such that

fn, € B &
flynf=fulcB &

N Hny

Y, € TN FBF
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There exists k € N such that f, ¢ B for n > k.

Proof. Assume on the contrary that for all k € N, there exists
ny > k such that

fn, € B &
Flynf=fpu,l €B &
Y, € TN FBF =
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There exists k € N such that f, ¢ B for n > k.

Proof. Assume on the contrary that for all k € N, there exists
ny > k such that

foi € B &

Flynf=fpu,l €B &

Yn, € TN fBF 1 =
Vs Yo €TNFUFY Vi k" €N

lL " has no parabolic elements

WnoYnl=1 Vkk'€N.
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L Proof

1
fly fzu(}\"k 0 )u_lwithuEUandA — 00
Nk 0 )\;kl ng
1

_ An 0 _
fo, =f lynkfunk =u ( Ok A-1 ) u 1u,,k —
Nk
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L Proof

1
Ly, e An, O 1.
Yo f =u _1 Ju - withueUandA, — o0
0 ?\nk
1
fnk - fﬁlynk funk =u ( )\gk }\91 ) Ufl Unk — /
Nk
{

fnk(el) = (}\nk)O) — €1 = (1)0)>

OJ

which is not possible.
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Put

¢, dj

fn:<a" b”)géB & o #£0

For every o« € R* | take

1 %2 1 —i(b,+d,%2n)
! cn " _ o \“n n"c,
i=(o 7) w=(o ")
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L Hedlund’s Theorem
L Proof

Put

f,,:<a" Zn>¢3 & 40

Cn

For every o« € R* | take

1 %2 1 —i(b,+d,%2n)
r n "n_ o \Pn n—¢,
a=(o 7 ) w-(o )
in U so that
u,’,f,,u,’fz( * occll > € Huv

Cn



Dynamics of the horocycle flow
L Hedlund’s Theorem

L Proof

Put

f,,:<a" Zn>¢3 & 40

Cn

For every o« € RY, take

1 %2 1 —i(b,+d,%2n)
! cn " _ o \“n n"c,
i=(o 7) w=(o ")
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L Proof

This means that

M(g (X01>mM7é@ Vo€ RY
J M is minimal
M<g‘ oﬂl):M Vo € RY

So M is B-invariant and hence M = X. O

Theorem (Hedlund, 1936)

Let S = IN'\H be a compact hyperbolic surface. Then the
U-action X = T1S =T\PSL(2,R) ~ U is minimal.
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Theorem (A.-Dal'Bo)

Let G be a connected Lie group. Let X = T\PSL(2,R) x G be the

quotient of the Lie group PSL(2,R) x G by a cocompact discrete
subgroup T". Then

X U is minimal

(3

X~ PSL(2,R) is minimal

T

' ~ G is minimal

p,(T) =G.
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Theorem (A.-Dal'Bo)

Let G be a connected Lie group. Let X = T\PSL(2,R) x G be the

quotient of the Lie group PSL(2,R) x G by a cocompact discrete
subgroup T". Then

X U is minimal

(3

X~ PSL(2,R) is minimal

T

' ~ G is minimal
p2(l") = G.

PSL(2,R) ¢~ PSL2,R)x G 2 G
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= X = I"'\H compact 6-manifold

I is irreducible (i.e. pi(I") = p2(T') = PSL(2,R))
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X is U-minimal

m Breuillard et al.: 3T c PSL(2,R) x SO(3) = H cocompact
discrete such that

p2(I") = S0O(3)
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m A. Borel: 3T C PSL(2,R)xPSL(2,R) = H cocompact discrete
= X = I"'\H compact 6-manifold

I is irreducible (i.e. pi(I") = p2(T') = PSL(2,R))
U
X is U-minimal
m Breuillard et al.: 3T c PSL(2,R) x SO(3) = H cocompact
discrete such that

p2(T) = SO(3) = X =T\H is U-minimal
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X =T\PSL(2,R) x G v~ B is minimal
T duality
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LPSL(2,]1'{)—minima|ity and B-minimality

m B-minimality:
X =T\PSL(2,R) x G v~ B is minimal
T duality

'~ O0H x G is minimal

Proposition

Let G be a connected Lie group and let T be a discrete subgroup
of PSL(2,R) x G. The action X ~\ B is minimal if and only if
p2(T) = G and p1(T") ~ OH is minimal.
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L PSL(2, R)-minimality and B-minimality

m B-minimality:
X =T\PSL(2,R) x G v~ B is minimal
T duality

'~ O0H x G is minimal

Proposition

Let G be a connected Lie group and let T be a discrete subgroup
of PSL(2,R) x G. The action X ~\ B is minimal if and only if
p2(T) = G and p1(T") ~ OH is minimal.

Aim
If T is cocompact, then X .~ B is minimal if and only if po(T') = G.
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L PSL(2, R)-minimality = B-minimality

Hedlund's Theorem for X = T\PSL(2,R) x G

m PSL(2,R)-minimality = B-minimality
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f = | belongs to U up to conjugation.
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An element (f,g) € PSL(2,R) x G is said to be semi-parabolic if

f = | belongs to U up to conjugation.

Proposition
If X =T\PSL(2,R) x G is compact, then T does not contain semi-
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Proof. The proof is based on the following lemma:

Lemma

If T contains a semi-parabolic element, then the geodesic flow on
X =T\PSL(2,R) x G has divergent positive semi-orbits.
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An element (f,g) € PSL(2,R) x G is said to be semi-parabolic if

f = | belongs to U up to conjugation.

Proposition

If X =T\PSL(2,R) x G is compact, then T does not contain semi-
parabolic elements.

Proof. The proof is based on the following lemma:

Lemma

If T contains a semi-parabolic element, then the geodesic flow on
X =T\PSL(2,R) x G has divergent positive semi-orbits.
Proof sketch.
J(fuf 1, g) € T semi-parabolic = xDT diverges for x =T'(f, g’)
E]
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If X =T\PSL(2,R) x G is compact, then
X A~ Bis minimal & p(T) =G
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If X =T\PSL(2,R) x G is compact, then
X A~ Bis minimal & p(T) =G &
'~ G is minimal &

X ~\ PSL(2,R) is minimal.
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L B-minimality = U-minimality

Hedlund's Theorem for X = T\PSL(2,R) x G

® B-minimality = U-minimality
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LHedlund’s Theorem for X = N\ PSL(2,R) X G

L B-minimality = U-minimality

Proof. Similar to the case where G is trivial:

m 3(fhgn) in Hyy ={he PSL(2,R) x GIMhNM #0}
converging to (/,e):

xU=T(f,g)U=M = Iv,=(vimYan) €T Ju, € U :

(fay8n) = (F Yy1nfun, g Ty2ng) — (I,€)

m Bi-invariance of Hu:

Lemma

Ha is a closed U-bi-invariant subset of PSL(2,R) x G.
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LHedlund’s Theorem for X = N\ PSL(2,R) X G

L B-minimality = U-minimality

m Geometric consequence of the I'-cocompactness:

Lemma

There exists k € N such that f, ¢ B for n > k.

Proof. Since X = T\PSL(2,R) x G is compact, there are no
semi-parabolic elements in T'. O

m Using Hyq is U-bi-invariant and passing to the limit, we have:

(Sl e eHu & ML )NM#AD VaeR:

By minimality, this implies

x 0
00‘71)

M( =M Vo € RY.
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The two examples

PSL(2,R) —= PSL(2,R) x G ——> G = {”5“]R

X =T\PSL(2,R) x PSL(2,R)

are G-Lie foliations.
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In fact, X is the unitary tangent bundle of the G-Lie foliation
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|
In fact, X is the unitary tangent bundle of the G-Lie foliation

H——> PSL(2,R)/PSO(2,R) x G — G = { 55>

T

M = T\PSL(2,R)/PSO(2,R) x PSL(2,R)

according to Fedida's description with holonomy representation
given by
h=par:T = p2(T) C G
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The foliation point of view
m Lie foliations
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G-Lie foliation

K=Kerp —= H
T

M =T\H
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let ' be a cocompact discrete subgroup of H. As before, we have a
G-Lie foliation
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7T

M = "'\H/Ko



Dynamics of the horocycle flow
L The foliation point of view
L Lie foliations

Let H be a connected Lie group with a epimorphism p: H — G and
let ' be a cocompact discrete subgroup of H. As before, we have a

G-Lie foliation
Ko C K = Kerp —— H/Ky —> G
s
M =T\H/Ky

A G-Lie foliation constructed by this method is called homogeneous.
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L Lie foliations

Let H be a connected Lie group with a epimorphism p: H — G and
let ' be a cocompact discrete subgroup of H. As before, we have a

G-Lie foliation
Ko C K = Kerp —— H/Ky — G
s
M =T\H/K,

A G-Lie foliation constructed by this method is called homogeneous.

Examples

There are non-homogeneous examples constructed by G. Hector, S.
Matsumoto and G. Meigniez whose leaves are hyperbolic surfaces.
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Proposition

Let F be G-Lie foliation by hyperbolic surfaces of a compact con-

nected manifold M, and let X = T1F be its unitary tangent bundle.
Then

F is homogeneous & = PSL(2,R) x G
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Let F be G-Lie foliation by hyperbolic surfaces of a compact con-
nected manifold M, and let X = T1F be its unitary tangent bundle.

Then ~
F is homogeneous & X = PSL(2,R) x G

Proof. Any semi-simple ideal in a Lie algebra is a direct summand.
O]
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Proposition

Let F be G-Lie foliation by hyperbolic surfaces of a compact con-
nected manifold M, and let X = TYF be its unitary tangent bundle.

Then ~
F is homogeneous & X =PSL(2,R) x G

Proof. Any semi-simple ideal in a Lie algebra is a direct summand.

Theorem

|D

Let X = T1F be the unitary tangent bundle of a homogeneous
G-Lie foliation F by hyperbolic surfaces of a compact manifold. If
F is minimal, then X «~\ U is minimal.
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L Lie foliations

Proposition

Let F be G-Lie foliation by hyperbolic surfaces of a compact con-
nected manifold M, and let X = T'F be its unitary tangent bundle.

Then ~
F is homogeneous & X =PSL(2,R) x G

Proof. Any semi-simple ideal in a Lie algebra is a direct summand.

Theorem

|D

Let X = T'F be the unitary tangent bundle of a homogeneous
Riemannian foliation F by hyperbolic surfaces of a compact manifold.
If F is minimal, then X «\~ U is minimal (by using Molino’s theory).
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Let M be a compact connected manifold, and let F be a minimal
foliation of M by hyperbolic surfaces.

Martinez and Verjovsky's question

Let X = TLF be the unitary tangent bundle of F. Is it true that
X U is minimal?

Let I" be a cocompact Fuchsian group.
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L The foliation point of view

LMartl’nez and Verjovsky's question

Let M be a compact connected manifold, and let F be a minimal
foliation of M by hyperbolic surfaces.

Martinez and Verjovsky's question

Let X = TLF be the unitary tangent bundle of F. Is it true that
X U is minimal?

Example

Let I" be a cocompact Fuchsian group. Consider the diagonal action
'~ PSL(2,R) x 0H

iven b
given > (£, £) = (vF,y(5))

and the quotient X = N\PSL(2,R) x oH.
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Then X is the unitary tangent bundle of the transversely homographic
foliation F induced by

H— H x 0H 2— 3H

7T

M = T\H x oH
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foliation F induced by
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M = T\H x oH

m X ~ PSL(2,R) is minimal & T" ~ 0H is minimal
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Then X is the unitary tangent bundle of the transversely homographic
foliation F induced by

H— H x 0H 2— 3H

7T

M = T\H x oH

m X ~ PSL(2,R) is minimal & T" ~ 0H is minimal

m X < B is not minimal
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LMartl’nez and Verjovsky's question

|
Then X is the unitary tangent bundle of the transversely homographic
foliation F induced by

H— H x 0H 2— 3H

T
M =T\H x oH
m X ~ PSL(2,R) is minimal & T" ~ 0H is minimal
m X - B is not minimal as dual to the diagonal action

'~ 0H x 0H
given by
Y(&1, &2) = (v(&1),v(&2))
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Martinez and vsky's question

Let X = T1F be the unitary tangent bundle of F. Is it true that
X U is minimal if and only if X v~ B is minimal?
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Martinez and Verjovsky's question

Let X = T1F be the unitary tangent bundle of F. Is it true that
X U is minimal if and only if X v~ B is minimal?

Theorem (Martinez-Verjovsky)

Let (M, F) be a compact lamination by hyperbolic surfaces, and let
X = TYF its unitary tangent bundle. Assume that F is minimal.
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Martinez and Verjovsky's question

Let X = T1F be the unitary tangent bundle of F. Is it true that
X U is minimal if and only if X v~ B is minimal?

Theorem (Martinez-Verjovsky)

Let (M, F) be a compact lamination by hyperbolic surfaces, and let
X = TYF its unitary tangent bundle. Assume that F is minimal.
Then X \~ B is minimal if and only if F is not defined by a continuous
locally free B-action.
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Martinez and Verjovsky's question

Let X = T1F be the unitary tangent bundle of F. Is it true that
X U is minimal if and only if X v~ B is minimal?

Theorem (Martinez-Verjovsky)

Let (M, F) be a compact lamination by hyperbolic surfaces, and let
X = TYF its unitary tangent bundle. Assume that F is minimal.
Then X \~ B is minimal if and only if F is not defined by a continuous
locally free B-action.
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LA classical example

The Hirsch foliation F is a codimension-one foliation by hyperbolic
surfaces on a compact 3-manifold
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LA classical example

leaf without holonomy

leaf with holonomy \
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LA classical example

m Transverse dynamics of F is represented by the doubling map
f(x) =2x (mod 1)

4

F is minimal

m The leaves are neither homeomorphic to the plane nor to the
cylinder
lL Martinez-Verjovsky theorem

X = TYF ~ B is minimal
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LA classical example

Question

Is the unitary tangent bundle of the Hirsch foliation U-minimal?

Answer
Yes.

The proof depends on the following fact:

Remark [S. Matsumoto]

The horocyclic flow on each leaf of F has no minimal sets.

' =
<'<-< \-<'
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LFoliations with "topologically non-trivial’ leaves

Theorem (A.-Dal’Bo-Martinez-Verjovsky)

Let (M, F) be a minimal compact lamination by hyperbolic surfaces.
If F admits a leaf without holonomy which is neither homeomorphic
to the plane nor to the cylinder, then the horocycle flow on the
unitary tangent bundle X = T1F is minimal.
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unitary tangent bundle X = T1F is minimal.
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LFoliations with "topologically non-trivial’ leaves

Theorem (A.-Dal’Bo-Martinez-Verjovsky)

Let (M, F) be a minimal compact lamination by hyperbolic surfaces.
If F admits a leaf whose holonomy covering is neither homeomorphic
to the plane nor to the cylinder, then the horocycle flow on the
unitary tangent bundle X = T1F is minimal.

Corollary

For the non-homogeneous Lie foliations constructed by G. Hector, S.
Matsumoto and G. Meigniez, the horocycle flow is minimal.
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LFoliations with "topologically non-trivial’ leaves

Proof skecht. Before we start, we need the following definition:

Definition

Consider a complete hyperbolic surface L = T'\H which can be
partitioned into countably many pair of pants (pants decomposition)
whose boundary components have uniformly bounded lengths (good
pants decomposition). lts fundamental group T (which is purely
hyperbolic of the first kind) is called tight by S. Matsumoto.
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homeomorphic to the plane nor to the cylinder
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m First Step: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy L = T'\H which is neither
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mental group is neither cyclic nor trivial)

i

L contains a pair of pants
U« L without holonomy and F minimal

L contains countable many pairs of pants P, approaching every
end
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There is a leaf without holonomy L = T'\H which is neither
homeomorphic to the plane nor to the cylinder (& its funda-
mental group is neither cyclic nor trivial)
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L contains a pair of pants
U« L without holonomy and F minimal

L contains countable many pairs of pants P, approaching every

end _ . _
{ L is quasi-isometric to U, Pn

L has a good pants decomposition
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m First Step: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy L = T'\H which is neither
homeomorphic to the plane nor to the cylinder (& its funda-
mental group is neither cyclic nor trivial)

i

L contains a pair of pants
J L without holonomy and F minimal

L contains countable many pairs of pants P, approaching every

end _ . _
{ L is quasi-isometric to U, Pn

L has a good pants decomposition (& T is tight)
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LFoliations with "topologically non-trivial’ leaves

m First Step: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy L = T'\H which is neither
homeomorphic to the plane nor to the cylinder (& its funda-
mental group is neither cyclic nor trivial)

i

L contains a pair of pants
U« L without holonomy and F minimal

L contains countable many pairs of pants P, approaching every

end _ . _
{ L is quasi-isometric to U, Pn

Any leaf has a good pants decomposition
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Let (M, F) be a minimal compact lamination such that
i) the affine action X = TF ~ B is minimal,

i) the horocycle flow is transitive, i.e. 3x € X such that xU = X.
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m Second step: Finding sufficient conditions for the U-minimality.
Let (M, F) be a minimal compact lamination such that
i) the affine action X = TF ~ B is minimal,
i) the horocycle flow is transitive, i.e. 3x € X such that xU = X.
Let M # () be a U-minimal set in T'F.
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m Second step: Finding sufficient conditions for the U-minimality.

Proposition

Let (M, F) be a minimal compact lamination such that
i) the affine action X = TF ~ B is minimal,

i) the horocycle flow is transitive, i.e. 3x € X such that xU = X.

Let M # () be a U-minimal set in T'F.  If there is a real
number ty > 0 such that g, (M) = M, then M = X.
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m Condition (i): All the leaves are "topologically non-trivial’
lL Martinez-Verjovsky theorem
X = T'F ~ B is minimal

m Condition (ii): Since F is minimal, it is enough to prove the
horocycle flow is transitive in restriction to some leaf L.
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m Condition (i): All the leaves are "topologically non-trivial’
lL Martinez-Verjovsky theorem
X = T'F ~ B is minimal

m Condition (ii): Since F is minimal, it is enough to prove the
horocycle flow is transitive in restriction to every leaf L.

Aim

If L has a good pants decomposition, then for every x € T1L,
either xU = TL or there is a real number t; > 0 such that
gt,(x) € xU (so any proper U-minimal set M # ) in T'L
verifies gy, (M) = M).
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LFoliations with "topologically non-trivial’ leaves

m Third Step: Using Matsumoto's idea to prove U-minimality.

Fundamental lemma

Let L = I'\H be a non-compact hyperbolic surface. Assume
there are sequences of

m closed geodesics C,, with uniformly bounded lengths

m real numbers t, — +oo such that
gtn (X) e Cn

for some x € TYL. Then there is a real number tg > 0 such
that

8t (x) € xU.
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Proposition

Assume L has a good pants decomposition. Then, for any
tangent vector x € TYL, either xU = TLL or there is a real
number ty > 0 such that g, (x) € xU.



Dynamics of the horocycle flow
L Some progress in the non-homogeneous case

LFoliations with "topologically non-trivial’ leaves

Proposition

Assume L has a good pants decomposition. Then, for any
tangent vector x € TLL, either xU = TL or there is a real
number toy > 0 such that gy,(x) € xU. In particular, if M # ()
is a proper U-minimal set in in T'L, then g (M) = M for
some tg > 0.
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Proposition

Assume L has a good pants decomposition. Then, for any
tangent vector x € TLL, either xU = TL or there is a real
number toy > 0 such that gy,(x) € xU. In particular, if M # ()
is a proper U-minimal set in in T'L, then g (M) = M for
some tg > 0.

Using the duality between the U-action and the linear '-action
and the classification of the limit points of I', we can deduce:

Theorem (S. Matsumoto)

For any hyperbolic surface with a good pants decomposition,
the horocycle flow has no minimal sets.
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Theorem (A.-Dal'Bo-Martinez-Verjovsky)

Let (M, F) be a minimal compact lamination by hyperbolic surfaces.
If F admits a leaf without holonomy which is neither homeomorphic
to the plane nor to the cylinder, then the horocycle flow on the
unitary tangent bundle X = T1F is minimal.
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Proof (‘if’ part). It is enough to show that
A=p(T) ~ OH

is minimal. We distinguish three cases:
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Proof (‘if’ part). It is enough to show that
A=p(T) ~ OH

is minimal. We distinguish three cases:
m If A = pi(T") is discrete, then

X compact = A\H compact

and therefore

— A is non-elementary = A ~ A(A) is minimal.
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Proof (‘if’ part). It is enough to show that
A=pi(T) ~ oH
is minimal. We distinguish three cases:
m If A = pi(T") is discrete, then
X compact = A\H compact
and therefore

— A is non-elementary = A ~ A(A) is minimal.
— A'is cocompact = A(A) = oHL
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Proof (‘if’ part). It is enough to show that
A=pi(T) ~ oH
is minimal. We distinguish three cases:
m If A = pi(T") is discrete, then
X compact = A\H compact
and therefore
— A is non-elementary = A ~ A(A) is minimal.
— A'is cocompact = A(A) = oHL

m If A = pi(T) is non-discrete dense, then A ~ A(A) = 0H is
minimal again.
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m If A is neither discrete nor dense, then there is f € PSL(2,R)
such that

A C fPSO(2,R)f* or AcC fBf !
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m If A is neither discrete nor dense, then there is f € PSL(2,R)
such that

A C fPSO(2,R)f* or AcC fBf !

U

X is not compact
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m If A is neither discrete nor dense, then there is f € PSL(2,R)
such that

A C fPSO(2,R)f* or AcC fBf !

A has no parabolic elements iL

A is abelian,
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such that

A C fPSO(2,R)f* or AcC fBf !

" has no semi-parabolic elements \u
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m If A is neither discrete nor dense, then there is f € PSL(2,R)
such that

A C fPSO(2,R)f* or AcC fBf !

" has no semi-parabolic elements \u

A is abelian,

which also contradicts the compactness of X. []
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Proof sketch. The proof is based on the two following lemmas:

Lemma

The leaves of F are the orbits of a continuous locally free B-action
if and only if there is a B-minimal set M in X such that

I T)JFAM|=1  VxeM,

where y = 7t(x) is the image of x by the projection t: X — M.
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Proof sketch. The proof is based on the two following lemmas:

Lemma

The leaves of F are the orbits of a continuous locally free B-action
if and only if there is a B-minimal set M in X such that

I T)JFAM|=1  VxeM,

where y = 7t(x) is the image of x by the projection t: X — M.

Lemma
Let M be a B-minimal set of X. If

I T)JFNM[>2  VYxeM,

then M = X, namely X ~~ B is minimal.
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Lemma
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if and only if there is a B-minimal set M in X such that
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where y = 7t(x) is the image of x by the projection t: X — M.

Lemma
Let M be a B-minimal set of X. If
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then M = X, namely X ~~ B is minimal.
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Proof.

mIf M # X, then C = {t € R|g(M) = M} is a discrete
subgroup of R, so trivial or cyclic.
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Proof.

mIf M # X, then C = {t € R|g(M) = M} is a discrete
subgroup of R, so trivial or cyclic.

m By hypothesis, C is cyclic and hence the B-invariant set

MD=JaM) = ] &M)

teR te(0,to]

is closed.
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Proof.

mIf M # X, then C = {t € R|g(M) = M} is a discrete
subgroup of R, so trivial or cyclic.

m By hypothesis, C is cyclic and hence the B-invariant set

MD=JaM) = ] &M)

teR te(0,to]

is closed. Then
MD =X

by B-minimality.
m There is t € [0, to] such that g;(x) € M.
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Proof.
mIf M # X, then C = {t € R|g(M) = M} is a discrete
subgroup of R, so trivial or cyclic.

m By hypothesis, C is cyclic and hence the B-invariant set

MD=JaM) = ] &M)

teR te(0,to]

is closed. Then
MD =X

by B-minimality.
m There is t € [0, to] such that gt(x)j M. Since gi(xU) =

g:(x)U and M is U-invariant, g:(xU) C M and therefore
X =M. O
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The horocycle flow is dual to the linear action

'~ PSL(2,R)/U=R?>—{0}/{I} = E
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The horocycle flow is dual to the linear action

'~ PSL(2,R)/U=R>—{0}/{£l} =E

Definition

Let " be a non-elementary Fuchsian group. A limit point & € A(T)
is said to be horocyclic if any horodisc centered at & contains points
of the orbit I'z for any z € H.
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The horocycle flow is dual to the linear action

'~ PSL(2,R)/U=R>—{0}/{£l} =E

Definition

Let T be a non-elementary Fuchsian group of the first kind. A point
& € OH is said to be horocyclic if any horodisc centered at & contains
points of the orbit I'z for any z € H.
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The horocycle flow is dual to the linear action

'~ PSL(2,R)/U=R>—{0}/{£l} =E

Definition

Let T be a non-elementary Fuchsian group of the first kind. A point
& € OH is said to be horocyclic if any horodisc centered at & contains
points of the orbit I'z for any z € H.

Theorem

For each v € T'H, the following conditions are equivalent:
i) the point & = v(400) is horocyclic,
ii) the horocycle orbit of the projected point x € TL is dense,

i) 0 belongs to Tv where v is the element of E corresponding to
the horocycle passing through v.
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Proof.

m From the previous theorem, any proper U-minimal set M # ()
in TL contains a horocycle centered at non-horocyclic limit
point & of T
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Proof.

m From the previous theorem, any proper U-minimal set M # ()
in TL contains a horocycle centered at non-horocyclic limit
point & of T

m According to the proposition, for any point x in this horocycle,
there is tg > 0 such that gy, (x) € xU = M.
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Proof.

m From the previous theorem, any proper U-minimal set M # ()
in TL contains a horocycle centered at non-horocyclic limit
point & of T

m According to the proposition, for any point x in this horocycle,
there is tg > 0 such that gy, (x) € xU = M.

m By duality, we deduce that

e’2(Tv) =To
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Proof.

m From the previous theorem, any proper U-minimal set M # ()
in TL contains a horocycle centered at non-horocyclic limit
point & of T

m According to the proposition, for any point x in this horocycle,
there is tg > 0 such that gy, (x) € xU = M.

m By duality, we deduce that
e™2(Tv) =Tv

and therefore 0 € Tv, which contradits the assumption that &
is non-horocyclic. O
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