# Dynamics of the horocycle flow for homogeneous and non-homogeneous foliations by hyperbolic surfaces\*

Fernando Alcalde Cuesta

GeoDynApp - ECSING group

Foliations 2014 - ICMT Madrid - September 1-5, 2014

\*Joint work with Françoise Dal'Bo, Matilde Martínez, and Alberto Verjovsky.

◆□> <@> < E> < E> < E</p>

• Hedlund's Theorem on the minimality of the horocycle flow on the unitary tangent bundle  $X = \Gamma \setminus PSL(2, \mathbb{R})$  of a compact hyperbolic surface  $S = \Gamma \setminus \mathbb{H}$ .

- Hedlund's Theorem on the minimality of the horocycle flow on the unitary tangent bundle X = Γ\PSL(2, ℝ) of a compact hyperbolic surface S = Γ\Ⅲ.
- Hedlund's Theorem for X = Γ\PSL(2, ℝ) × G where G is a connected Lie group and Γ is a cocompact discrete subgroup of PSL(2, ℝ) × G

- Hedlund's Theorem on the minimality of the horocycle flow on the unitary tangent bundle X = Γ\PSL (200) a compact hyperbolic surface S = Γ\Π.
  Hedlund's Theorem for X = Γ\PSL(2, ℝ) × G where G is a connected Up prop and Γ is a cocompact discrete subgroup of

- Hedlund's Theorem on the minimality of the horocycle flow on the unitary tangent bundle X = Γ\PSL (2, R) + G where G is a Hedlund's Theorem for X = Γ\PSL(2, R) + G where G is a
- Hedlund's Theorem for X = Γ\PSL(2, ℝ) × G where G is a connected Legreep and Γ is a cocompact discrete subgroup of PSL(2, ℝ) × G.

The foliation point of view - the homogeneous case.

- Hedlund's Theorem on the minimality of the horocycle flow on the unitary tangent bundle X = Γ\PSL (D) f a compact hyperbolic surface S = Γ\Π.
  Hedlund's Theorem for X = Γ\PSL(2, ℝ) × G where G is a
- Hedlund's Theorem for X = Γ\PSL(2, ℝ) × G where G is a connected Legreep and Γ is a cocompact discrete subgroup of PSL(2, ℝ) × G.

- **The foliation point of view** the homogeneous case.
- Some progress in the non-homogeneous case

Description and statement

- 1 Hedlund's Theorem
  - Description and statement
  - Proof
- **2** Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 
  - $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
  - $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality
  - *B*-minimality  $\Rightarrow$  *U*-minimality
- 3 The foliation point of view
  - Lie foliations
  - Martínez and Verjovsky's question
- 4 Some progress in the non-homogeneous case
  - A classical example
  - Foliations with 'topologically non-trivial' leaves

Description and statement

• Hyperbolic surface  $S = \Gamma \setminus \mathbb{H}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

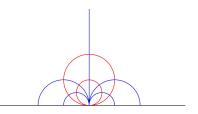
Dynamics of the horocycle flow

Hedlund's Theorem

L\_Description and statement

• Hyperbolic surface 
$$S = \Gamma \setminus \mathbb{H}$$

$$-\mathbb{H} = \{ z \in \mathbb{C} \mid Im(z) > 0 \}$$



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

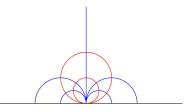
Dynamics of the horocycle flow

Hedlund's Theorem

Description and statement

• Hyperbolic surface 
$$S = \Gamma \setminus \mathbb{H}$$

$$-\mathbb{H} = \{ z \in \mathbb{C} \mid Im(z) > 0 \}$$



with the Riemannian metric

$$ds^2 = \frac{|dz|^2}{Im(z)^2}.$$

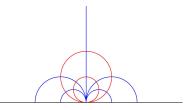
Dynamics of the horocycle flow

Hedlund's Theorem

Description and statement

• Hyperbolic surface 
$$S = \Gamma \setminus \mathbb{H}$$

$$-\mathbb{H} = \{ z \in \mathbb{C} \mid Im(z) > 0 \}$$



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

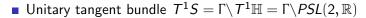
with the Riemannian metric

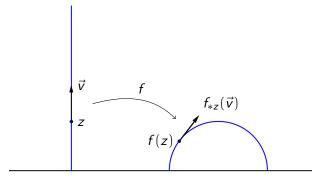
$$ds^2 = \frac{|dz|^2}{Im(z)^2}.$$

 $-\Gamma$  cocompact discrete (torsion-free) subgroup of

$$PSL(2,\mathbb{R}) = \{ f(z) = \frac{az+b}{cz+d} | a, b, c, d \in \mathbb{R}, ad-bc = 1 \}.$$

Description and statement

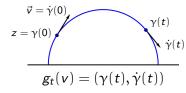




 $\textit{PSL}(2,\mathbb{R}) \curvearrowright T^1 \mathbb{H}$  is free and transitive

Description and statement

#### Geodesic flow:



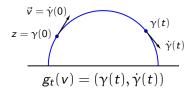
$$\Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft D = \{ \begin{pmatrix} \lambda & 0 \\ 0 & \frac{1}{\lambda} \end{pmatrix} | \lambda > 0 \}$$
$$g_t(\Gamma( \begin{array}{c} a & b \\ c & d \end{pmatrix})) = \Gamma( \begin{array}{c} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$$

right action of the diagonal group D

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Description and statement

#### Geodesic flow:

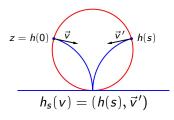


$$\Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft D = \{ \begin{pmatrix} \lambda & 0 \\ 0 & \frac{1}{\lambda} \end{pmatrix} | \lambda > 0 \}$$

$$g_t(\Gamma( \begin{array}{c} a & b \\ c & d \end{pmatrix}) = \Gamma( \begin{array}{c} a & b \\ c & d \end{pmatrix} \begin{pmatrix} e^{t/2} & 0 \\ 0 & e^{-t/2} \end{pmatrix}$$

right action of the diagonal group D

Horocycle flow:



$$\Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft U = \{ \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix} | s \in \mathbb{R} \}$$
  
 
$$h_s(\Gamma( \begin{pmatrix} a & b \\ c & d \end{pmatrix})) = \Gamma( \begin{pmatrix} a & b \\ c & d \end{pmatrix}) \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$$
  
 right action of the unipotent group  $U$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Description and statement

### • Affine action: $\Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft B = DU = affine group$

$$g_t \circ h_s = h_{-se^t} \circ g_t$$

Description and statement

• Affine action:  $\Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft B = DU = affine group$ 

$$g_t \circ h_s = h_{-se^t} \circ g_t$$

#### Theorem (Hedlund, 1936)

Let  $S = \Gamma \setminus \mathbb{H}$  be a compact hyperbolic surface. Then the *U*-action

$$X = T^1 S = \Gamma \backslash PSL(2, \mathbb{R}) \curvearrowleft U$$

is minimal (with dense orbits).

Proof

#### 1 Hedlund's Theorem

- Description and statement
- Proof

## **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality

### 3 The foliation point of view

- Lie foliations
- Martínez and Verjovsky's question

#### 4 Some progress in the non-homogeneous case

- A classical example
- Foliations with 'topologically non-trivial' leaves

$$X = \Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft B$$
 is minimal

(ロ)、

$$X = \Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft B$$
 is minimal

 $\left( \! \! \begin{array}{c} \uparrow \\ \! \end{array} \right)$  duality

 $\Gamma \curvearrowright PSL(2,\mathbb{R})/B = \partial \mathbb{H}$  is minimal

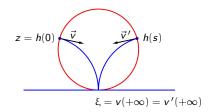
(ロ) (国) (E) (E) (E) (O)(C)

$$X = \Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft B$$
 is minimal

 $\begin{pmatrix} \uparrow \\ duality \end{pmatrix}$ 

 $\Gamma \curvearrowright PSL(2,\mathbb{R})/B = \partial \mathbb{H}$  is minimal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?



$$X = \Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft B$$
 is minimal

 $\begin{pmatrix} \uparrow \\ \end{pmatrix}$  duality

 $\Gamma \curvearrowright PSL(2,\mathbb{R})/B = \partial \mathbb{H}$  is minimal

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

-  $\Gamma$  non-elementary  $\Rightarrow \Gamma \curvearrowright \Lambda(\Gamma)$  minimal.

$$X = \Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft B$$
 is minimal

 $\begin{pmatrix} \uparrow \\ \end{pmatrix}$  duality

 $\Gamma \curvearrowright PSL(2,\mathbb{R})/B = \partial \mathbb{H}$  is minimal

- $\Gamma$  non-elementary  $\Rightarrow \Gamma \curvearrowright \Lambda(\Gamma)$  minimal.
- $\Gamma$  cocompact  $\Rightarrow \Lambda(\Gamma) = \partial \mathbb{H}$ .

X compact  $\Rightarrow \exists M \neq \emptyset$  minimal closed U-invariant (U-minimal for short) subset of X.

X compact  $\Rightarrow \exists M \neq \emptyset$  minimal closed U-invariant (U-minimal for short) subset of X.

Aim

 $\mathcal{M}$  is *B*-invariant

 $X \text{ compact} \Rightarrow \exists \mathcal{M} \neq \emptyset \text{ minimal closed } U\text{-invariant } (U\text{-minimal for short}) \text{ subset of } X.$ 

Aim

 $\mathcal{M}$  is *B*-invariant  $+ X \curvearrowleft B$  minimal  $\Rightarrow \mathcal{M} = X$ .

X compact  $\Rightarrow \exists M \neq \emptyset$  minimal closed U-invariant (U-minimal for short) subset of X.

#### Aim

 $\mathcal{M}$  is *B*-invariant  $+ X \curvearrowleft B$  minimal  $\Rightarrow \mathcal{M} = X$ .

Consider  $x = \Gamma f \in \mathcal{M}$  represented by  $f \in PSL(2, \mathbb{R})$  so that

 $\overline{xU} = \overline{\Gamma fU} = \mathcal{M}$ 

X compact  $\Rightarrow \exists M \neq \emptyset$  minimal closed U-invariant (U-minimal for short) subset of X.

#### Aim

 $\mathcal{M}$  is *B*-invariant +  $X \curvearrowleft B$  minimal  $\Rightarrow \mathcal{M} = X$ .

Consider  $x = \Gamma f \in \mathcal{M}$  represented by  $f \in PSL(2, \mathbb{R})$  so that

X compact  $\Rightarrow \exists M \neq \emptyset$  minimal closed U-invariant (U-minimal for short) subset of X.

#### Aim

 $\mathcal{M}$  is *B*-invariant +  $X \curvearrowleft B$  minimal  $\Rightarrow \mathcal{M} = X$ .

Consider  $x = \Gamma f \in \mathcal{M}$  represented by  $f \in PSL(2, \mathbb{R})$  so that

X compact  $\Rightarrow \exists M \neq \emptyset$  minimal closed U-invariant (U-minimal for short) subset of X.

#### Aim

 $\mathcal{M}$  is *B*-invariant +  $X \curvearrowleft B$  minimal  $\Rightarrow \mathcal{M} = X$ .

Consider  $x = \Gamma f \in \mathcal{M}$  represented by  $f \in PSL(2, \mathbb{R})$  so that

$$\overline{xU} = \overline{\Gamma fU} = \mathcal{M}$$

$$\textcircled{1}$$

$$\exists \gamma_n \in \Gamma \quad \exists u_n = \begin{pmatrix} 1 & t_n \\ 0 & 1 \end{pmatrix} \text{ with } t_n \to +\infty \text{ such that}$$

$$f_n =: f^{-1} \gamma_n f u_n \to I$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Thus, we have:

 $x \in \mathcal{M}$  and  $xf_n = \Gamma \gamma_n fu_n = \Gamma fu_n = xu_n \in xU \subset \mathcal{M}$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Thus, we have:

(ロ)、

Thus, we have:

(ロ)、(型)、(E)、(E)、 E) の(の)

#### Lemma

 $H_{\mathcal{M}}$  is a closed U-bi-invariant subset of  $PSL(2,\mathbb{R})$ .

#### Lemma

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

Proof.



There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

**Proof**. Assume on the contrary that for all  $k \in \mathbb{N}$ , there exists  $n_k \geq k$  such that

$$f_{n_k} \in B$$

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

**Proof**. Assume on the contrary that for all  $k \in \mathbb{N}$ , there exists  $n_k \ge k$  such that

$$f_{n_k} \in B$$
  $\Leftrightarrow$   $f^{-1}\gamma_{n_k}f = f_{n_k}u_{n_k}^{-1} \in B$ 

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

**Proof**. Assume on the contrary that for all  $k \in \mathbb{N}$ , there exists  $n_k \ge k$  such that

$$f_{n_k} \in B$$
  $\Leftrightarrow$   
 $f^{-1}\gamma_{n_k}f = f_{n_k}u_{n_k}^{-1} \in B$   $\Leftrightarrow$   
 $\gamma_{n_k} \in \Gamma \cap fBf^{-1}$ 

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

**Proof**. Assume on the contrary that for all  $k \in \mathbb{N}$ , there exists  $n_k \ge k$  such that

$$f_{n_{k}} \in B \qquad \Leftrightarrow$$

$$f^{-1}\gamma_{n_{k}}f = f_{n_{k}}u_{n_{k}}^{-1} \in B \qquad \Leftrightarrow$$

$$\gamma_{n_{k}} \in \Gamma \cap fBf^{-1} \qquad \Rightarrow$$

$$[\gamma_{n_{k}}, \gamma_{n_{k'}}] \in \Gamma \cap fUf^{-1} \qquad \forall k, k' \in \mathbb{N}.$$

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

**Proof**. Assume on the contrary that for all  $k \in \mathbb{N}$ , there exists  $n_k \ge k$  such that

$$f_{n_{k}} \in B \qquad \Leftrightarrow$$

$$f^{-1}\gamma_{n_{k}}f = f_{n_{k}}u_{n_{k}}^{-1} \in B \qquad \Leftrightarrow$$

$$\gamma_{n_{k}} \in \Gamma \cap fBf^{-1} \qquad \Rightarrow$$

$$[\gamma_{n_{k}}, \gamma_{n_{k'}}] \in \Gamma \cap fUf^{-1} \qquad \forall k, k' \in \mathbb{N}.$$

$$\Downarrow \qquad \Gamma \text{ has no parabolic elements}$$

$$[\gamma_{n_{k}}, \gamma_{n_{k'}}] = I \qquad \forall k, k' \in \mathbb{N}.$$

$$\begin{split} & \downarrow \\ f^{-1} \gamma_{n_k} f = u \left( \begin{array}{cc} \lambda_{n_k} & 0 \\ 0 & \lambda_{n_k}^{-1} \end{array} \right) u^{-1} \text{ with } u \in U \text{ and } \lambda_{n_k} \to \infty \end{split}$$

<□ > < @ > < E > < E > E のQ @

$$f^{-1}\gamma_{n_{k}}f = u \begin{pmatrix} \lambda_{n_{k}} & 0 \\ 0 & \lambda_{n_{k}}^{-1} \end{pmatrix} u^{-1} \text{ with } u \in U \text{ and } \lambda_{n_{k}} \to \infty$$

$$\downarrow$$

$$f_{n_{k}} = f^{-1}\gamma_{n_{k}}fu_{n_{k}} = u \begin{pmatrix} \lambda_{n_{k}} & 0 \\ 0 & \lambda_{n_{k}}^{-1} \end{pmatrix} u^{-1}u_{n_{k}}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$\begin{aligned} & \downarrow \\ f^{-1}\gamma_{n_k}f = u \begin{pmatrix} \lambda_{n_k} & 0 \\ 0 & \lambda_{n_k}^{-1} \end{pmatrix} u^{-1} \text{ with } u \in U \text{ and } \lambda_{n_k} \to \infty \\ & \downarrow \\ f_{n_k} = f^{-1}\gamma_{n_k}fu_{n_k} = u \begin{pmatrix} \lambda_{n_k} & 0 \\ 0 & \lambda_{n_k}^{-1} \end{pmatrix} u^{-1}u_{n_k} \to I \end{aligned}$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

$$\begin{split} & \downarrow \\ f^{-1}\gamma_{n_k}f = u \begin{pmatrix} \lambda_{n_k} & 0 \\ 0 & \lambda_{n_k}^{-1} \end{pmatrix} u^{-1} \text{ with } u \in U \text{ and } \lambda_{n_k} \to \infty \\ & \downarrow \\ f_{n_k} = f^{-1}\gamma_{n_k}fu_{n_k} = u \begin{pmatrix} \lambda_{n_k} & 0 \\ 0 & \lambda_{n_k}^{-1} \end{pmatrix} u^{-1}u_{n_k} \to I \\ & \downarrow \\ f_{n_k}(\mathbf{e}_1) = (\lambda_{n_k}, 0) \to \mathbf{e}_1 = (1, 0), \end{split}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

which is not possible.

Put

$$f_n = \left(\begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array}\right)$$

(ロ)、

Put

$$f_n = \begin{pmatrix} a_n & b_n \\ c_n & d_n \end{pmatrix} \notin B \quad \Leftrightarrow \quad c_n \neq 0$$

(ロ)、

Dynamics of the horocycle flow Hedlund's Theorem

Put

$$f_n = \left(\begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array}\right) \notin B \quad \Leftrightarrow \quad c_n \neq 0$$

For every  $\alpha \in \mathbb{R}^*_+$ , take

$$u'_{n} = \begin{pmatrix} 1 & \frac{\alpha - a_{n}}{c_{n}} \\ 0 & 1 \end{pmatrix} \quad u''_{n} = \begin{pmatrix} 1 & -\frac{1}{\alpha}(b_{n} + d_{n}\frac{\alpha - a_{n}}{c_{n}}) \\ 0 & 1 \end{pmatrix}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

in U

Dynamics of the horocycle flow Hedlund's Theorem

Put

$$f_n = \left(\begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array}\right) \notin B \quad \Leftrightarrow \quad c_n \neq 0$$

For every  $\alpha \in \mathbb{R}^*_+$ , take

$$u'_{n} = \begin{pmatrix} 1 & \frac{\alpha - a_{n}}{c_{n}} \\ 0 & 1 \end{pmatrix} \quad u''_{n} = \begin{pmatrix} 1 & -\frac{1}{\alpha}(b_{n} + d_{n}\frac{\alpha - a_{n}}{c_{n}}) \\ 0 & 1 \end{pmatrix}$$

in U so that

$$u'_n f_n u''_n = \begin{pmatrix} \alpha & 0 \\ c_n & \alpha^{-1} \end{pmatrix} \in H_{\mathcal{M}}$$

Put

$$f_n = \left(\begin{array}{cc} a_n & b_n \\ c_n & d_n \end{array}\right) \notin B \quad \Leftrightarrow \quad c_n \neq 0$$

For every  $\alpha \in \mathbb{R}^*_+$ , take

$$u_n' = \begin{pmatrix} 1 & \frac{\alpha - a_n}{c_n} \\ 0 & 1 \end{pmatrix} \quad u_n'' = \begin{pmatrix} 1 & -\frac{1}{\alpha}(b_n + d_n \frac{\alpha - a_n}{c_n}) \\ 0 & 1 \end{pmatrix}$$

in U so that

$$\mathcal{M} \left( \begin{array}{cc} \alpha & 0 \\ 0 & \alpha^{-1} \end{array} \right) \cap \mathcal{M} \neq \emptyset \qquad \forall \alpha \in \mathbb{R}_+^*$$

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

So  $\mathcal{M}$  is *B*-invariant and hence  $\mathcal{M} = X$ .

So  $\mathcal{M}$  is *B*-invariant and hence  $\mathcal{M} = X$ .

#### Theorem (Hedlund, 1936)

Let  $S = \Gamma \setminus \mathbb{H}$  be a compact hyperbolic surface. Then the *U*-action  $X = T^1 S = \Gamma \setminus PSL(2, \mathbb{R}) \curvearrowleft U$  is minimal.

#### Hedlund's Theorem

- Description and statement
- Proof

# **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality

## 3 The foliation point of view

- Lie foliations
- Martínez and Verjovsky's question

#### 4 Some progress in the non-homogeneous case

- A classical example
- Foliations with 'topologically non-trivial' leaves

## Theorem (A.-Dal'Bo)

Let G be a connected Lie group. Let  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  be the quotient of the Lie group  $PSL(2, \mathbb{R}) \times G$  by a cocompact discrete subgroup  $\Gamma$ .

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

## Theorem (A.-Dal'Bo)

Let G be a connected Lie group. Let  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  be the quotient of the Lie group  $PSL(2, \mathbb{R}) \times G$  by a cocompact discrete subgroup  $\Gamma$ . Then

 $X \curvearrowleft U$  is minimal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

### Theorem (A.-Dal'Bo)

Let G be a connected Lie group. Let  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  be the quotient of the Lie group  $PSL(2, \mathbb{R}) \times G$  by a cocompact discrete subgroup  $\Gamma$ . Then

 $X \curvearrowleft U$  is minimal (1) $X \backsim PSL(2, \mathbb{R})$  is minimal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### Theorem (A.-Dal'Bo)

Let G be a connected Lie group. Let  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  be the quotient of the Lie group  $PSL(2, \mathbb{R}) \times G$  by a cocompact discrete subgroup  $\Gamma$ . Then

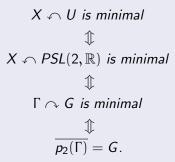
### Theorem (A.-Dal'Bo)

Let G be a connected Lie group. Let  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  be the quotient of the Lie group  $PSL(2, \mathbb{R}) \times G$  by a cocompact discrete subgroup  $\Gamma$ . Then

 $X \curvearrowleft U \text{ is minimal}$  (1)  $X \curvearrowleft PSL(2, \mathbb{R}) \text{ is minimal}$  (1)  $\Gamma \curvearrowright G \text{ is minimal}$  (1)  $p_2(\Gamma) = G.$ 

#### Theorem (A.-Dal'Bo)

Let G be a connected Lie group. Let  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  be the quotient of the Lie group  $PSL(2, \mathbb{R}) \times G$  by a cocompact discrete subgroup  $\Gamma$ . Then



 $PSL(2,\mathbb{R}) \stackrel{p_1}{\longleftarrow} PSL(2,\mathbb{R}) \times G \stackrel{p_2}{\longrightarrow} G$ 

・ロト ・ 日下 ・ 日下 ・ 日下 ・ 今日・

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

### Examples

## • **A. Borel**: $\exists \Gamma \subset PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R})$ cocompact discrete



## Examples

■ A. Borel:  $\exists \Gamma \subset PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R}) = H$  cocompact discrete  $\Rightarrow X = \Gamma \setminus H$  compact 6-manifold

#### Examples

■ A. Borel:  $\exists \Gamma \subset PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R}) = H$  cocompact discrete  $\Rightarrow X = \Gamma \setminus H$  compact 6-manifold

 $\Gamma$  is irreducible (i.e.  $\overline{p_1(\Gamma)} = \overline{p_2(\Gamma)} = PSL(2,\mathbb{R})$ )



## Examples

■ A. Borel:  $\exists \Gamma \subset PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R}) = H$  cocompact discrete  $\Rightarrow X = \Gamma \setminus H$  compact 6-manifold

$$\begin{array}{c} \Gamma \text{ is irreducible (i.e. } \overline{p_1(\Gamma)} = \overline{p_2(\Gamma)} = PSL(2,\mathbb{R})) \\ \\ \Downarrow \\ X \text{ is } U \text{-minimal} \end{array}$$

#### Examples

■ A. Borel:  $\exists \Gamma \subset PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R}) = H$  cocompact discrete  $\Rightarrow X = \Gamma \setminus H$  compact 6-manifold

$$\begin{array}{c} \Gamma \text{ is irreducible (i.e. } \overline{p_1(\Gamma)} = \overline{p_2(\Gamma)} = PSL(2,\mathbb{R})) \\ \downarrow \\ X \text{ is } U\text{-minimal} \end{array}$$

■ Breuillard et al.:  $\exists \Gamma \subset PSL(2, \mathbb{R}) \times SO(3) = H$  cocompact discrete such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\overline{p_2(\Gamma)} = SO(3)$$

#### Examples

■ A. Borel:  $\exists \Gamma \subset PSL(2, \mathbb{R}) \times PSL(2, \mathbb{R}) = H$  cocompact discrete  $\Rightarrow X = \Gamma \setminus H$  compact 6-manifold

$$\begin{array}{c} \Gamma \text{ is irreducible (i.e. } \overline{p_1(\Gamma)} = \overline{p_2(\Gamma)} = PSL(2,\mathbb{R})) \\ \downarrow \\ X \text{ is } U\text{-minimal} \end{array}$$

■ Breuillard et al.:  $\exists \Gamma \subset PSL(2, \mathbb{R}) \times SO(3) = H$  cocompact discrete such that

$$\overline{p_2(\Gamma)} = SO(3) \Rightarrow X = \Gamma \backslash H$$
 is U-minimal

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality and *B*-minimality

Hedlund's Theorem
 Description and statement
 Proof

# **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality
- 3 The foliation point of view
  - Lie foliations
  - Martínez and Verjovsky's question

4 Some progress in the non-homogeneous case

- A classical example
- Foliations with 'topologically non-trivial' leaves

Hedlund's Theorem for  $X = \overline{\Gamma \setminus PSL(2, \mathbb{R}) \times G}$ 

 $\square PSL(2, \mathbb{R})$ -minimality and *B*-minimality

$$\begin{array}{ccccc} PSL(2,\mathbb{R}) & \xleftarrow{p_1} & PSL(2,\mathbb{R}) \times G & \xrightarrow{p_2} & G \\ & & & & & & \\ & & & & & & \\ p_1(\Gamma) & \longleftarrow & \Gamma & \longrightarrow & p_2(\Gamma) \end{array}$$

•  $PSL(2, \mathbb{R})$ -minimality:

 $X = \Gamma \backslash PSL(2, \mathbb{R}) \times G \curvearrowleft PSL(2, \mathbb{R}) \text{ is minimal}$  $(1) \quad (1) \quad (1) \quad (2) \quad (2$ 

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality and *B*-minimality

$$\begin{array}{ccccc} PSL(2,\mathbb{R}) & \xleftarrow{p_1} & PSL(2,\mathbb{R}) \times G & \xrightarrow{p_2} & G \\ & & & & & & \\ & & & & & & \\ p_1(\Gamma) & \longleftarrow & \Gamma & \longrightarrow & p_2(\Gamma) \end{array}$$

•  $PSL(2, \mathbb{R})$ -minimality:

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality and *B*-minimality

## B-minimality:

 $X = \Gamma \backslash PSL(2, \mathbb{R}) \times G \curvearrowleft B$  is minimal

 $\begin{pmatrix} \uparrow \\ duality \end{pmatrix}$ 

 $\Gamma \curvearrowright \partial \mathbb{H} \times G$  is minimal

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality and *B*-minimality

# B-minimality:

 $X = \Gamma \backslash PSL(2, \mathbb{R}) \times G \curvearrowleft B$  is minimal

 $\begin{pmatrix} \uparrow \\ duality \end{pmatrix}$ 

 $\Gamma \curvearrowright \partial \mathbb{H} \times G$  is minimal

#### Proposition

Let G be a connected Lie group and let  $\Gamma$  be a discrete subgroup of  $PSL(2, \mathbb{R}) \times G$ . The action  $X \curvearrowleft B$  is minimal if and only if  $\overline{p_2(\Gamma)} = G$  and  $p_1(\Gamma) \curvearrowright \partial \mathbb{H}$  is minimal.

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality and *B*-minimality

# B-minimality:

 $X = \Gamma \backslash PSL(2, \mathbb{R}) \times G \curvearrowleft B$  is minimal

 $\begin{pmatrix} \uparrow \\ duality \end{pmatrix}$ 

 $\Gamma \curvearrowright \partial \mathbb{H} \times G$  is minimal

#### Proposition

Let G be a connected Lie group and let  $\Gamma$  be a discrete subgroup of  $PSL(2, \mathbb{R}) \times G$ . The action  $X \curvearrowleft B$  is minimal if and only if  $\overline{p_2(\Gamma)} = G$  and  $p_1(\Gamma) \curvearrowright \partial \mathbb{H}$  is minimal.

#### Aim

If  $\Gamma$  is cocompact, then  $X \curvearrowleft B$  is minimal if and only if  $\overline{p_2(\Gamma)} = G$ .

- Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 
  - $\square PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality
    - 1 Hedlund's Theorem
      - Description and statement
      - Proof

# **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality
- 3 The foliation point of view
  - Lie foliations
  - Martínez and Verjovsky's question
- 4 Some progress in the non-homogeneous case
  - A classical example
  - Foliations with 'topologically non-trivial' leaves

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality

### Definition

An element  $(f,g) \in PSL(2,\mathbb{R}) \times G$  is said to be *semi-parabolic* if  $f \neq I$  belongs to U up to conjugation.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality

## Definition

An element  $(f,g) \in PSL(2,\mathbb{R}) \times G$  is said to be *semi-parabolic* if  $f \neq I$  belongs to U up to conjugation.

## Proposition

If  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  is compact, then  $\Gamma$  does not contain semiparabolic elements.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality

## Definition

An element  $(f,g) \in PSL(2,\mathbb{R}) \times G$  is said to be *semi-parabolic* if  $f \neq I$  belongs to U up to conjugation.

#### Proposition

If  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  is compact, then  $\Gamma$  does not contain semiparabolic elements.

**Proof**. The proof is based on the following lemma:

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

## Definition

An element  $(f,g) \in PSL(2,\mathbb{R}) \times G$  is said to be *semi-parabolic* if  $f \neq I$  belongs to U up to conjugation.

### Proposition

If  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  is compact, then  $\Gamma$  does not contain semiparabolic elements.

**Proof**. The proof is based on the following lemma:

#### Lemma

If  $\Gamma$  contains a semi-parabolic element, then the geodesic flow on  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  has divergent positive semi-orbits.

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

## Definition

An element  $(f,g) \in PSL(2,\mathbb{R}) \times G$  is said to be *semi-parabolic* if  $f \neq I$  belongs to U up to conjugation.

## Proposition

If  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  is compact, then  $\Gamma$  does not contain semiparabolic elements.

**Proof**. The proof is based on the following lemma:

#### Lemma

If  $\Gamma$  contains a semi-parabolic element, then the geodesic flow on  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  has divergent positive semi-orbits.

## Proof sketch.

 $\exists (fuf^{-1}, g) \in \Gamma$  semi-parabolic  $\Rightarrow xD^+$  diverges for  $x = \Gamma(f, g')$ 

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality

# Proposition

# If $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ is compact, then

 $X \curvearrowleft B$  is minimal  $\Leftrightarrow \overline{p_2(\Gamma)} = G$ 

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality

## Proposition

# 

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

 $\square PSL(2, \mathbb{R})$ -minimality  $\Rightarrow B$ -minimality

## Proposition

# 



- Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 
  - $\square B$ -minimality  $\Rightarrow U$ -minimality
    - 1 Hedlund's Theorem
      - Description and statement
      - Proof

# **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality
- 3 The foliation point of view
  - Lie foliations
  - Martínez and Verjovsky's question
- 4 Some progress in the non-homogeneous case
  - A classical example
  - Foliations with 'topologically non-trivial' leaves

Dynamics of the horocycle flow  $\Box$  Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  $\Box B$ -minimality  $\Rightarrow U$ -minimality

**Proof**. Similar to the case where *G* is trivial:

■ 
$$\exists (f_n, g_n) \text{ in } H_{\mathcal{M}} = \{ h \in PSL(2, \mathbb{R}) \times G \mid \mathcal{M}h \cap \mathcal{M} \neq \emptyset \}$$
  
converging to  $(I, e)$ :

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Dynamics of the horocycle flow  $\Box$  Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  $\Box B$ -minimality  $\Rightarrow U$ -minimality

**Proof**. Similar to the case where *G* is trivial:

■  $\exists (f_n, g_n) \text{ in } H_{\mathcal{M}} = \{ h \in PSL(2, \mathbb{R}) \times G \mid \mathcal{M}h \cap \mathcal{M} \neq \emptyset \}$ converging to (I, e):

$$\overline{xU} = \overline{\Gamma(f,g)U} = \mathcal{M} \implies \exists \gamma_n = (\gamma_{1n}, \gamma_{2n}) \in \Gamma \exists u_n \in U :$$
$$(f_n, g_n) = (f^{-1}\gamma_{1n}fu_n, g^{-1}\gamma_{2n}g) \rightarrow (I, e)$$

Dynamics of the horocycle flow  $\Box$  Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  $\Box$  *B*-minimality  $\Rightarrow$  *U*-minimality

**Proof**. Similar to the case where *G* is trivial:

■  $\exists (f_n, g_n) \text{ in } H_{\mathcal{M}} = \{ h \in PSL(2, \mathbb{R}) \times G \mid \mathcal{M}h \cap \mathcal{M} \neq \emptyset \}$ converging to (I, e):

$$\overline{xU} = \overline{\Gamma(f,g)U} = \mathcal{M} \implies \exists \gamma_n = (\gamma_{1n}, \gamma_{2n}) \in \Gamma \exists u_n \in U :$$
$$(f_n, g_n) = (f^{-1}\gamma_{1n}fu_n, g^{-1}\gamma_{2n}g) \rightarrow (I, e)$$

• Bi-invariance of  $H_{\mathcal{M}}$ :

#### Lemma

 $H_{\mathcal{M}}$  is a closed U-bi-invariant subset of  $PSL(2,\mathbb{R}) \times G$ .

Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ 

-B-minimality  $\Rightarrow U$ -minimality

**Geometric consequence of the** Γ-cocompactness:

#### Lemma

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dynamics of the horocycle flow - Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ - B-minimality  $\Rightarrow$  U-minimality

**Geometric consequence of the** Γ-cocompactness:

#### Lemma

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

**Proof**. Since  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  is compact, there are no semi-parabolic elements in  $\Gamma$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Dynamics of the horocycle flow - Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ - B-minimality  $\Rightarrow$  U-minimality

**Geometric consequence of the** Γ-cocompactness:

#### Lemma

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

**Proof**. Since  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  is compact, there are no semi-parabolic elements in  $\Gamma$ .

• Using  $H_{\mathcal{M}}$  is U-bi-invariant and passing to the limit, we have:

$$(\begin{pmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}, e) \in H_{\mathcal{M}} \quad \Leftrightarrow \quad \mathcal{M}(\begin{smallmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{pmatrix}) \cap \mathcal{M} \neq \emptyset \quad \forall \alpha \in \mathbb{R}^*_+$$

Dynamics of the horocycle flow - Hedlund's Theorem for  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$ - B-minimality  $\rightarrow$  U-minimality

**Geometric consequence of the** Γ-cocompactness:

#### Lemma

There exists  $k \in \mathbb{N}$  such that  $f_n \notin B$  for  $n \geq k$ .

**Proof**. Since  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$  is compact, there are no semi-parabolic elements in  $\Gamma$ .

• Using  $H_{\mathcal{M}}$  is *U*-bi-invariant and passing to the limit, we have:  $\left(\begin{pmatrix} \alpha & 0\\ 0 & \alpha^{-1} \end{pmatrix}, e\right) \in H_{\mathcal{M}} \quad \Leftrightarrow \quad \mathcal{M}\left(\begin{smallmatrix} \alpha & 0\\ 0 & \alpha^{-1} \end{smallmatrix}\right) \cap \mathcal{M} \neq \emptyset \quad \forall \alpha \in \mathbb{R}_{+}^{*}$ 

By minimality, this implies

$$\mathcal{M}( \begin{smallmatrix} \alpha & 0 \\ 0 & \alpha^{-1} \end{smallmatrix}) = \mathcal{M} \qquad \forall \alpha \in \mathbb{R}^*_+.$$

## Hedlund's Theorem

- Description and statement
- Proof

# **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality

# 3 The foliation point of view

- Lie foliations
- Martínez and Verjovsky's question

# 4 Some progress in the non-homogeneous case

- A classical example
- Foliations with 'topologically non-trivial' leaves

# Remark

The two examples

$$PSL(2,\mathbb{R}) \longrightarrow PSL(2,\mathbb{R}) \times G \longrightarrow G = \begin{cases} PSL(2,\mathbb{R}) \\ \downarrow \pi \\ X = \Gamma \setminus PSL(2,\mathbb{R}) \times PSL(2,\mathbb{R}) \end{cases}$$

are G-Lie foliations.

◆□ > ◆□ > ◆ □ > ◆ □ > □ = のへで

In fact, X is the unitary tangent bundle of the G-Lie foliation

$$\mathbb{H} \longrightarrow PSL(2, \mathbb{R}) / PSO(2, \mathbb{R}) \times G \longrightarrow G = \begin{cases} PSL(2, \mathbb{R}) \\ SO(3) \end{cases}$$
$$\int_{\Gamma} M = \Gamma \setminus PSL(2, \mathbb{R}) / PSO(2, \mathbb{R}) \times PSL(2, \mathbb{R})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

according to Fedida's description

In fact, X is the unitary tangent bundle of the G-Lie foliation

$$\mathbb{H} \longrightarrow PSL(2, \mathbb{R}) / PSO(2, \mathbb{R}) \times G \longrightarrow G = \begin{cases} PSL(2, \mathbb{R}) \\ SO(3) \end{cases}$$
$$\pi$$
$$M = \Gamma \setminus PSL(2, \mathbb{R}) / PSO(2, \mathbb{R}) \times PSL(2, \mathbb{R})$$

according to Fedida's description with holonomy representation given by

$$h = p_2|_{\Gamma} : \Gamma \to p_2(\Gamma) \subset G$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Lie foliations

#### 1 Hedlund's Theorem

- Description and statement
- Proof

# **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality

# 3 The foliation point of view

- Lie foliations
- Martínez and Verjovsky's question

# 4 Some progress in the non-homogeneous case

- A classical example
- Foliations with 'topologically non-trivial' leaves

Lie foliations

## Definition

Let *H* be a connected Lie group with a epimorphism  $\rho: H \to G$  and let  $\Gamma$  be a cocompact discrete subgroup of *H*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Lie foliations

## Definition

Let *H* be a connected Lie group with a epimorphism  $\rho: H \to G$  and let  $\Gamma$  be a cocompact discrete subgroup of *H*. As before, we have a *G*-Lie foliation

$$K = Ker\rho \longrightarrow H \xrightarrow{\rho} G$$

$$\downarrow^{\pi} M = \Gamma \backslash H$$

Lie foliations

# Definition

Let *H* be a connected Lie group with a epimorphism  $\rho: H \to G$  and let  $\Gamma$  be a cocompact discrete subgroup of *H*. As before, we have a *G*-Lie foliation

$$K_0 \subset K = Ker\rho \longrightarrow H/K_0 \xrightarrow{\rho} G$$

$$\downarrow^{\pi}_{M} = \Gamma \backslash H/K_0$$

Lie foliations

## Definition

Let *H* be a connected Lie group with a epimorphism  $\rho: H \to G$  and let  $\Gamma$  be a cocompact discrete subgroup of *H*. As before, we have a *G*-Lie foliation

$$K_{0} \subset K = Ker\rho \longrightarrow H/K_{0} \xrightarrow{\rho} G$$

$$\downarrow^{\pi}_{M} = \Gamma \backslash H/K_{0}$$

A G-Lie foliation constructed by this method is called *homogeneous*.

Lie foliations

## Definition

Let *H* be a connected Lie group with a epimorphism  $\rho: H \to G$  and let  $\Gamma$  be a cocompact discrete subgroup of *H*. As before, we have a *G*-Lie foliation

$$K_{0} \subset K = Ker\rho \longrightarrow H/K_{0} \xrightarrow{\rho} G$$

$$\downarrow^{\pi}_{M} = \Gamma \backslash H/K_{0}$$

A G-Lie foliation constructed by this method is called *homogeneous*.

## Examples

There are non-homogeneous examples constructed by G. Hector, S. Matsumoto and G. Meigniez whose leaves are hyperbolic surfaces.

Lie foliations

## Proposition

Let  $\mathcal{F}$  be G-Lie foliation by hyperbolic surfaces of a compact connected manifold M, and let  $X = T^1 \mathcal{F}$  be its unitary tangent bundle.

Lie foliations

# Proposition

Let  $\mathcal{F}$  be G-Lie foliation by hyperbolic surfaces of a compact connected manifold M, and let  $X = T^1 \mathcal{F}$  be its unitary tangent bundle. Then  $\mathcal{F}$  is homogeneous  $\Leftrightarrow \quad \widetilde{X} \cong PSL(2,\mathbb{R}) \times G$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Lie foliations

## Proposition

Let  $\mathcal{F}$  be G-Lie foliation by hyperbolic surfaces of a compact connected manifold M, and let  $X = T^1 \mathcal{F}$  be its unitary tangent bundle. Then  $\mathcal{F}$  is homogeneous  $\Leftrightarrow \quad \widetilde{X} \cong PSL(2,\mathbb{R}) \times G$ 

**Proof**. Any semi-simple ideal in a Lie algebra is a direct summand.

Lie foliations

# Proposition

Let  $\mathcal{F}$  be G-Lie foliation by hyperbolic surfaces of a compact connected manifold M, and let  $X = T^1 \mathcal{F}$  be its unitary tangent bundle. Then  $\mathcal{F}$  is homogeneous  $\Leftrightarrow \quad \widetilde{X} \cong PSL(2,\mathbb{R}) \times G$ 

**Proof**. Any semi-simple ideal in a Lie algebra is a direct summand.

#### Theorem

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of a homogeneous *G*-Lie foliation  $\mathcal{F}$  by hyperbolic surfaces of a compact manifold. If  $\mathcal{F}$  is minimal, then  $X \curvearrowleft U$  is minimal.

Lie foliations

# Proposition

Let  $\mathcal{F}$  be G-Lie foliation by hyperbolic surfaces of a compact connected manifold M, and let  $X = T^1 \mathcal{F}$  be its unitary tangent bundle. Then  $\widetilde{X} \simeq \text{DCL}(2, \mathbb{R}) = C$ 

 $\mathcal{F}$  is homogeneous  $\Leftrightarrow \quad \widetilde{X} \cong PSL(2,\mathbb{R}) \times G$ 

**Proof**. Any semi-simple ideal in a Lie algebra is a direct summand.

#### Theorem

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of a homogeneous Riemannian foliation  $\mathcal{F}$  by hyperbolic surfaces of a compact manifold. If  $\mathcal{F}$  is minimal, then  $X \curvearrowleft U$  is minimal (by using Molino's theory).

The foliation point of view

Martínez and Verjovsky's question

#### 1 Hedlund's Theorem

- Description and statement
- Proof

# 2 Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality
- 3 The foliation point of view
  - Lie foliations
  - Martínez and Verjovsky's question

#### 4 Some progress in the non-homogeneous case

- A classical example
- Foliations with 'topologically non-trivial' leaves

└─ The foliation point of view

└─ Martínez and Verjovsky's question

Let M be a compact connected manifold, and let  $\mathcal{F}$  be a minimal foliation of M by hyperbolic surfaces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Martínez and Verjovsky's question

Let M be a compact connected manifold, and let  $\mathcal{F}$  be a minimal foliation of M by hyperbolic surfaces.

# Martínez and Verjovsky's question

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of  $\mathcal{F}$ . Is it true that  $X \curvearrowleft U$  is minimal?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

└─ Martínez and Verjovsky's question

Let M be a compact connected manifold, and let  $\mathcal{F}$  be a minimal foliation of M by hyperbolic surfaces.

# Martínez and Verjovsky's question

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of  $\mathcal{F}$ . Is it true that  $X \curvearrowleft U$  is minimal?

# Example

Let  $\Gamma$  be a cocompact Fuchsian group.

└─ Martínez and Verjovsky's question

Let M be a compact connected manifold, and let  $\mathcal{F}$  be a minimal foliation of M by hyperbolic surfaces.

# Martínez and Verjovsky's question

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of  $\mathcal{F}$ . Is it true that  $X \curvearrowleft U$  is minimal?

# Example

Let  $\Gamma$  be a cocompact Fuchsian group. Consider the diagonal action

 $\Gamma \curvearrowright \textit{PSL}(2,\mathbb{R}) \times \partial \mathbb{H}$ 

given by

$$\gamma(f,\xi) = (\gamma f, \gamma(\xi))$$

and the quotient  $X = \Gamma \setminus PSL(2, \mathbb{R}) \times \partial \mathbb{H}$ .

└─ The foliation point of view

└─ Martínez and Verjovsky's question

Then X is the unitary tangent bundle of the transversely homographic foliation  $\mathcal{F}$  induced by

$$\mathbb{H} \longrightarrow \mathbb{H} \times \partial \mathbb{H} \xrightarrow{p_2} \partial \mathbb{H}$$
$$\downarrow^{\pi}$$
$$M = \Gamma \backslash \mathbb{H} \times \partial \mathbb{H}$$

(日) (個) (E) (E) (E)

Martínez and Verjovsky's question

Then X is the unitary tangent bundle of the transversely homographic foliation  $\mathcal{F}$  induced by

$$\mathbb{H} \longrightarrow \mathbb{H} \times \partial \mathbb{H} \xrightarrow{\rho_2} \partial \mathbb{H}$$
$$\downarrow^{\pi}$$
$$M = \Gamma \backslash \mathbb{H} \times \partial \mathbb{H}$$

•  $X \curvearrowleft PSL(2, \mathbb{R})$  is minimal

Martínez and Verjovsky's question

Then X is the unitary tangent bundle of the transversely homographic foliation  $\mathcal{F}$  induced by

$$\mathbb{H} \longrightarrow \mathbb{H} \times \partial \mathbb{H} \xrightarrow{p_2} \partial \mathbb{H}$$
$$\downarrow^{\pi}_{M} = \Gamma \backslash \mathbb{H} \times \partial \mathbb{H}$$

•  $X \curvearrowleft PSL(2, \mathbb{R})$  is minimal  $\Leftrightarrow \Gamma \curvearrowright \partial \mathbb{H}$  is minimal

└─ Martínez and Verjovsky's question

Then X is the unitary tangent bundle of the transversely homographic foliation  $\mathcal{F}$  induced by

$$\mathbb{H} \longrightarrow \mathbb{H} \times \partial \mathbb{H} \xrightarrow{p_2} \partial \mathbb{H}$$
$$\downarrow^{\pi}_{M} = \Gamma \backslash \mathbb{H} \times \partial \mathbb{H}$$

•  $X \curvearrowleft PSL(2, \mathbb{R})$  is minimal  $\Leftrightarrow \Gamma \curvearrowright \partial \mathbb{H}$  is minimal

•  $X \curvearrowleft B$  is not minimal

└─ Martínez and Verjovsky's question

Then X is the unitary tangent bundle of the transversely homographic foliation  $\mathcal{F}$  induced by

$$\mathbb{H} \longrightarrow \mathbb{H} \times \partial \mathbb{H} \xrightarrow{p_2} \partial \mathbb{H}$$
$$\downarrow^{\pi}_{\mathcal{M}} = \Gamma \backslash \mathbb{H} \times \partial \mathbb{H}$$

•  $X \curvearrowleft PSL(2, \mathbb{R})$  is minimal  $\Leftrightarrow \Gamma \curvearrowright \partial \mathbb{H}$  is minimal

•  $X \curvearrowleft B$  is not minimal as dual to the diagonal action

 $\mathbb{H}6\times\mathbb{H}6 \curvearrowleft \mathbb{J}$ 

given by

$$\gamma(\xi_1,\xi_2)=(\gamma(\xi_1),\gamma(\xi_2))$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Martínez and Verjovsky's question

# Martínez and Verjovsky's question

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of  $\mathcal{F}$ . Is it true that  $X \curvearrowleft U$  is minimal if and only if  $X \curvearrowleft B$  is minimal?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

└─ Martínez and Verjovsky's question

# Martínez and Verjovsky's question

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of  $\mathcal{F}$ . Is it true that  $X \curvearrowleft U$  is minimal if and only if  $X \curvearrowleft B$  is minimal?

# Theorem (Martínez-Verjovsky)

Let  $(M, \mathcal{F})$  be a compact lamination by hyperbolic surfaces, and let  $X = T^1 \mathcal{F}$  its unitary tangent bundle. Assume that  $\mathcal{F}$  is minimal.

└─ Martínez and Verjovsky's question

# Martínez and Verjovsky's question

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of  $\mathcal{F}$ . Is it true that  $X \curvearrowleft U$  is minimal if and only if  $X \curvearrowleft B$  is minimal?

# Theorem (Martínez-Verjovsky)

Let  $(M, \mathcal{F})$  be a compact lamination by hyperbolic surfaces, and let  $X = T^1 \mathcal{F}$  its unitary tangent bundle. Assume that  $\mathcal{F}$  is minimal. Then  $X \curvearrowleft B$  is minimal if and only if  $\mathcal{F}$  is not defined by a continuous locally free B-action.

└─ Martínez and Verjovsky's question

# Martínez and Verjovsky's question

Let  $X = T^1 \mathcal{F}$  be the unitary tangent bundle of  $\mathcal{F}$ . Is it true that  $X \curvearrowleft U$  is minimal if and only if  $X \curvearrowleft B$  is minimal?

# Theorem (Martínez-Verjovsky)

Let  $(M, \mathcal{F})$  be a compact lamination by hyperbolic surfaces, and let  $X = T^1 \mathcal{F}$  its unitary tangent bundle. Assume that  $\mathcal{F}$  is minimal. Then  $X \curvearrowleft B$  is minimal if and only if  $\mathcal{F}$  is not defined by a continuous locally free B-action.



#### Hedlund's Theorem

- Description and statement
- Proof

# **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality

# 3 The foliation point of view

- Lie foliations
- Martínez and Verjovsky's question

# 4 Some progress in the non-homogeneous case

- A classical example
- Foliations with 'topologically non-trivial' leaves

- └─Some progress in the non-homogeneous case
  - └─A classical example

#### 1 Hedlund's Theorem

- Description and statement
- Proof

# 2 Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality

# 3 The foliation point of view

- Lie foliations
- Martínez and Verjovsky's question

# 4 Some progress in the non-homogeneous case

- A classical example
- Foliations with 'topologically non-trivial' leaves

A classical example

# Example

The Hirsch foliation  $\mathcal{F}$  is a codimension-one foliation by hyperbolic surfaces on a compact 3-manifold

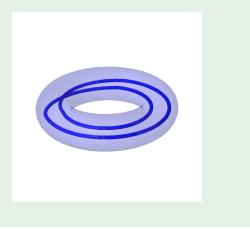
ヘロン 人間 とくほと くほとう

æ

A classical example

# Example

The Hirsch foliation  $\mathcal{F}$  is a codimension-one foliation by hyperbolic surfaces on a compact 3-manifold

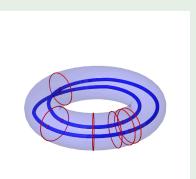


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

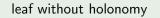
A classical example

# Example

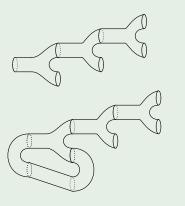
The Hirsch foliation  $\mathcal{F}$  is a codimension-one foliation by hyperbolic surfaces on a compact 3-manifold



A classical example



leaf with holonomy

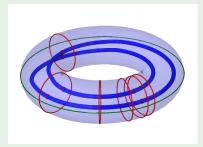


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

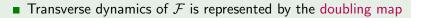
A classical example

# $\blacksquare$ Transverse dynamics of ${\mathcal F}$ is represented by the doubling map

$$f(x) = 2x \pmod{1}$$



- └─Some progress in the non-homogeneous case
  - A classical example

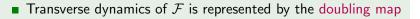


 $f(x) = 2x \pmod{1}$ 

 $\underset{\mathcal{F} \text{ is minimal}}{\Downarrow}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- └─Some progress in the non-homogeneous case
  - A classical example

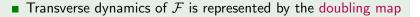


$$f(x) = 2x \pmod{1}$$

 $\Downarrow$   $\mathcal{F}$  is minimal

The leaves are neither homeomorphic to the plane nor to the cylinder

- └─Some progress in the non-homogeneous case
  - A classical example



$$f(x) = 2x \pmod{1}$$

# ${\cal F}$ is minimal

The leaves are neither homeomorphic to the plane nor to the cylinder

 $\Downarrow$  Martínez-Verjovsky theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$X = T^1 \mathcal{F} \curvearrowleft B$$
 is minimal

└─Some progress in the non-homogeneous case

A classical example

# Question

Is the unitary tangent bundle of the Hirsch foliation U-minimal?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- └─Some progress in the non-homogeneous case
  - A classical example

# Question

Is the unitary tangent bundle of the Hirsch foliation U-minimal?

| Answer |  |
|--------|--|
| Yes.   |  |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- └─Some progress in the non-homogeneous case
  - A classical example

# Question

Is the unitary tangent bundle of the Hirsch foliation U-minimal?

| Answer |  |
|--------|--|
| Yes.   |  |

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The proof depends on the following fact:

- └─ Some progress in the non-homogeneous case
  - A classical example

#### Question

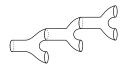
Is the unitary tangent bundle of the Hirsch foliation U-minimal?

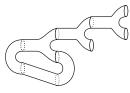
| Answer |  |
|--------|--|
| Yes.   |  |

# The proof depends on the following fact:

# Remark [S. Matsumoto]

The horocyclic flow on each leaf of  $\mathcal{F}$  has no minimal sets.





- Some progress in the non-homogeneous case
  - Foliations with 'topologically non-trivial' leaves

#### 1 Hedlund's Theorem

- Description and statement
- Proof

# **2** Hedlund's Theorem for $X = \Gamma \setminus PSL(2, \mathbb{R}) \times G$

- $PSL(2, \mathbb{R})$ -minimality and *B*-minimality
- $PSL(2, \mathbb{R})$ -minimality  $\Rightarrow$  *B*-minimality
- *B*-minimality  $\Rightarrow$  *U*-minimality

# 3 The foliation point of view

- Lie foliations
- Martínez and Verjovsky's question

# Some progress in the non-homogeneous case A classical example

Foliations with 'topologically non-trivial' leaves

Foliations with 'topologically non-trivial' leaves

# Theorem (A.-Dal'Bo-Martínez-Verjovsky)

Let  $(M, \mathcal{F})$  be a minimal compact lamination by hyperbolic surfaces. If  $\mathcal{F}$  admits a leaf without holonomy which is neither homeomorphic to the plane nor to the cylinder, then the horocycle flow on the unitary tangent bundle  $X = T^1 \mathcal{F}$  is minimal.

Foliations with 'topologically non-trivial' leaves

# Theorem (A.-Dal'Bo-Martínez-Verjovsky)

Let  $(M, \mathcal{F})$  be a minimal compact lamination by hyperbolic surfaces. If  $\mathcal{F}$  admits a leaf whose holonomy covering is neither homeomorphic to the plane nor to the cylinder, then the horocycle flow on the unitary tangent bundle  $X = T^1 \mathcal{F}$  is minimal.

Foliations with 'topologically non-trivial' leaves

# Theorem (A.-Dal'Bo-Martínez-Verjovsky)

Let  $(M, \mathcal{F})$  be a minimal compact lamination by hyperbolic surfaces. If  $\mathcal{F}$  admits a leaf whose holonomy covering is neither homeomorphic to the plane nor to the cylinder, then the horocycle flow on the unitary tangent bundle  $X = T^1 \mathcal{F}$  is minimal.

#### Corollary

For the non-homogeneous Lie foliations constructed by G. Hector, S. Matsumoto and G. Meigniez, the horocycle flow is minimal.

Foliations with 'topologically non-trivial' leaves

# Proof skecht. Before we start, we need the following definition:

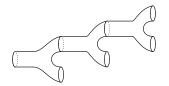
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Foliations with 'topologically non-trivial' leaves

Proof skecht. Before we start, we need the following definition:

# Definition

Consider a complete hyperbolic surface  $L = \Gamma \setminus \mathbb{H}$  which can be partitioned into countably many pair of pants (*pants decomposition*) whose boundary components have uniformly bounded lengths (*good pants decomposition*). Its fundamental group  $\Gamma$  (which is purely hyperbolic of the first kind) is called *tight* by S. Matsumoto.



Foliations with 'topologically non-trivial' leaves

**First Step**: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy  $L = \Gamma \setminus \mathbb{H}$  which is neither homeomorphic to the plane nor to the cylinder

Foliations with 'topologically non-trivial' leaves

**First Step**: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy  $L = \Gamma \setminus \mathbb{H}$  which is neither homeomorphic to the plane nor to the cylinder ( $\Leftrightarrow$  its fundamental group is neither cyclic nor trivial)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Foliations with 'topologically non-trivial' leaves

**First Step**: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy  $L = \Gamma \setminus \mathbb{H}$  which is neither homeomorphic to the plane nor to the cylinder ( $\Leftrightarrow$  its fundamental group is neither cyclic nor trivial)

the second seco

Foliations with 'topologically non-trivial' leaves

**First Step**: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy  $L = \Gamma \setminus \mathbb{H}$  which is neither homeomorphic to the plane nor to the cylinder ( $\Leftrightarrow$  its fundamental group is neither cyclic nor trivial)

# the second seco

 $\Downarrow$  *L* without holonomy and *F* minimal

L contains countable many pairs of pants  $P_n$  approaching every end

Foliations with 'topologically non-trivial' leaves

**First Step**: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy  $L = \Gamma \setminus \mathbb{H}$  which is neither homeomorphic to the plane nor to the cylinder ( $\Leftrightarrow$  its fundamental group is neither cyclic nor trivial)

# I contains a pair of pants

 $\Downarrow$  *L* without holonomy and *F* minimal

*L* contains countable many pairs of pants  $P_n$  approaching every end

 $\Downarrow$  *L* is quasi-isometric to  $\bigcup_n P_n$ 

L has a good pants decomposition

Foliations with 'topologically non-trivial' leaves

**First Step**: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy  $L = \Gamma \setminus \mathbb{H}$  which is neither homeomorphic to the plane nor to the cylinder ( $\Leftrightarrow$  its fundamental group is neither cyclic nor trivial)

# L contains a pair of pants

 $\Downarrow$  *L* without holonomy and *F* minimal

*L* contains countable many pairs of pants  $P_n$  approaching every end  $\Downarrow L$  is guasi-isometric to  $\bigcup_n P_n$ 

*L* has a good pants decomposition ( $\Leftrightarrow \Gamma$  is tight)

Foliations with 'topologically non-trivial' leaves

**First Step**: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy  $L = \Gamma \setminus \mathbb{H}$  which is neither homeomorphic to the plane nor to the cylinder ( $\Leftrightarrow$  its fundamental group is neither cyclic nor trivial)

# I contains a pair of pants

 $\Downarrow$  *L* without holonomy and *F* minimal

- ロ ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 回 ト - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4 □ - 4

*L* contains countable many pairs of pants  $P_n$  approaching every end  $\downarrow L$  is guasi-isometric to  $\bigcup_n P_n$ 

Any leaf has a good pants decomposition

Foliations with 'topologically non-trivial' leaves

**Second step**: Finding sufficient conditions for the *U*-minimality.

Some progress in the non-homogeneous case

Foliations with 'topologically non-trivial' leaves

## **Second step**: Finding sufficient conditions for the *U*-minimality.

#### Proposition

Let  $(M, \mathcal{F})$  be a minimal compact lamination such that

Foliations with 'topologically non-trivial' leaves

**Second step**: Finding sufficient conditions for the *U*-minimality.

## Proposition

Let  $(M, \mathcal{F})$  be a minimal compact lamination such that

i) the affine action  $X = T^1 \mathcal{F} \curvearrowleft B$  is minimal,

Foliations with 'topologically non-trivial' leaves

**Second step**: Finding sufficient conditions for the *U*-minimality.

#### Proposition

Let  $(M, \mathcal{F})$  be a minimal compact lamination such that

i) the affine action  $X = T^1 \mathcal{F} \curvearrowleft B$  is minimal,

ii) the horocycle flow is transitive, i.e.  $\exists x \in X$  such that  $\overline{xU} = X$ .

Foliations with 'topologically non-trivial' leaves

**Second step**: Finding sufficient conditions for the *U*-minimality.

#### Proposition

Let  $(M, \mathcal{F})$  be a minimal compact lamination such that

i) the affine action  $X = T^1 \mathcal{F} \curvearrowleft B$  is minimal,

ii) the horocycle flow is transitive, i.e.  $\exists x \in X$  such that  $\overline{xU} = X$ .

Let  $\mathcal{M} \neq \emptyset$  be a U-minimal set in  $T^1\mathcal{F}$ .

Foliations with 'topologically non-trivial' leaves

**Second step**: Finding sufficient conditions for the *U*-minimality.

#### Proposition

Let  $(M, \mathcal{F})$  be a minimal compact lamination such that

i) the affine action  $X = T^1 \mathcal{F} \curvearrowleft B$  is minimal,

ii) the horocycle flow is transitive, i.e.  $\exists x \in X$  such that  $\overline{xU} = X$ .

Let  $\mathcal{M} \neq \emptyset$  be a U-minimal set in  $T^1\mathcal{F}$ . If there is a real number  $t_0 > 0$  such that  $g_{t_0}(\mathcal{M}) = \mathcal{M}$ , then  $\mathcal{M} = X$ .

▶ Proof

Foliations with 'topologically non-trivial' leaves

## • Condition (i): All the leaves are 'topologically non-trivial'

↓ Martínez-Verjovsky theorem

 $X = T^1 \mathcal{F} \curvearrowleft B$  is minimal

Foliations with 'topologically non-trivial' leaves

**Condition (i)**: All the leaves are 'topologically non-trivial'

 $\Downarrow$  Martínez-Verjovsky theorem

$$X = T^1 \mathcal{F} \curvearrowleft B$$
 is minimal

■ **Condition (ii)**: Since *F* is minimal, it is enough to prove the horocycle flow is transitive in restriction to some leaf *L*.

Foliations with 'topologically non-trivial' leaves

Condition (i): All the leaves are 'topologically non-trivial'

 $\Downarrow$  Martínez-Verjovsky theorem

$$X = T^1 \mathcal{F} \curvearrowleft B$$
 is minimal

■ **Condition (ii)**: Since *F* is minimal, it is enough to prove the horocycle flow is transitive in restriction to every leaf *L*.

#### Aim

If *L* has a good pants decomposition, then for every  $x \in T^1L$ , either  $\overline{xU} = T^1L$  or there is a real number  $t_0 > 0$  such that  $g_{t_0}(x) \in \overline{xU}$  (so any proper *U*-minimal set  $\mathcal{M} \neq \emptyset$  in  $T^1L$  verifies  $g_{t_0}(\mathcal{M}) = \mathcal{M}$ ).

Foliations with 'topologically non-trivial' leaves

## **Third Step**: Using Matsumoto's idea to prove *U*-minimality.

Foliations with 'topologically non-trivial' leaves

# **Third Step**: Using Matsumoto's idea to prove U-minimality.

#### Fundamental lemma

Let  $L = \Gamma \backslash \mathbb{H}$  be a non-compact hyperbolic surface. Assume there are sequences of

• closed geodesics  $C_n$  with uniformly bounded lengths

• real numbers  $t_n \to +\infty$  such that

$$g_{t_n}(x) \in C_n$$

for some  $x \in T^1L$ . Then there is a real number  $t_0 > 0$  such that

$$g_{t_0}(x) \in \overline{xU}.$$

Foliations with 'topologically non-trivial' leaves

### Proposition

Assume L has a good pants decomposition. Then, for any tangent vector  $x \in T^1L$ , either  $\overline{xU} = T^1L$  or there is a real number  $t_0 > 0$  such that  $g_{t_0}(x) \in \overline{xU}$ .

Foliations with 'topologically non-trivial' leaves

#### Proposition

Assume L has a good pants decomposition. Then, for any tangent vector  $x \in T^1L$ , either  $\overline{xU} = T^1L$  or there is a real number  $t_0 > 0$  such that  $g_{t_0}(x) \in \overline{xU}$ . In particular, if  $\mathcal{M} \neq \emptyset$  is a proper U-minimal set in in  $T^1L$ , then  $g_{t_0}(\mathcal{M}) = \mathcal{M}$  for some  $t_0 > 0$ .

Foliations with 'topologically non-trivial' leaves

#### Proposition

Assume L has a good pants decomposition. Then, for any tangent vector  $x \in T^1L$ , either  $\overline{xU} = T^1L$  or there is a real number  $t_0 > 0$  such that  $g_{t_0}(x) \in \overline{xU}$ . In particular, if  $\mathcal{M} \neq \emptyset$  is a proper U-minimal set in in  $T^1L$ , then  $g_{t_0}(\mathcal{M}) = \mathcal{M}$  for some  $t_0 > 0$ .

Using the duality between the U-action and the linear  $\Gamma$ -action and the classification of the limit points of  $\Gamma$ , we can deduce:

#### Theorem (S. Matsumoto)

For any hyperbolic surface with a good pants decomposition, the horocycle flow has no minimal sets.



Some progress in the non-homogeneous case

Foliations with 'topologically non-trivial' leaves

### Theorem (A.-Dal'Bo-Martínez-Verjovsky)

Let  $(M, \mathcal{F})$  be a minimal compact lamination by hyperbolic surfaces. If  $\mathcal{F}$  admits a leaf without holonomy which is neither homeomorphic to the plane nor to the cylinder, then the horocycle flow on the unitary tangent bundle  $X = T^1 \mathcal{F}$  is minimal.

Some progress in the non-homogeneous case

Foliations with 'topologically non-trivial' leaves

### Theorem (A.-Dal'Bo-Martínez-Verjovsky)

Let  $(M, \mathcal{F})$  be a minimal compact lamination by hyperbolic surfaces. If  $\mathcal{F}$  admits a leaf whose holonomy covering is neither homeomorphic to the plane nor to the cylinder, then the horocycle flow on the unitary tangent bundle  $X = T^1 \mathcal{F}$  is minimal.

Some progress in the non-homogeneous case

Foliations with 'topologically non-trivial' leaves

# GRACIAS

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Foliations with 'topologically non-trivial' leaves

## Proof ('if' part). It is enough to show that

 $\Delta = p_1(\Gamma) \curvearrowright \partial \mathbb{H}$ 

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is minimal. We distinguish three cases:

Foliations with 'topologically non-trivial' leaves

# Proof ('if' part). It is enough to show that

 $\Delta = p_1(\Gamma) \curvearrowright \partial \mathbb{H}$ 

is minimal. We distinguish three cases:

• If  $\Delta = p_1(\Gamma)$  is discrete, then

 $X \text{ compact } \Rightarrow \Delta ackslash \mathbb{H} \text{ compact}$ 

and therefore

Foliations with 'topologically non-trivial' leaves

# Proof ('if' part). It is enough to show that

 $\Delta = p_1(\Gamma) \curvearrowright \partial \mathbb{H}$ 

is minimal. We distinguish three cases:

• If  $\Delta = p_1(\Gamma)$  is discrete, then

 $X \text{ compact } \Rightarrow \Delta ackslash \mathbb{H} \text{ compact}$ 

and therefore

 $-\Delta$  is non-elementary  $\Rightarrow \Delta \curvearrowright \Lambda(\Delta)$  is minimal.

Foliations with 'topologically non-trivial' leaves

# Proof ('if' part). It is enough to show that

 $\Delta = p_1(\Gamma) \curvearrowright \partial \mathbb{H}$ 

is minimal. We distinguish three cases:

• If  $\Delta = p_1(\Gamma)$  is discrete, then

 $X \text{ compact } \Rightarrow \Delta ackslash \mathbb{H} \text{ compact}$ 

and therefore

- $-\Delta$  is non-elementary  $\Rightarrow \Delta \curvearrowright \Lambda(\Delta)$  is minimal.
- $-\Delta$  is cocompact  $\Rightarrow \Lambda(\Delta) = \partial \mathbb{H}$ .

Foliations with 'topologically non-trivial' leaves

# Proof ('if' part). It is enough to show that

 $\Delta = p_1(\Gamma) \frown \partial \mathbb{H}$ 

is minimal. We distinguish three cases:

• If  $\Delta = p_1(\Gamma)$  is discrete, then

 $X \text{ compact } \Rightarrow \Delta ackslash \mathbb{H} \text{ compact}$ 

and therefore

- $-\Delta$  is non-elementary  $\Rightarrow \Delta \curvearrowright \Lambda(\Delta)$  is minimal.
- $-\Delta$  is cocompact  $\Rightarrow \Lambda(\Delta) = \partial \mathbb{H}$ .
- If Δ = p<sub>1</sub>(Γ) is non-discrete dense, then Δ ¬ Λ(Δ) = ∂H is minimal again.

Foliations with 'topologically non-trivial' leaves

• If  $\Delta$  is neither discrete nor dense, then there is  $f \in PSL(2,\mathbb{R})$  such that

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\Delta \subset fPSO(2,\mathbb{R})f^{-1}$$
 or  $\Delta \subset fBf^{-1}$ 

Foliations with 'topologically non-trivial' leaves

• If  $\Delta$  is neither discrete nor dense, then there is  $f \in PSL(2,\mathbb{R})$  such that

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\Delta \subset fPSO(2,\mathbb{R})f^{-1}$  or  $\Delta \subset fBf^{-1}$  $\Downarrow$  X is not compact

Foliations with 'topologically non-trivial' leaves

• If  $\Delta$  is neither discrete nor dense, then there is  $f \in PSL(2,\mathbb{R})$  such that

$$\Delta \subset fPSO(2,\mathbb{R})f^{-1}$$
 or  $\Delta \subset fBf^{-1}$ 

 $\Delta$  has no parabolic elements  $~\Downarrow$ 

 $\Delta$  is abelian,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Foliations with 'topologically non-trivial' leaves

• If  $\Delta$  is neither discrete nor dense, then there is  $f \in PSL(2,\mathbb{R})$  such that

$$\Delta \subset fPSO(2,\mathbb{R})f^{-1}$$
 or  $\Delta \subset fBf^{-1}$ 

 $\Gamma$  has no semi-parabolic elements  $\Downarrow$ 

 $\Delta$  is abelian,

Foliations with 'topologically non-trivial' leaves

• If  $\Delta$  is neither discrete nor dense, then there is  $f \in PSL(2,\mathbb{R})$  such that

$$\Delta \subset fPSO(2,\mathbb{R})f^{-1}$$
 or  $\Delta \subset fBf^{-1}$ 

 $\Gamma$  has no semi-parabolic elements  $\Downarrow$ 

 $\Delta$  is abelian,

(日) (日) (日) (日) (日) (日) (日) (日)

which also contradicts the compactness of X.

Back

Foliations with 'topologically non-trivial' leaves

# Proof sketch. The proof is based on the two following lemmas:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Foliations with 'topologically non-trivial' leaves

**Proof sketch**. The proof is based on the two following lemmas:

#### Lemma

The leaves of  $\mathcal{F}$  are the orbits of a continuous locally free B-action if and only if there is a B-minimal set  $\mathcal{M}$  in X such that

$$|T_y^1\mathcal{F}\cap\mathcal{M}|{=}1\qquadorall x\in\mathcal{M}\,,$$

where  $y = \pi(x)$  is the image of x by the projection  $\pi: X \to M$ .

Foliations with 'topologically non-trivial' leaves

**Proof sketch**. The proof is based on the two following lemmas:

#### Lemma

The leaves of  $\mathcal{F}$  are the orbits of a continuous locally free B-action if and only if there is a B-minimal set  $\mathcal{M}$  in X such that

 $|T_y^1\mathcal{F}\cap\mathcal{M}|{=}1\qquadorall x\in\mathcal{M}\,,$ 

where  $y = \pi(x)$  is the image of x by the projection  $\pi: X \to M$ .

#### Lemma

Let  $\mathcal{M}$  be a B-minimal set of X. If

 $|T_y^1\mathcal{F}\cap\mathcal{M}|\geq 2$   $\forall x\in\mathcal{M},$ 

then  $\mathcal{M} = X$ , namely  $X \curvearrowleft B$  is minimal.

Foliations with 'topologically non-trivial' leaves

**Proof sketch**. The proof is based on the two following lemmas:

#### Lemma

The leaves of  $\mathcal{F}$  are the orbits of a continuous locally free B-action if and only if there is a B-minimal set  $\mathcal{M}$  in X such that

 $|T_y^1\mathcal{F}\cap\mathcal{M}|{=}1\qquadorall x\in\mathcal{M}\,,$ 

where  $y = \pi(x)$  is the image of x by the projection  $\pi: X \to M$ .

#### Lemma

Let  $\mathcal{M}$  be a B-minimal set of X. If

$$|T_y^1\mathcal{F}\cap\mathcal{M}|\geq 2 \qquad orall x\in\mathcal{M}\,,$$

then  $\mathcal{M} = X$ , namely  $X \curvearrowleft B$  is minimal.



Foliations with 'topologically non-trivial' leaves

# Proof.

If  $\mathcal{M} \neq X$ , then  $C = \{t \in \mathbb{R} | g_t(\mathcal{M}) = \mathcal{M}\}$  is a discrete subgroup of  $\mathbb{R}$ , so trivial or cyclic.

Foliations with 'topologically non-trivial' leaves

# Proof.

- If  $\mathcal{M} \neq X$ , then  $C = \{t \in \mathbb{R} | g_t(\mathcal{M}) = \mathcal{M}\}$  is a discrete subgroup of  $\mathbb{R}$ , so trivial or cyclic.
- By hypothesis, C is cyclic and hence the B-invariant set

$$\mathcal{M}D = \bigcup_{t \in \mathbb{R}} g_t(\mathcal{M}) = \bigcup_{t \in [0, t_0]} g_t(\mathcal{M})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

is closed.

Foliations with 'topologically non-trivial' leaves

# Proof.

- If  $\mathcal{M} \neq X$ , then  $C = \{t \in \mathbb{R} | g_t(\mathcal{M}) = \mathcal{M}\}$  is a discrete subgroup of  $\mathbb{R}$ , so trivial or cyclic.
- By hypothesis, C is cyclic and hence the B-invariant set

$$\mathcal{M}D = \bigcup_{t \in \mathbb{R}} g_t(\mathcal{M}) = \bigcup_{t \in [0, t_0]} g_t(\mathcal{M})$$

is closed. Then

 $\mathcal{M}D = X$ 

by *B*-minimality.

Foliations with 'topologically non-trivial' leaves

# Proof.

- If  $\mathcal{M} \neq X$ , then  $C = \{t \in \mathbb{R} | g_t(\mathcal{M}) = \mathcal{M}\}$  is a discrete subgroup of  $\mathbb{R}$ , so trivial or cyclic.
- By hypothesis, C is cyclic and hence the B-invariant set

$$\mathcal{M}D = \bigcup_{t \in \mathbb{R}} g_t(\mathcal{M}) = \bigcup_{t \in [0, t_0]} g_t(\mathcal{M})$$

is closed. Then

$$\mathcal{M}D = X$$

by *B*-minimality.

• There is  $t \in [0, t_0]$  such that  $g_t(x) \in \mathcal{M}$ .

Foliations with 'topologically non-trivial' leaves

# Proof.

- If  $\mathcal{M} \neq X$ , then  $C = \{t \in \mathbb{R} | g_t(\mathcal{M}) = \mathcal{M}\}$  is a discrete subgroup of  $\mathbb{R}$ , so trivial or cyclic.
- By hypothesis, C is cyclic and hence the B-invariant set

$$\mathcal{M}D = \bigcup_{t \in \mathbb{R}} g_t(\mathcal{M}) = \bigcup_{t \in [0, t_0]} g_t(\mathcal{M})$$

is closed. Then

$$\mathcal{M}D = X$$

by *B*-minimality.

• There is  $t \in [0, t_0]$  such that  $g_t(x) \in \mathcal{M}$ . Since  $g_t(xU) = g_t(x)U$  and  $\mathcal{M}$  is U-invariant,  $g_t(\overline{xU}) \subset \mathcal{M}$  and therefore  $X = \mathcal{M}$ .

▶ Back

Foliations with 'topologically non-trivial' leaves

#### The horocycle flow is dual to the linear action

$$\Gamma \curvearrowright PSL(2,\mathbb{R})/U = \mathbb{R}^2 - \{0\}/\{\pm I\} = E$$

(ロ)、(型)、(E)、(E)、 E) の(の)

-Foliations with 'topologically non-trivial' leaves

# The horocycle flow is dual to the linear action

$$\Gamma \curvearrowright PSL(2,\mathbb{R})/U = \mathbb{R}^2 - \{0\}/\{\pm I\} = E$$

#### Definition

Let  $\Gamma$  be a non-elementary Fuchsian group. A limit point  $\xi \in \Lambda(\Gamma)$  is said to be *horocyclic* if any horodisc centered at  $\xi$  contains points of the orbit  $\Gamma z$  for any  $z \in \mathbb{H}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

-Foliations with 'topologically non-trivial' leaves

# The horocycle flow is dual to the linear action

$$\Gamma \curvearrowright PSL(2,\mathbb{R})/U = \mathbb{R}^2 - \{0\}/\{\pm I\} = E$$

#### Definition

Let  $\Gamma$  be a non-elementary Fuchsian group of the first kind. A point  $\xi \in \partial \mathbb{H}$  is said to be *horocyclic* if any horodisc centered at  $\xi$  contains points of the orbit  $\Gamma z$  for any  $z \in \mathbb{H}$ .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Foliations with 'topologically non-trivial' leaves

## The horocycle flow is dual to the linear action

$$\Gamma \curvearrowright PSL(2,\mathbb{R})/U = \mathbb{R}^2 - \{0\}/\{\pm I\} = E$$

#### Definition

Let  $\Gamma$  be a non-elementary Fuchsian group of the first kind. A point  $\xi \in \partial \mathbb{H}$  is said to be *horocyclic* if any horodisc centered at  $\xi$  contains points of the orbit  $\Gamma z$  for any  $z \in \mathbb{H}$ .

#### Theorem

For each  $v \in T^1 \mathbb{H}$ , the following conditions are equivalent:

- i) the point  $\xi = v(+\infty)$  is horocyclic,
- ii) the horocycle orbit of the projected point  $x \in T^1L$  is dense,
- iii) 0 belongs to  $\overline{\Gamma v}$  where v is the element of E corresponding to the horocycle passing through v.

Foliations with 'topologically non-trivial' leaves

# Proof.

• From the previous theorem, any proper *U*-minimal set  $\mathcal{M} \neq \emptyset$  in  $\mathcal{T}^1 \mathcal{L}$  contains a horocycle centered at non-horocyclic limit point  $\xi$  of  $\Gamma$ .

Foliations with 'topologically non-trivial' leaves

# Proof.

- From the previous theorem, any proper *U*-minimal set  $\mathcal{M} \neq \emptyset$ in  $\mathcal{T}^1 \mathcal{L}$  contains a horocycle centered at non-horocyclic limit point  $\xi$  of  $\Gamma$ .
- According to the proposition, for any point x in this horocycle, there is  $t_0 > 0$  such that  $g_{t_0}(x) \in \overline{xU} = \mathcal{M}$ .

Foliations with 'topologically non-trivial' leaves

# Proof.

- From the previous theorem, any proper *U*-minimal set  $\mathcal{M} \neq \emptyset$ in  $\mathcal{T}^1 \mathcal{L}$  contains a horocycle centered at non-horocyclic limit point  $\xi$  of  $\Gamma$ .
- According to the proposition, for any point x in this horocycle, there is  $t_0 > 0$  such that  $g_{t_0}(x) \in \overline{xU} = \mathcal{M}$ .
- By duality, we deduce that

$$e^{t_0/2}(\overline{\Gamma \upsilon}) = \overline{\Gamma \upsilon}$$

- Foliations with 'topologically non-trivial' leaves

# Proof.

- From the previous theorem, any proper *U*-minimal set  $\mathcal{M} \neq \emptyset$ in  $\mathcal{T}^1 \mathcal{L}$  contains a horocycle centered at non-horocyclic limit point  $\xi$  of  $\Gamma$ .
- According to the proposition, for any point x in this horocycle, there is  $t_0 > 0$  such that  $g_{t_0}(x) \in \overline{xU} = \mathcal{M}$ .
- By duality, we deduce that

$$e^{t_0/2}(\overline{\Gamma \upsilon}) = \overline{\Gamma \upsilon}$$

and therefore  $0 \in \overline{Fv}$ , which contradits the assumption that  $\xi$ , is non-horocyclic.

▶ Back