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Dynamics of the horocycle flow

Aim: Study of the dynamics of the horocycle flow on compact lami-
nated spaces by hyperbolic surfaces, which was initiated by Matilde
Mart́ınez and Alberto Verjovsky.

Hedlund’s Theorem

on the minimality of the horocycle flow
on the unitary tangent bundle X = Γ\PSL(2,R) of a compact
hyperbolic surface S = Γ\H.

Hedlund’s Theorem for X = Γ\PSL(2,R) × G

where G is a
connected Lie group and Γ is a cocompact discrete subgroup of
PSL(2,R)× G .

ELEMENTARY PROOF

The foliation point of view

- the homogeneous case.

Some progress in the non-homogeneous case
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Dynamics of the horocycle flow

Hedlund’s Theorem

Description and statement

1 Hedlund’s Theorem
Description and statement
Proof

2 Hedlund’s Theorem for X = Γ\PSL(2,R)× G
PSL(2,R)-minimality and B-minimality
PSL(2,R)-minimality ⇒ B-minimality
B-minimality ⇒ U-minimality

3 The foliation point of view
Lie foliations
Mart́ınez and Verjovsky’s question

4 Some progress in the non-homogeneous case
A classical example
Foliations with ’topologically non-trivial’ leaves



Dynamics of the horocycle flow

Hedlund’s Theorem

Description and statement

Hyperbolic surface S = Γ\H

− H = { z ∈ C | Im(z) > 0 }

with the Riemannian metric

ds2 =
|dz |2

Im(z)2
.

− Γ cocompact discrete (torsion-free) subgroup of

PSL(2,R) = { f (z) =
az + b

cz + d
| a, b, c , d ∈ R, ad − bc = 1 }.
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Dynamics of the horocycle flow

Hedlund’s Theorem

Description and statement

Unitary tangent bundle T 1S = Γ\T 1H = Γ\PSL(2,R)

PSL(2,R) y T 1H is free and transitive

z

~v

f (z)

f∗z(~v)
f



Dynamics of the horocycle flow

Hedlund’s Theorem

Description and statement

Geodesic flow:

z = γ(0)

~v = γ̇(0)
γ(t)

γ̇(t)

gt(v) = (γ(t), γ̇(t))

Γ\PSL(2,R) x D = { (
λ 0

0 1
λ

) | λ>0 }

gt(Γ(
a b

c d
)) = Γ(

a b

c d
)(

et/2 0

0 e−t/2 )

right action of the diagonal group D

Horocycle flow:

z = h(0) ~v h(s)~v ′

hs(v) = (h(s),~v ′)

Γ\PSL(2,R) x U = { (
1 s

0 1
) | s∈R }

hs(Γ(
a b

c d
)) = Γ(

a b

c d
)(

1 s

0 1
)

right action of the unipotent group U
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Dynamics of the horocycle flow

Hedlund’s Theorem

Description and statement

Affine action: Γ\PSL(2,R) x B = DU = affine group

gt◦hs = h−set ◦gt

Theorem (Hedlund, 1936)

Let S = Γ\H be a compact hyperbolic surface. Then the U-action

X = T 1S = Γ\PSL(2,R) x U

is minimal (with dense orbits).
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Hedlund’s Theorem

Proof

First Step: B-action is minimal

X = Γ\PSL(2,R) x B is minimal

m duality

Γ y PSL(2,R)/B = ∂H is minimal

- Γ non-elementary ⇒ Γ y Λ(Γ) minimal.

- Γ cocompact ⇒ Λ(Γ) = ∂H.
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Dynamics of the horocycle flow

Hedlund’s Theorem

Proof

Second step: B-action is minimal ⇒ U-action is minimal

X compact⇒ ∃M 6= ∅ minimal closed U-invariant (U-minimal
for short) subset of X .

Aim

M is B-invariant + X x B minimal ⇒M = X .

Consider x = Γ f ∈M represented by f ∈ PSL(2,R) so that

xU = Γ fU =Mm
∃γn ∈ Γ ∃ un = (

1 tn
0 1

) with tn → +∞ such that

fn =: f −1γnfun → I
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Hedlund’s Theorem

Proof

Thus, we have:

x ∈M and xfn = Γγnfun = Γ fun = xun ∈ xU ⊂M

m
fn ∈ HM =: {f ′ ∈ PSL(2,R) |Mf ′ ∩M 6= ∅ }

Lemma

HM is a closed U-bi-invariant subset of PSL(2,R).
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Hedlund’s Theorem

Proof

Lemma

There exists k ∈ N such that fn /∈ B for n ≥ k.

Proof. Assume on the contrary that for all k ∈ N, there exists
nk ≥ k such that

fnk ∈ B

⇔

f −1γnk f = fnk u−1
nk
∈ B

⇔

γnk ∈ Γ ∩ fBf −1

⇒

[γnk , γnk ′ ] ∈ Γ ∩ fUf −1 ∀ k , k ′ ∈ N.⇓ Γ has no parabolic elements

[γnk , γnk ′ ] = I ∀ k , k ′ ∈ N.
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Hedlund’s Theorem

Proof

⇓
f −1γnk f = u

(
λnk 0
0 λ−1

nk

)
u−1 with u ∈ U and λnk →∞

⇓
fnk = f −1γnk funk = u

(
λnk 0
0 λ−1

nk

)
u−1unk

→ I

⇓
fnk (e1) = (λnk , 0)→ e1 = (1, 0),

which is not possible.
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Hedlund’s Theorem

Proof

Put

fn =

(
an bn

cn dn

)

/∈ B ⇔ cn 6= 0

For every α ∈ R∗+, take

u ′n =

(
1 α−an

cn
0 1

)
u ′′n =

(
1 − 1

α(bn + dn
α−an
cn

)

0 1

)
in U so that

u ′nfnu ′′n =

(
α 0
cn α−1

)
∈ HM

⇓ cn → 0(
α 0
0 α−1

)
∈ HM
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Let S = Γ\H be a compact hyperbolic surface. Then the
U-action X = T 1S = Γ\PSL(2,R) x U is minimal.
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Theorem (A.-Dal’Bo)

Let G be a connected Lie group. Let X = Γ\PSL(2,R)× G be the
quotient of the Lie group PSL(2,R)× G by a cocompact discrete
subgroup Γ .

Then

X x U is minimalm
X x PSL(2,R) is minimalm

Γ y G is minimalm
p2(Γ) = G .

PSL(2,R) p1←− PSL(2,R)× G
p2−→ G
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A. Borel: ∃ Γ ⊂ PSL(2,R)×PSL(2,R) cocompact discrete

⇒
X = Γ\H compact 6-manifold

Γ is irreducible (i.e. p1(Γ) = p2(Γ) = PSL(2,R))⇓
X is U-minimal

Breuillard et al.: ∃ Γ ⊂ PSL(2,R) × SO(3) = H cocompact
discrete such that

p2(Γ) = SO(3)

⇒ X = Γ\H is U-minimal
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of PSL(2,R) × G. The action X x B is minimal if and only if
p2(Γ) = G and p1(Γ) y ∂H is minimal.

Aim

If Γ is cocompact, then X x B is minimal if and only if p2(Γ) = G .
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Definition

An element (f , g) ∈ PSL(2,R)× G is said to be semi-parabolic if
f 6= I belongs to U up to conjugation.

Proposition

If X = Γ\PSL(2,R)× G is compact, then Γ does not contain semi-
parabolic elements.

Proof. The proof is based on the following lemma:

Lemma

If Γ contains a semi-parabolic element, then the geodesic flow on
X = Γ\PSL(2,R)× G has divergent positive semi-orbits.

Proof sketch.

∃ (fuf −1, g) ∈ Γ semi-parabolic ⇒ xD+ diverges for x = Γ(f , g ′)
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B-minimality ⇒ U-minimality

Proof. Similar to the case where G is trivial:

∃ (fn, gn) in HM = { h ∈ PSL(2,R)× G |Mh ∩M 6= ∅ }
converging to (I , e):

xU = Γ(f , g)U =M ⇒ ∃γn = (γ1n, γ2n) ∈ Γ ∃ un ∈ U :

(fn, gn) = (f −1γ1nfun, g
−1γ2ng)→ (I , e)

Bi-invariance of HM:

Lemma

HM is a closed U-bi-invariant subset of PSL(2,R)× G .
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B-minimality ⇒ U-minimality

Geometric consequence of the Γ -cocompactness:

Lemma

There exists k ∈ N such that fn /∈ B for n ≥ k.

Proof. Since X = Γ\PSL(2,R)× G is compact, there are no
semi-parabolic elements in Γ .

Using HM is U-bi-invariant and passing to the limit, we have:

((
α 0

0 α−1 ), e) ∈ HM ⇔ M(
α 0

0 α−1 ) ∩M 6= ∅ ∀α ∈ R∗+

By minimality, this implies

M(
α 0

0 α−1 ) =M ∀α ∈ R∗+.
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((
α 0

0 α−1 ), e) ∈ HM ⇔ M(
α 0

0 α−1 ) ∩M 6= ∅ ∀α ∈ R∗+

By minimality, this implies

M(
α 0

0 α−1 ) =M ∀α ∈ R∗+.
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Definition

Let H be a connected Lie group with a epimorphism ρ : H → G and
let Γ be a cocompact discrete subgroup of H.

As before, we have a
G -Lie foliation

K0 ⊂

K = Kerρ H

/K0

G

M = Γ\H

/K0

// ρ //

π

��

A G -Lie foliation constructed by this method is called homogeneous.

Examples

There are non-homogeneous examples constructed by G. Hector, S.
Matsumoto and G. Meigniez whose leaves are hyperbolic surfaces.
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Lie foliations

Proposition

Let F be G-Lie foliation by hyperbolic surfaces of a compact con-
nected manifold M, and let X = T 1F be its unitary tangent bundle.

Then
F is homogeneous ⇔ X̃ ∼= PSL(2,R)× G

Proof. Any semi-simple ideal in a Lie algebra is a direct summand.

Theorem

Let X = T 1F be the unitary tangent bundle of a homogeneous F
by hyperbolic surfaces of a compact manifold. If F is minimal, then
X x U is minimal
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Lie foliations

Proposition

Let F be G-Lie foliation by hyperbolic surfaces of a compact con-
nected manifold M, and let X = T 1F be its unitary tangent bundle.
Then

F is homogeneous ⇔ X̃ ∼= PSL(2,R)× G

Proof. Any semi-simple ideal in a Lie algebra is a direct summand.

Theorem

Let X = T 1F be the unitary tangent bundle of a homogeneous
Riemannian foliation F by hyperbolic surfaces of a compact manifold.
If F is minimal, then X x U is minimal (by using Molino’s theory).
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foliation of M by hyperbolic surfaces.

Mart́ınez and Verjovsky’s question

Let X = T 1F be the unitary tangent bundle of F . Is it true that
X x U is minimal?

Example

Let Γ be a cocompact Fuchsian group.

Consider the diagonal action

Γ y PSL(2,R)× ∂H

given by
γ(f , ξ) = (γf , γ(ξ))

and the quotient X = Γ\PSL(2,R)× ∂H.
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X x B is not minimal

as dual to the diagonal action

Γ y ∂H× ∂H
given by

γ(ξ1, ξ2) = (γ(ξ1), γ(ξ2))
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Mart́ınez and Verjovsky’s question

Let X = T 1F be the unitary tangent bundle of F . Is it true that
X x U is minimal if and only if X x B is minimal?

Theorem (Mart́ınez-Verjovsky)

Let (M,F) be a compact lamination by hyperbolic surfaces, and let
X = T 1F its unitary tangent bundle. Assume that F is minimal.

Then X x B is minimal if and only if F is not defined by a continuous
locally free B-action.

Proof sketch
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A classical example

Transverse dynamics of F is represented by the doubling map

f (x) = 2x (mod 1)

⇓
F is minimal

The leaves are neither homeomorphic to the plane nor to the
cylinder

⇓ Mart́ınez-Verjovsky theorem

X = T 1F x B is minimal
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A classical example

Question

Is the unitary tangent bundle of the Hirsch foliation U-minimal?

Answer

Yes.

The proof depends on the following fact:

Remark [S. Matsumoto]

The horocyclic flow on each leaf of F has no minimal sets.
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Foliations with ’topologically non-trivial’ leaves

Theorem (A.-Dal’Bo-Mart́ınez-Verjovsky)

Let (M,F) be a minimal compact lamination by hyperbolic surfaces.
If F admits a leaf without holonomy which is neither homeomorphic
to the plane nor to the cylinder, then the horocycle flow on the
unitary tangent bundle X = T 1F is minimal.

Corollary

For the non-homogeneous Lie foliations constructed by G. Hector, S.
Matsumoto and G. Meigniez, the horocycle flow is minimal.
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Foliations with ’topologically non-trivial’ leaves

Proof skecht. Before we start, we need the following definition:

Definition

Consider a complete hyperbolic surface L = Γ\H which can be
partitioned into countably many pair of pants (pants decomposition)
whose boundary components have uniformly bounded lengths (good
pants decomposition). Its fundamental group Γ (which is purely
hyperbolic of the first kind) is called tight by S. Matsumoto.
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First Step: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy L = Γ\H which is neither
homeomorphic to the plane nor to the cylinder

(⇔ its funda-
mental group is neither cyclic nor trivial)m

L contains a pair of pants⇓ L without holonomy and F minimal

L contains countable many pairs of pants Pn approaching every
end ⇓ L is quasi-isometric to

⋃
n Pn

has a good pants decomposition
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end ⇓ L is quasi-isometric to

⋃
n Pn

L has a good pants decomposition (⇔ Γ is tight)
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First Step: Obtaining good pants decompositions of the leaves.

There is a leaf without holonomy L = Γ\H which is neither
homeomorphic to the plane nor to the cylinder (⇔ its funda-
mental group is neither cyclic nor trivial)m

L contains a pair of pants⇓ L without holonomy and F minimal

L contains countable many pairs of pants Pn approaching every
end ⇓ L is quasi-isometric to

⋃
n Pn

Any leaf has a good pants decomposition
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Second step: Finding sufficient conditions for the U-minimality.

Proposition

Let (M,F) be a minimal compact lamination such that

i) the affine action X = T 1F x B is minimal,

ii) the horocycle flow is transitive, i.e. ∃ x ∈ X such that xU = X .

Let M 6= ∅ be a U-minimal set in T 1F . If there is a real
number t0 > 0 such that gt0(M) =M, then M = X .

Proof
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Condition (i): All the leaves are ’topologically non-trivial’⇓ Mart́ınez-Verjovsky theorem

X = T 1F x B is minimal

Condition (ii): Since F is minimal, it is enough to prove the
horocycle flow is transitive in restriction to leaf L.

Aim

If L has a good pants decomposition, then for every x ∈ T 1L,
either xU = T 1L or there is a real number t0 > 0 such that
gt0(x) ∈ xU.
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Condition (i): All the leaves are ’topologically non-trivial’⇓ Mart́ınez-Verjovsky theorem

X = T 1F x B is minimal

Condition (ii): Since F is minimal, it is enough to prove the
horocycle flow is transitive in restriction to some leaf L.

Aim

If L has a good pants decomposition, then for every x ∈ T 1L,
either xU = T 1L or there is a real number t0 > 0 such that
gt0(x) ∈ xU.
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Foliations with ’topologically non-trivial’ leaves

Condition (i): All the leaves are ’topologically non-trivial’⇓ Mart́ınez-Verjovsky theorem

X = T 1F x B is minimal

Condition (ii): Since F is minimal, it is enough to prove the
horocycle flow is transitive in restriction to every leaf L.

Aim

If L has a good pants decomposition, then for every x ∈ T 1L,
either xU = T 1L or there is a real number t0 > 0 such that
gt0(x) ∈ xU (so any proper U-minimal set M 6= ∅ in T 1L
verifies gt0(M) =M).
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Third Step: Using Matsumoto’s idea to prove U-minimality.

Fundamental lemma

Let L = Γ\H be a non-compact hyperbolic surface. Assume
there are sequences of

closed geodesics Cn with uniformly bounded lengths

real numbers tn → +∞ such that

gtn(x) ∈ Cn

for some x ∈ T 1L. Then there is a real number t0 > 0 such
that

gt0(x) ∈ xU.
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Proposition

Assume L has a good pants decomposition. Then, for any
tangent vector x ∈ T 1L, either xU = T 1L or there is a real
number t0 > 0 such that gt0(x) ∈ xU.

Using the duality between the U-action and the linear Γ -action
and the classification of the limit points of Γ , we can deduce:

Theorem (S. Matsumoto)

For any hyperbolic surface with a good pants decomposition,
the horocycle flow has no minimal sets.

Proof
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Theorem (A.-Dal’Bo-Mart́ınez-Verjovsky)

Let (M,F) be a minimal compact lamination by hyperbolic surfaces.
If F admits a leaf without holonomy which is neither homeomorphic
to the plane nor to the cylinder, then the horocycle flow on the
unitary tangent bundle X = T 1F is minimal.
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Theorem (A.-Dal’Bo-Mart́ınez-Verjovsky)

Let (M,F) be a minimal compact lamination by hyperbolic surfaces.
If F admits a leaf whose holonomy covering is neither homeomorphic
to the plane nor to the cylinder, then the horocycle flow on the
unitary tangent bundle X = T 1F is minimal.
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Proof (‘if’ part). It is enough to show that

∆ = p1(Γ) y ∂H

is minimal. We distinguish three cases:

If ∆ = p1(Γ) is discrete, then

X compact ⇒ ∆\H compact

and therefore

− ∆ is non-elementary ⇒ ∆y Λ(∆) is minimal.

− ∆ is cocompact ⇒ Λ(∆) = ∂H.

If ∆ = p1(Γ) is non-discrete dense, then ∆y Λ(∆) = ∂H is
minimal again.
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If ∆ is neither discrete nor dense, then there is f ∈ PSL(2,R)
such that

∆ ⊂ fPSO(2,R)f −1 or ∆ ⊂ fBf −1

⇓
∆ is abelian,

which also contradicts the compactness of X .
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such that
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If ∆ is neither discrete nor dense, then there is f ∈ PSL(2,R)
such that

∆ ⊂ fPSO(2,R)f −1 or ∆ ⊂ fBf −1
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∆ is abelian,

which also contradicts the compactness of X .
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Proof sketch. The proof is based on the two following lemmas:

Lemma

The leaves of F are the orbits of a continuous locally free B-action
if and only if there is a B-minimal set M in X such that

|T 1
yF ∩M |= 1 ∀x ∈M ,

where y = π(x) is the image of x by the projection π : X → M.

Lemma

Let M be a B-minimal set of X . If

|T 1
yF ∩M |≥ 2 ∀x ∈M ,

then M = X , namely X x B is minimal.

Back
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Proof.

If M 6= X , then C = { t ∈ R | gt(M) = M } is a discrete
subgroup of R, so trivial or cyclic.

By hypothesis, C is cyclic and hence the B-invariant set

MD =
⋃
t∈R

gt(M) =
⋃

t∈[0,t0]

gt(M)

is closed.

Then
MD = X

by B-minimality.

There is t ∈ [0, t0] such that gt(x) ∈ M.

Since gt(xU) =
gt(x)U and M is U-invariant, gt(xU) ⊂ M and therefore
X =M.

Back
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The horocycle flow is dual to the linear action

Γ y PSL(2,R)/U = R2 − {0}/{±I } = E

Definition

Let Γ be a non-elementary Fuchsian group. is said to be horocyclic
if any horodisc centered at ξ contains points of the orbit Γz for any
z ∈ H.

Theorem

For each v ∈ T 1H, the following conditions are equivalent:

i) the point ξ = v(+∞) is horocyclic,

ii) the horocycle orbit of the projected point x ∈ T 1L is dense,

iii) 0 belongs to Γυ where υ is the element of E corresponding to
the horocycle passing through v.
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The horocycle flow is dual to the linear action

Γ y PSL(2,R)/U = R2 − {0}/{±I } = E
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Proof.

From the previous theorem, any proper U-minimal set M 6= ∅
in T 1L contains a horocycle centered at non-horocyclic limit
point ξ of Γ .

According to the proposition, for any point x in this horocycle,
there is t0 > 0 such that gt0(x) ∈ xU =M.

By duality, we deduce that

et0/2(Γυ) = Γυ

and therefore 0 ∈ Γυ, which contradits the assumption that ξ
is non-horocyclic.

Back



Dynamics of the horocycle flow

Some progress in the non-homogeneous case

Foliations with ’topologically non-trivial’ leaves

Proof.

From the previous theorem, any proper U-minimal set M 6= ∅
in T 1L contains a horocycle centered at non-horocyclic limit
point ξ of Γ .

According to the proposition, for any point x in this horocycle,
there is t0 > 0 such that gt0(x) ∈ xU =M.

By duality, we deduce that

et0/2(Γυ) = Γυ

and therefore 0 ∈ Γυ, which contradits the assumption that ξ
is non-horocyclic.

Back



Dynamics of the horocycle flow

Some progress in the non-homogeneous case

Foliations with ’topologically non-trivial’ leaves

Proof.

From the previous theorem, any proper U-minimal set M 6= ∅
in T 1L contains a horocycle centered at non-horocyclic limit
point ξ of Γ .

According to the proposition, for any point x in this horocycle,
there is t0 > 0 such that gt0(x) ∈ xU =M.

By duality, we deduce that

et0/2(Γυ) = Γυ

and therefore 0 ∈ Γυ, which contradits the assumption that ξ
is non-horocyclic.

Back



Dynamics of the horocycle flow

Some progress in the non-homogeneous case

Foliations with ’topologically non-trivial’ leaves

Proof.

From the previous theorem, any proper U-minimal set M 6= ∅
in T 1L contains a horocycle centered at non-horocyclic limit
point ξ of Γ .

According to the proposition, for any point x in this horocycle,
there is t0 > 0 such that gt0(x) ∈ xU =M.

By duality, we deduce that

et0/2(Γυ) = Γυ

and therefore 0 ∈ Γυ, which contradits the assumption that ξ
is non-horocyclic.

Back


	Hedlund's Theorem
	Description and statement
	Proof

	Hedlund's Theorem for X = "076E30F PSL(2,R)G
	PSL(2,R)-minimality and B-minimality
	PSL(2,R)-minimality  B-minimality
	B-minimality  U-minimality

	The foliation point of view
	Lie foliations
	Martínez and Verjovsky's question

	Some progress in the non-homogeneous case
	A classical example
	Foliations with 'topologically non-trivial' leaves




