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SCIENTIFIC REVIEW: Singular integrals in quantum euclidean spaces
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One of the most dramatic shifts in our understanding of the physi-
cal world occurred in 1925, when Heisenberg proved that quantum 
phenomena could be deduced from the equations of Newtonian 
physics if we interpreted the variables that depend on time as in-
finite matrices. John von Neumann proposed to model Heisenberg 
matrices as adjoint operators over Hilbert spaces. The theory of von 
Neumann algebras is a noncommutative or quantum form of meas-
ure theory and provides a rigorous mathematical framework for 
matrix mechanics. The von Neumann Programme responds to the 
need of “quantizing mathematics” in order to complete the classi-
cal/relativistic notions of measure and geometry. It constitutes a 
challenge of extraordinary magnitude that has exceeded the con-
tributions of von Neumann himself. Indeed, today we are able to 
speak of noncommutative geometry, quantum probability, operator 
spaces, quantum groups and so on. Apart from its importance for 
mathematics, connections exist with theoretical physics; in string 
theory, quantum field theory and quantum information. All of this 
explains the necessity to develop the von Neumann Programme in 
other directions, one of which is harmonic analysis.

In 1980, Alain Connes introduced noncommutative geometry [5] as 
an extension of differential geometry over “noncommutative man-
ifolds” in the operator algebra language introduced by von Neu-
mann. The archetypes of noncommutative manifolds are quantum 
tori and quantum Euclidean spaces. Given Θ a real antisymmetric 
matrix n x n, the associated n-dimensional torus is defined (vague-
ly) as the algebra generated by unitary operators u1, u2,…, un that 
satisfy the canonical commutation relations ujuk = exp(2πiΘjk)ukuj. 
When Θ=0, the uj are the primary characters x → exp(2πixj) and 
the associated algebra that of the functions (smooth, continuous, 
bounded...) over the classical torus R/Z x…x R/Z. When Θ does not 
cancel, the algebra is noncommutative and is known as a quan-
tum torus. The quantum Euclidean spaces admit a similar defini-
tion; the Heisenberg-Weyl algebra is the most well-known model. 
Connes introduced in [4] pseudo-differential operators in quantum 
tori with the aim of extending the Atiyah-Singer index theorem in 
this context. The insight provided by Connes’ approach was subse-
quently confirmed by the Gauss-Bonnet theorem for quantum tori 
[6, 7] and a solid elliptic operator theory. In its 40 years of history, 
noncommutative geometry has also developed connections with 
number theory and string theory [12]. 

Pseudo-differential operator theory emerged in the mid-1960s 
with the work conducted by Kohn, Nirenberg and Hörmander [9]. 
The idea is to use the Fourier transform to represent differential 
operators L = �|α|≤maα(x)∂x

α that can be inverted except for an error 
term. Pseudo-differential operators can be interpreted as singu-
lar integrals. Calderón-Zygmund theory [3] ––paradigm of mod-
ern harmonic analysis–– then provides p-Sobolev-type estimates 
of the approximation and error terms, which leads to the deep-
est results of the theory. Unfortunately, the work by Connes and 
his collaborators does not include this class of estimates due to 
deep obstructions to develop the theory of singular integrals over 
noncommutative Lp spaces, defined over von Neumann algebras. 

In the work reported here, the core of singular integral theory and 
pseudo-differential calculus are established on the model alge-
bras for noncommutative geometry: quantum forms of tori and 
Euclidean spaces. The latter –also known as Moyal deformations 

in theoretical physics or CCR algebras in quantum probabili-
ty– include the Heisenberg-Weyl algebra determined by the po-
sition and the momentum in quantum mechanics. These results 
on pseudo-differential operators go beyond the work of Connes, 
thanks to a new form of the Calderón-Zygmund theory in these 
algebras, which are developed in the same work and which cru-
cially includes general kerrnels which are not of convolution type. 
This enables to deduce Lp boundedness and p-Sobolev estimates 
for regular, exotic and forbidden symbols in the expected ranges. 
In L2, the authors also generalize the Bourdaud and Calderón-Vail-
lancourt theorems [1, 2] for exotic and forbidden symbols. All the 
foregoing establishes the quantum forms of the most famous re-
sults of pseudo-differential operator theory [13]. As an applica-
tion of these methods, Lp regularity of solutions to the first elliptic 
PDEs in von Neumann algebras are proved.

Finally, it is worth pointing out that noncommutative Calderón-
Zygmund theory has precedents in the work of the authors with 
interesting connections in geometric group theory and Lipschitz 
operator functions. However, unlike in the previous results [8, 10], this 
is the first model that works in purely noncommutative algebras; that 
is, algebras that contain no copies of doubling metric spaces in the 
form of tensor products or crossed products. Recently, some of the 
authors have developed in [11] an algebraic form of Calderón-Zygmund 
theory that is valid in general von Neumann algebras equipped with a 
Markov process that satisfies strictly algebraic conditions.
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