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Summary

Our ears break down any sounds into pure tones and each tone 
corresponds to a certain frequency and intensity. Mathemati-
cally speaking, the sound is represented by a function, and the 
pure tones by sinusoidal waves whose size is known as ampli-
tude and is related to its intensity. In this paper, the authors 
study functions that also oscillate and whose frequencies grow 
polynomially. This oscillation depends on how the correspond-
ing amplitudes decay. 

The BMO (Bounded Mean Oscillation) space contains the func-
tions whose mean oscillation over any interval is bounded by 
a constant, which does not depend on the interval. The least 
of these constants would be its norm, which measures how 
much the function oscillates. Thus, any bounded function is 
found in this space, but it also contains non-bounded func-
tions, such as the logarithm. In fact, Fritz John and Louis Ni-
renberg demonstrated that this is the maximum permitted 
growth; that is, any function in this space must have peaks 
that are at most logarithmic. 

This space plays an important role in the field of analysis, 
because on certain occasions it is the natural substitute for 
bounded function spaces, which help to understand the be-
haviour of solutions to partial differential equations. On the 
basis of an inequality proposed by Godfrey Harold Hardy, it 
was known that if a function possesses as frequencies w, all 
the naturals are then in BMO when its amplitudes decay as w-1. 
It was also known that the lacunary series (whose frequen-
cies grow exponentially) are found in BMO if they are in L1, and 
therefore in L2, which is equivalent to the sum of the squares 
of the absolute values being finite. 

The intermediate case, which includes series with frequencies 
that grow polynomially, was analyzed by William Tazwell Sledd 
and David Allan Stegenga from a result by Charles Fefferman 
that characterizes when a series is found in BMO. In order 
to prove this theorem, an inequality similar to those known 
as large sieve inequalities (much used in number theory) and 
two deep results on BMO are employed. The first result is that 
BMO is the dual space of the so-called Hardy space H1, which 
are analytic functions u(z) on the unit disk, such that the inte-
grals of its absolute value in circles of radius less than one, 
centered on the origin, are uniformly bounded. The second 
result states that any function of H1 on the edge of the disk 
may decompose into atoms, which are zero-mean functions 
that take non-null values only in one interval and are bounded 
by the inverse of the longitude of the said interval.

Now, Chamizo, Córdoba and Ubis essentially prove the same 
result, although their argument is elementary and their bound 
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on the norm is more precise. In particular, they deduce that if 
the frequencies w grow as a polynomial of degree d, then the 
amplitudes must decay as dw-1/d in order for the function to be 
in BMO.

The difficulty of proving this statement resides in the fact that 
the function is typically much more chaotic than in the Hardy 
case, but unlike what occurs in lacunary series, its frequencies 
continue to interact. This new proof starts by decomposing the 
function into two parts; one with low frequencies and the other 
with high. This division depends on the interval in which the 
oscillation of the function is being analyzed. The low frequency 
part is a smooth function in the interval selected and therefore 
its oscillation is always small. 

While the part with high frequencies is small, on average it is 
more irregular, so it is more difficult to control its mean oscil-
lation. What is done in this case is to employ the well-known 
Cauchy inequality in order to evaluate the mean oscillation of 
the square of the function in the said interval. This is simpler 
because its Fourier series can be used to expand the square 
and average each term of the sum separately. 

Consequently, the authors arrive at a bilinear oscillatory sum 
that it is necessary to bound. Here, they apply a large sieve 
type of inequality that converts this oscillation into decay. Per-
haps the simplest way to understand this inequality is to re-
turn to the average of the square; it is possible to bound this by 
means of a smoothed average, and after expanding the series 
again, this smoothing will have converted the oscillation into 
decay. 

In the second part of the paper, these researchers study the 
particular case of the function whose frequencies w traverse 
the squared integers and whose amplitudes are w-1/2. From the 
previous result, the said function is in BMO, but now they are 
able to state much more about it. Given that its frequencies are 
just the squares, its behaviour is more arithmetical than that of 
a generic function space. 

In fact, at rational points it has a special behaviour, and at 
any irrational its size is determined by the ease with which it 
can be approximated by rationals. On the basis of this infor-
mation, it can be demonstrated that it is impossible to draw a 
graph of the said function, since it possesses an uncountable 
number of logarithmic peaks. Furthermore, the authors are 
able to estimate, in any interval, both the mean oscillation 
and its precise growth on the dominant logarithmic peak. 
Both quantities will depend on the rational with the least de-
nominator in the interval. The greater the said denominator, 
the less the oscillation and growth the function will have in 
that zone. 
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