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Abstract

In this thesis we initiate the program of studying the geometry of moduli spaces associ-
ated to principal 2-bundles. We consider Lie 2-groups G that arise from a Lie group with
an Ad-invariant, symmetric, bilinear form satisfying an integrality condition on its Lie
algebra. In this setting, we construct derived moduli stacks of flat G-connections over a
smooth manifold, holomorphic G-bundles over a complex manifold and holomorphic G-
bundles with holomorphic connective structure over a complex manifold. We introduce
dilaton derived moduli and use them to obtain canonical shifted symplectic structures on
these derived stacks, which are naturally identified with the derived critical locus of the
heterotic superpotential. For this, we relate holomorphic G-bundles with holomorphic
connective structures to solutions of the Hull-Strominger system, which models super-
symmetric configurations in string theory. Our results follow from a thorough study
of higher connections on principal 2-bundles, unifying previous approaches in terms of
trivializations of Chern-Simons 2-gerbes, adjusted connections, and splittings of Courant

algebroids by introducing a new notion of Maurer-Cartan form on a Lie 2-group.

Resumen

En esta tesis iniciamos el programa de estudiar la geometria de espacios de méduli aso-
ciados a 2-fibrados principales. Consideramos 2-grupos de Lie G que se obtienen de
un grupo de Lie junto con una forma bilineal, simétrica, Ad-invariante y satisfaciendo
una condicién de integralidad en su &algebra de Lie. En este contexto, construimos
stacks derivados de G-conexiones planas sobre una variedad diferenciable, G-fibrados
holomorfos sobre una variedad compleja y G-fibrados holomorfos con estructura conec-
tiva holomorfa sobre una variedad compleja. Introducimos modulis derivados de dila-
tones y los usamos para obtener formas simplécticas desplazadas candnicas en estos
stacks derivados, que identificamos de manera natural con el locus critico derivado del
superpotencial heterdtico. Para ello, establecemos una relacion entre G-fibrados holo-
morfos con estructura conectiva holomorfa y soluciones al sistema de Hull-Strominger,
que modeliza configuraciones supersimétricas en teoria de cuerdas. Nuestros resultados
se siguen de un cuidadoso estudio de la teoria de conexiones superiores en 2-fibrados
principales, unificando enfoques anteriores en términos de trivializaciones de 2-gerbes de
Chern-Simons, conexiones ajustadas y escisiones de algebroides de Courant gracias a la

introduccién de una nueva nocién de forma de Maurer-Cartan en un 2-grupo de Lie.
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Chapter 1

Introduction

The main result of this thesis is the construction of a moduli space parameterizing
pairs consisting of a holomorphic volume form on a fixed complex compact manifold X,
and holomorphic structures on a higher principal bundle P — X. This moduli space
is presented as a simplicial derived manifold and equipped with a shifted holomorphic
symplectic structure. This problem is motivated by the existence of shifted holomor-
phic symplectic structures on moduli spaces parameterizing holomorphic structures on
ordinary principal bundles over Calabi-Yau manifolds [210] which extend classical work
of Atiyah-Bott [15] and Mukai [196], their relation with the Yang-Mills equations es-
tablished by the Donaldson-Uhlenbeck-Yau theorem [100, 267], and the search for an
analogous complex-geometric counterpart for supersymmetric Yang-Mills equations cou-

pled to supergravity in heterotic string theory based on [127, 245].

In Section 1.1 we motivate the language of higher derived differential geometry, which
we use both to pose our problem and to present its solution. In Section 1.2 we discuss
how much of co-category theory is needed for understanding our results. In Section
1.3 we provide a brief introduction to the use of higher derived geometry and shifted
symplectic geometry for studying moduli spaces, with examples from ordinary gauge
theory that motivate our work. In Section 1.4 we present our main results, relating
them with constructions in generalized geometry, and motivating the study of higher

gauge theory from mathematical and physical points of view.

1.1 Higher derived differential geometry

The problems and results of this thesis are expressed within the language of higher

derived differential geometry. This is an extension of differential geometry which can
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be motivated as follows. Smooth manifolds model a notion of space which is locally
equivalent to Euclidean space and which has enough global structure so that we can study
it using techniques from differentiable calculus. These techniques are very powerful, but

they are limited by the following facts.

1. The topological quotient X/G of a smooth manifold X by the smooth action p
of a Lie group G does not always have structure of smooth manifold such that
X — X/G is smooth. (More generally: the category of manifolds is not closed

under colimits).

2. The topological preimage f~!(y) of a value y € Y by a smooth map f: X — Y
between smooth manifolds does not always have structure of smooth manifold such
that f~1(y) — X is smooth . (More generally: the category of manifolds is not

closed under limits).

Furthermore, even when X/G or f~!(y) are actually manifolds, it is not always true
that they satisfy the properties that one would expect from these constructions. For

example, the expected dimensions

dim X/G = dim X — dim G,

(1.1)
dim f~'(y) = dim X — dim Y,

fail for G a Lie group with dim G > 1 acting trivially on X, or for f : X — Y a constant
function and dim Y > 1. The classical way to address these issues is to acknowledge them
as features of the category of manifolds that our naive expectations could not foresee.
An alternative approach is to replace the category of manifolds by an enhanced theory
in which colimits and limits of manifolds always exist and satisfy all the combinatorial
properties that one would expect. This could be useful, for example, to construct some
functorial invariant for all manifolds that behaves well with respect to quotients and

preimages.

Higher differential geometry is an enhancement of differential geometry in which the
notion of smooth manifold is generalized in such a way that finite colimits always exist
and behave well. Similarly, derived differential geometry generalizes the notion of smooth
manifold in such a way that finite limits always exist and behave well; when both theories

are combined we are working with higher derived differential geometry.

The basic idea behind these theories is the following. While quotients and preimages of
manifolds do not behave well in general, two classical results provide conditions under

which they do.
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1. If G is a Lie group acting freely and properly on a manifold X, then there is
a canonical structure of manifold on X/G such that X — X/G is smooth and
dim X/G = dim X — dim G.

2. If f: X = Y is a smooth map between manifolds such that dfj, : To X — Ty,)Y
is surjective for every x € X with f(z) = y, then f~!(y) C X is a submanifold
with dim f~1(Y) = dim X —dim Y.

Thus, one way to solve our problem would be to find a category C, including the category
Man of manifolds as a fully faithful subcategory, and whose objects can be studied with

differential geometric tools, such that the following conditions are satisfied.

1. The notions of free, proper action and submersion can be generalized to C' in such

a way that the analogs of 1 and 2 remain true.

2. There is a distinguished class of arrows in C, called quasi-isomorphisms, and such
that objects related by a quasi-isomorphism are considered to represent the same

space.

3. Every smooth action p : X x G — X can be lifted to a free and proper action

p: XxG—X along a quasi-isomorphism q : X > X.

4. Every smooth map f : X — Y factorices as f : X 5 X i> Y, where ¢ is a

quasi-isomorphism and f is a submersion.

If these conditions are satisfied, then we can construct the preimage of a value by an
arbitrary smooth function f : X — Y by factorizing it as in 4 and taking f~!(y) instead
of f~Y(y). Since f is a submersion, f‘l(y) is an object of C', and since ¢ is a quasi-
isomorphism, f and f should represent the same map of spaces, hence f_l(y) should
be a good geometric model for the topological space f~!(y). For quotients we could

proceed in a similar way.

As we will see in Section 2.1.1, following [282], the category of simplicial manifolds allows
us to perform arbitrary quotients by smooth actions using this idea. Roughly speaking,
while any two points in a manifold are either distinct or equal, a simplicial manifold is
a manifold such that any two points determine a smooth manifold of arrows between
them, while any three arrows determine a smooth manifold of 2-cells whose boundary
is given by the three arrows, etc. For m € N, a simplicial manifold is called a Lie
m-groupoid if the spaces of k-cells for k > m are determined by the spaces of k-cells
for K < m. While the tangent space of a manifold at a point is a vector space, the
tangent space of a simplicial manifold at a point is a Z<%-graded cochain complex of

vector spaces.



Introduction 4

One possible model for the quotient of X by G as a simplicial manifold X//G, which
can be obtained resolving X as above, is given simply by considering X as the manifold
of points, and adding an arrow from x to x - g, for every x € X and g € G. Its tangent
space at © € X is the cochain complex g[1] E15'¢ , where p, denotes the infinitesimal
action; note that its Euler characteristic is the expected dimension dim X — dim G. A
more general simplicial manifold, in which arrows could have non-trivial 2-cells between

them, would be suitable, for example, for modelling iterated quotients.

As we will see in Section 2.2.2, following [32], the category of derived manifolds allows us
to take arbitrary preimages of smooth maps using the preceding idea. Roughly speaking,
a derived manifold is a manifold M equipped with a N=!-graded vector bundle £ — M
and an algebraic structure encoding a sequence of smooth maps M 2% E; 25 Ey 3 .,
smooth over M and polynomial on the fibers, such that s;os;_1; = 0. While the tangent
space of a manifold at a point is a vector space, the tangent space of a derived manifold

at a point is a ZZ%graded cochain complex of vector spaces.

One possible model for the preimage of y € Y by f : X — Y as a derived manifold,
which can be obtained resolving X as above, is given by taking M an open neighborhood
of f7'(y) € X where fjp; : M — Y can be identified with a function f"M M — T,Y
after taking a chart of Y around y, and letting £ — M be the trivial vector bundle
with fiber T,Y on degree 1 and section f|’ v @ M — E. Its tangent space at a point

df/!.
x € M is the cochain complex T, M ¥ T4(2)Y [—1]; note that its Euler characteristic is
the expected dimension dim X — dim Y. A more general derived manifold, in which F
could have coordinates of higher degrees, would be suitable, for example, for modelling

iterated preimages.

In Section 2.2.3 we will combine both approaches in the notion of simplicial derived
manifolds, whose ‘tangent space’ at each point is a Z-graded cochain complex of vector
spaces. In any case, the punchline is that simplicial derived manifolds are differential
geometric objects, in the sense that one can develop differentiable calculus and define
notions such as symplectic structures, Riemannian metrics, complex structures, etc.
over them, which have good combinatorial properties, and which can model possibly
very singular spaces. See the introductions of Chapters 2 and 7 for historical accounts

of simplicial derived manifolds and higher derived differential geometry.

1.2 The need for co-categories

A proper treatment of higher derived differential geometry requires familiarity with

the quite technical notion of co-categories. However, this can be avoided for treating
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some problems and results. We proceed to explain why and when oo-category theory is
necessary with some motivating examples. First, the idea of enhancing the category of
manifolds to a category C satisfying properties 1-4 is inspired by homological algebra

and homotopy theory, where we find the following situations.

1. Let f : z¢ — yeo be a morphism of N-graded cochain complexes in an abelian
category. Then the mapping cone of f is computed by choosing a factorization of f
as Te —5 To i) Yo, Where ¢ is a quasi-isomorphism and f is degreewise injective, and
taking the degreewise cokernel coker fo. For any two factorizations x 9y g ﬁ) Yo,
1 = 1, 2, there exists a quasi-isomorphism coker f,l — coker f?, unique up to

homotopy.

2. Let f; : X; = Y, i =1, 2 be continuous maps of topological spaces. Then the

homotopy fibered product X, xgl, X5 is computed by choosing a factorization of

f1as X3 4 X, Q Y, where ¢ is a weak homotopy equivalence and fl is a Serre
fibration, and taking Xl Xy Xso. For any two factorizations X KR )N({ 2Y,i=1,2,
there exists a weak homotopy equivalence X i xy X — X 2 xy Xz, unique up to

homotopy.

The classical way to deal with the dependence of coker fo (resp. X; Xy Xo) on the
factorization is to localize; i.e., to regard coker fo as an object in the derived category
of complexes instead of as an object in the category of complexes (resp. to regard
X1 xy X, as a homotopy type instead of as a topological space). This approach is
technically flawless and sufficient for understanding what the mapping cone of a specific
morphism of cochain complexes is (resp. what the homotopy fibered product of a specific

pair of continuous maps is).

However, when regarded as a construction in the localized category, the mapping cone
(resp. the homotopy fibered product) is not functorial. This is a consequence of the
fact that different factorizations yield objects that are related by a non-unique quasi-
isomorphism (resp. weak homotopy equivalence). But, since this quasi-isomorphism is
unique up to homotopy, we might ask for a generalization of the notion of category that
also contains the information of some notion of homotopy between arrows, and in which
constructions such as the mapping cone or the homotopy fibered product are naturally

understood as ‘functorial up to homotopy’, for a precise meaning of this concept.

Properties 1-4 are formalized in Quillen’s notion of a model category [214], of which the
category of N-graded cochain complexes and the category of topological spaces are the
main examples. The problem of formalizing mapping cones and homotopy fibered prod-

ucts (more generally: homotopy limits and colimits in model categories) as functorial
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constructions was one of the inspirations for the development of co-categories envisioned
by Grothendieck [138] and carried out later by many authors (e.g. [17, 26, 29, 104, 157,
181, 218, 255]). For a more detailed history of this theory see the introduction of Chapter
7.

The same technical problems apply to the setting of Section 1.1 that is of interest for this
thesis, and so we can summarize our conclusions as follows. The categories of simplicial
manifolds, derived manifolds and simplicial derived manifolds that we present in Sections

2.1.1, 2.2.2 and 2.2.3, respectively, are sufficient for the following purposes.

1. Presenting specific examples of geometric spaces within the context of higher,

derived and higher derived differential geometry.

2. Presenting specific examples of maps between geometric spaces within the context

of higher, derived and higher derived differential geometry.

3. Computing specific examples of quotients (resp. fibered products) of manifolds by
non-free smooth actions (resp. along non-transversal smooth maps) as geometric

spaces within the context of higher (resp. derived) differential geometry.

On the other hand, the oo-categories of differentiable co-stacks, derived manifolds and
derived differentiable co-stacks from Sections 7.2.1 and 7.2.3 are necessary for the fol-

lowing applications.

1. Understand all maps between geometric spaces within the context of higher, de-

rived and higher derived differential geometry.

2. Understand the symmetries of a geometric space within the context of higher,
derived and higher derived differential geometry, such as dualities in certain field

theories.

3. Perform functorial constructions over manifolds that behave well under quotients

and fibered products, such as certain enumerative invariants.

For each m € N, the full sub-oco-category of the oco-category of differentiable oco-stacks
spanned by Lie m-groupoids is actually an (m+ 1)-category, which is a simplified version
of an oco-category. In particular, for m = 1 we obtain the 2-category of Lie 1-groupoids
that is described completely in Section 3.1.1, using the classical algebraic approach to
bicategories [35]. Insight into this bicategory is necessary for a good understanding of

the symmetries of differentiable 1-stacks.
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The main results of this thesis consist on presenting specific examples of geometric ob-
jects in higher derived differential geometry that represent moduli spaces parameterizing
structures associated to certain differentiable 1-stacks. Thus, these results require famil-
iarity with the category of simplicial derived manifolds, and with the bicategory of Lie
groupoids, but not with the oco-category of derived differentiable oo-stacks. Chapter 7
is nevertheless included in order to put our results into the right context, and to relate

them with possible future applications that might need this machinery.

1.3 Higher derived geometry and moduli spaces

One of the reasons why we consider higher derived differential geometry in this thesis is
because it provides a framework to construct well-behaved moduli spaces. When study-
ing the problem of parameterizing a certain class of geometric objects with complicated
symmetries, it is often necessary to restrict these objects by imposing conditions such
as irreducibility or stability in order to obtain a non-singular moduli space [101, 112].
While these notions yield important theories with applications in mathematical physics
and the construction of invariants, the fundamental nature of the moduli space param-
eterizing all (i.e., possibly non-stable) geometric objects is singular, and so it is also

desirable to have tools for handling this sort of spaces.

As discussed in Section 1.1, higher derived geometry is precisely the context in which the
notion of a geometric object is generalized to deal with possibly singular spaces, making
it an appropriate framework for studying fundamental aspects of moduli spaces. For a
historical review of the development of higher derived geometry applied to the study of
moduli spaces, see the introduction to Chapter 7. Here we will comment on a specific

example that motivates our work.

Consider the space B’(P) of flat connections modulo gauge on a principal G-bundle
P — M, for G a compact Lie group and M a smooth compact manifold of dimension
n. Classically,

B’(P) = {A € A(P)| Fs = 0}/Gauge(P), (1.2)

for A(P) the space of connections on P and Gauge(P) the group of automorphisms
of P covering the identity on M. Note A(P) is an affine space modelled on Q! (ad P),
the curvature Fa of a connection A lives in the vector space Q%(ad P) and Gauge(P)
is a Lie group with Lie algebra Q°(ad P). Then, by differentiating the map A +— Fu
and computing the infinitesimal action map we see that a manifold structure on B’(P)

should be modelled around [A] € B’(P) on the middle cohomology of the complex

Q%(ad P) 3 Q' (ad P) & Q2(ad P). (1.3)
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However, since the gauge action is in general not free, and the map A — F4 is in general
not transversal to the zero section, it is not true in general that B’(P) is a manifold.
One way of interpreting the philosophy of higher derived geometry is that it replaces

the expected tangent space
Ker(d* : Q' (ad P) — Q2*(ad P))/d*Q°(ad P) (1.4)
by the elliptic complex
(ad P) 5 01 (ad P) 5 02(ad P) & 03ad P) & . B 0" (ad P).  (1.5)

More precisely, there exists a simplicial derived manifold B”¢(P) (see Section 2.3.3 for
the construction) having (1.5) as its ‘tangent complex’ at each point. The fact that
the cohomology groups of this complex are finite-dimensional means that Bb’d(P) can
be represented locally by finite-dimensional data. While this sort of construction has
been performed using differential graded supermanifolds [240, 241] (inspired by the BV-
BRST approach to quantizing gauge theories [28, 30]), we emphasize that these can be
interpreted as the tangent bundle of B>¢(P), but not as B*¢(P) itself.

An important observation from [240, 241] is that the differential graded supermanifolds
modelling the BV-BRST formalism are naturally equipped with a certain symplectic-like
structure which is crucial in the quantization procedure from [28]. We can see a shadow
of this symplectic structure in the elliptic complex (1.5): the fact that Q7 (ad P) is nat-
urally dual to Q"7 (ad P) (after choosing an Ad-invariant, non-degenerate, symmetric
bilinear form on the Lie algebra of G and a volume form on M) can be interpreted
as an isomorphism between the tangent complex of B”%(P) and its (shifted) cotangent
complex, behaving similarly as the isomorphism between the tangent and the cotangent

bundles of a manifold induced by a symplectic structure on it.

This structure is formalized in [210] as a (2 — n)-shifted symplectic structure on (the
algebraic analog of) the simplicial derived manifold B”%(P). For n = 2, it extends the
Atiyah-Bott symplectic structure on the smooth locus of the moduli space of G-local
systems over a Riemann surface [15]. For general n, this structure is interpreted in terms
of the AKSZ formalism, a construction of field theories based on sigma-models whose
target is a symplectic differential graded supermanifold and which had been introduced
in [1, 242]. The improved language of shifted symplectic structures on higher derived
stacks has recently lead to a proof [69] that the field theories from [1] can be modelled
as extended topological field theories in the sense of [184], a notion that is itself inspired

by the literature on mathematical physics [113].
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Similarly, the moduli space of holomorphic G-bundles over a compact Calabi-Yau n-fold
X, for G a reductive complex Lie group, has a (2 — n)-shifted holomorphic symplectic
structure [210]. Again, we can see a shadow of this structure by looking at the elliptic

complex associated to a holomorphic structure on a principal G-bundle P — X

Q%(ad P) N Q% (ad P) N Q%2(ad P) % Q%3(ad P) 3.9 Q%" (ad P) (1.6)
and noting that a holomorphic volume form on the base manifold (with a non-degenerate,
Ad-invariant, symmetric C-bilinear form on the Lie algebra of G) allows us to see
0% (ad P) as the complex dual of Q%" (ad P), in a way which is compatible with the
differential EA. For n = 2, this extends Mukai’s holomorphic symplectic structure on
the smooth locus of the moduli space of holomorphic G-bundles over a K3 surface [196].
For n = 3, [34] argues that this shifted holomorphic symplectic structure is responsible
for the existence of Donaldson-Thomas invariants [102, 259], presenting a point of view
that has lead to a categorification of these invariants [160, 164] and a generalization for
Calabi-Yau fourfolds [47, 208, 209]. To sum up, we can conclude that shifted-symplectic
structures on higher derived stacks parameterizing geometric objects seem to be useful

for constructing invariants of manifolds.

1.4 Main results

In Section 1.3 we motivated higher derived differential geometry as a tool for studying
moduli spaces parameterizing structures in ordinary differential geometry. The main goal
of this thesis is to use higher derived differential geometry for studying moduli spaces
parameterizing structures that are themselves best described within higher differential
geometry. To be more precise, we construct moduli spaces parameterizing geometric
structures on fibrations of the form B — M, where M is a manifold and 3 is a principal

2-bundle for a Lie 2-group &.

Lie 2-groups are analogs of Lie groups in higher differential geometry: geometric objects
that describe symmetries of differentiable stacks (i.e. the differentiable 1-stacks from
Definition 7.22) as Lie groups describe symmetries of manifolds (i.e. differentiable 0-
stacks). One way to define a Lie 2-group is as a differentiable stack & equipped with a
morphism m : & x & — & which may not be strictly associative, but which is equipped
with a natural transformation o : mo (m x id) = mo(idxm) : & x & x & — &,
expressing a weak form of associativity of m. For a brief history of the notion of Lie

2-groups, see the introduction of Chapter 3.
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Given a Lie 2-group &, there is a natural way to define actions of & on differentiable
1-stacks. Ome can also define a principal &-bundle m : B — M to be a fibration
of differentiable 1-stacks carrying an action of & that is principal in the sense that
it induces an equivalence P x & = P x,r P. However, the notion of connection on
these bundles is in general not well understood. We review in more detail the history
of this concept in the introduction to Chapter 4. For now we will just mention that
non-flat connections on &-bundles behaving as expected from physics have been defined
for certain Lie 2-groups which by results of [238] admit an alternative description as
multiplicative gerbes [235, 237, 273]. This notion of connection depends on the choice of

some additional data on the multiplicative gerbe, called itself a connection in [271, 273].

The definition from [273] is inspired by early work on string theory and supergravity
[38, 74, 81, 137, 165, 277], where the bosonic field content of these theories is described
as a connection A on a G-bundle over spacetime P — M and some 2-forms B;, defined

only locally over M, and coupled to A in such a way that the combination
H :=dB; + (dA; N A;) + %(Ai A [A; N A (1.7)
is a globally well-defined 3-form on M satisfying
dH — (FoA N Fa) =0, (1.8)

for Fy € Q%(ad P) the curvature of A. Here (-,-) : g® g — R is an Ad-invariant,
symmetric, bilinear form that must be chosen beforehand. If (-,-) satisfies a certain
integrality condition, then [271] defines a multiplicative gerbe with connection G such
that the notion of a connection on a G-bundle, as defined in [273], formalizes the bosonic
field content in [38, 81, 137]. The pair (Fa, H), with H defined by (1.7), is called the

curvature of the connection.

In particular, the study of moduli spaces of connections on G-bundles, where G is con-
structed as in [271], is related to the study of configuration spaces in supergravity and
string theory, suggesting rich geometries on them, as in the case of moduli spaces of
connections on G-bundles sketched in Section 1.3. This is precisely the content of our
main results. In fact, these physical theories often include an additional parameter,
called the dilaton and represented by a global function, and the spaces we construct
need to accommodate this freedom in order to be equipped with non-degenerate shifted
symplectic structures. The following theorem is presented in the body of the thesis as
Example 6.3 and Theorem 6.7.

Theorem 1.1. Let G be the multiplicative gerbe with connection associated to a Lie

group G and an Ad-invariant, symmetric, integral, bilinear form (-,-) : g® g — R, and
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let P — M be a G-bundle over a compact manifold of dimgp M =n. Then

1. There is a simplicial derived manifold Bb’d(P) parameterizing gauge equivalence

classes of flat connections on B.

2. If (-,-) is non-degenerate and M is orientable, then there is a (2 — n)-shifted
symplectic structure on B> (P) x Qqr(M)*, where Qqr(M)* is a derived mani-
fold parameterizing locally constant positive functions on M and called the dilaton

moduli.

Lie 2-groups can also be defined in the holomorphic context. Such objects have not
been studied in detail in the literature (see, however, the introduction to Chapter 5
for a summary of some precursors). A straightforward generalization of the results in
[238] and [271, 273] enables us to construct a holomorphic multiplicative gerbe G with
holomorphic connection from the data of a complex Lie group G and an Ad-invariant,

symmetric C-bilinear form (-,-) : g ® g — C satisfying an integrality condition.

We can also define holomorphic structures on G-bundles, as well as holomorphic con-
nections on holomorphic G-bundles. Interestingly, one can also define the notion of a
holomorphic structure with holomorphic connective structure on a G-bundle, which is an
intermediate structure between a holomorphic structure and a holomorphic structure
with holomorphic connection. Then Examples 6.4 and 6.5 and Theorem 6.8 can be

summarized as follows.

Theorem 1.2. Let G be the holomorphic multiplicative gerbe with holomorphic con-
nection associated to a complex Lie group G and an Ad-invariant, symmetric, integral,
C-bilinear form (-,-) : g®@ g — R, and let P — X be a smooth G-bundle over a compact
complex manifold of dimc X =n. Then

1. There is a simplicial derived complex manifold H(P) parameterizing holomorphic

structures on P, up to isomorphism.

2. There is a simplicial derived complex manifold ’H,’d(P) parameterizing holomorphic

structures with holomorphic connective structures on P, up to isomorphism.

3. If (-,-) is non-degenerate and X admits holomorphic volume forms, then there is
a (2 — n)-shifted holomorphic symplectic structure on HI(P) x Qg"(X)*, where
Q%'(X)* is a derived manifold parameterizing holomorphic volume forms on X

and called the axio-dilaton moduli.

The moduli spaces from Theorems 1.1 and 1.2 are inspired by work in mathematical
physics [13, 14, 94, 174] and generalized geometry [84, 125, 127], but rigorous mathe-

matical constructions reflecting all the symmetries of higher gauge theory have only been
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carried out until now for G = {x} [63, 109, 110, 192, 256]. Even in this case, our shifted
symplectic structures seem to be new. Theorem 1.2 is proved by applying the same
techniques we develop for Theorem 1.1, after obtaining a gauge-theoretic description of
holomorphic structures and holomorphic structures with holomorphic connective struc-
tures on G-bundles similar to the description of holomorphic structures on a complex

vector bundle E in terms of Dolbeault operators.

Recall that this classical description has a particularly nice expression when F is the
complexification of a Hermitian vector bundle Ej. In this case, the so-called Chern
correspondence establishes a bijection between holomorphic structures on F and unitary
connections on Ej with curvature of type (1,1) (see e.g. [233] for a generalization to
principal bundles for a complex reductive Lie group). Moreover, this is the relation
that is used to define a map between the moduli space of solutions to the Hermitian
Yang-Mills equations on E} and the moduli space of semistable holomorphic structures
on E, which the Donaldson-Uhlenbeck-Yau theorem [100, 267] (extended to principal

bundles for complex reductive Lie groups in [6]) proves to be a homeomorphism.

Our next result, which summarizes the content of Theorems 5.8 and 5.26, extends the
Chern correspondence to the setting of Lie 2-groups, identifying the F-term equations
that appear in supersymmetric heterotic string theory as the gauge-theoretic descrip-
tion of holomorphic structures with holomorphic connective structures on a principal
2-bundle. For this, we need to introduce the notion of enhanced connection on a prin-
cipal 2-bundle, which generalizes the definition of connection from [273] by introducing

an additional symmetric covariant tensor g on the base manifold.

Theorem 1.3. Let K be the multiplicative gerbe with connection associated to a compact
Lie group K and an Ad-invariant, symmetric, integral, bilinear form (-,-) : ¢ @t — R.
Then

1. There exists a holomorphic multiplicative gerbe K€ with holomorphic connection
over the complezification K€ of K, such that there is a canonical faithful functor
Pr — 77;? from the bicategory of smooth K-bundles to the bicategory of smooth
KC-bundles.

2. If P, — X is a K-bundle over a complex manifold X, then holomorphic struc-
tures with holomorphic connective structure on P;? are in bijection with enhanced

connections ((4, B),g) on Py, such that
=0, Fy*=0, H=i@-0)4g(J ), (1.9)

for J the complex structure on X and (Fa,H) the curvature of the connection
(A, B).
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Part 1 of Theorem 1.3 is to be regarded as a complexification theorem for Lie 2-groups.
It generalizes a result from [268], which is equivalent to ours when K Cis a Stein group.
Part 2 of Theorem 1.3 is proven for the case G = {x} in [142], and is strongly related to a
similar result in [127] relating equations (1.9) to holomorphic Courant algebroids. This
relation is more than an analogy, as it follows from another original result (Theorems
4.23 and 4.26 and Proposition 5.32).

Theorem 1.4. Let G be the multiplicative gerbe with connection associated to a Lie
group G and a non-degenerate, Ad-invariant, symmetric, integral, bilinear form (-,-) :

g®g— R. Then

1. For a manifold M, there is a canonical functor Py — Ep from the bicategory of
B-bundles with connective structure over M to the category of Courant algebroids

over M.

2. (Enhanced) connections on Py — M are in bijection with (possibly non-)isotropic

splittings of the anchor m : Ep, — T'M.

3. Let adPy = Ker(m) C Epy,. There is a map from I'(adPy) to the 2-group
Gauge(Py) of automorphisms of Py which induces a structure of Lie 2-group on
Gauge(Py).

4. If G is a holomorphic multiplicative gerbe with holomorphic connection and X
is a complex manifold, then there is a canonical functor Py — Qpg from the
bicategory of holomorphic G-bundles with holomorphic connective structure over

X to the category of holomorphic Courant algebroids over X.

The special case of Theorem 1.4 when G = {x} is well-known in the literature as the
construction of an exact Courant algebroid playing the role of the ‘Atiyah algebroid’ of
a gerbe [85, 99, 142, 152, 221, 243]. Parts 1 and 2 of Theorem 1.4 are proven in [245],
for a specific choice of multiplicative gerbe with connection called String(n). Part 3,
which is an original contribution of this thesis, is crucial for our proof of Theorems 1.1
and 1.2, as the smooth structure on Gauge(Py) is responsible for the smooth structure

on simplicial manifolds obtained as quotients by actions of Gauge(Py).

The following theorem is an original result on the general theory of multiplicative gerbes
which can be found as Theorems 3.43 and 3.54 in the body of the thesis. Part 1 of
Theorem 1.5 implies that the definition of connection on G-bundles from [273] is valid
for G any multiplicative gerbe with connection, and that so are all our main results. On
the other hand, part 2 provides the main tool we use for proving part 3 of Theorem
1.4, where the role of the 1-form (1.10) is important because of its appearance in the

transition functions (4.73) of the Courant algebroid Epy,.
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Theorem 1.5. Let G be a multiplicative gerbe over a Lie group G with Lie algebra g.
Then

1. G admits a connection if and only if it arises from an Ad-invariant, symmetric

bilinear form (-,-) : g®@ g — R as in [271].

2. G admits a connection if and only if exp*G — g is trivial as an equivariant gerbe,
for the adjoint action of G on g and the equivariant structure on exp*G induced
by the multiplicative structure. In this case, an equivariant trivialization can be

chosen to have covariant derivative n € Q' (G x g,R) defined by

Mgy (Vg +0) := 2(v, 9™ vy), (1.10)

where (-, ) is the bilinear form from part 1.

Theorem 1.5 is also used to derive in a natural way the brackets on the Lie 2-algebra of
the Lie 2-group associated to a multiplicative gerbe equipped with a connection (Propo-
sition 3.51), while Corollary 3.55 interprets the equivariant trivializations from part 2 of
Theorem 1.5 as a sort of exponential map. These constructions, along with the fact that
part 1 can be used for defining connections on G-bundles, raise the natural question of
interpreting connections on multiplicative gerbes as special cases of some natural struc-
ture that can be defined for a general Lie 2-group &. We answer this by introducing the

notion of Maurer-Cartan forms on Lie 2-groups (Definition 3.23).

We show that another example of Maurer-Cartan form on a Lie 2-group is provided by
the notion from [220] of an adjustment on a Lie crossed module (see the introduction to
Chapter 4 for a brief historical account). Notably, Lie crossed modules equipped with
an adjustment are the only other family of Lie 2-groups for which there is a good notion
of fully non-flat connection, apart from the multiplicative gerbes with connection from
[271, 273]. We have checked in Propositions 3.66 and 4.21 that the approaches in [220]

and [273] are equivalent, whenever it makes sense to compare them.
Theorem 1.6. Let & be a Lie 2-group that has a model as a multiplicative gerbe G and
a model as a Lie crossed module (@, H, f,>). Then

1. A connection on G determines an adjustment on (@, H, f).

2. Choose a connection on G. The corresponding category of connections on &-
bundles defined as in [273] is equivalent to the category of connections on &-bundles

defined as in [220] in terms of the corresponding adjustment on (G, H, f,»).
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Theorem 1.6 suggests that, for a general Lie 2-group &, the notion of a Maurer-Cartan
form on & allows to define connections on &-bundles in a consistent, well-behaved way.
This remains an open problem which we discuss in Sections 8.1.1 and 8.2.1. We fur-
thermore conjecture that Maurer-Cartan forms can help solve open problems on the
theory of general Lie 2-groups that involve in some way the Lie 2-algebra: a canonical
construction of the L..-structure, the definition of an exponential map, a good notion
of holonomy, etc. One problem that we have in fact solved using Maurer-Cartan forms
is the definition of moment maps for actions of general Lie 2-groups on symplectic man-

ifolds (see Proposition 6.11).

Theorem 1.7. Let & be a Lie 2-group equipped with a Maurer-Cartan form acting on
a symplectic manifold (M,w) with a moment map . Then there is a simplicial derived
manifold M//,,® with a 0-shifted symplectic structure. The moduli spaces from Theorems

1.1 and 1.2 when n = 2 are examples of this construction.

To sum up, our results initiate the study of geometric structures on moduli spaces of
connections and other associated structures in principal 2-bundles, boosting the inter-
action between generalized complex geometry, higher gauge theory and supersymmetric
string theory. We believe that this area can be as fruitful as the interaction between
complex geometry and gauge theory in the work of Narasimhan-Seshadri, Atiyah-Bott,
Hitchin, Kobayashi, Donaldson, Uhlenbeck-Yau, Donaldson-Thomas, Witten and others
[15, 100, 102, 151, 168, 202, 267, 276], especially through the relation between our main

Theorems 1.1, 1.2 and their classical analogs discussed in Section 1.3.

1.5 Outline

The main results of this thesis can be summarized as follows.

1. On the theory of Lie 2-groups.
(a) Theorems 3.43 and 3.54 relate connections on a multiplicative gerbe G — G,
Ad-invariant bilinear forms on g and equivariant trivializations of exp*G — g.

(b) Definition 3.23 of Maurer-Cartan forms on Lie 2-groups. Propositions 3.50
and 3.66 relate these with connections on multiplicative gerbes and with ad-

justments on crossed modules, respectively.

(c) Propositions 3.27 and 6.11 define symplectic reduction for actions of Lie 2-

groups with Maurer-Cartan forms.

(d) Theorem 5.8 provides the complexification of a family of Lie 2-groups.
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2. On the theory of connections on principal bundles for Lie 2-groups.

(a) Proposition 4.21 relates adjusted connections to trivializations of Chern-

Simons 2-gerbes.

(b) Theorems 4.23 and 4.26 associate a Courant-Dorfman algebroid E to a prin-
cipal 2-bundle P and prove that the gauge 2-group of P is a Lie 2-group

modelled on the space of sections of a sub-bundle of E.

(c) Definition 4.7 of enhanced connection on a principal 2-bundle. Theorem
5.26 uses these to relate holomorphic structures with holomorphic connec-
tive structures on principal 2-bundles to supersymmetric configurations in

string theory.
3. On the theory of moduli spaces in higher gauge theory.

(a) Examples 6.3, 6.4 and 6.5 present simplicial derived manifolds representing
the moduli spaces of flat connections, holomorphic structures and holomor-

phic structures with holomorphic connective structure on principal 2-bundles.

(b) Theorems 6.7 and 6.8 present shifted symplectic structures on these spaces.

The structure of this thesis is the following. Chapter 2 introduces the language of sim-
plicial derived manifolds. Chapter 3 develops the theory of Lie 2-groups, while Chapter
4 develops the theory of connections on principal 2-bundles. Chapter 5 treats aspects
of Lie 2-groups and principal 2-bundles which are special to the holomorphic context.
Chapter 6 presents constructions of moduli spaces in higher gauge theory as simplicial
derived manifolds. Chapter 7 contains a brief introduction to oco-category theory and
the co-category of higher derived differentiable stacks, as well as some original examples
of higher Lie groups that are relevant in physics. Chapter 8 summarizes our conclusions

and poses some open problems.

While Chapter 2 is necessary for understanding the moduli spaces from Chapter 6, the
reader that is only interested in the theory of Lie 2-groups, principal 2-bundles and
connections on them can skip it and read directly Chapters 3, 4 and 5. Section 7.2.2,
with examples of higher Lie groups, might also be of interest in this case. The reader
that is not concerned with complex geometry can omit Chapter 5. All the original
results can be understood independently of Chapter 7, while the formalism presented

there extends them to a better-behaved context.



Chapter 2

Simplicial derived manifolds

Simplicial manifolds are geometric objects that model topological spaces more general
than ordinary smooth manifolds, but still using suitable smooth data. For example,
given a Lie group G acting on a manifold M, then the topological space M /G might not
have any manifold structure such that M — M /G is smooth if the action is not free.
However, in order to have a model for M/G in terms of smooth objects, we can consider

for each n € N the space (M //G),, of n-simplices A™ such that

1. The vertices of A™ are labelled by points of M.

2. Edges of A™ from a vertex labelled by z € M to a vertex labelled by y € M are
labelled by elements g € G such that x - g = y.

3. The edges of each triangle in A™ form a commutative diagram of elements of G

acting on M.

It is clear that (M//G), = M x G™ is a manifold, and the face maps d7 : (M//G), —
(M//G)p-1, 7 = 0, ..., n given by taking the j-th face of an n-simplex are smooth.
Roughly, a general simplicial manifold X, is a sequence of manifolds X,, n € N with
smooth maps d;-l : X = Xn—1, 7 = 0, ..., n satisfying the same identities as the face
maps of n-simplices. Each manifold X, is to be thought of as the space of n-simplices
in some space, where arrows represent a notion of symmetry between points, 2-cells
represent a notion of symmetry between arrows, etc., while the maps d;-‘ are to be
thought of as projecting an n-simplex to its j-th face. A simplicial manifold has an
‘underlying topological space’, called its fat geometric realization, and obtained precisely
by considering a geometric n-simplex for each point of X,, and gluing these along the

face maps.

17
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An important feature of simplicial manifolds is that they can be studied with tools
from differential geometry. For example, there is a notion of de Rham cohomology for
simplicial manifolds which computes the singular cohomology of their geometric real-
izations [49], and the de Rham cohomology of M //G coincides with the equivariant de
Rham cohomology of M as originally defined in [79]. This way of thinking about sim-
plicial manifolds is related to the fact that they can be used as models for differentiable

oo-stacks [213, 282], as we discuss in more detail in Chapter 7.

Derived manifolds are also geometric objects that model topological spaces more gen-
eral than manifolds, but the nature of such spaces is different. Namely, while sim-
plicial manifolds are well-suited for dealing with arbitrary smooth quotients, derived
manifolds are well-suited for dealing with fibered products of manifolds along possi-
bly non-transversal maps. While there are different approaches to derived manifolds
[32, 45, 46, 75, 158, 250, 252], all shown to be equivalent [76], we follow [32] here and
define a derived manifold to be a graded vector bundle £ — M with a fiberwise struc-
ture of curved Loo-algebra. Such a structure, defined on a NZ!'-graded vector space V, is
equivalent to a degree 2 element ® € V5 (called curvature) and a sequence of multilinear,
graded skew-symmetric brackets {-,...,-} : V® ... ® V — V satisfying some identities
that generalize the axioms of a differential graded Lie algebra. It was first defined in
[251], based on the BRST complex from [283].

In order to understand how a curved L.-algebra models a space in derived geometry,
we consider first a motivating example that yields a differential graded Lie algebra.
Let 1} i> Vy 2 V3 be a sequence of vector spaces with polynomial functions f, g of
degree < 2 with f(0) = 0, g(0) = 0 and go f = 0. Since f~1(0) C V4 might not be a
manifold around 0 if D f is not surjective, to treat this space with geometric tools we
may proceed as in algebraic geometry and retain the information of the polynomial f
itself. Equivalently, we keep track of the first and second derivatives D fo : V1 — V3 and
D? Joo: S 2V; — Va. Now we may also wish to encode the information that f takes values
in g71(0) C V. If Dy is surjective, we can do this using the implicit function theorem
by identifying a neighborhood of 0 inside g~!(0) with Ker (Dgj) and proceed as before,
with f replaced by some f : Vi — Ker (Dg‘o). In the general case, we may just keep
track of Dgj : Vo — V3 and D?go(D fio(:),-) : V1 ® Vo — V3, noting that 0 = go f is

equivalent to

0 = Dg|o(D fo(v)),
0 = D?go(D fio(v), D fio(w)) + Dgpo(D? fio(v,w)),
0 = Dgo(D fio(u), Dfig (v, w))
+ D?g0(D fo(v), Dfjy(u, w)) + D?go(D fio(w), D fi5(u, v)),

(2.1)
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which we might recognize as the axioms of a differential graded Lie algebra structure on
VieVa@ Vs

A general curved Lo.-algebra on a NZ!-graded vector space V models an infinitesimal
neighborhood of a point = in a space X with a possibly singular subspace Z C X, in
the following way. Firstly, ® = 0 if and only if x € Z. Then an element e € V of degree
1 represents an infinitesimal deformation of x within X which can be lifted to an actual

curve with endpoint on Z if and only if it satisfies the Maurer-Cartan equation
1 1
(I)+{6}—|—§{€,6}—|—6{6,6,6}—|—... =0. (2.2)

Elements in degree 2 represent infinitesimal obstructions, in the sense that the left-
hand side of (2.2) lies in V5. Elements in degrees > 3 represent higher infinitesimal
obstructions, in the sense that the left-hand side of (2.2) lies in a subset of V5 that is
itself described as the zero set of a polynomial function to V3, whose image is again
in the zero set of a polynomial function to Vy, etc. This way of thinking about curved
Loo-algebras is related to the fact that they can be used as models for derived differential

geometry [32, 75], as we discuss in more detail in Chapter 7.

One can also combine both theories and define simplicial derived manifolds, which are
geometric objects modelling topological spaces such as those that can be obtained by
(iterated) quotients and fibered products of manifolds. Simplicial derived manifolds
turn out to be well-suited for modelling moduli spaces, as these can often be written
as {v € A| ®(z) = 0}/G for some manifold 4, smooth map ® and Lie group G. This
observation is related to the fact that simplicial derived manifolds can be used as models

for higher derived differential geometry, as we discuss in more detail in Chapter 7.

Simplicial derived manifolds can be equipped with a certain type of geometric structure,
called shifted symplectic structures, which generalize standard symplectic structures on
manifolds. They were introduced in [210] within the setting of higher derived algebraic
geometry (see [68, 232] for surveys). Although the quasi-symplectic Lie groupoids from
[275, 278] and the symplectic dg-manifolds from [224, 242] (based on [1]) are precursors,
a systematic treatment of shifted symplectic structures in differential geometry is only

available for now in the context of higher (not derived) differential geometry [92].

One of the most important features of this theory is that many moduli spaces of inter-
est carry canonical shifted symplectic structures. These generalize and unify classical
symplectic structures, such as the Atiyah-Bott [15] construction, or Mukai’s holomorphic
symplectic structure on the smooth locus of the moduli space of G-bundles on an abelian

or K3 surface [196]. Moreover, they are related to topological field theories through the
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AKSZ construction [1, 69, 242] and thus they provide invariants of manifolds. In partic-
ular, Donaldson-Thomas invariants have been studied and generalized using this point
of view in [34, 47, 159, 160, 164].

In this chapter we define and provide examples of simplicial derived manifolds and shifted
symplectic structures on them. In Section 2.1.1 we introduce simplicial manifolds. In
Section 2.1.2 we follow [96, 134] to provide a brief overview of sheaf cohomology on
simplicial manifolds, which is a useful tool for stating and proving classification results
for geometric structures. In Section 2.2.1 we define L.,-algebras, and in Section 2.2.2
we recall the approach from [32] to derived manifolds. Then we define simplicial derived
manifolds in Section 2.2.3. In Section 2.3.1 we present a notion of shifted symplectic
structures on simplicial derived manifolds, based on [92, 210, 224]. In Section 2.3.2 we
present some basic constructions of shifted symplectic structures, and in Section 2.3.3 we
discuss examples of shifted symplectic structures on moduli spaces. The constructions
and results in this chapter are adapted from the references and there is no claim of

originality except for minor presentation aspects.

2.1 Simplicial manifolds

2.1.1 Simplicial manifolds

We use the category of simplicial manifolds as an approximate model for the oo-category
of differentiable co-stacks. While this co-category is defined in Section 7.2.3, all the rele-
vant constructions in this thesis are described without losing rigor with the terminology
of this section. We establish first a notational convention for the whole thesis. Namely,
for a category C, we write Cy for the class of objects and C; for the class of arrows. For

x, y € Cy, we write C'(x,y) for the class of arrows from x to y.

Definition 2.1 ([282]). A simplicial manifold M, is the following data.

1. For n € N, a manifold M,
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2. For n € N and j = 0, ..., n, smooth maps dj : M, — M,_1 (face maps) and
8§t My — Myt (degeneracy maps) that satisfy

Py = didy, i<,

7—1"1 >
s?“s? = 8?1118?, 1< 7,
d?“s? = s?jlld?, i <7, (2.3)
ditst =id, i=3,7+1,

dittst =Sy, P> 4L
A semi-simplicial manifold M, is a sequence of manifolds M,,, n € N, with face maps
dj : My, — My, satisfying the first equation in (2.3). A morphism of (semi)-simplicial
manifolds fo : Me — N, is a family of smooth maps f, : M,, — N, commuting with all
face and degeneracy maps. We write sMan for the category of simplicial manifolds and

sinjMan for the category of semi-simplicial manifolds.

We will omit the superscripts in the face and degeneracy maps of a simplicial manifold
when these are clear from context. There is an alternative characterization of simplicial

manifolds which is sometimes useful to present examples. Define the sets
[n] := {0, ..., n}, n € N. (2.4)

Definition 2.2 ([106]). The simplex category is the small category A whose set of
objects is {[n]|n € N} and such that A([n], [m]) for n, m € N is the set of non-decreasing
functions [n] — [m]. The semi-simplex category is the subcategory A;,; C A with the

same objects, but with only strictly increasing functions as arrows.

Any arrow in A can be written in a canonical way as a composition of certain canonical
arrows of the form 67 : [n — 1] — [n] and 0} : [n + 1] — [n], n €N, j =0, ..., n, called
coface and codegeneracy maps [106]. They are defined by
. i i <j . i i<j
(i) = , o (i) :== , (2.5)
t+1 1> i—1 i>7
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and satisfy the relations

optley =ortlep, i<y,

a}‘af“ = J?aﬁ'll, i <7,

cr?é?“ = 5?0?:11, i<}, (2.6)
opitt =id, i=7,j+1,

T D S A

This implies the following.

Proposition 2.3. The category sMan as in Definition 2.1 is equivalent to the category
whose objects are functors A°? — Man and whose arrows are natural transformations.
The category sinjMan as in Definition 2.1 is equivalent to the category whose objects

are functors AP

inj — Man and whose arrows are natural transformations.

In particular, Proposition 2.3 is useful to define the Cartesian product of simplicial
manifolds M,, No : A°? — Man as the simplicial manifold (M x N), : A°? — Man given
by

(M x N)o([n]) := M([n]) x N([n]). (2.7)

For n € N, write

A" := {(z0, ..., zn) € [0,1]" T | 3, 2 = 1} (2.8)

for the geometric n-simplex. For 0 < j < n, write de : JA™ 1| — JA"| and sjA S VANGEN

|A™| for the continuous maps

Cle(.%o, ceny l‘n,1) = (l’g, sy L1, O, Ljyeny xnfl), (29)

Sj-A(l'o, . l’nJrl) = (1}0, ey T T T jgly eeny l’nJrl). (210)
A simplicial manifold M, is a geometric model for the topological space
mo(Me) := My/ ~, (2.11)

where pg ~ py if 3f € M; with do(f) = po, di(f) = p1. The simplicial manifold M,
contains additional information on how points in m9(M,) are identified. This information
is also encoded by another associated topological space, called the geometric realization
[215] and defined by

M| := | | My, x |A"] ] ~, (2.12)
neN
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where the equivalence relation is

(0. d5() ~ (di(p) 7). pE My x€ AV, j=0, .0, (213)
(p, SJA({L‘)) ~ (s55(p),x), pE M, zc|A", j=0,.. n (2.14)

The fat geometric realization ||Ms|| of M, is similarly defined, but quotienting only by
relation (2.13). In particular, it can also be defined for semi-simplicial manifolds. Fat ge-
ometric realization is in general better behaved, as it commutes with Cartesian products,
but all the examples of simplicial manifolds in this thesis satisfy that degeneracies are
embeddings, which implies that their fat geometric realization is homotopy equivalent

to their geometric realization [264].

We say M, is a geometric model in the sense that it is described by smooth manifolds
and smooth maps between them. In particular, a simplicial manifold M, has a Moore

tangent complex, which is the Z<-graded chain complex of vector bundles over My
0« 0« é % é
. > 8TM, — s*TM,_1 — ... = s*TM; — TMj. (2.15)

Here s : My — M, is the map obtained by composing degeneracy maps (which does
not depend on which degeneracies are chosen, by the simplicial identities), and 0 :=
Zj(—l)j dj,. This complex is meant to be considered up to quasi-isomorphism. The
Dold-Kan correspondence [162] implies that the Moore tangent complex is quasi-isomorphic
in the derived category of vector bundles to the following complex, which we call the

normalized tangent complex.

2) A_n 2) A_n+1 g R A_1 2) A() = TM(), (2.16)
where
s*T'M,, _
Ay = ="t ker(d?, : s*T M, — s*TM,_), 2.17
= e i R
n .
0:=)) (-1)d},=d;, (2.18)

A caveat is that the normalized tangent complex is not in general a complex of vector
bundles. For simplicial manifolds satisfying a property called Kan conditions, which is
treated more carefully in Chapter 7, this is not a problem. All the simplicial manifolds in
this thesis satisfy this condition and so we will only use the normalized tangent complex,
to which we will simply refer as the tangent complex. The cotangent complex of M, is the

dual of the tangent complex; i.e., it is the ZZ°-graded chain complex of vector bundles
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over Xy
a*

T My=A3 5 A - .. S ar, Sa 5 (2.19)
A morphism of simplicial manifolds f, : Me — N, induces a map f, between the tangent
complexes of M, and N,, as it follows simply from the fact that f, commutes with all

face and degeneracy maps.

Remark 2.4. The tangent bundle T'M of an ordinary manifold M is canonically equipped
with the Lie bracket [-,-] : I'(TM) @ I'(TM) — I'(T'M). While one would perhaps
expect that the tangent complex of a simplicial manifold is canonically equipped with
some analog structure, it turns out that this is not true in general. However, upon
choosing certain connection-like data, one can indeed define a structure of Z=°-graded
Loo-algebroid on it (see [178] for details).

Example 2.5. If M is a manifold, then we may see it as the simplicial manifold M, with
M,, = M and all face and degeneracy maps equal to the identity. More interestingly,
if G is a Lie group acting smoothly on M, then the quotient groupoid (M//G)e is the
simplicial manifold with (M//G),, = M x G™ and simplicial maps

dO(pa g1, ---,9n) = \PY1, 92, "’7971)7

(
Ps915---,95-1,9795+15 9j+25 ---» g )7 .] = 17 vy N 17

( J J97 J n (220)
(

(

)

di(p, g1, s Gn)
) = (D915, Gn—1);
)

(
dn(p,gl;'--agn
sj(pagla"'vgn = pvgb"-7gjalagj+17"'agn)a .7 = 07 ceey 0.

The use of the word groupoid will be justified in Chapter 7. The tangent complex of
(M//G)e is the chain complex of vector bundles over M

g5 TM, (2.21)

where g is the trivial bundle (placed in degree —1) with fiber g and p. denotes the
infinitesimal action map. This is often called the action Lie algebroid for the action of
G on M. An alternative description of (M//G)s is

n+1
(M/)G) = {({piYicpnl {91 Viciem) € M x G2
Vi, i = 1,
4 (2.22)
Vi < 7, Digij = Dj,

Vi< j <k, gijgik = Gik};

indeed, note that a point ({p;}:,{gi;}ij) € (M//G), is completely determined by the
point (po, go1, 912, ---s gn—1,n) € M x G™. This description is more suitable for seeing

(M//G)e as a functor A°? — Man, because then for an arbitrary non-decreasing function



Simplicial derived manifolds 25

f i [n1] = [n2] we can define f*: (M//G)n, — (M//G)n, by

({piYieno)s 19ij Yi<jena)) = (L Pitiemi), {7 9ij bi<jemn))

(2.23)
Fpi=piay, 1795 = 956)5G)-
The geometric realization of (M//G)e is the homotopy quotient
[(M//G)e| = (M x EG)/G, (2.24)

where EG — BG is the universal bundle of G. This has a canonical surjective map
|(M//G)e| — M/G to the standard topological quotient M/G = mo((M//G)s), and its
fiber over each [p] € M/G is weakly homotopy equivalent to Blso(p), the classifying
space of the isotropy topological sub-group Iso(p) C G of p. In this sense, (M//G), is a
geometric model for the quotient which exists even when the action is poorly behaved,
and which retains information about the isotropy of the action. In particular, when the

action is free, then |(M//G).| is weakly homotopy equivalent to M/G.

Example 2.6. For G a Lie group and its trivial action on a point {*}, the correspond-
ing quotient groupoid as in Example 2.5 is denoted BG,e := ({x}//G)e and called the
delooping of G. The quotient groupoid corresponding to the action of G on itself by
right multiplication is denoted EG, := (G//G)e. There are maps of simplicial manifolds
G — EG, — BG, given at each level by G Yl axer 3 {*} x G™, and the geometric
realization of this sequence is the universal bundle G — EG — BG of G as a topological
group [146]. Note the tangent complex of BG, is just the Lie algebra of G, seen as a
degree —1 vector bundle over a point, while the tangent complex of EG is the complex

of vector bundles over G, concentrated in degrees —1 and 0, with fiber g A g.

Example 2.7. If M is a manifold and U = {U,}4c4 is an open cover of M, then we
write Uy, .. .qp, = MY_,U,, for p-fold intersections. The Cech groupoid of M with respect
to U is the simplicial manifold C(M,U), defined by C(M,U), = Uao,...ancAn+1Uaqg...an

with face and degeneracy maps given by

dj(ag, ..., an,x) = (ag, ..., 4j—1,ajy1, ..., an, x), j=0,..,n,

(2.25)

sj(ag, ...,an, ) = (ag, ..., aj, a5, @j41, ..., an, x), j=0,.., n

The geometric realization of C'(M,U), is weakly homotopy equivalent to M itself. For
G a Lie group, a morphism of simplicial manifolds g : C'(M,U)s — BG, is the same as

a collection of smooth functions g,p : Uy, — G satisfying gepgpe = gae on Ugpe. Given
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one such morphism g, then we define the simplicial manifold (¢* EG)e by

(9" BG)n = {({(ai, 9i) Yiel), ©) € (A x G)"* x M|

S m?:OUaia VZ < jv gigaiaj (I) = g]}

(2.26)

There is an obvious map of simplicial manifolds (¢* EG)e — M, whose geometric re-
alization is weakly homotopy equivalent to the G-bundle P — M defined by P :=
UaeaUqg X G/ ~, with (avxagab(:U)g) ~ (b,x,g).

Example 2.8 ([178]). For T an abelian topological group, the homotopy type BT
admits a model as an abelian topological group, and so inductively one can define again
B2T := B(BT), B3T := B(B?T), etc. We present a ‘smooth’ analog of this construction.
Let T be an abelian Lie group and let [ > 1. We define a simplicial manifold (B'T"), by

(BlT)n = {{tiop..,il}ioﬁilg...gile[n] ‘vj € [l - 1]7 tio,...,’i]',i]',...,il_l - 07
Vip < ... <ippq € [n], D2 (—1)7t

105eesljyenyiifl }’

(2.27)

J

where we are using additive notation on 7. For the simplicial maps, given a non-

decreasing function f : [n1] — [n2] we define the pull-back map

{ti07---7il }iogilg...gile[ng] = {f*tZO ----- il}ioﬁilg...g’ile[nﬂ (228)

f*tio,mﬂi = tf(i0)7-~-7f(il)’

Note that for | = 1 we recover the simplicial manifold BT from Example 2.6. For general

I, the inclusion-exclusion principle implies that (B'T),, = T¢™ where

e(n, 1) = (7:) - (7:;) + (7:;) - (7) (2.29)

"H) is the number of non-degenerate I-faces of A™. However, the simplicial maps are

+1
harder to describe if we write B'T = T(i). The presentation from (2.27) is more natural,

as(

as it lets us picture each t;, . ; as labelling the [-face of A™ with vertices ig, ..., i;. We

1

also define a simplicial manifold (EB'~'T), by

(EBl_lT)n = {({tio,wilfl}i0§i1§...§z’l_1e[n]a {tio,~~~7iz}iogilg...gile[n}) ’
vje[l—-1], big,oyijyiynriz—o = 0, (2.30)
Vip < ... <1i; € [n], Zj(_l)jtio,...,i},...,z’l =tiy.i,}-
There is a sequence of simplicial manifolds B'~'T, — EB'"'T, — B!T,, and its geomet-

ric realization is the universal bundle of B'~!T. Now if M is a manifold and U = {Uq,} e

is an open cover of M, then a map of simplicial manifolds ¢ : C'(M,U), — BT, is the
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same as a T-valued Cech l-cocycle; i.e., a family of functions t4y..q; @ Usg..ay — T
. 1 :

with Zji%(—l)]t

(t*EBl’lT). by

toresdiyediter = 0. Associated to one such function ¢ we can define

(t*EBlilT)n = {({az}ze[n]a z, {ti07..~,il_1}iogilg...gil,le[n]) ‘

T e ﬂ?onai,
Vj S [l - 1]7 tio,...,ij,ij,...,il_g - 07
Vip < o i € ], X5(= 1Vt o= tag e (0))

(2.31)

The geometric realization of (t*EB'™1T), is weakly homotopy equivalent to a B'~1T-
bundle over M, but the advantage of working with t* EB!~!'T is that it is completely
described by smooth data, and so, as we will see, one can define differential geometric

notions such as connections, symplectic structures, etc. on it.

2.1.2 Sheaf cohomology on semi-simplicial manifolds

Definition 2.9 ([96, 134]). Let M, be a semi-simplicial manifold. A sheaf of abelian
groups S8*®* on M, is a collection of sheaves of abelian groups S™ on M, with maps

I} (d}l)*S"_l — 8" satisfying the condition
dj o (d?)*c")f’l =0'o (d?)*@;‘_’f (2.32)

for i < j. For a sheaf S we define the operators 8,1 : S" *(M,_1) — S*(M,,) by

n—1
On1 =Y (=1)or1(dy ). (2.33)

§=0
A morphism of sheaves S§ — S7 is a collection of morphisms S — S' commuting with
the maps (0} )o, (07)1. The global sections functor I : AbSh(M,) — Ab is the functor

from the category of sheaves of abelian groups on M, to the category of abelian groups
acting as S® — ker (&g : S°(My) — SH(My)).

For M, a semi-simplicial manifold, the category AbSh(M,) is abelian. In fact, it can
be interpreted as the category of sheaves in a Grothendieck site and so it has enough
injectives [257, 2.1.2]. For p € N, the sheaf cohomology group HP(M,,S®) is then the
image of §® by the p-th derived functor of I". Sheaf hypercohomology H(M,, S§ — ... —

S) of a complex of sheaves is similarly defined as the derived functors of the functor

Se b LS ker(Sp Bt : SY(My) — Sp(My) @ SV (My)). (2.34)
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The cohomology of a sheaf S® can be computed by taking a resolution in AbSh(M,)
S* 5 10 % o1 % such that the standard sheaf cohomology groups H"(M,,, I"™"™)
vanish for r > 0 and n, m > 0. This can be done, for example, by taking functorial
acyclic resolutions of each sheaf S™ over M,,. Then H*(M,,S*®) is obtained as the total
cohomology of the double complex (I (M,),d,d). Similarly, the hypercohomology of
a complex of sheaves S AN S; can be computed by taking acyclic resolutions
S — I'* of each & with maps I* RN n* L ... commuting with the maps from
the complex. Then H(M,,S — ... = &) is the cohomology of the triple complex
(L™ (M), 0,d,t).

All the examples of sheaves on a semi-simplicial manifold M, appearing in this thesis
arise from considering a sheaf S that is defined functorially over all manifolds and letting
S™ be the sheaf S on My, with 7 the maps obtained by functoriality. For example, for
a fixed finite-dimensional vector space V and for fixed ¢ € N, we define the sheaf Qf, of
V-valued g-forms on a semi-simplicial manifold M, to be the sheaf on M, which at each
level M, is the sheaf of V-valued g-forms on M,,, with the maps 8;»‘ = (d;‘)* between
them. In this case, the maps d : Q4(M,,_1) — Q%(M,,) are defined by

n

8= (~1)/(dy)". (2.35)
=0
Remark 2.10. If 8® is a sheaf over a semi-simplicial manifold M, such that each S™ is
an acyclic sheaf over M,,, then
B ker(6 : SP(M,) — Sp+1(Mp+1))

HY(Me, S0) = Im(d : SP=1(My_1) — SP(Mp))’ (2:36)

so it does not follow in general that S® is acyclic as a sheaf on M,. In particular, for

any semi-simplicial manifold M, and any p, ¢ € N we have

ker(0 : QI(M,, V) = QU(Mpy1,V))

HP(M,, Q) = .
(M, $ty) Im(6: QI Mp—1,V) — QI(M,,V))

(2.37)

We recall now two theorems that relate sheaf cohomology on semi-simplicial manifolds
with other cohomology theories, and which we will use to prove some classification results

in Chapters 3 and 4.

Theorem 2.11 ([49]). Let Z be an abelian Lie group, let Mo be a semi-simplicial man-
ifold and let Z be the sheaf of locally constant Z-valued functions on M,. Then

H*(M,, 2) = H*(||M.]], 2), (2.38)
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where the right-hand side of (2.38) denotes singular cohomology of the fat geometric
realization (cf. Section 2.1.1) of M,.

Remark 2.12. In the situation of Theorem 2.11, and for Z = V a vector space, H*(M,, V)

can be computed by taking de Rham resolutions {2}, on each M,
o d ~1 d
V07 = Qp — .. (2.39)

Recall that the maps 0 : QU (M,—1) — Q}(M,,) are given by (2.35) . Then H*(M,,V)
is the total cohomology of (Q{}(My),d,d), which provides a useful tool for computing

singular cohomology of topological spaces much more general than manifolds.

For the next result, we recall the notion of group cohomology [54]. For G a group,
a G-module is an abelian group M with an action by automorphisms of G. Given a
G-module M, write C"(G, M) for the space of (set-theoretical) functions G" — M and
define a differential d : C"(G, M) — C™t1(G, M) by

'
dm(go, -+ 9r) =90 - m(g1, - 9r) + (1) m(g0, -+, Gj-10j> Gj 1, - Gr)
j=1 (2.40)

+ (=1 m(go, ey gr1)-
Group cohomology with coefficients on M is defined by

HEL(G M) = S ggf’f(‘g ‘]\j’)” =0 (2.41)

If G is a topological group acting continuously by automorphisms on the topological
(G, M) for the space defined as in (2.41) but
replacing C" (G, M) with the space of continuous maps G" — M.

abelian group M, then we write Hg, ..,

Theorem 2.13 ([48]). Let G be a Lie group with Lie algebra g and let V be a finite-
dimensional vector space. Then

HP(BG., Q) = H'"4 (G, S9g" @ V), (2.42)

gr,cont

where the G-module structure on Sig* ® V' is given by the coadjoint action. Moreover,
if G is compact, then for r > 0 one has

HT‘

gr,cont

(G, S%" ® V) = 0. (2.43)

We also need the following explicit formulas for the isomorphism (2.42) in low degrees.

In the sequel we will use the following notation: for manifolds X, Y and points z € X,
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y € Y we identify T, ) (X xY) = T, X @ T,)Y and write v, + vy € T(,,)(X xY) for

vectors tangent to the product manifold.

Lemma 2.14. Let G be a Lie group and let V be a vector space. Then

1. The isomorphism H*(BGe, ;) = H}, .0nt(G, 8" @ V) is induced by the map

Are QU@ V)[or =0} | {r:G xg—=V][nlg192,v) = k(g1,0) + g2, 97 'vgr)}

¢

{do| o€ QUG,V)} {r(g,v) = x(g71vg) = x(v) | x 1 g = V}
with
o(1)(g,v) = 7(97171)(0 +v)+ T(g=1,9) (gflv +0), (2.44)
er(/i)(ghgz)(vgl + 7)92) = (g2, 91_17)91)- (2.45)

2. The isomorphism H?(BGe, %) = HY, .0t (G,5%g* @ V) is induced by the map:

v e QG2 V) | 6w = 0}

(U {50’|O’€QZ(G,V)} _>{<7> :SQQ—)V|<Ad(g)u,Ad(g)U> = <u7v>}
with
() (u,v) = %1/(1’1)(0 +u,v+0) + %1/(171)(0 +v,u+0), (2.46)
() = = (910" A g50™), (2.47)

where 0%, % € QY (G, g) are the left- and right-invariant Maurer-Cartan 1-forms
on G.

Proof. We show the proof of 2, as 1 follows from similar computations. First, let v €
QL(G?,V) satisfy 6v = 0. It is easy to see that the expression (2.46) is invariant under
changing v by éo, for o € Q?(G, V). Moreover, we claim that

1 1
<’LL, ’U> = EV(ghgg)(O + ug2, giv + 0) + 5”(91,92)(0 + Vg2, g1u + 0) (248)

is actually independent of g1, go € G. This can be seen by symmetrizing  and v in the

following identities that follow from the cocycle condition for v.

V(g1,92)(0 + ug2, g1v + 0) + Yigr 0+ g1ug2,0 + g1vg2) = V(1,45)(0 + ug2,v + 0),

(2.49)

1,9192)(

V(g1,92)(0 + uga, g1v +0) + v gruga + 0, g1vg2 +0) = v, 1)(0 4+ u, g1v + 0).

(2.50)

91927951)(
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Then, Ad-invariance of (-,-) follows from applying the cocycle condition on (1,g,97 ') €
G3and 0+ 0+ug™, gvg~' +040 € T(y 5 ,-1)G?, which yields

va,1)(0+ gug™ gug™" +0) = v -1y (0 +ug™, gv +0). (2.51)

This concludes that the map 1 is well-defined. To see that ¢! is well-defined, we note
simply that if (-,-) : S?g — V is Ad-invariant then

((g192)*0" A g50™) — (910" A (g295)*0™)
= (Ad(g; ")gt0" + 950" A g50™) — (910" A g50™ + Ad(g2)g50™)
= (g50" A g50") — (g70" A g50™).
(2.52)

Checking that 1) o 1»~! = id is immediate, while ¢! 0 ¢ = id follows from noting that
for v € Q%(G?, V) with v = 0 we have the following identities.

1
V(gl,gz)(um + gy, Vg, + Vg, ) + Y( 0+ ug, ug,, Vgy Vg, T+ Vg Vg, )

grjlgfl,glga)(

_ -1, —1 -1 -1 -1
= Vigstgr g0 (0 Ugr, Vg, Vg," + 0g1) + V(g1 ) (95701 gy + Ugy, Vg, + Vgs),

(2.53)

Vg tgrt gy (0 gy v vg ! ;) (2.54)
= Vgt g0 (0 F gy g, +V00) F ¥ 1) (0 + 97 g1, v, +0), '

V(ggl,l)(o + 91_1“9177);21 +0) + V(g;17gg)(g2_191_1ug1 +0, fug;l +0) 2.55)

1 _
- V(9271792)(0 + 9 ugng’vgzl + 0)'

Here we are writing, for u, € TG, u;l = dinvg(uy) € T,-1G, where inv : G — G is the

1

map g — g . Adding these identities and skew-symmetrizing ug, + ug, and vy, + vy,

yields
v =gio — (g192)"0 + gso — (910" A g36"), (2.56)

for (-,-) defined by (2.46) and o € Q%(G, V) defined by
1 1 1 1
og4(ug,vg) = iy(g—lyg)(O“—Ug,ﬁUg +vy) + 51/(971’9)(% + g, 0+ vy), (2.57)

which concludes the proof. O
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2.2 Derived manifolds

2.2.1 Graded algebra and L.-algebras

We fix the following notations and conventions throughout the whole thesis. First,
‘graded’ objects will always be Z-graded unless otherwise stated. For V = @®,zV, a
graded vector space, we write |f| = d for the degree of an homogeneous element f € Vj;.
Sometimes we will also write (—1)/ := (=1)//I. All equations that depend on the degree
of vectors are stated for homogeneous elements and then extended to all vectors by
linearity. The dual V* is regarded as a graded vector space with (V*)_,, = (V,,)*. For
d € Z, we write V[d] for the graded vector space with V,, in degree n — d. A graded
R-algebra A is commutative if the product satisfies f - g = (—1)””9‘9 - f. A graded left
module M for A is a left A-module with a grading such that |f-m| = |f|+|m| for f € A,
m € M. An A-multilinear map of degree [ on M with values on the left A-module N is
a map w : MP — N such that

lw(my, ...,mp)| = |ma| + ... + |mp| + 1, (2.58)

Wy, ooy f oy ooy my) = (=1)fEFmMFtmis) £ 0my L omy). (2.59)

It is graded symmetric when
WM, ooy Mgy Mg 1, ooy M) = (—1)|mi”mi+1|w(m1, ey M1, My ey M) (2.60)
and it is graded skew-symmetric when
WM, ooy My M1,y ooy M) = —(—1)‘miHmi+1|w(m1, ey 1, My ey T ). (2.61)

We write S*M* @ N = ®,5PM* @ N for the graded A-module of graded symmetric
multilinear maps and A*M* ®@ N = @&,APM* ® N for the graded A-module of graded
skew-symmetric multilinear maps (and we supress N when N = A). The space S®*M*

is a commutative graded algebra under the product

(w1 © wa)(m, .oy Mpy4py) = Z wl(m0(1)7 i mU(p1))w2(m0(p1+l)’ el mﬂ(pﬁrpz))
oE€Spy,pg

« (71)w2(ma(1)+'“+mo(pl)) (1)),

(2.62)
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Here

Sprparp; =10 € Spi.ap; | 0(1) < ... < a(p1),
o(p1+1) <...<o(p1+p2),
opr+..+pj1+1)<..<opi+..+pj-1+pj)}
(2.63)

and (—1)7(”) is the Kozul sign; that is, it is the result of writing the permutation

(ml, ceey mp1+p2) — (mg(l), ceny mo.(p1+p2)) (264)

as a product of transpositions (mj,, mj,) - ... - (Miy, mjy ), and defining

(1)@ o= T (—1)mesmis. (2.65)

S
Note that, although this is not reflected in the notation, (—1)7(") depends on the degrees
of the permuted elements m;. We will also write (—1)? for the sign of a permutation o.

The décalage isomorphism is the isomorphism of graded A-modules
SP((MI1])*) — (APM*)[—p],
(M[1])%) = ( )[=p] (2.66)

W = Wgk,

where

Wek (M1, ...y my) i= (=1 Pt P=bmatpmatedmp () ). (2.67)

We also write w +— w,, for its inverse. In particular, it induces structure of graded
commutative algebra on @,(APM*)[—p], which as a vector space coincides with A®*M*.

A derivation of A of degree [ is an R-linear map X : A — A[l] satisfying

X(f9)=X(f)-g+ (=D fX(g). (2.68)

The space Der(A) of derivations of A is a graded A-module. We equip it with the graded
Lie bracket

(X Y)(f) = X(Y () = (DPFIMY (x (). (2.69)
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This satisfies

X, Y]] = |X|+ Y], (2.70)
(X,Y] = —(—D)XIV [y, X, (2.71)
(X, [Y, 2] = [[X,Y], 2] + (-)¥IM[y, [x, Z]), (2.72)
(X, fY] =X ()Y + (-1)X T fx,v]. (2.73)

When A = S*V* for V a finite-dimensional graded vector space, then there is a canonical
isomorphism Der(A) = A®V, where each v € V induces a derivation defined on V* C A
by a + a(v)! and then extended to all of A imposing Leibniz’s rule.

Definition 2.15 ([175, 251]). A curved Loo-algebra (V,Q) is a graded vector space
V with a degree 1 derivation @ of S®(V[1])* (the homological vector field) such that
Q? = 0. A morphism of curved Loo-algebras (W,Qw) — (V,Qy) is a morphism of
graded algebras ¢ : S*(V[1])* — S*(W]1])* such that (Qv(f)) = Qw (o(f))-

Since Der(S*(V[1])*) = S*(V[1]))* @ (V[1]), it follows from Definition 2.15 that the
homological vector field of a curved L.-algebra determines a sequence indexed by p € N
of degree 1 graded symmetric p-linear maps {-,...,-} : SPV[1] — V[1]. In particular,
the O-bracket is an element ® € V5, which we call curvature. The condition Q% = 0 is

equivalent to the higher Jacobi identities: for n € N and vy, ..., v, € VI[1],

S D)oy, e Vo) b Vo(prtys s Vo(my } = 0, (2.74)

p+q=noeSy 4

where the Kozul sign (—1)?(?) is computed with the degrees of v; as elements of V[1].
Alternatively, we can use the décalage isomorphism (2.66) to define for each p € N the
map {, ..., - }sk, which is a graded skew-symmetric p-linear map on V with values on V'

and of degree 2 — p. The Jacobi identities for the skew-symmetric maps is

Z Z )7(0 Hvoa ()Y sk Vo(p+1)s -~ Vo(n) Jsk = 0, (2.75)

pHg=n oSy q

where the Koszul sign is now computed with the degrees of v; as elements of V. The

homological vector field ) can be recovered from the brackets by the formula

Q(¢) ::5<<1>+{-}+;{-,-}+é{.,-,-}+...> (2.76)

1One could also define it by o — (—1)"*I*la(v), but we keep the above notation, as it seems more
natural in examples.
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for £ € V[1]*, which is then extended using Leibniz’s rule. When ® = 0, one of the
Jacobi identities implies that the 1-bracket squares to 0 and so it induces a structure of

chain complex on V.

Given two curved Loo-algebras (W, Qw), (V,Qv), morphisms of graded algebras ¢ :
S*(V[1])* — S*(W[1])* are in bijection with degree-preserving linear maps g : V[1]* —
S®(W1])*. We can decompose these as g = g1 + g2 + ..., with g, the projection of g onto
SP(W1])*, and dualize to obtain degree-preserving linear maps f, : SP(W[1]) — V[1].
One can then check that ¢ defines a morphism of curved Ly,-algebras if and only if the

following identities are satisfied for n € N and wy, ..., w, € W[1].

Z Z Z (_ ) {fpl We (1), p1)) fp]( o(n— pj+1)7-~-7wa(n))}v

J>1 Pt AP =N 0€Sp, . p;

Z Z ’Y(U f+1({w U(P)} o(p+1)s+ U(p-i—q))'

pt+g=n UESp q
(2.77)

In particular, when ®y = 0 and ®y = 0, then f; : W[1] — V[1] commutes with the
1-brackets. In this case, we say ¢ is a quasi-isomorphism if fi induces an isomorphism

on the cohomology of the corresponding chain complexes.

The description of curved Ly,-algebras in terms of homological vector fields is very
convenient to prove abstract results, since it is more concise, but practical examples
appear naturally in the bracket description. We dedicate the rest of this section to spell
out in detail the axioms, in the skew-symmetric bracket formulation, of a certain family
of curved Lo,-algebras and a certain family of morphisms between them which will cover

all the examples in this thesis.
Definition 2.16. A curved cubic Ly-algebra is a graded vector space V = @,V,
equipped with the following data.

1. A degree 2 element ® € V, called curvature,

2. A degree 1 linear map d:V — V,

3. A graded skew-symmetric degree 0 bilinear map [,:] : V@V — V|

4. A graded skew-symmetric degree —1 trilinear map {-,-,-}: VoV @V =V,
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subject to
dd =0, (2.78)
() = —[®, ], (2.79)
d[el, 62] = [del, 62] + (—1)61 [61, deg] — {(I>, e1, 62}, (2.80)
d{el, €, 63} + {del, €2, 63} + (—1)61 {61, deo, 63} + (—1)€1+62 {61, €, deg} (2‘81)
= [e1, [e2, es]] — [[en, 2], €3] — (—1)7'%[e2, [en, €3]],

{le1, e, 3, €4} + (=124 ey, e3], €2, €4} + (—1)°4(2He3) {61 e4], €9, €3}
4 (1)) ey el er, ea) + (1) e et () 0] o1 )

(_1)(61+62)(63+€4){[637 64], e1, 62}

[{e1, ez, es}, ea] + (=1) " {er, e2, €4}, €3]

(

+ (—1)e2esten)[fe) ez, e4}, ea] + (1) (2T te) ey o3 04}, €]

+

(2.82)

for eq, eq, e3, e4 € V. In particular, a curved cubic Le-algebra with ® =0, {-,-,-} =0
is a differential graded Lie algebra (DGLA). For

(VV, CI)W’dwv [‘7 ']Wa {'7 " }W)7 (Va (I)V7 de ['7 ']V7 {'7 '7 }V)

curved cubic Lo-algebras, a quadratic morphism between them is a pair of linear maps
f1: W=V, fo: W®W — V such that

1. f1 has degree 0 and fs is graded skew-symmetric of degree —1.

2. The following identities are satisfied.

fi(@") —oV =0, (2.83)
fidVe) —d" (fi(e)) = f2(@7,e), (2.84)
filler,ea™) = [fi(er), filea)]” = d" fa(er, e2) (2.85)
+ fa(dWer, e2) + (1) fa(er,dVes),
fil{er, ez, es3"V) = {fi(e1), fi(e2), fi(es)}V =
= —[fale1, €2), f1(es)]" + (—1)2°[fa(ex, e3), f1(e2)]” (2.86)

— (1)1t £y (e9,e3), filer)]” — foller, 2]V, e3)
+ (—1)°2% fo([er, es]™ e2) — (1) (F8) fy([e, €3], e1)
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fal{er,ea, e} ea) — (1) fo({er, €2, €4} e3)

+ (=)= fo({er, e3, 4} eg) — (1) =TT £y ({eg, e3, €4} 1)

= —{fale1,e2), fi(ea), fi(ea)} + (=1)2{ fa(er, e2), f1(es), fi(ea)}
— (=) TS f(e1, e4), fi(ea), frles)} (2.87)
— (=) 12T fy(e9, e3), fi(er), frlea)}V

(—1)erleztentescad fo ey, e4), fr(er), fi(es)}”

- (-1

1)(erte)lesten (£, (e3 e4), €1, €0}

_l’_

If ® = & = 0, then we say that (f1, f2) is a quasi-isomorphism when f; induces a

quasi-isomorphism between the chain complexes (W, d") and (V,d"").

2.2.2 Derived manifolds

We give here a brief overview of the theory of derived manifolds following [32], see
[80, 107, 269, 270] for detailed expositions in the equivalent language of differential
graded manifolds. While the oo-category of derived manifolds is defined in Section
7.2.3, all the relevant constructions in this thesis are described without losing rigor with

the terminology of this section.

We start with some conventions and notations. A graded vector bundle £ — M is simply
a vector bundle equipped with a decomposition into sub-vector bundles £ = @, ., En.
For E — M a graded vector bundle and d € Z we write E[d] for the graded vector
bundle whose fibers are shifted by —d. The graded bundles £E*, S*E* and A*E* are

defined similarly as in Section 2.2.1.

Definition 2.17 ([32]). A derived manifold M = (M, E, Q) is the folowing data.

1. A manifold M with a finite rank, N=2-graded, vector bundle E — M.

2. A degree 1 derivation (the homological vector field) @ : I'(S*E[1]*) — I'(S*E[1]*)
such that Q% = 0.

A morphism of derived manifolds M — M? is a pair (p,) consisting of a smooth
map ¢ : M' — M? and a homomorphism of graded algebras ¢ : TI'(¢*S®*E?[1]*) —
T(S*E1]*) such that ¥(0*Q2(f))) = Q1(x(f)). The Cartesian product of derived
manifolds (M, E, Qg), (N, F, Q) is the derived manifold (M x N, p},EQpy\F,piQr®
pyQ@r). We write dMan for the category of derived manifolds.

Remark 2.18. Definition 2.17 implies that @ is tensorial, in the sense that Q(fe) = fQ(e)
fore € I'(S*E[1]*) and f € C°°(M). This follows from the chain rule for derivations, and
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the fact that Q(f) =0 for f € C*°(M), since Q(f) must be of degree 1 but I'(S®*E[1]*)

is concentrated in non-positive degrees.

A derived manifold M = (M, E, Q) such that M = {x} is the same as a curved L-
algebra V' concentrated in degrees > 2 (cf. Definition 2.15). In general, a derived
manifold is a bundle of N22-graded curved Lsc-algebras in that it determines (and is
determined by) through the same procedure as in Section 2.2.1 a section ® € I'(E3),
a degree 1 map d : I'(E[1l]) — T'(E[1]), and for p > 2, degree 1 graded symmetric
p-linear maps {-,...,-} : I'(SPE[l]) — I'(E[1]) satisfying the higher Jacobi identities
(2.74). One can also consider Z="-graded dg-manifolds, which are objects that locally
look like bundles of N22-graded curved Loo-algebras, but which are glued along possibly
polynomial isomorphisms of L..-algebras (hence, not defining a global vector bundle).
Despite seeming more general, the category of dg-manifolds is actually equivalent to the

category of derived manifolds. [32].
Remark 2.19. Given derived manifolds M! = (M E' Q'), M? = (M? E? Q?), a

morphism M! — M? can be described in terms of the multilinear brackets as a smooth

1
|z

map ¢ : M' — M?, together with fiberwise morphisms of curved Lo-algebras E! —

Ei(m) varying smoothly over x € M. In particular, a linear map E' — p*E? preserving
the degrees, ® and all the brackets is an example of a morphism of derived manifolds,
but more general morphisms exist, such as those given by the quadratic morphisms from

Definition 2.16.

We regard a derived manifold M = (M, E, Q) as a geometric model for the topological
space Z(M) := {x € M|®(x) =0} C M (the zero locus of M), where ® : M — FEj3 is the
section determined by (). As for the case of L..-algebras motivated in the introduction
to this chapter, M contains additional information about higher obstructions of the
equation ®(x) = 0. The tangent compler of M is the Z="-graded chain complex of
vector bundles T M over Z(M) whose fiber at each point z € Z(M) is

d d d
oMY By, W By, W WE 0o (2.88)
for d the 1-bracket induced by ). Here we are slightly abusing notation by writing
d®; for the composition of d®, : T, M — T\, o) F2 with the projection T(, 0)E2 — Eo,
v+ v —d0(dm(v)), where 0 : M — FEj5 is the zero section. The fact that (2.88) is indeed

a complex follows from the axioms

dd(z) =0,

. (2.89)
d“(ez) = [®(x), €],
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for x € M and e € E,, which we may evaluate at x € Z(M). In (2.88), T, M is regarded
in degree 0 and the other vector spaces are graded accordingly. The cotangent complex is
the dual of the above complex; i.e, it is the Z<-graded chain complex of vector bundles
over Z (M) whose fiber at each point x € Z(M) is

d(z)* d(z)* . d®(z)*

B oM S AT B U o> B S 3.7 (2.90)

|z
where T M has degree 0.

If (p,9) : M} — M? is a morphism of derived manifolds, then v induces a linear
map I'(p*E?[1]*) — T(E[1]*) by restricting and projecting in the obvious way. This
determines a degree preserving map of vector bundles 9! : E* — E? covering the map
@ : M' — M?. Since (p,1)) preserves the homological vector fields, one can check
that ¢(Z(M?)) C Z(M?), and that 9} induces a chain map 1, between the tangent
complexes of M and My covering ¢; we call this the differential of (p,).

Example 2.20. Given a section ® : M — FE of a vector bundle 7 : E — M, we construct
the derived manifold M = (M, E[-2],Q), with Q : ['(S*E[—1]*) — ['(S*E[—1]*) defined
by contracting with ® € T'(E). We regard M as a smooth model for the topological
space ®~1(0), which we can construct without assuming that @ is transversal to the zero
section 0 : M — FE. The tangent complex of M is the complex of vector bundles over
®~1(0) C M defined by

TMBES0— ... (2.91)

Asumme further that there is a map of vector bundles d : £ — F such that d® = 0.
Then we may want to construct a derived manifold that keeps track of this ‘higher
obstruction’. For this we take the derived manifold defined by the graded vector bundle
E[-2]® F[-3] — M and the homological vector field @ on I'(S® E[—1]*® S* F[—2]*) that
acts as £ — () for £ € I'(E[—1]*) and as £ — £(d-) for & € I'(F[—2]*). The tangent
complex of this derived manifold is the complex of vector bundles over ®~1(0) C M
defined by

TMBELF 50— ... (2.92)

Some of the derived manifolds in this thesis are actually constructed from vector bundles
E — M with infinite-dimensional fibers over infinite-dimensional manifolds M, and we
will omit treating the technical problems that this could produce. We will also refer to
complex derived manifolds when E — M is a holomorphic vector bundle over a complex

manifold and all the maps defining the curved L..-algebra structure are holomorphic.

Example 2.21. Let G be a Lie group and let P — M be a principal G-bundle. Write
A(P) for the space of connections on P. For each A € A(P), there is a structure of
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curved DGLA on Q22%(ad P) (cf. Definition 2.16) given by ® = Fa € Q%*(ad P), the
exterior covariant derivative d4 : QJ(ad P) — Q/*!(ad P) and the Lie bracket [- A -] :
Q1 (ad P)®$2(ad P) — Q71492 (ad P). The derived space of flat connections on P is the
derived manifold associated to this structure, seen as a bundle of curved DG LAs over
A(P). Note that it is a model for the space {A € A(P)| Fa = 0} of flat connections,
containing information about higher obstructions in a similar way to (but richer than)

Example 2.20. Its tangent complex is the following chain complex of vector bundles over
{A € A(P)| Fy =0}.

1 d4 2 d4 d4 n
Q' (adP) = Q(adP) — ... > Q" (ad P) - 0 — .... (2.93)

Similarly, if G is a complex Lie group and P — X is a smooth G-bundle over a complex
manifold, then we can consider the space D(P) := A(P)/Q"°(ad P) of semiconnections
on P and define for each A € D(P) a curved DGLA on Q%22 (ad P) with & = FE{Q,
d= 5A and the restriction of the Lie bracket from before. The result is a derived complex
manifold, which we call the derived space of holomorphic structures on P. Its tangent
complex is the following chain complex of vector bundles over {[A] € D(P) | F2’2 = 0}.

A

0,1 5A 0,2 5A E] 0.n
O (ad P) = Q"*(ad P) = ... 5> Q""" (ad P) = 0 — .... (2.94)

2.2.3 Simplicial derived manifolds

We use the category of simplicial derived manifolds as an approximate model for the co-
category of derived differentiable co-stacks. While this co-category is defined in Section
7.2.3, all the relevant constructions in this thesis are described without losing rigor with

the terminology of this section.

Definition 2.22. A simplicial derived manifold M, is the following data.

1. For n € N, a derived manifold M,,.

2. For n € Nand j =0, ..., n, morphisms of derived manifolds dj : M, — My
(face maps) and sj : M;, = M1 (degeneracy maps) that satisfy (2.3).

A morphism of simplicial derived manifolds fe : Me — N, is a family of morphisms of
derived manifolds f, : M, — N, commuting with all the face and degeneracy maps.

We write sdMan for the category of simplicial derived manifolds.

As in the case of simplicial manifolds, a simplicial derived manifold can be seen as

a functor A°? — dMan. Then we define the Cartesian product of simplicial derived
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manifolds M,, Ny : A%’ — dMan as the simplicial derived manifold (M x N)e : A% —
dMan defined by
(M < N)([n]) := M([n]) x N([n]). (2.95)

We regard a simplicial derived manifold M, as a geometric model for the topological
space Z(My)/ ~, where po ~ pp if 3f € Z(M;) with do(f) = po and di(f) = p1.
In order to define the Moore and normalized tangent complexes of a simplicial derived

manifold M,, we proceed in the following steps.

1. For each n € N, write M,, = (M, Ey, o, Qr) and recall that its tangent complex is

the following complex of vector bundles over Z(M,,).

P d d d
TMn|Z(Mn) -3 En,2|Z(Mn) — En,3|Z(Mn) — . En,m|Z(Mn) — (296)

2. Use the unique map s : My — M, obtained by composing degeneracies to
pull-back the tangent complex of M, to Z(Mj). Along with the maps ¢ :=
Zj(_l)jd?,* given by the alternating sum of the differentials of the simplicial
maps d7 : My — M,y_1, this ylelds a double complex of vector bundles over
Z(My). We call this the Moore tangent complex of M, and denote it by

L T M3)z(Mmo) — T M) z(Mmq) S TMyz(Mmo) — T M| z(rmo)
o, . o, o, .
AN E3912(Mm0) — Es 912(M0) — Ey 212(Mm0) e Eo 212(Mo)
d d d d d
2 By gizome) —2— Bagizime) —2— Erajizivme) —2— Eosizimy)

d d d d d
v 8 g B g 8 g 8 ~

~
~
~

where the pull-backs to Z(M,) are omitted from the notation.

3. Let Ago := T My z(am,) and define, for n, m > 1,

4 - T My z(Mq)
-n,0 - — 69n—l n—l(TM )7
057 n—1|Z(Mo) (2.98)
- B mt112(Mo)
—n,m - T 1 n—1 '

D=0« (En—l,m+1|Z(Mo))
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Then 0, ®, and d, descend to give a double complex (Aq,,0,Q«) (where Q.
denotes either ®, or d, depending on the degree) of vector bundles? over Z(Mj).

4. The (normalized) tangent complex of M, is the Z-graded chain complex of vector

bundles over Z(Mj) obtained by taking the total complex of (A, 0, Q).

A morphism f, : My — N, of simplicial derived manifolds induces at each level a
morphism f, . between the tangent complexes of M,, and N,, as in Section 2.2.2, and
these descend to give a morphism between the tangent complexes of M, and N, since

fe commutes with the face and degeneracy maps.

Example 2.23. Let G be a Lie group acting smoothly on a derived manifold M =
(M, E,Q). That is, we have a morphism of derived manifolds p : M x G — M such
that

1. po(pxid) = po(id x m) as morphisms M x G x G — M, where m is the product
of G.

2. po(id x 1) =id as morphisms M — M, where 1 : {*} — G is the inclusion of the

unit.

As it follows from Remark 2.19, one such action could be given, for example, by a smooth
action of G on M covered by a smooth, fiberwise linear, degree-preserving action of G
on the total space of F such that ®(z - g) = ®(z) - g and {e1g,...,eng} = {€1,....,en}g
forx € M, g € G, ey, ...,e, € E and @, {-,...,-} the structure of curved Lo, algebra
on E induced by Q. In particular, the action of G on M preserves Z(M). Then we
can construct a simplicial derived manifold (M //G),, called the quotient groupoid, and
serving as a geometric model for Z(M)/G, exactly as in Example 2.5. Namely, we let
(M//G)y, = M x G™ and define simplicial and degeneracy maps by the same formulas
as in Example 2.5, now understood as morphisms of graded manifolds in the obvious
way. It is easy to see that the tangent complex of this simplicial derived manifold is the

following chain complex of vector bundles over Z(M).
o 0o gBTM B E S S 5B, 50— (2.99)

with T'M in degree 0, and where d® is defined as in Section 2.2.2.

2For an arbitrary simplicial derived manifold, it is not necessarily true that A_, ,, are vector bundles,
as there is no condition on the rank of s; .. This technical issue will not appear in the simplicial derived
manifolds that we consider in this thesis, and will be treated more carefully in Chapter 7 by introducing
the Kan conditions
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Example 2.24. Let M be the derived manifold of flat connections on a G-bundle
P — X from Example 2.21. Then Gauge(P), the gauge group of P, is an infinite-
dimensional Lie group with Lie algebra QY(ad P). It acts on the space A(P) through its
natural action of connections and on the space Q2%(ad P) through the adjoint action.
This induces an action on M because d* and [-,-] are equivariant with respect to these
actions. The derived quotient stack B”¢(P) := M //Gauge(P) as in Example 2.23 is
called the derived moduli stack of flat connections on P3. Its tangent complex is the
chain complex of vector bundles over {A € A(P) | F4 = 0} whose fiber at each flat

connection A is the elliptic complex
0 A o1 A,
PadP) = Q(adP) — ... > Q" (ad P) - 0 — ..., (2.100)

with Q! (ad P) in degre 0. Similarly, if G is a complex Lie group, X is a complex manifold
and P — X is a smooth G-bundle, then we may take X to be the (complex) derived
manifold of holomorphic structures P as in Example 2.21. There is again an action of
Gauge(P) (which is now a complex Lie group) on X and the corresponding simplicial
derived complex manifold H%(P) := X //Gauge(P) is called the derived moduli stack of
holomorphic structures on P. Its tangent complex is the chain complex of vector bundles

over {[A] € D(P) | F2’2 = 0} whose fiber at each holomorphic structure 7" is

7 7t !
QadP) % QY adP) S .. 5 Q¥ (ad P) — 0 — ... (2.101)

2.3 Shifted symplectic structures

2.3.1 Shifted symplectic structures on simplicial derived manifolds

Let M = (M, E,Q) be a derived manifold. We write C*°(M) :=T'(S*E[1]*), and refer
to this as the algebra of functions on M. A vector field on M is a derivation of C°°(M).
We write I'(T'M) for the space of vector fields, which is a C°°(M)-module. It is also a

differential graded Lie algebra under the graded commutator
V,W]:=VW — (=1)VIWlyy (2.102)

and the differential [Q,-]. A differential p-form of degree | on M is a graded skew-
symmetric C°°(M)-linear map I'(TM)®P — C°(M) of degree I. We write QP(M); for

3The use of the word stack is justified in Chapter 7, where we discuss in which sense simplicial
manifolds are models for co-stacks.
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the space of p-forms of degree [. There are operators

d: QP(M); — QPTH (M), (2.103)
wor P(M) = QPN M)yy, V ET(TM), (2.104)
Ly : QP(M)q — Qp(/\/l)l+|v|, Vel (TM), (2.105)

defined by

da(Xo, ..., Xp) o=y (=)ot XobAX-0H ¥ (X, .o, X, o X))
J
+ Z(—l)xi(xo+"'+xi_1)+Xj(XO+"'+Xi+"'+Xj_1)+i+j04([XZ', X]’], Xo, ceey Xi, ceey X]’, ceey Xp),
1<j

(2.106)
wa(X1, oo Xpo1) = (=D a(V, X1, .00y Xp_1), (2.107)
Ly :=duwy + yd. (2.108)
They satisfy the Cartan relations
d? =0, (2.109)
dLy — Lyd =0, (2.110)
Ly lw + (—1)VWwaV =0, (2.111)
Lvaw — (D)"Y Ly = sy, (2.112)
LvLw — (-1)"WLwLy = Ly (2.113)

In particular, note that Lg has degree 1 and satisfies L2Q = 0. It can also be computed
by

Loa(Xy,..., Xp) =
Q(a(X1, .., Xp)) = > _(—1)F Km0 (Xy L XG0, [Q, X)X, Xp).
j

(2.114)

Differential forms can be pulled-back along morphisms ¢ : M; — Mas; this operation
commutes with d and it satisfies ¢*Lg,w = Lg,¢*w. In particular, given a simplicial
derived manifold M,, there are degree-preserving operators § : Q°*(M,_1) — Q*(M,,)
with 62 = 0, defined by 6 := Z;‘L:o(d?)*- They commute with the exterior differentials
d and the Lie derivatives Lg of each derived manifold M,,.
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Definition 2.25 ([68, 92, 210]). Let M, be a simplicial derived manifold. The triple

complez of differential forms on M, is the triple complex
({Q2°(Ma)e},d, 0, Lg). (2.115)

A differential form o € Q"(M,), is normalized if s;fa =0,7=0, .., p These form a
sub-complex Q'(M.)., called the normalized triple complex of differential forms. For
l € Z, an [-shifted presymplectic form on M, is a closed element w, of degree 2 + [ in

the total complex associated to the triple complex
({Q*22(Ma)e}, d, 6, Lg); (2.116)
i.e. it is a family of normalized forms
wh €V (My)g, 1722, p>0, ¢<0, ptr+qg=2+I (2.117)

such that

dw;; + (5w1§—1,q + LQW;;,q—l =0. (2118)

The leading term of an l-shifted presymplectic form w, is its projection w? to 02 (Mae)e.
Given a morphism of simplicial derived manifolds N, i> M, and an [-shifted presym-
plectic form we on M, then an isotropic structure on f (relative to ws) is an element wl

of degree 1+ in the total complex associated to the triple complex
({Q°=2(Na)e}, d, 6, Lg). (2.119)

whose total derivative is f*w,. That is, it is a family of normalized forms

wyr € (Mp)g, 722, p>0, ¢<0, ptr+qg=1+1 (2.120)
such that
dw;_qLL T 5"";’51,(1 T LQW;:{IL—I = fwpg (2.121)

Its leading term is its projection we™™ to Q2(NG)..

Let M = (M, E,Q) be a derived manifold. Upon choosing a degree-preserving connec-

tion V on FE, we obtain an isomorphism

I(TM) =T(S*(E[l])* ® (TM & E[1))), (2.122)



Simplicial derived manifolds 46

where we identify V € I'(T'M ) and e € I'(E) with the derivations of I'(S®E[1]*) that act
on §{ € I'(E[1]*) as

= VI(EC) —&(Vve), £ ¢&(e), (2.123)
respectively, and which are extended to all of I'(S®E[1]*) imposing Leibniz’s rule. Un-

der this isomorphism, the DGLA structure on I'(T'M) is completely described by the

following formulas.

(X 4+ e1,Y +ey] =[X,Y]+ Vxes — Vye; — FYV(X,Y), (2.124a)
[Q, X](§) = —¢ <Vx<1> +Vx({-H)() + %Vx({» DICY (2.124b)
+ évx({‘,-,-})(',"‘) 4 >, (2.124c¢)

Q€] = (—1)° ({e} +{e,-} + %{e, R é{e, R A ) : (2.124d)

where we see FV(X,Y) € T(E*® E) C T(S*E[1]* ® (TM @ E)) and we write Vx®,
Vx({}), Vx({:,}), etc. for the covariant derivatives of the tensors @, {-}, {-,-}, etc.
defining the fiberwise curved Loo-algebra structure (with the convention that the brack-
ets are graded symmetric in E[1]). In particular, differential p-forms on M can be identi-
fied with graded skew-symmetric C°° (M )-multilinear maps I'(T'M & E)®P — T'(S*E[1])
and d, Ly can be computed using (2.124).

Remark 2.26. Let M = (M, E,Q) be a derived manifold, and let w € QP(E) be an
ordinary differential form in the total space of E such that w(Xj,...,X,) € I'(E*) C
C*°(E) whenever X1, ..., X, are linear vector fields on E. Then w induces canonically a

M on M. This can be seen by choosing a connection V on E and using

differential form w
the description above to define w™ (X1 +e1, ..., X, +e,) = w(XP + Xey, s X;} +Xe,) €
[(E*) C T(S*E[1]*), where X" denotes horizontal lift of X € I'(T'M) with respect to
V and X, is the vertical vector field associated to e € I'(E). Changing the connection
does not change w™, and so this is well-defined independently of V. It is also worth

noting that in this case (dw)™ = d(w™).

Now let M, be a simplicial derived manifold, write M, = (M,, E,.,Q)p) and let w €
Q?(M,), be normalized. Recall the vector bundles 4;; — Z(My) defined in (2.98)
for (i,j) € Z=° x Z=°. We use w to define a map @ : A;; ® Ap_;,—; — R, where R
is the trivial vector bundle with fiber R. For x € Z(My) and [v;] € A4; jj,, we write
V € I'(TM,) for any vector field obtained as follows.

1. Choose a representative v, € B, ;1 q|, (if j > 1) or vy € TM,, (if j = 0).

2. Extend v, to either a local section of E, ;1 (if 7 > 1) or a local vector field on
M, (if j = 0).
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3. Use any connection to identify v, with V' € I'(T'M,,) via (2.122).

Of course, V' depends on all these choices, but the following formula does not.

(Dx(v}g,vg) = Z (fl)ow(sg(p)_l’*o...osg(i+1)_1’*(Vl),so(i)_l’*o...oso(l)_L*(VZ))(s(x))
UGSiyp_i
(2.125)

The degrees are chosen so that each term on the sum in (2.125) is an element of
['(S*Ep[1]*) of degree 0; i.e., a function on M,, and so it makes sense to evaluate
it at s(x), for s : My — M, the degeneracy map. To state the following lemma we recall
that the homotopy fiber of a map ¥ : A¢ — B, of chain complexes is the chain complex
Hofib(1)) defined by

Hofib(1)),, = Ap ® Bn_1, d(a+b) = d%a+ (dBb—(a)). (2.126)

Lemma 2.27. Let M, be a simplicial derived manifold and let w € Q*(M,), be nor-
malized. Then & : A; ;@ Ap—iq—; — R is well defined independently of choices by (2.125)

and it satisfies

(—1)p(§cvu(vl, v?) = (0w, v?) + (—1)'@(vh, 9v?), (2.127)

(1) Lw(v',w?) = &(Quv', w?) + (~1Y & (0!, Quu?) (2.128)

forvt € A;j, v? € Api1_ig—j, w* € Ap_igr1—j. In particular, the leading term w? of

an l-shifted presymplectic form on M determines by (2.125) a map of chain complexes
of vector bundles over Z(My)

TM — T*[JM, (2.129)

where T*[[|M denotes the cotangent complex of Mae shifted by I, and the leading term
w%’L of an isotropic structure on a morphism of simplicial derived manifolds N i> M,

determines by (2.125) a map of chain complezes of vector bundles over Z(Ny)
f*+w~L * )RR jpg—
TN "= Hofib(f*TM = f*T*[lIM = T*[I]N). (2.130)

Proof. That w does not depend on the choice of v, € E, |, follows from the fact
that w is normalized, which implies that the right-hand side of (2.125) vanishes for
Vie Im(s}) or V2 € Im(s}) by a similar argument to the one in [92, Lemma E.1.].
Independence on the choice of extension of v, is clear since the right-hand side of (2.125)
is evaluated at s(x), while independence on the choice of connection follows from noting
that the terms that appear upon changing the connection vanish for degree reasons.
Then (2.127) also follows as in [92, Lemma E.1.], since the computations there are

purely algebraic, while (2.128) follows from formulas (2.114) and (2.124), noting that
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Q(w(V1,V2)) = 0 when deg(V1) + deg(V2) = deg(w). Finally, maps (2.129) and (2.130)
are defined in a straightforward way by formula (2.125); then equations (2.127), (2.128)
and the closedness conditions from Definition 2.25 imply that these maps preserve the

chain differentials. O

Definition 2.28. Let (M,, w,) be a simplicial derived manifold with an [-shifted presym-
plectic form. We say (M., ws) is [-shifted symplectic if the map (2.129) is a quasi-
isomorphism. Let A, (f"—>w'L) (M, ws) be a morphism of simplicial derived manifolds
with an isotropic structure and assume that (M,,ws) is [-shifted symplectic. We say

(fo,wk) is Lagrangian if the map (2.130) is a quasi-isomorphism.

The following result provides two methods for constructing shifted (pre)symplectic struc-
tures from previously known ones. At the time of writing of this thesis, it has only been
proven rigorously in the algebraic setting, but it will serve us for inspiration to construct

shifted (pre)symplectic structures on simplicial derived manifolds.

Theorem 2.29 ([210]). 1. Let (X,w) be an l-shifted presymplectic derived Artin stack
and let 9); f# X, i = 1,2 be morphisms of derived Artin stacks equipped with
isotropic structures \;. Then Ao — A1 defines an (I —1)-shifted presymplectic struc-
ture on )1 X}%L Vo. If w is symplectic and A1, Ao are Lagrangian, then Ao — Ay is

symplectic.

2. Let (X,w) be an l-shifted presymplectic derived Artin stack and let ) be a com-
pact, d-oriented derived Artin stack in the sense of [210, Def. 2.1 and 2.4]. If the
internal hom dSt(Q), X) is a derived Artin stack, then fiD ev*w is an (I — d)-shifted
presymplectic structure on dSt(2), X), where ev : dSH(),X) x Y — X is the evalua-
tion map and f% is defined by the d-orientation on Q). If w is symplectic, then so

is f&D evtw.

In our examples, when X is a simplicial derived complex manifold, we will also consider
shifted holomorphic symplectic forms. By this we mean the analog of Definition 2.28, but
where the triple complex of R-valued differential forms is replaced by the triple complex

of C-valued, C-multilinear differential forms.

2.3.2 First examples
All the examples in this section can be found at least within the context of derived
algebraic geometry in [8, 36, 67, 68, 92, 210, 278].

Example 2.30 ([67, 88]). Let M be a manifold. For | € Z<Y we define the shifted
cotangent T*[I]M to be the derived manifold given by the vector bundle T*M — M,
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with T*M in degree 1 — [, and zero homological vector field. The convention for the
degree is chosen so that the tangent complex of T*[I]M is TX O S ey , with TX
in degree 0 and T*X in degree —I. The canonical symplectic form w on T*M can be
seen as an [-shifted symplectic form on T*[[|M by Remark 2.26. For | € Z>9, the shifted
cotangent T*[I|M, is the simplicial manifold with

* * ntl *
(T [Z]M)n = {(SU, {aio...il}i0<...<il€[n]) €M x (T M)(l+l> ‘ Qig...4 € TxM)

(2.131)
Vio < .. < il+1, (5a)io---il+1 = 0}7
where we are writing
+1 '
(5a)i0---il+1 = Z(_1)]ai0...ij_17;j+1...il+17 (2132)
§=0

and, for non-decreasing f : [n1] — [ng2], the map f* : (T*[lJM ), — (T*[]]M),, is defined
as in (2.23). In particular, note that (T*[l]]M); = T*M. Then the canonical symplectic
form w on T*M can be seen as an [-shifted symplectic form on T*[[|M because it is
linear on the fibers of 7" M and this implies dw = 0. The tangent complex to T™*[I]M
in the case | > 0is M % ... % TM, with TM in degree 0 and T*M in degree —I.
It is then easy to see that, in both cases [ < 0 and [ > 0, the non-degeneracy condition
for w follows simply from the fact that it induces isomorphisms (7'M )* = T*M and
(T*M)* = TM. This construction is generalized in [67], which proves in the algebraic
setting that for any derived stack X and for [ € Z one can define a derived stack T%[[]X

with a canonical [-shifted symplectic structure.

Example 2.31 ([8, 36]). Let M be a manifold and let G be a Lie group acting smoothly
on M with infinitesimal action map p : g — TM. Then we define T*(M//G) to be
the following simplicial derived manifold. First, define the derived manifold M :=
(T*M, g*[-2],Q), where Q is defined simply by the curvature map ® : T*M — g*[—2],
® = p*. The action of G on M induces an action on M, where the action on T*M is
given by pull-back and the action on g* is the coadjoint action (this defines an action on
M since p* is G-equivariant). Then define 7%(M//G) := M //G in the sense of Example
2.23. Its tangent complex is the following chain complex of vector bundles over 7% M.

M (™)«

g[l] &— TT*M = g*[-1], (2.133)

where pI"M is the infinitesimal action map for the action of G on T*M, while the
cotangent complex is its dual,
S S g, (2.134)

* T My *
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The canonical isomorphism betwen these two complexes is induced by a 0-shifted sym-
plectic structure on T7*(M//G) which we can describe as follows. It is given by the
canonical symplectic structure on T*M, which can be seen as a degree 0, d-exact, 2-
form w® = d\° € Q?(M)o, and the canonical symplectic structure on T*G = G x g*,
which can be seen as a degree —1, d-exact, 2-form w! = d\! € O?(M x G)_1 by Remark
2.26. Let us check the closedness condition (2.118).

1. LQwo = 0 for degree reasons.

2. Lle = duwY follows from

(LQAl)(ap,g,g) (ap + Vg + f) = Q((apu g, 5) = g(vggil))(ap,g,ﬁ) (2 135)
= (P*O‘p)@ggil) = ap(pvgfl%
(5/\0)(ap,g,§) (dp +vg + 5) = apg(vpg) + apg(prg) — ap(vy) = ap(p”ggil)
(2.136)

forpe M, ap, € T M, g€ G, € € g, &y € T, T*M, vy € T,G, & € Teg*.

3. dw! = 0 states the multiplicative property of the symplectic structure on T*G.

Hence, (w°, w?) is indeed a 0-shifted symplectic structure on T*(M//G).

Example 2.32. Let M be a manifold and let G be a Lie group acting smoothly on M.
Let S : M — R be a G-invariant function. Then dS : M — T*M satisfies p*dS = 0.
This is precisely the condition for the map of vector bundles M x {0} (dio) T*M x g*[—2]
to define a morphism of derived manifolds M — (T M, g*[-2], p*). Moreover, this map
is G-equivariant and so it determines a morphism of simplicial derived manifolds dS :
M//G — T*(M//G), where T*(M//G) is defined as in Example 2.31. Since o*w = da
for w the symplectic form on T*M and o : M — T*M any section, it follows that
(dS)*(w® w!) = 0 for (w”, w!) the 0-shifted symplectic structure on T*(M//G). That is,
dS carries a canonical isotropic structure given by 0. It is in fact Lagrangian, because the
map (2.130) is in this case the following quasi-isomorphism of (vertical) chain complexes

of vector bundles over M

g S SN g
P (dS)*pT* M

TM 25 (dS)y TT*M

(dS)* (p*)x—(dS:)* ow . (2.137)
6 R gﬁ*@VT*M

*

id—p

00— g*
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In particular, the function 0 : M — R also defines a canonical Lagrangian structure on
d0 : M//G — T*(M//G) and then Theorem 2.29 suggests the existence of a simplicial
derived manifold dCrit(S) with a (—1)-shifted symplectic structure modelling the space
{zx € M |dS = 0}/G. Note that, in physics terminology, this is the configuration space
of a system with G-symmetry defined by the action functional S. We present now a
model for dCrit(S), which is called the derived critical locus of S.

We proceed as in Example 2.20. Let N := (M,T*[-2]M & g*[-3],Q), where Q is
defined by the fiberwise structure of curved L..-algebra given by the curvature & :
M — T*[-2]M, ® = dS and the differential d : T*[-2]M — g*[-3], d = p*. This gives
a derived manifold, since d® = 0 follows from S being G-invariant. The action of G on
M lifts to an action on A, where the action on T*[—2]M is given by pull-back and the
action on g*[—3] is the coadjoint action (this defines an action on N since dS and p*
are G-equivariant). Then define dCrit(S) := N //G in the sense of Example 2.23. Its

tangent complex is the following chain complex of vector bundles over M.

oll] & TM B T 1M & g2, (2.138)
while the cotangent complex is its dual,

g2 & TM % T B gr[-1]. (2.139)

The canonical isomorphism 7T'(dCrit(S)) = T*(dCrit(S))[—1] is induced by a (—1)-
shifted symplectic structure on dCrit(S) which we can describe as follows. It is given by
the canonical symplectic structure on 7" M, which can be seen as a degree —1, d-exact,
2-form w? = d\? € Q?(N)_; by Remark 2.26, and the canonical symplectic structure
on T*G = G x g*, which can be seen as a degree —2, d-exact, 2-form w! = dA\! €
02(M x G)_5 for the same reason. Let us check the closedness condition (2.118).

1. LQwo = 0 because LQ)\O =dS:

(LoA)a(d) = Q(a — a(dr(d))) = dS(dr(a)). (2.140)

2. Low! = 6w’ as in Example 2.31.

3. dw! =0 as in Example 2.31.

Hence, (w’ w!) is indeed a (—1)-shifted symplectic structure on dCrit(S). Note the
construction also works if dS is replaced by any closed G-invariant 1-form o € QY(M).
At least in the algebraic setting, this example can be generalized replacing M//G by
any derived stack X and dS by any closed 1-form « of degree [ (for any [ € Z) on X [8].
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Then T*[[)X is I-shifted symplectic by Example 2.30, a : X — T™*[I]X is Lagrangian by
closedness and so its homotopy fibered product with the zero section is (I — 1)-shifted

symplectic by Theorem 2.29.

Example 2.33 ([8, 210, 278]). Let G be a Lie group. Then we form the quotient
groupoid (cf. Example 2.5) g*//G for the coadjoint action of G on g*. Its tangent space

is the following complex of vector bundles over g*
a1 g", (2.141)

where we write adi‘%(v)() :=¢([v,]) for £ € g* and v € g. Its cotangent is

gD g 1), (2.142)
where
(ad®)¢(v)(-) = ad¢(-)(v) = ([, v]) = —adg(v)(-). (2.143)

The canonical isomorphism T'(g*//G) = T*(g*//G)[1] is induced by a canonical 1-shifted
symplectic form on g*//G. It is defined by the canonical symplectic form w® on T*G =
G x g* = (g"//G)1 (one must only check that dw® = 0, §w® = 0 as before). In fact, the
existence of this symplectic form follows from the fact that g*//G can be thought of as
T*[1](BG) (cf. Examples 2.30 and 2.31).

Example 2.34. Let M be a manifold with a smooth action of a Lie group G. Then it is
easy to see from the definitions that a morphism of simplicial manifolds M //G — ¢g*//G
is the same as a G-equivariant map p : M — g*. An isotropic structure on it, for the
1-shifted symplectic structure on g*//G from Example 2.33, is the data of w € Q?(M,R)
such that éw = p*w®. This is equivalent to

9w =0, Vg € G, (2.144)

Lpyw = d(u(-)(v)) Yveg (2.145)

In conclusion, isotropic structures on u : M//G — g*//G are in bijection with presym-
plectic structures on M such that p is a moment map for the G-action. The corre-

sponding map (2.130) is the following map of chain complexes of vector bundles over
M

™ g oM (2.146)
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which is a quasi-isomorphism if and only if w is symplectic. In particular, {*} regarded as
a symplectic manifold with trivial G-action and trivial moment map defines a Lagrangian
structure on {x}//G — g*//G. Then Theorem 2.29 suggests that, for any symplectic
manifold with moment map (M, w, 1), we may take M//,G := (M//G) #xg({*}//G) to
obtain a simplicial derived manifold with a 0-shifted symplectic structure. Note that this
is a model for the classical Marsden-Weinstein quotient which exists as a geometric object

without regularity assumptions on the action. We proceed to present this explicitly.

As a simplicial derived manifold, the fibered product M//,G is simply the quotient
groupoid as in Example 2.23 for the G-action on the derived manifold (M, g*[-2], Q)
where @ is just given by ® = p: M — g* (cf. the derived zero set from Example 2.20; G
acts here since p is equivariant). The tangent complex of M //,G is the chain complex

of vector bundles over 1 ~1(0)

gll] & M % gr-1), (2.147)
while the cotangent complex is
dp” s Ay s
g[l] = T"M = p**[-1]. (2.148)

A 0-shifted symplectic structure inducing an isomorphism between these two complexes
is given by the symplectic form w on M, seen as a d-closed 2-form w® € Q?((M//,G)o)o,
and the canonical symplectic form on T*G, seen as a d-closed degree —1 2-form w'! €
Q2((M//,G)1)=1. Then Low® = 0 for degree reasons, dw’ = Lgw! because of the
moment map condition and dw! = 0 because of multiplicativity of w®, which yields the
closedness condition (2.118). This example can be generalized replacing (M, w) by any [-
shifted symplectic derived stack (i.e. simplicial derived manifold) (X, w) with an action of
G; then the notion of moment map can be defined directly as a map p : X//G — ¢g*[l]//G

such that w is a Lagrangian structure for u*w® [8].

Example 2.35 ([68, 92, 210]). Let G be a Lie group. The tangent complex to BG (cf.
Example 2.6) is the chain complex of vector bundles over {x} (i.e. the chain complex of

vector spaces)
al1]. (2.149)

The cotangent complex is thus
g*[—1]. (2.150)

Let (-,-) : g® g — R be an Ad-invariant, symmetric bilinear form. This induces a

2-shifted presymplectic structure on BG. It is defined by

1
= 6<9L AOE A O] € Q3(@Q), vi=—(gi0" A g36T) € Q*(G?), (2.151)
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where @7 and 7 are the left- and right- invariant Maurer-Cartan forms on G. This is

indeed a presymplectic structure because these differential forms satisfy
dp=0, dv=—-o0pu, Oov=0, (2.152)

as it follows from straightforward computations (this is originally due to [246]). Of
course, it induces the morphism g[1] — g*[—1] given by (-,-) and so this is a 2-shifted

symplectic structure precisely when (-, -) is non-degenerate.

2.3.3 Shifted symplectic structures on derived moduli stacks

Example 2.35, along with Theorem 2.29, is used in [210] to prove the following.

Theorem 2.36 ([210]). 1. Let G be a reductive affine group scheme over SpecR with
an Ad-invariant, non-degenerate, symmetric form (-,-) : g®@ g — R and let M be
a compact, connected, oriented manifold of dimg M = n. Then there is a derived

Deligne-Mumford stack with a (2 — n)-shifted symplectic structure parameterizing
flat G-bundles on M.

2. Let G be a reductive affine group scheme over SpecC with an Ad-invariant, non-
degenerate, symmetric C-linear form (-,-) : g® g — C and let X be a compact,
connected complex manifold with a holomorphic volume form of dimg X = n.
Then there is a derived Deligne-Mumford stack with a (2 — n)-shifted holomorphic

symplectic structure parameterizing holomorphic G-bundles on X.

We proceed to present a gauge-theoretic description of the shifted symplectic structures
from Theorem 2.36 within the language of (infinite-dimensional) simplicial derived man-
ifolds. This presentation allows us to deal with an arbitrary Lie group GG. The ideas that
we use are known to experts, although we are not aware of any prior explicit presentation

of such shifted symplectic structures in these terms.

Let G be a Lie group and let P — M be a G-bundle over a compact, oriented manifold
with dimg M = n. The derived moduli stack B>%(P) of flat connections on P is defined
in Example 2.23. Its tangent complex is the following complex of vector bundles over
{Ae€ A(P)[Fa =0}

0(ad P)[1] & QY ad P) & Q2(ad P)[-1] L .. B Q" (ad P)[-n +1].  (2.153)

If (-,-) : g® g — R is a non-degenerate, Ad-invariant, symmetric bilinear form then we
define a (2—n)-shifted symplectic structure on B*%(P) as follows. We describe differential

forms on B”%(P)g and B*¢(P); as explained in Section 2.3.1, using the trivial connection
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on Q22%(ad P) — A(P) and taking also into account that T A(P) = A(P) x Q! (ad P) and
TGauge(P) = Gauge(P) x Q°(ad P) (for this we identify 2°(ad P) with right-invariant

vector fields). The symplectic structure is then given by
W’ e P (B"UP))oen, w'eQ2(BP))in (2.154)
defined by

w%ﬁ+ﬁ+m+wA%m%mﬁw@:AﬂmhmyW—@AWAM

F (1)@ A5 + (G AaT) + (@ A g — A ar )
(1) @ A G5 + (a3 A G+ ()M A e — (@3 A )
(2.155)

g 08+ 0 ) =2 [ ((@3) = (@) + (1)t o8] A",

(2.156)

with af, a¥' € QP(ad P). Here, and similarly for the following examples, the right-hand

side of (2.156) is to be read as function on the derived manifold
B (P); = (A(P) x Gauge(P),Q>*(ad P), (d*, [, ])),

defined through its action on a" € T'(222(ad P)). It is clear that w! is normalized, as
it equals 0 when @Y = 43 = 0 (and this condition is vacuous for w®). Let us check
the closedness condition (2.118). It is clear that dw’ = 0 and dw! = 0, while dw! = 0
expresses the multiplicativity of the canonical symplectic form on T*Gauge(P). Then

LQwO = 0 follows from

/ (dha9 NG ) + (—1)1 (@ A dAan—iy) = / dlad A a7y = 0, (2.157)
M M

(@" Na? A a™ )Y + (=1)9 (@ A e Aa" ")) = 0. (2.158)
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Finally, 6w’ = Lgw! follows from the fact that all terms not containing a}, a} are

d-closed by Ad-invariance of (-, -), while

~1y 4440 ~1ygn—1y — A0 p gm0y — — [ 160 A gAgn1
/M<Ad<g Jd4a® A Ad(g™h)an1) /<d Aty /< Adhan Ty,

M M
(2.159)
/ ((Ad(g~1)d4a% A Ad(g~1)[al, a™ 1)) — (Ad(g~1)dAad A Ad(g~1)[a?, a™ 1))
" (2.160)
= / (d4af, @) Aa" ) = - / ([a%, 9] A dAan),
M M
(Ad(g~h)a' A Ad(g™H)[a®, a"']) = —(a° [a* Aa" 1)), (2.161)

The case n = 2 is an extension of the Atiyah-Bott symplectic form on the smooth locus
of the moduli space of G-local systems on a Riemann surface [15] to the whole derived
moduli stack B>¢(P). It can also be constructed as the derived symplectic reduction (cf.
Example 2.34) for the action of Gauge(P) on A(P), with symplectic structure given by
w® as above and moment map p : A(P) — Q%ad P)* = Q?(ad P) the curvature map;
ie., pu(A)(s) = [,;(Fa,s) for A€ A(P) and s € Q°(ad P).

The case n = 3 can be constructed as the derived critical locus (cf. Example 2.32) of
the Chern-Simons functional on the groupoid A(P)//Gauge(P) of connections modulo
gauge. More precisely, it is the derived critical locus of the Gauge(P)-invariant closed
1-form o € QY(A(P)) defined by

aala) = /M(a AFy) A€ A(P), a € Q'(ad P) = TAA(P). (2.162)

Note that for n > 2 we can write w! = (=1)"*1dA\! and for n > 3 we can write

w9 = (=1)"*t1d\0, where

N@ +a*+ .. +a") = / (@™ P Aat) + (@2 AG) + .+ (a® Aa"TP)),

M
(2.163)
M@ +a' +a2+... +a") :/ 2(a™, a°). (2.164)
M
These satisfy A" = Lo\, A1 = 0 but Lo\ # 0. In fact,
LoX(a' + ... +a™) = /M((dAa”2 Aaly + (Fana™?2))
(=" / T (2.165)
+— Z M(a N[a? Na -

2<i<n—4
2<j<n—2—i
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Similarly, for G a complex Lie group with (-,-) : g ® g — C non-degenerate, symmet-
ric, Ad-invariant, C-linear, and P — X a smooth G-bundle over a compact, complex
manifold with dim¢ X = n and a holomorphic volume form Q € Q™%(X,C), the derived
moduli stack H?(P)e of holomorphic structures on P defined in Example 2.23 carries
a (2 — n)-shifted holomorphic symplectic structure which we describe as follows. The
tangent complex of H%(P) is the following chain complex of vector bundles over the
space {A € A(P)/Q"Y0(ad P) |F}* = 0}.

EA A

Q(ad P)[1] L 0 (ad P) L 0°2(ad P)[=1] 2> .. T Q0% (ad PY[—n + 1],  (2.166)

The symplectic forms are defined exactly as in (2.155), (2.156), except that all the
integrals are performed now against the volume form €. Note that the condition d2 = 0,
which allows to integrate by parts on such integrals, is necessary for the corresponding

2-forms wy, wi to satisfy Lowo = 0 and Lgw; = dwp as before.

The case n = 2 extends Mukai’s holomorphic symplectic structure in the smooth locus
of the moduli space of G-bundles on a K3 surface [196], and it can also be constructed as
a holomorphic symplectic reduction with holomorphic symplectic form w? and moment
map u : A(P)/QY9(ad P) — Q°(ad P)* = Q%2(ad P), A Fg’2. The case n = 3 can
be constructed as the derived critical locus of the holomorphic Chern-Simons functional
and has been extensively studied in [34, 159, 160, 164] for its relation with Donaldson-
Thomas invariants. The (—2)-shifted symplectic structure in the case n = 2 has also

been studied in search for invariants of Calabi-Yau fourfolds in [47, 208, 209].

Remark 2.37. Let (X,w) be a compact, Hermitian manifold with dim¢ X = n and
d(w™ 1) = 0. Let K be a compact Lie group with complexification G, let P, — X
be a K-bundle and write P := (P}, x G)/K for its complexification (where we identify
(pk,g) — (p,kg)). A positive-definite, symmetric, Ad-invariant bilinear form (-,-) :
t® €t — R determines a Kéhler structure on the space A(P}) of connections on Pj. Its

complex structure I is given by identifying
Ty A(P,) = QY (ad P,) = Q%Y (ad P); (2.167)

ie.,

Id(a) = (ia%' —iaY). (2.168)

A

Its symplectic structure w”* is given by

wﬁ(dl, (iz) = /)(<d1 A d2> VAN (:_ 1)! . (2.169)
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This can also be written as
n—1

(n—1)V

where Fy, € Q%(A(Py,) x X, ad P) is the curvature of the connection A on the G-bundle
A(Ph) X P — A(Ph) x X defined by

wh = /X<FAAFA)/\ (2.170)

Aap)(a+vp) = Ap(vp). (2.171)

The space AV1(P,) C A(P,) is formally a Kihler submanifold. The action of the gauge
group Gauge(P,) on A(Py) restricts to A (P,) and is Hamiltonian, with moment map
w: AV (P,) — T(ad Py)* defined by

wn—l

(n—1)!

p(A)) = [ (Fas) A (2.172)
for s € T'(ad P,). Thus, ignoring again smoothness problems, M := u~(0)/Gauge(Py,)
is a symplectic manifold. Note that there is a map M — H4(P), where H%(P) is as
in Example 2.21. The Donaldson-Uhlenbeck-Yau theorem [100, 267] states that the
restriction of this map to adequate (open) smooth locus of both moduli spaces is a
diffeomorphism, and that the smooth locus of M is Kéhler with respect to the complex
structure induced by H%(P). When X also admits a holomorphic volume form, then
one may wonder what the relation is between the (2 — n)-shifted holomorphic symplectic

form on H%(P) from above and the Kihler form on M. We clarify this when n = 2.

Let (X,I,w) be a Hermitian manifold with dim¢ X = 2 and dw = 0, and let Q €
0?9(X,C) be a nowhere-vanishing (2,0)-form with d2 = 0. The Calabi-Yau theorem
[279] implies that X is hyperkéahler; that is, there are complex structures J, K such that

1. IJK = —1Id,

2. g:=w(I-,-) is also Kahler with respect to J, K

3. Q=wy+iwg for wy:=g(J-,"), wg := g(K-,-).
Then for P, — M a K-bundle with complexification P, it follows that each of the Hermi-
tian structures (I,w), (J,wy), (K,wx) determines as before a Kéhler structure (144, w#),
(JA w?), (KA, w) on A(Py,). These also satisfy the hyperkihler relations, and in par-

ticular Q4 := wy'+iwy is the holomorphic symplectic form on A(P)/Q"°(ad P) = A(P,)

from above.



Chapter 3

Lie 2-groups and Maurer-Cartan

forms

Lie groupoids are geometric objects that generalize differentiable manifolds to model
possibly singular spaces, such as poorly behaved quotients or foliations [105, 187]. While
manifolds and smooth maps between them form a category, Lie groupoids are more
naturally thought of as the objects of a bicategory in which arrows are called anafunctors
and 2-cells are called transformations. This bicategory is equivalent to the bicategory
of differentiable stacks [33].

Lie 2-groups are geometric objects that model symmetries of Lie groupoids, in the same
way that Lie groups model symmetries of manifolds. The study of ‘set-theoretical’ 2-
groups dates back to [55, 190, 249]. The original definition of Lie 2-groups from [16]
has been weakened since then in [19, 238] to capture important examples in geometry
and physics. Roughly, a Lie 2-group is a Lie groupoid & equipped with an anafunctor
m: 6 x & — & which may not be strictly associative, but which is equipped with a
transformation a : mo(m xid) = mo(idxm) : & x & x & — &, expressing a weak form
of associativity of m. The product m is also required to have a distinguished element

1 € B¢ playing the role of the unit, and to admit inverses in a weak sense.

Two important families of Lie 2-groups in the literature are central extensions of G by
BT (where G and T are Lie groups with 7" abelian) [238] and strict Lie 2-groups [19].
The former admit an alternative description as multiplicative gerbes, while the latter

can be modelled by Lie crossed modules.

Gerbes were first defined by Giraud [133] as certain sheaves of groupoids and they were
then studied in the work of Brylinski [56-58], who set up a working definition in terms of

Cech cocycle data which has been extensively used since then, as well as the essentially

59
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equivalent definitions of Hitchin-Chatterjee gerbes [82, 152] and bundle gerbes [198].
This language was used in [58, 78] to study certain special gerbes over Lie groups which
were called multiplicative, and Schommer-Pries proved in [238] that the classification of
these coincides with the classification of Lie 2-group central extensions of G by BT'. The
notion of a connection on a multiplicative gerbe is introduced in [271] and used to prove

classification results for Chern-Simons theories over arbitrary Lie groups.

As for strict Lie 2-groups, the fact that they can be presented by Lie crossed modules
as in [16] is a straightforward generalization of the analogous result for set-theoretical
2-groups from [55]. Trying to axiomatize the observation from [235, 237] that the Lie
2-algebra of a Lie 2-group called String(n) has some additional structure that is useful
for defining String(n)-connections, [230] defined the notion of an adjustment on a Lie
crossed module as a deformation of its Weil algebra. This structure was then presented

in a finite way in [220].

Some aspects of Lie group theory can be generalized to Lie 2-groups, but this is not al-
ways done in a straightforward way. The main difference between (general) Lie 2-groups
and ordinary Lie groups is that, by virtue of how anafunctors between Lie groupoids
are defined, the product of two objects in a Lie 2-group & is only well-defined up to
isomorphism. This has many consequences, among which we highlight the following.
1. For an arbitrary g € &, there is no canonical map T1®¢ — T1&g, v — g-v - g~ !

generalizing the adjoint action of a Lie group.

2. For an arbitrary g € &g, there is no canonical map T,(®g) — T1(B¢) generalizing
the map dLg-1 : T,G — T1G of a Lie group. Thus, there is no canonical analog of

the Maurer-Cartan form.

3. Since there is no canonical analog of the Maurer-Cartan form, there is no canonical
way to extend some v € T1(®g) to a ‘left-invariant’ vector field; hence no analog

of the Lie bracket on T1G for G a Lie group.

4. Since there is no notion of left-invariant vector fields on &, we cannot take the flow

of such vector fields to define an analog of the exponential map of a Lie group.

Problem 3 is related to the well-known problem in higher differential geometry that the
tangent complex of a simplicial manifold is not equipped in general with a canonical
structure generalizing the Lie bracket of vector fields on a manifold. It is shown in [178]
that this can be solved by choosing connections on appropriate vector bundles, while
[265] addresses problem 1 (in the more general context of Lie m-groups for m € N) by

choosing other connection-like data.
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In this chapter we introduce Lie 2-groups and we present some original definitions and
results on this theory, relating them to previous constructions and studying the problems
above. In Sections 3.1.1 and 3.1.2 we recall the definitions of the bicategories of Lie
groupoids and Lie 2-groups, respectively, and we relate them to the simplicial manifolds
from Chapter 2. In section 3.1.3 we define actions of Lie 2-groups. In Section 3.1.4
we introduce the original notion of Maurer-Cartan forms on a Lie 2-group &, which
axiomatizes the structure from problems 1 and 2 as an additional datum on &, and we

show that it allows to generalize Example 2.33 to the setting of arbitrary Lie 2-groups.

In Section 3.2.1 we set some conventions on gerbes, and in Section 3.2.2 we recall the
definition of multiplicative gerbes, along with some classification results. In Section
3.2.3 we introduce the notion of connective structure on a multiplicative gerbe, closely
related to the connections from [271], and we show that any multiplicative T-gerbe over
G with a connective structure determines an Ad-invariant symmetric bilinear form (-, -) :
g® g — t that classifies it under some topological assumptions, providing a converse for
a construction in [271]. In Section 3.2.4 we relate connective structures on multiplicative
gerbes over G to prequantizations of the 2-shifted presymplectic structure on BG from
Example 2.35, and to Maurer-Cartan forms on their corresponding Lie 2-groups. This
is used to construct in a natural way the brackets of their Lie 2-algebras. In Section
3.2.5 we prove that a connective structure on a multiplicative gerbe G — G determines
equivariant trivializations of exp*G — g, and we interpret these as the exponential map

of the corresponding Lie 2-group.

In Section 3.3.1 we recall the relation between strict Lie 2-groups and Lie crossed mod-
ules, as well as the notion of adjustment from [220], and we provide a new interpretation
for these by relating them to Maurer-Cartan forms. In Section 3.3.2 we show how ad-
justments relate to connective structures for Lie 2-groups that admit models both as
a multiplicative gerbe and as a crossed module. Finally, in Section 3.3.3 we provide a
more explicit construction of the equivariant trivializations of exp*G — g when the Lie
2-group associated to the multiplicative gerbe G also admits a model as a Lie crossed

module.

3.1 Lie 2-groups

3.1.1 Lie groupoids and anafunctors

Definition 3.1 ([238]). A Lie groupoid is a small category X such that

1. The space of objects Xy and the space of arrows X; are manifolds.
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2. The source and target maps s,t: X1 — Xg are surjective submersions.

3. The identity id : Xo — X1 and composition o : X; ;x;X; — X; maps are smooth.

An anafunctor (F,mg,po,m1,p1) : £ — ) between Lie groupoids is a manifold (total

space) F with smooth anchor and action maps

TF()tF—)%(), pozflsme%F, (3 1)
7T1:F—)@0, plilextf.,Z)l—)F,

satisfying the relations

TF()(p()(’)/,ﬂj)) :t(’}/)7 pO(fylor%x) = pO(fy/va(Va $)), pO(idﬂo(:p))x) =,
m(pi(x,m) = s(n), pilx,n on)=piler(z,n'),n), p1(z,idy, @) = 2, (3.2)
mo(p1(z,n)) = mo(x),  m(po(y, 7)) =m(z), pilpo(v,2),m) = po(v, pr(x,n)),
forz e F,v,+ € X1,n, 17 €9 and such that
1. mp is a surjective submersion,
2. F oo} D1 = F % F, (x,m) = (x,p1(x,n)) is a diffeomorphism.
Given two anafunctors
(Fa 0, P0, T1, pl)? (Flv 7T(,)7 067 7T/1, pll) X = QJ?
a transformation o : F = F’ between them is a smooth map o : F — F’ with
mo(a(z)) = mo(x),  po(v, () = alpo(v, ), (3.3)

The composition of anafunctors X E) 9) E) 3 is the anafunctor Go I’ : X — 3 with total

space (F P Xng G)/ ~, where the equivalence relation is

(z, 05 (m,y)) ~ (o1 (z,m),y), z€F, yeG, ne, (3.4)
and with
75 ([z,y]) = ={ (z), pG°F (v, [z, y]) = [ph (v, ), 9], (3.5)
7l () =78(y),  pFF (2, 9], Q) = [, p¥ (1, ¢)]

for v € X1, ¢ € 31.
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Lie groupoids, anafunctors and transformations between them form a bicategory (in the
sense of [35]) LieGpd. As discussed in [33], this bicategory is equivalent to the bicategory
of differentiable 1-stacks that we define in Section 7.2.1.

Example 3.2. For a Lie group G, define the Lie groupoid BG with BGy = {*}, (BG); =
G and composition defined by the group product. For Lie groups G1, G2, an anafunctor
F : BG1 — BG5 is the same as a right Go-torsor with a left (Gi-action commuting with
the Ga-action. In particular, F' is weakly invertible if and only if it is also a G1-torsor, in
which case an inverse F'~! is given simply by taking the same total space with inverted

actions.

Example 3.3. A smooth functor f : X — 2) between Lie groupoids gives an anafunctor

with total space F':= X ; %;2)1 and

mo(xz,n) =2,  po(v, (z,n) = V), f1(7) o), (3.6)

mi(z,n) =s(n), p1((z,n),n) = (x,non).

For a general anafunctor, the condition that my is a surjective submersion and that
Fo x99 — F X, Fis a diffeomorphism implies that there are local sections o :
U C Xg — F of m inducing isomorphisms U . ., %91 = m; '(U) C F. In this sense, an
anafunctor is to be regarded as an object constructed from gluing ‘locally defined’ smooth
functors. The following proposition generalizes to our setting the classical result from
category theory stating that a functor has a weak inverse if and only if it is essentially

surjective and fully faithful.

Proposition 3.4 ([205]). An anafunctor (F,mo, po,T1,p1) : X — Q) is weakly invertible

if and only if the following two conditions are satisfied.

1. w1 is a surjective submersion.

2. Xy X ' = F o X0 Fy (7, 2) = (po(v,x),2) is a diffeomorphism.

A Lie groupoid X has an associated simplicial manifold (cf. Definition 2.1), called its
nerve and denoted N(X),. It is defined by

n+2
N () = {({@shicpnps i bieyep) € Xt < 2(2)]
. (3.7)
Vi < 7, T X X5,

Vi <j <k, fijo fir = fur},
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with simplicial maps defined similarly as in (2.23). Each N(X), is indeed a manifold,
as it can also be described as the n-fold fibered product N(X), = X1 ;X,... (X, %1, and

s, t are submersions.

Example 3.5. Let GG be a Lie group acting on a manifold M, then the quotient groupoid
M//G is the Lie groupoid (M//G)o = M and (M//G)1 = M, where (z,g9) € M x G is
seen as an arrow x — xg and composition is defined by (zg1, g2) o (z,91) = (z,9192)-
In particular, when M = {x} with trivial G-action we obtain {x}//G = BG, for BG
defined as in Example 3.2. Note that the nerve of M //G is the simplicial manifold from

Example 2.5, hence the notation.

Example 3.6. Let M be a manifold with an open cover {M,}qc4, let T be an abelian
Lie group T and let Agpe : Mype — T be a T-valued Cech 2-cocycle. We construct with
this data a Lie groupoid £ defined by Lo := UgeaM, and L1 := Uy peaMyp X T, where

(a,b,2z,tqp) € L1 is seen as an arrow (a,x) — (b, z) and composition is given by

(a,c,x,t blbcAab (l’))
(a,b,.l’,tab) (b7cvx9tbC) o=

N
(a,x) (b, x) (c,x) = (a,x) (c,x) (3.8)

The cocycle condition on Ay ensures that this composition map is associative. The

nerve of £ is the simplicial manifold A* EBT from Example 2.8.

Definition 3.7 ([188]). Let X be a Lie groupoid.

1. The tangent Lie groupoid of X is the Lie groupoid T'X defined by (TX)o := TX and
(TX); := TX,, with source, target and composition maps given by push-forward

along the source, target and composition maps of X.

2. A multiplicative vector field on X is a pair (Xo, X1) € I'(T'Xo) & I'(T'X;) defining
a smooth functor X : X — TX. We write I'(TX)* for the space of multiplicative

vector fields.

3. The Lie algebroid of X is the vector bundle Ay — X defined by

Ax =id"(Ker(ds : TX1 — s"TXy)). (3.9)

4. Given a € T'(Ax), we define its right-invariant extension off € T'(TX;) and its
left-invariant extension o € T'(T%1) by

aft(y) == dRy(a(t(7))),

(3.10)
a(7) 1= d(L, o inv) (a(t(v))),
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for v € X1. Here R, and L~ denote right- and left- composition with +, respectively,

while inv : X1 — X is the inversion map.

Note that, given (Xo, X1) € I'(T%)*, then Xq is determined by Xo(z) = ds(X1(idy)).
Thus, we may see I'(TX)¥ as a subspace of I'(TX1).

Proposition 3.8 ([40]). Let X be a Lie groupoid.
1. The space T(TX)* is closed under the Lie bracket of vector fields on %1.
2. There is a Lie algebra action of T(TX)* on T'(Ay), defined by
(X, a](z) := [X, a"](id,) (3.11)

for X e T(TX)*, a € I'(Ax) and z € Xo.

3. The map 0 : T'(Ax) — T(TX1), a > ol +af takes values in T'(TX)* and satisfies
I[X, a] = [X, 0a] (3.12)

for X e T(TX)* and a € T'(Ay).

In other words, [-,-] and O define a structure of Loo-algebra (cf. Definition 2.16) on
D(TX) :=T(TX)* ® T'(Ax)[1]. We call this the Lie 2-algebra of vector fields on X.

3.1.2 Lie 2-groups
Definition 3.9 ([238]). A Lie 2-group is a Lie groupoid & with

1. a functor 1 : {*} — & (the unit) and an anafunctor m : & x & — & (the product),

2. transformations r : mo (id x 1) = id : & — & (the right unitor), { : mo (1 xid) =
id : & — & (the left unitor) and a: mo(m xid) = mo(idxm) : &EXBE X & — &

(the associator)

satisfying
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1. The pentagon identity:

((9192)g3)g4 ((9192)g3)94

__(91(9293))94 ﬂmf

BXxBxExE |  IE  BXBEXOXE ()l G

/ _
91((9293)94) = N . (3.13)
91(g92(g394)) 91(92(9394))

2. The triangle identity:

(911)g2

/;ﬂ‘\ (911)g2

BXG —gi(lgx)) > BXG = BEx O G x6& . (3.14)

N N
9192

g192

3. FEuzistence of inverses: The anafunctor py xm : & x & — & x & is weakly invertible,

where p; denotes projection of the first factor.

A homomorphism of Lie 2-groups (F,a) : & — § is an anafunctor F': & — §) with a
transformation af : F omg = mgo F : & x & — § such that

F((g192)93)
F((g192)93)
®><05><Q5 of / _Q5><Q5><Q5 FU Esﬁ a1
(F(91>F<92)> (99) = \\j@y (3.15)
o®
F(
F(g)(Flo2) F(g5)) Flanrae
Given homomorphisms (Fy,afl), (Fy,af?) : & — §, then a transformation between

them is a transformation of anafunctors ¢ : F1 = F5 : & — § such that

Fi(g192) 1(9192)
& xm (FQD
/Z \j/ (3.16)
F (91)F» (92) Fa(g1)F2(g2)

Lie 2-groups, their homomorphisms and transformations form the bicategory of Lie 2-

groups.
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Remark 3.10. The diagrams in Definition 3.9 are equalities between transformations of
anafunctors. For example, the pentagon identity is an equality between two transfor-
mations m o (m x id) o (m x id x id) = m o (id x m) o (id x id x m) : &* — & that
are defined by composing « in the different ways that the diagram depicts: each black
arrow represents an anafunctor (for example, we write ((g192)g3)gs for the anafunctor
mo (m x id) o (m x id x id)) and each 2-cell represents a smooth transformation that
is defined in terms of « in the only possible way. We will make frequent use of these

diagrams throughout the whole thesis.

Remark 3.11. We will also deal with (not necessarily Lie) 2-groups; i.e. groupoids with
the structure from Definition 3.9 but without the smoothness assumptions. For example,
if C is a bicategory and x € Cp is an object, then the automorphism 2-group of x is
the groupoid Aut(z) with Aut(x)o the set of invertible arrows f : z — z in C and with
Aut(x)1(f, g) the set of invertible 2-cells a : f =: x — y in C. Composition in Aut(z)
is given by vertical composition in C, while the product m : Aut(x) x Aut(x) — Aut(z)

is given by horizontal composition in C.

Let (8,1, m,r,l,a) be a Lie 2-group. We construct an associated simplicial manifold,
denoted B®, and called the delooping of &. Let M be the total space of m : & x & — &.
We write dy X dg : M — &g X &g and dy : M — B for the corresponding anchor maps
7o, m1 defining the anafunctor. Note that the unit 1 is just a point {x} — &, while r, [

are completely described by smooth functions r,1: &g — M with da(r(g)) = di(r(g)) =
do(l(g)) = d1(l(9)) = g, do(r(g)) = da(l(g)) = 1. Then we let

B®g:={x}, B®;: =06,  B®&y:=M, (3.17)

with face maps M — & given precisely by dy, d1, do2, degeneracy sp : {*x} — B¢ given
by the unit of & and degeneracies sg, s1 : &g — M given by [, r. To construct B&3 we

note first that « is a diffeomorphism between the manifolds

{(m1.2,m123) € M?|di(m12) = da(mi23)}/ ~,

) (3.18)
{(ma3,m123) € M~ |dy(ma3) = do(mi23)}/ ~,
where the equivalence relations are
(p(m12,7),m123) ~ (m12, p((7,id), m123)), (3.19)

(p(ma3,7), m123) ~ (mag3, p((id,y),m123)) (3.20)
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for v € &1. We define then

B®3 := {(ma3,mi23,m123,m12) € M* | di(m12) = da(mia3), di(ma3) = do(mi 23),

do(miz3) = do(ma3), a([mi2, mi23]) = [ma3,mi 23]},
(3.21)

and let the face maps B@g — M be do =m23, d1 =mi23, dg = m1,23, d3 =miz2. The
pentagon and triangle identities ensure that B®3 § M = B¢ =% {*} can be extended
to a simplicial manifold by the coskeleton construction [281]. Explicitly, we can describe

all levels with the following formula.

n—+1 n+1) ‘

B&,, := {({9ij }i<jem) {mijk ticj<iem)) € 958 ) (s
Vi < j <k € [n], da(miji) = gij, di(mijr) = gik, do(mir) = gjr, (3-22)

Vi<j<k<le|[n], al[mjr, mi]) = [mije, min]}

Example 3.12. If G is a Lie group, then we see it as a Lie 2-group by associating to
it the Lie groupoid with G as set of objects, only identity arrows, and multiplication

functor given by the product of G.

Example 3.13. If T is an abelian Lie group, then we let BT be the groupoid with
set of objects {*} and manifold of arrows 7', with composition given by the product
of T. Then, since T is abelian, the product of T also defines an associative functor
m : BT x BT — BT, endowing BT with structure of Lie 2-group. In this case we write
B2T := B(BT) for its delooping.

A general Lie 2-group (&,1,m,[,r, «) determines the following three invariants.
1. The topological group 7y(®) of isomorphism classes of objects with group product
induced by m.
2. The Lie group 71(®) of automorphisms in &; of 1 € &.
3. A continuous action > of 7o(®) on m (&), defined by [g] > f :=idg - f - id,,* for

[g9] € (&) and f € m1(&).

Using that the group structure on () can be described by either m or the composition
of &, an Eckmann-Hilton argument shows that 71(®) is abelian. Moreover, there is an

exact sequence of topological 2-groups (defined in an analogous way as for groups)

1 — Bm(®) - & — mp(&) — 1, (3.23)

'More precisely: let A be the total space of the anafunctor m o (m x id) : & x & x & — &, then
for [g] € (&) and f € 71 (®) choose a € A with m1(a) = 1, mo(a) = (g,1,97") for some g, g~ € By
representing [g], [g] ™" and define [g] > f € &1 by po((idg, f, idy-1),a) = pi(a, [g] > f).
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where the functor Bmi (&) — & maps {*} = (Bm1(8))o to 1 € &( and equals the identity
of m1(®) on arrows, while the functor & — m(®) is just the projection of each object

of & to its isomorphism class.

Example 3.14 ([119]). Given vector spaces Vj, V; with lattices Ag C Vp, A1 C V; and a
bilinear form (-,-) : Ag ® Ag — A1 (which we extend to Vo ® Vi — V; by linearity), [119]
constructs a Lie 2-group 7 which is an extension of Vy/Ag by B(Vi/A1). Define T by
To = Vo, T1 = Vo x Ag x V1 /A1, where (v°, X, [v!]) € T7 is seen as an arrow v — v+ A0,

and composition is defined as
(0 + AB15 Ao, [v12]) © (0%, A0y, [vgn]) == (v0, Ay + Ala, [vg1 + via])- (3.24)
We equip it with the smooth functor m : 7 x 7 — T acting on arrows as
m((u®, X, [u']), (0, 1°, [0'])) i= (u” + 0% A0 4 0 [ud ot 4 (u®, 60)]). (3.25)

The unit is simply 0 € Ty and the associator, as well as the left and right unitors, are
identities. It is shown in [119] that two 2-groups 7°, i = 1, 2 constructed in this way
from bilinear forms (-,-); : Ag X Ag — A1, i« = 1, 2 are isomorphic if and only if the
symmetric parts of (-,-); and (-,-)2 coincide. An isomorphism 7' — 7?2 is given by

choosing a bilinear form B : Ag ® Ag — Ay such that

Bu®,v%) — B(°,u®) = (u® 1%y — (u°, 1%y, (3.26)
from which we let F': 7' — T2 be the functor defined on arrows by

Fu®, X [u']) := (u® A2, [ul + B(u%, \?))), (3.27)

and we let of' : Fomy = mgo F : 71 x T{ — T3 be the natural transformation defined
by
aF(uo,vo) = (ug + vo, 0, [B(vg, ug)])- (3.28)

Example 3.15. Let M be a smooth manifold and let 7" be an abelian Lie group. We
write BT (M) for the groupoid with objects the class of all T-bundles on M and with
isomorphisms of T-bundles as arrows. Similarly, we write BTy (M) for the groupoid with
objects the class of all T-bundles with connection on M and with flat isomorphisms of T-
bundles as arrows. Given two T-bundles P;, P» € BT (M), we define their tensor product
by Py ® Py := (P X P2)/T, where (pit,p2) ~ (p1,p2t). This can easily be enhanced to
give functors m : BT (M)xBT (M) — BT (M) and m : BTwv(M)xBTy(M) — BTy (M).
Then, the isomorphisms (P} ® P;) ® Py — Py ® (P, ® Ps), [[p1, p2], p3] — [p1, [p2, p3]] and
P® (M xT)— P, [p,(z,t)] — p define an associator and unitors, giving structure of
strict 2-group to BT (M) and BTy (M). However, since the class of all T-bundles (resp.
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the class of all T-bundles with connection) over M is not a set, we wish to have smaller

descriptions of these 2-groups. We show how to obtain these in two different ways.

The first way is to choose a good open cover U = {U;};c; of M, so that every T-bundle
over M can be trivialized over each open set U;. Then we define the groupoid BT (M)¥,
where an object is a collection {t;;}; jer of functions ¢;; : U;; — T such that tijtik = Lik
and t;; = t;il, and where an arrow {t}j}m — {tfj}i,j is a collection {t;};er of functions
t; : Uy — T such that t}jtj = tit?j. We equip BT (M) with the strictly associative
functor m : BT (M4 x BT(M)¥ — BT(M)Y that acts as ({tl-lj},{t?j}) — {t}jt?j} on
objects, and similarly on arrows. Then BT(M )Y is a small groupoid, with an obvious
functor BT(M)Y — BT(M) which is an equivalence of categories and which can be
enhanced to a homomorphism of 2-groups. One can proceed similarly for the 2-group

BTy (M).

The second way does not depend on the choice of a cover, but it yields a weak 2-
group. Let C = mo(BT(M)) be the discrete abelian group of isomorphism classes of
T-bundles over M. For each ¢ € C' we choose a representative T-bundle L¢ € BT (M),
with LY = T x M the trivial bundle, and for each pair (c1,c2) € C? we choose an
isomorphism ¢(c1,c2) @ LT — L9 @ L2, with ¢(c,0) the canonical isomorphism
L¢® (T x M) — L¢, [p,t,m] + p and similarly for ¢(0,c). Then for (c1,c2,c3) € C?
we let (e, co,c3) € C°°(M,T) be the unique function such that the following diagram

commutes

[eiteates ¢(01+CQ’C3Q Leite2 @ [es

¢(01,02+C3)l id)(cl,cz)a(cl,(:g,c?,) (3'29)

Lo @ Leates ¢(C2’C3>) L @ L% @ L.

In particular, note a(cy, ca,c3) = 1 if ¢; = 0 for some i = 1, 2, 3. It is clear that the in-
clusion Ueec A(LS) //C°(M,T) — BTy (M) is an equivalence of groupoids, where A(L°)
is the space of connections on L¢ and C°°(M,T') acts on it by the gauge action. Now we
equip the groupoid U.cc A(LS)//C®(M,T) with 2-group structure. The multiplication

functor is defined on objects by

m : Ueec A(L) [/ C%(M, T) X Ueec A(LY) [/C%(M, T) = Ueec A(LS) //C%(M, T)

((c1, V1), (c2, Va)) = (c1 + e2, ¢(c1,¢2)" (V1 ® V2)),
(3.30)
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while acting as (f1, f2) — fif2 on arrows. The associator is the natural transformation

that sends the triple (c1, V1), (c2, Va), (3, V3) to the arrow

(c1+ ca + c3,0(c1 + c2,¢3)" (d(e1, c2)" (V1 ® Va) ® V3))

@(C1,€2,C3
(1_> )(

(3.31)
c1+ca +c3, d(cr, 2 +¢3)" (Vi @ d(ea, 3)"(Va ® V3))).

The left and right unitors are identities. The inclusion U.ec A(LS)//C®(M,T) —
BTy (M), along with the isomorphisms ¢(ci, c2), defines a homomorphism of 2-groups
which is an equivalence at the level of groupoids, hence we regard these as two equiva-
lent presentations of the 2-group BTy (M). By forgetting the connections we obtain a
similar presentation of BT'(M).

3.1.3 Actions of Lie 2-groups

Definition 3.16. For & a Lie 2-group and 8 a Lie groupoid, a smooth (right) action of
® on P is an anafunctor p : P x & — P with smooth transformations r° : po (id x 1) =
id: P = Pand a”:po(pxid) = po(idxm): P x & x & — P such that

((pg1)92)g

((pg1)g2)g3
m /Om
™~

PxBEXGXxG apﬂ PXOXxBGXS —(pg1)(g293) = P

RY
1
w W .
p(91(9293))

p(91(9293))

(pl)g

ﬂfﬂ—\ (p)g

PBXxG —plg— GEXB = (3.33)

ﬁp_ﬂ_\ (pg)1
‘Bx@p(gl)%@xﬁzﬁx(’ﬁﬂ\@x(’ﬁ. (3.34)
Nl S S

P9

Left actions are similarly defined. Given an anafunctor F' : ¥; — Po and actions

(pi,aP) of a Lie 2-group & on PB; for i = 1, 2, an equivariant structure on F is a
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transformation af : F o p1 = p2o (F xid) : P x & — Po such that

F((pg1)92) F((pg1)g2)
m o
F(pg1) __— F(p(g192))
‘lﬁxeﬁxc’ﬁ af’ \ Bo ‘431><®X6 F T
p)91 \\ " / ' (3.35)
F(p)(g192)
p)(g9192)

A smooth action by a functor of & on P is a smooth action such that p is a smooth
functor. A strict smooth action is a smooth action by a functor such that r»? = id and

af =id.

Remark 3.17. Let & be a Lie 2-group and let P be a manifold, regarded as a Lie
groupoid with only identity arrows. Then, any smooth action of & on P factorizes by
a continuous action of the topological group mp(®) of isomorphism classes of objects of
® on P. However, since my(®) is in general not a Lie group, the smoothness condition
cannot be stated in terms of this action. This remark follows from noting that, since
there are only trivial arrows on P, an anafunctor p: P x & — P is just a smooth map
po : Px®y — P, which we denote (x,g) — zg, such that zg = 2¢’ whenever there exists
an arrow g — ¢’ in &;. Moreover, smooth transformations 7°, a” as in Definition 3.16
exist if and only if 1 = 2 and for g1, g2, g12 € B¢ such that there exists m € M (the
total space of the anafunctor m : & x & — &) with da(m) = g1, do(m) = g2, di(m) = gi12

we have (xg1)g2 = xg12; in this case, r” and o are unique.

Let & be a Lie 2-group acting through p, a” on a Lie groupoid B3 in the sense of Definition
3.16. We define a simplicial manifold B//®, called the quotient 2-groupoid, as follows.
Let

d2 Xdo

PBo x G R % (3.36)

be the total space and anchors of the anafunctor p. Then o” is a diffeomorphism between

the manifolds

{(ro1,m12) € R* | d1(r01) = da(r12)}/ ~,

(3.37)
{(mo12,702) € R X M | d1(mo12) = do(r02)}/ ~,
where the equivalence relations are
(p(ro1, £),m1.2) ~ (ro1, p((f,id), m12)), (3.38)

(p(mo12,7),r02) ~ (Mmo12, p((id,),702)) (3.39)
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for f € X; and v € &;. We define B//& by

(B//8)n = {({piticm): {rijticjem, {migrticj<r) € m(()"fl) x RO ()|
Vi<jeln], da(ri)=pi, di(rij) = p;
Vi < j <keln], d(mi) = do(rij), di(mijr) = do(r), (3.40)
do(myji) = do(rj), o ([rij,mik]) = [Tik, majil,
) =

Vi <j <k<le [n], a([mjkl,mijl] [mijk,mikl]},

with simplicial maps defined similarly as in (2.23). In particular,

(B//8)o = Po,

(B//8)1 = {(po,p1,701) € P> x R|da(ro1) = po, dr(ror) = p1} = R,

(B//®)2 = {(po: p1, P2, 701, 712, 02, M012) € P X R* X M | da(ro1) = da(roz) = po,
di(ro1) = da(r12) = p1, di(ro2) = di(r12) = p2,

a?([ro1,m12]) = [roz2, mo12]} = (R g, X 4y R) gy xdg X doxdy M-
(3.41)

Remark 3.18. In the following we shall also need to perform the construction of the
quotient 2-groupoid B//B when P is a groupoid internal to the category of derived
manifolds (i.e., the analog of Definition 3.1 replacing manifolds by the derived manifolds
from Section 2.2.2). This is done in a completely analogous way, similarly as in Example
2.23.

For example, if B is just a derived manifold (M, E, Q) whose corresponding fiberwise
structure of curved Loo-algebra on E is denoted by ®, {-,...,-}, then an action of &
on P could be given by a smooth action of & on the manifold M, (z,g) — xg (cf.
Remark 3.17) and a smooth action of & on the total space of E, (e, g) — eg, fitting in
a commutative diagram with the projection 7 : £ — M, and such that for each g € &
we have that e — eg is degree-preserving, fiberwise linear, and satisfies ®(zg) = ®(z)g,
{e19,...,eng} = {e€1,...,en}g for x € M, ey, ..., e, € E. Although more general actions
exist, these will be sufficient for the purposes of this thesis. In this case, the quotient
2-groupoid P//& is given by (P//B),, = P x B&,,, with simplicial maps defined similarly
as in Example 2.5, using Remark 2.19 to see the action map of & on E as a map of

derived manifolds B x B¢ — P, with the arrows of & acting trivially.

Our next goal is to present the conjugation action of a Lie 2-group on itself. For this we

need to introduce first a new definition.

Definition 3.19 ([19]). Let (&,1,m,r,[,«) be a Lie 2-group. A coherent inversor is

an anafunctor inv : & — & with transformations e : mo (inv x id) == 1: & — & and
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i:1=mo(id X inv) : & — & satisfying the zig-zag identities

/ 99" \
(o] ocll & g—3 &
\ (g_ / — W N (342)
e g-1
g1
g 11
% g_1 1
g (g9 ") ﬁﬂ\
& i o) ) & 6 ol &

(97" 9) 97" = W . (3.43)

As proven in [19], any set-theoretical 2-group in the sense of Definition 3.9 can be
equipped with a coherent inversor, and any two choices of coherent inversor are essen-
tially equivalent. Thanks to the use of anafunctors, the proof can probably be adapted
to yield an equivalent result for Lie 2-groups, although we will not pursue this here. We
do note that, for & a Lie 2-group with a coherent inversor (inv, i, e), there are canonical
transformations

1" sinvol = 1: {x} — &,

) ‘ ‘ . . (3.44)
m"™ :mo (inv X inv) o Flip = invom: & X & — &,

where Flip: & x & — & x & is the functor that switches the order of the two factors.

They are defined by composing «, 1, e, [, 7 as follows.

IR T P - (3.45)

9307t 5 (9507 ) ((9192) (9192) ™) 2 (95 197 ) (9192)) (91.92)

5 (97 (91 1) 92)) (9192) (3.46)
-1 ~1

-1

5 (95" (91 (9192)) (9192)

-1 1

(951 (192))(9192) 7 5 (951 92)(9192) ™" 5 1+ (91g2) " 5 (9192)

Here each arrow is a natural transformation between anafunctors that are defined by

composing m, inv and 1 in a hopefully self-explanatory way.

Lemma 3.20. Let & be a Lie 2-group equipped with a coherent inversor (inv,e,i). Then
the anafunctor Ad~' : & x & — & defined by

(inwops)xm

Adl =6 x & "exeB e, (3.47)



Lie 2-groups and Maurer-Cartan forms 75

where pg denotes projection of the second factor, together with the transformation pAdT

Ad™ Yo (id x 1) = id: & — & defined by
1) 51t h S o Sh (3.48)
and the transformation

o Ad T o (Ad xid) = Ad Yo (idxm) B X B x B = & (3.49)

v

defined by using o, m*™ in the following way

95 (g7 " (hg1))g2) = (g5 ' (g1 ' (hg1)))g2 = (g5 'g1 ") (hg1)) g2

% (9297 D ((hgr)g2) = (951917 D (M(9192)) ™= (9192) " (A(g192))
(3.50)

determine a right action of & on itself, called the conjugation action.

Proof. Checking that (3.32), (3.33) and (3.34) are satisfied directly would involve very
tedious computations. However, we can invoke the coherence theorem for bicategories
[212], which implies that any two natural transformations with the same source and

target obtained by composing «, 7, [, ¢, e in any way coincide. O

Example 3.21. Let M be a manifold, let T be an abelian Lie group and let BTy (M)
be the 2-group of T-bundles with connection on M. To each T-bundle P — M we
associate the T-bundle P* — M defined by P* := {(z,¢) |z € M, ¢ : P, — T, ¢(pt) =
té(p)}. This can easily be enhanced to give a functor inv : BTy (M) — BTy (M), which
together with the isomorphisms ep : P* @ P — M x T, [(z, ¢),p] — (x, ¢(p)) provides
a coherent inversor for BTy (M). Its corresponding conjugation action is the functor
((P1,V1),(P3,V2)) = (P35, V3 @((P1,V1)® (P2, Va)), equipped with the corresponding

transformations from Lemma 3.20.

As in Example 3.15, we can present BTy (M) as a small 2-group by letting C' be the
abelian group of isomorphism classes of T-bundles over M and choosing representatives
L¢ for each ¢ € C with isomorphisms ¢(c1,cg) : LT — L ® L. In this presentation,
there is a coherent inversor for BTy (M) defined by (¢,V) — (—¢,—V), where —V
denotes the unique connection on L™¢ such that ¢(—c,c) : M x T — L™°® L is flat
with respect to the trivial connection on M xT" and the connection (—V)®V on L™¢® L.
The corresponding conjugation functor Ad~! acts on objects as ((c1, V1), (c2,Va)) —

(c1, V1 + x(c1,2)*0T), where x(c1,c2) : M — T is the unique function such that the
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following is a commutative diagram.

p(—ca2,c1+c2)

e L 2R [cite
¢(*C2762)l \V(CLCQ) (3~51)
L T2 L2 L —— L2 L9 ® L%
x(e1,e2)

In particular, note x(0,¢) = 1. The natural transformations 7447 and o497 can be

computed as in Lemma 3.20; it turns out that rAdT! i trivial, while aA47" is the natural

transformation that sends ((c, V), (c1, V1), (c2, V2)) to the isomorphism
% w« 2T aX(c,c1,e2) T
(C,V + X(Cv Cl) HT +X(ca 02) 0 ) - (va +X(C7 &1 +C2) 0 )7 (352)

for aX(c,c1,ca) := x(c,c1 + c2) " x(e, e1)x(c, c2). In particular, note aX(0, ¢y, c2) = 1.

3.1.4 Maurer-Cartan forms: relating Lie 2-groups and Lie 2-algebras

Definition 3.22 ([19]). Let & be a Lie 2-group. Its Lie 2-algebra is the 2-step complex
of vector spaces b by g, where g := T1®, h := Ker(ss) C Tiq(1)61 and we write 1 € &g
for the image of 1 : {*} — &.

Note we have not defined any brackets defining an L,-algebra structure on b b g.
This is because such brackets are not canonical in general, for the same reasons as in
Remark 2.4. Other familiar notions from the theory of Lie groups such as the adjoint
representation, the exponential map or the notion of connection on principal bundles
have not been defined in the literature for arbitrary Lie 2-groups without additional
structure. We will try to solve some of these problems by introducing a new notion of

Maurer-Cartan forms.

If & is a Lie 2-group with delooping B®,, then we note the following.

1. Tl(Bﬁl) =4

2. Since h = Ker(ss) C Tiq(1)®1, the map p1 : B&y . X, &1 — By determines a

subspace pi1x : h — T (1)BB2. There is a canonical projection

Tso(l) (B@Q) — [] (3 53)
V= U= SO*dO*(U) — 514d240.

These maps induce an isomorphism between the Lie 2-algebra of &, as in Definition
3.22, and the (shifted by 1) tangent complex of the simplicial manifold B®, as defined

in Section 2.1.1.
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Definition 3.23. A (left) adjoint action of a Lie 2-group & with Lie 2-algebra b b gisa
pair of smooth, linear, left actions by functors of & on g and on b, denoted as in Remark
3.17 by Ad : g x g — g and Ad : &y x h — b such that t, : h — g is equivariant for the
induced 7 (®)-action. For such a left adjoint action, a (right-invariant) Maurer-Cartan

form on & is a pair

0° € Q1(B&y,g), 0' € QY(B&,y,b) (3.54)

such that
t0' = d30° — d;0° + Ad(da(-))d;0° € QY (B®s, g), (3.55)
0=dif' — d30" + di0' + Ad(dy o d3(-))d50" € QY (B®3, g). (3.56)

and such that 67 is the identity and 9;0(1) is (3.53). A right adjoint action Ad~! is
defined similarly, but with & acting on the right, and for such a right adjoint action a
(left-invariant) Maurer-Cartan form is defined similarly, replacing (3.55) and (3.56) by

01 = Ad™(do(-))d50° — d36° + d36° € QY(B&,, g), (3.57)
0= Ad (do o do(-))d50" — d50' + di6' + dj0' € Q' (B&3,g). (3.58)

Note that an adjoint action of a Lie 2-group & with Lie 2-algebra h by g determines a
(strict) action of & on g//h in the sense of Definition 3.16, where g//b is the quotient
groupoid associated to the action of h on g given by ¢.. This is the most natural way
of thinking about an adjoint action, and it is possible that Maurer-Cartan forms can
also be defined for weak actions. The standard adjoint action of a Lie group and its
Maurer-Cartan forms fit into Definition 3.23. In Sections 3.2.4 and 3.3.1 we will see
more examples of Maurer-Cartan forms, relating them to connections on multiplicative
gerbes [271, 273] and to adjustments on crossed modules [220]. These are structures
that have been used to define connections on principal bundles for certain families of

Lie 2-groups.

Definition 3.24. Let & be a Lie 2-group with Lie 2-algebra h b g. Then

1. A differentiation of & is a structure of Lo.-algebra on g @ h[1] whose differential
is 4, together with a morphism of Ly-algebras g @ h[1] — I'(T'®). Here I'(T'®) is
the Lie 2-algebra of vector fields on & as in Proposition 3.8.

2. Assume & has a coherent inversor (Definition 3.19) and an adjoint action (Defini-
tion 3.23). An exponential map on & is an anafunctor (E, 7o, po, 71, 1) : g//h — &,
equipped with an equivariant structure a*? for the adjoint action of & on g//h

and the conjugation action of & on itself (Lemma 3.20), and such that
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(a) There exist a neighborhood U C &g of 1 and a neighborhood V' C g of 0 such

that the map m : £ — & restricts to a surjective submersion 7, vy =u.

(b) There exists a neighborhood W C g@®h = (g//h)1 of (0,0) such that the map
(0//0)1 X B — E X E, (v,2) = (po(7,x),x) restricts to a diffeomor-

phism from W ,x, 7~ (V) onto its image.

In light of Proposition 3.4, conditions 2a and 2b are to be thought of as imposing that the
exponential map is a ‘local equivalence’ of Lie groupoids. In Sections 3.2.4 and 3.2.5 we
will show that a Maurer-Cartan form on a Lie 2-group & associated to a multiplicative
gerbe determines a differentiation of & and an exponential map on it. We conjecture
this is also the case for Maurer-Cartan forms on general Lie 2-groups (see Section 8.2.1
for some speculations on this). Proposition 3.27 below uses Maurer-Cartan forms to
generalize another construction for Lie groups (namely, Example 2.33) to the setting
of general Lie 2-groups. It will let us define Hamiltonian actions of Lie 2-groups in

Proposition 6.11. First we need two lemmas.

Lemma 3.25. Let & be a Lie 2-group with a left adjoint action Ad and a right-invariant
Maurer-Cartan form (0°,0Y). Then

09(cr o (v) — do(v)) — 09 (das (v)) = —t0% ) (V) (3.59)
09(d1 () — da,(w)) — Ad(g)8%(do(w)) = —£,0%, ) (w), (3.60)

forge Gy, v e TSO(Q)BQSQ, w E Tsl(g)Bﬁg. Moreover, for vy, ve € T1 B®, we have
dé? (v, ve) + ad(vy)(ve) = —t*dQ;O(l)(So,*(Ul), s1,+(v2)), (3.61)

where ad(vy)(v2) denotes the differential of the map & — g, g — Ad(g)(v2) evaluated at
1€ 6, v €18, In particular,

ad(v1)(v2) + ad(v2)(v1) = —t (A0 1) (0. (01), s1,0(v2)) + dBL, 1) (51,4(02), 50,4 (01) )
(3.62)

Proof. (3.59) and (3.60) follow from evaluating (3.55) at so(g), s1(g) € B®4 for g € B&;
and sg, s1 : B®; — B®y the degeneracy maps. On the other hand, (3.61) follows
from taking the exterior derivative of (3.55) and evaluating at so(1) € B®a, sg.(v1) €
Tso(1)B®G2, s14(v2) € Tso(1)B®2 for v1, v2 € T1 BB;. ]

Lemma 3.26. Let & be a Lie 2-group acting on a derived manifold M = (M, E, Q) with
a smooth functor p: M x® — M. Then the tangent complex to the quotient 2-groupoid



Lie 2-groups and Maurer-Cartan forms 79

M//& (cf. Remark 3.18) is the following chain complex of vector bundles over Z(M)
bl gt T (3.9

where p, is the partial differential at M x {1} of the underlying map po : M x &y — M
of p, and TM is the tangent complex of M.

Proof. Recall from Remark 3.18 that (M//®),, = M x B®,,. From here it is easy to
see that diagram (2.97) is in this case

O TM xTB®; — 2 TM x TB®y —2 5 TM x TB&, —2+ TM

b, D, D, b, D,

L9 TEy x TB®3 —2 TEy x TB®y —2 TE, x TB®, —2— TE,

d. dx dx dx dv

9, TE, ><\TB®3 O TE, x TB®y —2 TE, x TBS, —2—» TE;

dy 5 | d o | d o | d P dx
.(.5'64)

Then, after pulling-back to Z(M) and performing the quotients (2.98), we obtain

Ao =TMojz(Mo)s Aom = Enmg1jz(me), A-10=9, A—20=0 (3.65)

and A_, ,, = 0 otherwise, which yields the desired result after taking the associated

total complex. 0

Let & be a Lie 2-group with Lie 2-algebra h by g. In the following proposition we regard
the dual g* 5y b* of this chain complex as the derived manifold (cf. Section 2.2.2)
(g%, b"[—2],Q), where @Q is given simply by the ‘curvature’ g* 5 h*.

Proposition 3.27. Let & be a Lie 2-group with Lie 2-algebra b by g. Then, a left
(resp. right) adjoint action determines an action of & on the derived manifold g* —> h*
and a right (resp. left)-invariant Maurer-Cartan form for this action defines a 1-shifted

symplectic structure on the quotient 2-groupoid (g* t—:> h*)//® (cf. Remark 3.18).

t*
Proof. The fact that an adjoint action determines an action of & on g* = h* follows

from Remark 3.18, as well as the fact that (g* it h*)//® is described simply by
* t: * * tI *
((g" = b")//G)n = (g" = b") x B&,, (3.66)
with simplicial maps defined analogously as in Example 2.5. Then define the forms

A e Ql(g" 5 p* x B&,R), Ale Ql(g" 5 b* x B&o,R) (3.67)
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by
Meang) (€ + 1+ vg) = E(05(vg)), (3.68)
Nean (€ + 11+ vy) = n(05(v5)), (3.69)

where € € g*, 1 € b*, g € BBy, v € By, £ € Teg*, 1) € Tyh*, vy € T,BS1, v, € T, BSs.
Then LA = 0 for degree reasons, while equations (3.55) and (3.56) are equivalent to
SN0 = LoAl, 6AL = 0. Tt follows that w® := d\?, w! := dA! is a 1-shifted presymplectic
form. Explicitly,

e g (€ + 01+ 0g, € 0+ 07) = €105 (v7)) — E2(05 (vg)) — E(dg(vg, 7)), (3.70)
Wl (€ 0" 05, €+ +03) =0 (05(03)) — i (63(v})) — n(db} (v}, v2))  (3.71)

In order to check the non-degeneracy condition, we note that the tangent complex of

(g* 5 h*)//® is the chain complex of vector bundles over £ € Ker(tf) C g*

b2 &5 gl1] %% g 5 p7[-1, (3.72)

complex is

pl1] 5 g D g7 [-1] 5 p*[-2], (3.73)

where adi(v1)(-) = &(ad(-)(v1)). Using (3.70), (3.71) it is easy to see that the map
(2.129) induced by (w°,w!) is just the identity (with some signs) on each degree, hence
it is clearly an isomorphism. Note that this is indeed a chain map for £ € Ker(t}) C g*
by (3.62). O

3.2 Multiplicative gerbes

3.2.1 Gerbes

We dedicate this section to fix some notation and conventions regarding gerbes that are
extensively used throughout the thesis. We start by fixing a manifold M and an abelian
Lie group T with Lie algebra t.

Definition 3.28 ([56, 82, 133]). A T'-gerbe over M is the data of an open cover {U; };cs of

M and a T-valued Cech 2-cocycle in this cover; i.e., functions Aijk @ Ugjr, — T satisfying

XAt Ag Aigk = 1. (3.74)

ijl
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A connective structure on it is the data of 1-forms A;; € Q1(Uyj,t) such that
Aij — gy + Mg = N, (3.75)

for 0 € Q(T,t) the Maurer-Cartan form on T. A curving for it is a collection of 2-forms
B; € Q2(U;, t) such that
B; — Bj = dA;. (3.76)

An enhanced curving is a collection {B{"}; of B{" € I'(T*U; ® T*U; ® t) such that
Bien - B]en = dAij; (377)

equivalently, it is a pair ({B;};,h) of a curving {B;}; and a h € T'(S?T*M ® t). A
connection (A, B) := ({Asj}i;, {Bi}i) for a gerbe is a connective structure with a curving
and an enhanced connection is a connective structure with an enhanced curving. In any

case, the curvature is H € Q3,(M,t) given locally by H| v, = dB;.
Given two gerbes ({Ul}ier, {Azljk}i,j,keh)v ({U2}iern,, {)‘?jkz}i,j,ka)? an isomorphism be-
tween them is the data of {V, }sc4 a common refinement of {U}};cr, and {U?}icp, (With

refinement maps i1 : A — I and iy : A — I) and functions sqp : Vg — T satisfying

1 2
SacAi (a)iy (b)ir(c) = Nia(a)ia(b)iz(c)SbeSab (3.78)

If the gerbes have connective structures Al ., A2 . then we define a connection on the

11717 “i2ge?

isomorphism to be a collection of 1-forms A, € Q(V,, t) satisfying
— Al 2 * nT
Ao =D = Ay, )iy ) — Mia(ayin(v) — San? (3.79)

An isomorphism of gerbes with a connection is also called an isomorphism of gerbes with

connective structure, while a connection on the identity isomorphism is also called an
en,l
i1

ol B is F e D(T*M @ T*M @ t) defined

71 7

isomorphism of connective structures. If the gerbes also have (enhanced) curvings B
szn’2, then the curvature with respect to B
by

F=dh,— B{') + B2 = d\o — B}, (o) + B}, (o) — 1 + ha (3.80)

i1(a) iz(a)
Its skew-symmetric part F'S¥ satisfies dF*¥ = H, — Hy. A trivialization of a gerbe
(U, {Nijk }ij k) is an isomorphism 1 — (U, {Nijk }ij k), where 1 denotes the trivial
gerbe, and a connection on it is a connection on the isomorphism, where 1 is regarded

with the trivial connective structure and curving.

Given two isomorphisms ({V.},{sa}), ({V.},{s),}) between the same gerbes, a 2-

isomorphism between them is the data of a common refinement {W,},cr of {V,}aca
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and {V]},c s such that the refinement maps R —+ A — I,,, R — A’ — I, coincide for
n =1, 2 and functions ¢, : W,, — T such that

trsa(r)a(s) = S;’(r)a’(s)ts (381)

If the gerbes have connective structures A} A?j and the isomorphisms have connections

150
Mg, Al then the covariant derivative of the 2-isomorphism is € Q'(M, t) given locally
by n = A/ " Ay + t*07. The 2-isomorphism is a 2-isomorphism of gerbes with

connective structure or a flat 2-isomorphism when n = 0.

For @ := ({Va}a, {Sab}ap) an isomorphism of gerbes from £; = ({Uj, }, {)\mlkl}) to Lo =
{Ui, }, {)\22]2@}) and ({Azm}ml’ {le}n) a connection on L1, we write (®~1)* (Azlj, ) =
(A2, B2) for the connection on Lo defined by

Agb = N ()i (b) — Sab? (3.82)
B} = B (a)- (3.83)

If ¢ : ({W;}r, {tr}+) is a 2-isomorphism ® = &’ and A;, is an isomorphism of connections
(AL i ABE i) = ({AL 5, Y {B1 }i), then we write

(™) Ny = (@7 (AL, oo, ABE Ya) = (@) A, Y Bl i) (3.84)

for the isomorphism of connections defined by the 1-forms A; () + ;6. When )\zlm =
)\2

T joka? this is called the gauge action of the gerbe. For

v = ({(Vatar {8ab}aps {Aa}) : (Ui} (N o b (A D) = (Ui}, 0 ok, 5 {AD 100
(3.85)

an isomorphism of gerbes with connective structure and B} a curving on A} |» we write

i1]
(oy 1*B! for the curving on A , defined by the two-forms B} (@) —dA2. Note that when
two isomorphisms of gerbes Wlth connectlve structure are related by a flat 2-isomorphism
= \? and Ai1j1 = A; this

then their action on curvings coincides. When \! c . iod
i2j2k2 2927

t1j1k1
is called the gauge action of the gerbe with connective structure.

The tensor product of two gerbes (with connective structure and curving)

= ({U; }u{)\zgkz}w k> {A }ma{B } ), c? = ({U; }17{)‘1]143}17] k> {A }ma{BZ} )

is the gerbe £! ® £2 (with connective structure and curving) described by the cocycle
data ({U;}, {)\’}]k)\??‘]k}zajak7 {A-l. 2-}Z-,j,{B-1 B2};). The dual of a gerbe (with con-
nective structure and curving) £ = ({U; },, {)\”k}m k> {A Yijs {B}}i) is the gerbe (with
connective structure and curving) £7! := ({U;};, {(A zJk) Yk {—AL ig B}).
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We also recall Murray’s notion of bundle gerbes [198], which is completely analogous to
Definition 3.28 but replacing the use of a cover of M by a general surjective submersion
m:Y — M. For such a surjective submersion, write Y =V xy Y Xps .. X Y for
the nth fibered product over M and d; : yl — yl=1 =0, ..., n—1 for the map that
forgets the j-th point. Then a T-gerbe over M can be defined as a principal T-bundle
L — Y1 with an isomorphism X : d5L ® d5L — diL of T-bundles over Y3 satisfying
diX o di\ = di)\ o di\ over Y14 a connective structure on it is a T-connection V on
L — YP such that X is flat and a curving for it is a 2-form B € Q?(Y,t) such that
diB — djB = Fy, for Iy the curvature of V.

For two gerbes described by (L1, A1) and (L2, A2), an isomorphism between them is
described by a T-bundle M — Y with an isomorphism s : dM ® L1 — Lo ® diM
of T-bundles over Y2 inducing a commutative diagram with A\; and Ay over yBl 1t
(L1, A1) and (L2, A2) have connective structures given by connections Vi, Vg, then a
connection on the isomorphism (M, s) is a connection on M such that s is flat. Given
two isomorphisms (M, s) and (M’, s'), a 2-isomorphism between them is an isomorphism

M — M’ inducing a commutative diagram with s and s’ over Y2

Both Definition 3.28 and the approach with bundle gerbes are working definitions. More
rigorously, T-gerbes are principal 2-bundles (cf. Definition 4.1) for the 2-group BT'. The
relation between this and Definition 3.28 is given by the construction in Example 3.6,
which can be seen as the ‘total space’ of the gerbe that can be constructed with a

2-cocycle.

For the following proposition we let T be a connected abelian Lie group and we let Z C t

be the kernel of the exponential map exp : t — T.
Proposition 3.29 ([82]). 1. Every T-gerbe admits a connection.

2. T-gerbes over M are classifed by H>(M, Z) and the class of a gerbe is represented

in de Rham cohomology by taking the curvature of any curving.

3. A gerbe admits a flat connection if and only if it admits locally constant cocycle
data. An isomorphism of flat gerbes admits a flat connection if and only if it admits
locally constant cocycle data in the same frame in which the gerbes are described
by locally constant cocycle data. A 2-isomorphism between isomorphisms with flat
connections is flat if and only if it is described by locally constant functions in
the same frame in which the gerbes and the isomorphisms are described by locally

constant cocycle data.

4. The automorphism 2-group of a gerbe L (cf. Remark 3.11) is equivalent to the
2-group BT(M) of T-bundles over M from Ezxample 3.15. The gauge action is
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an action of BT (M) on the groupoid A(L) of connections (with isomorphisms of

connections as arrows), in the sense of Definition 3.16.

5. The automorphism 2-group of a gerbe with connective structure Lv is equivalent
to the 2-group BTw (M) of T-bundles with connection over M from Ezample 3.15.
The gauge action is an action of BTy (M) on the set A(Ly) of curvings for the

given connective structure, in the sense of Definition 3.16.

Given a gerbe, we can regard the groupoid A(L) as a topological groupoid (defined sim-
ilarly as in Definition 3.1) taking the Fréchet topology on the spaces Q! (U, t), Q2(U;, t)
and Q'(U;,t). We also think of the 2-group BT(M) as a topological 2-group (defined
similarly as in Definition 3.9), describing T-bundles in terms of transitions functions as
in Example 3.15 and using Fréchet topologies on C*°(U;;,T') and C*°(U;, T'). The gauge
action from Proposition 3.29 is an action by a continuous functor and so we can form
the simplicial topological space (defined similarly as in Definition 2.1) A(L)//BT (M) as
in Section 3.1.3.

Given a gerbe with connective structure Ly, we can regard the set A(Ly), which is a
torsor for Q2(M, t), as a topological space with Fréchet topology. The 2-group BTy (M)
can also be thought of as a topological 2-group by describing it in the second presentation
from Example 3.15 and taking Fréchet topologies on the spaces C*°(M,T) and A(L€) =
QY(M,t). With this topology, the gauge action from Proposition 3.29 is continuous and
so we can form the simplicial topological space A(Lv)//BTv(M).

Note A(L)//BT(M) is a model for the space of connections modulo gauge on £. On the
other hand, A(Lv)//BTv(M) might seem a priori a less natural object, as it requires
fixing a connective structure on £. However, the following proposition states that both
simplicial topological spaces are essentially equivalent. As it will become more evident
in the non-abelian generalization from Section 4.2.2 and in the constructions of moduli
spaces from Section 6.1.2, we note this because it is easier to treat A(Ly)//BTv (M) as a
geometric object, as the topology of each space (A(Lv)//BTv(M))n, n € N is modelled
on the space of global sections of some vector bundle over M independently of any choice

of cover on M.

Proposition 3.30. Let Ly be a gerbe with connective structure. There is a canonical
morphism of simplicial topological spaces A(Ly)//BTv(M) — A(L)//BT (M) inducing

a weak homotopy equivalence on their geometric realizations.

Proof. This follows from noting the following.

1. An object in A(L)//BT(M) is a connection on L. Given a fixed connective
structure A on £ and two curvings B, B’ for A, an arrow (A, B) — (A, B’) in
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A(L)//BT (M) is a pair (L, ¢) where L € BT (Mg is an automorphism of £ and
¢: (A, B) — (L*A, B’) is an isomorphism of connections. A 2-cell between (L, ¢)
and (L', ¢') is an isomorphism of T-bundles ¢ : L — L’ inducing a commutative

diagram with ¢ and ¢'.

2. By looking at the cocycle data that defines each structure, one sees that a pair
(L, @) as above is exactly the same as a T-bundle with connection Ly € BTy (M)
whose curvature Fy satisfies B’ — B = Fy, and that an isomorphism of T-bundles
Y : L — L' that are equipped with connections V, V' induces a commutative
diagram with the corresponding ¢, ¢ if and only if it preserves the connections.
This means that for any fixed A there is a map of simplicial topological spaces
A(Ly)//BTv (M) — A(L)//BT(M) whose geometric realization induces an iso-

morphism on m; and .

3. Any two connective structures are always isomorphic. This means that the map
A(Ly)//BTv (M) — A(L)//BT(M) from before induces an isomorphism on .

3.2.2 Multiplicative gerbes

Let G be a Lie group. Recall the simplicial manifold BG, from Example 2.6 with its
maps d;” : G" — G™ . In order to simplify notation, we denote in what follows any
possible composition of these maps by its image; for example, ¢g1g293 : G — G is the

map d? o d}, while (9192, g394) : G* — G? is the map d3 o dj.

Definition 3.31 ([58, 78, 195]). For T an abelian Lie group, a multiplicative T-gerbe

over a Lie group G is the following data:

1. A T-gerbe G — G,
2. An isomorphism m of T-gerbes over G x G (the product) m : ¢iG®95G — (9192)*G,
3. A 2-isomorphism « of T-gerbes over G x G x G (the associator)

919 ® 939 ® gé‘g(g% (9192)"G ® g3G

(92,93) mi / i(QIQQ ,93)*m (3.86)

919 @ (9293)°G (- ==r (919293)"G
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such that, over G x G x G x G,

m(((9192)93)94)

a m(((9192)93)94)

@

m((g1(9293))94) — - m((g192)(9394))
9iG ® 956 ® 936G ® giG aﬂ (91929394)*G GBI IGER G . (91929394)*G
m(g1((9293)94)) B '

m(g1(g2(9394)))
«

m(g1(92(g394)))

(3.87)

Isomorphisms and 2-isomorphisms of multiplicative gerbes are defined similarly as in
Definition 3.9, replacing anafunctors by isomorphisms of gerbes and transformations by

2-isomorphisms of gerbes. This yields the bicategory of multiplicative T-gerbes over G.

Remark 3.32. The last diagram of Definition 3.31 is an equality between 2-isomorphisms
of gerbes: each black arrow represents an isomorphism (for example, we are writing

m(((9192)93)94) = (919293, 94) m o (9192, 93)*m ® id o (g1, 92)*m ® id ® id) and each

2-cell is a 2-isomorphism constructed from c.

Remark 3.33. The data of Definition 3.31 is sufficient to construct other canonical struc-
tures that might be useful. For example, we write 1g : 1 — 1*G for the following trivi-
alization of the gerbe 1*G — {x}, where we write 1 : {*} — G for the inclusion of the

unit element. First, there is an isomorphism

1,1)*m~
aars

1g 1'G 176, (3.89)

and so we can define 1g as the following composition

1,1)*m71®id1*g71 idl*g®€_1
— 1oy

15 1"¢e1*g! ( "6 1" ® 1*G~ 1*G, (3.89)

where e is the canonical trivialization of 1*G ® 1*G~!. Similarly, we can define a 2-

isomorphism of gerbes over G, called the right unitor,
(g;1)*m
gGge1*G |Ir  g*qG. (3.90)

idg@1g"
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It is defined by considering the 2-isomorphism

761616 U rge1tg

(10*m| % |@aym (3.91)

*Q®1gf>gg

then note that (g, 1,1)*a o id(g 1)1 is a 2-isomorphism of the form
(g:1)"m
geRTGR1'G g6 ® 1*G, (3.92)
(1,1)*m

and then construct r by tensoring everything with 1*G~!. We will also use the notation

inv: 1= g*¢® (g H*G (3.93)

for the isomorphism (g,g ')*m~! o 1g. Since all these maps are defined canonically
from m, «, they satisfy good properties with respect to them (a precise statement in

this respect is the coherence theorem for bicategories [212]).

In order to describe multiplicative gerbes in terms of cocycle data one must take a good
semi-simplicial cover of BG,. This is a collection {U, }n>1, where each U, = {U]" }i, e1,,
is a good cover of G indexed by a set I,, together with maps J” : I, — I,_1 such

that d}(U;!) C U;n (1 ) and that {1, d; d?},, j is a semi-simplicial set. In what follows we

abuse notation by writing simply d? = d;”; furthermore, we denote Ui’;{li% ik = ﬂ o1 UZ% .

There are constructions of good semi-simplicial covers of BG, in [58, 195].

Given a good semi-simplicial cover {U, },, of BG,, it follows directly from the definitions

that a multiplicative T-gerbe over G is given by

1
)‘i1j1 k1 - U;

gk 7 T, Migjgs - U2, Qg - Ug - T (3.94)

Z2]2
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satisfying

Aivjiks (9 Nivkitn (9) = iy (9 gkt (9),
Migja (915 92)Mjoky (915 92) A,y (i0)d1 (j2)da (ko)
= Minky (915 92) Ndo (i) do (j2)do (k=) (92) (9192) Ndy (i) da (2 da (k=) (1)
Qs (915 925 93) My (i) ds () (915 92) M, (i5)ds () (91925 93)
= @3 (91, 92, 93) My (i5)da (3) (915 9293) My (i) do () (925 3
iy (ig) (915 92, 93) Qy (i) (915 92935 9a) Qo (i) (925 93, 94)

= Oy (i) (91, 92, 9394) O, (1) (9192, 93, G4)-
(3.95)

For G, T any Lie groups with T" abelian, we let Ext(G, BT) be the set of multiplicative
T-gerbes over G up to isomorphism. We also write for the rest of the thesis g and t for
the Lie algebras of G and T, respectively. The following is a classification result that
is well-known in the literature at least when G is compact (e.g. [238]). To state it we
recall the theory of sheaf cohomology on semi-simplicial manifolds from Section 2.1.2,

and group cohomology defined by (2.41).

Proposition 3.34. Let G, T be Lie groups with T abelian, and let C3° be the sheaf of

smooth T-valued functions. Then

1. Ext(G, BT) = H3(BG,., C3°)

2. If T is connected, then there is an exact sequence

H3

gr,cont

(G.t) = Ext(G, BT) — H(BG,Z) = H,, .oni(G, 1), (3.96)
where H*(BG, Z) denotes singular cohomology of the classifying space of G and
Z :=kerexpr C t. In particular, Ext(G, BT) = H*(BG, Z) when G is compact.

Proof. Consider over BG, the sheaf C7° of smooth T-valued functions. A good semi-
simplicial cover of BG, gives an injective resolution of this sheaf by taking the Cech
resolutions (C'*( %?Gn,un),é) of C2° with respect to each cover U,, and using the
maps (iy : Iy = I—1 to define the sheaf morphisms 9} : (d?)*C’p( :‘;?Gn_l,b{n_l) —
CP(Cfgn:Un). Thus the total cohomology of the double complex (C*(Cqge,Un), 0, 6)
computes H*(BG,, C$°), and the cocycle data for multiplicative T-gerbes over G gives
precisely an element in H3(BG,, C3°) which classifies them completely. In other words,

H3(BG,.,C%°) = Ext(G,BT). This is valid for any Lie groups G, T but when T is
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connected then 1 — Z — t ¥ T'— 1 is exact and so there is an exact sequence
H3(BG,,C®) — H*(BG,.,C¥) — H*(BG,., Z) — H*(BG,.,C), (3.97)

where Cf° is the sheaf of smooth t-valued functions on BG,. The result follows then

from Theorems 2.11 and 2.13. OJ

Definition 3.35. Let G, T' be Lie groups with 7" abelian and let (G, m,«) be a mul-
tiplicative T-gerbe over G. We say (G,m,«) is flat if its class in Ext(G,BT) =
H3(BG.,C%) lies in the image of H3(BG.,T) — H3(BG.,C%), for T the sheaf of

locally constant T-valued functions.

It follows from Proposition 3.34 that, for connected T, a multiplicative T-gerbe G over
G has a class ¢(G) € H*(BG, Z). This has an image

a(G) € HY(BG, 1), (3.98)

which we call the de Rham class of the multiplicative gerbe.

Lemma 3.36. The group H*(BG, 1) is isomorphic to the following quotient.

{(13, 72,71, 70) | i € Q(G*, 1), dr3 = 0, dro = —673, dT1 = 672, dT7g = 71, 0 =579}
{(dB2, 082 + dBi, =061 + dfo, 050) | Bi € Q(G37E,4)} ‘

Moreover, if T' is connected, then
1. The de Rham class c((G) € H*(BG,t) of a multiplicative T-gerbe G over G admits
a representative [(13,T2,T1,70)] as above with 19 = 0.
2. The de Rham class c¢((G) € H*(BG,t) of a multiplicative T-gerbe G over G is 0 if

and only if G is flat.

Proof. The description of H4(BG, t) follows from Remark 2.12. Now note that the exact

sequence of sheaves 0 — Z — C¢° — C7° — 0 induces the exact sequence
H3*(BG,,C¥) — HYBG,, Z) — H*(BG,,C>), (3.99)

which yields 1. Similarly, the exact sequence of sheaves Z — t — T gives the exact
sequence
H3(BG,T) - H*(BG, Z) — HYBG, 1), (3.100)

which implies 2. ]
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Given a multiplicative T-gerbe over G, one representative ¢(G) = [(73,72,71,0)] as in
part 1 of Lemma 3.36 can be obtained by choosing any connective structure and curving
on G and any connection on m. This yields the curvature 3-form 73 of G on G, the
curvature 2-form —7» of m on G? and the covariant derivative 1-form 7 of a on G3,

which satisfy the equations from Lemma 3.36.

Example 3.37 ([58, 195]). For G a compact, simple, simply connected Lie group,
Proposition 3.34 and the fact that HY(BG,Z) = H3(G,Z) = Z in this case imply
that multiplicative U(1)-gerbes over G are classified by Z. The multiplicative gerbe
corresponding to a choice of generator of H*(BG,Z) is called String(G). The image of
such generator in H*(BG,,R) can be described in de Rham cohomology by the forms

3= (08,107 1 0%]) € G R),

L *nL *nR 2
To 1= (g0~ N g50"") € Q°(G x G,R), (3.101)

71 := 0,

70 := 0,

(which satisfy drs = 0, dry = d73, 09 = 0), for 67, 0 € QY(G, g) the left- and right-
invariant Maurer-Cartan forms on G, respectively, and (-,-) : g ® g — R the Killing
form, normalized so that [r3] € H3(G,Z) = 7Z is a generator. It follows that a finite-
dimensional model for String(G) can be obtained by choosing potentials for the forms 73,
T9 in a semi-simplicial cover of G, which give a cocycle presentation of the multiplicative
gerbe to which Theorem 3.48 below can be applied to construct a Lie 2-group. However,
as this is not a canonical procedure, it does not yield an explicit description of the Lie
2-group String(G). The gerbe String(G) — G is described explicitly in a cover of G in
[195], where an equivariant structure on it is also given, but there is no known explicit

cocycle data for the product m and the associator a.

Example 3.38. Example 3.14 can also be presented as a multiplicative V;/A;-gerbe
over Vp/Ag. Take G — G to be the trivial gerbe. Then the product m is just a Vi /A;-
bundle M over V/Ag x Vp/Ag. Tt is defined by

M = (Vo/Ag x Vo x Vi/A1)/Ao, (3.102)
where the action of Ag is

([0, 0%, [u']) - 1® := ([, 0° + X0, [u + (u®, %)) (3.103)
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The associator « is the following canonical isomorphism of V3 /Aj-bundles over (Vg/Ag)?.

a:dsM @ diM — dyM ® dsM
(3.104)
[, 00, ul] @ [u® + 00, w’, vl] = [0, 0, ut] @ [ul, 0¥ + O, vl
It is straightforward to check that « satisfies the pentagon identity. Note also that
M carries a canonical connection 6 € QY(M, Vi) such that « is flat. It is defined by
0 = du' — (du®,v°) and its curvature is (du® A dv®) € Q2(Vo/Ag x Vo/Ao, V1).

Example 3.39 ([271]). Generalizing Examples 3.37 and 3.38, let G, T be Lie groups
with 7" abelian and connected and let (-,-) : g ® g — t be a symmetric, Ad-invariant
bilinear form. Then the three forms 73, 79 defined as in (3.101) satisfy dr3 = 0, do = 73
and 672 = 0. By Lemma 3.36, they define a class in H*(BG,,t). If (-,-) is such that
this class lies in the image of H*(BG,, Z), and H3(BG,T) = 0 (i.e., there are no non-
trivial flat multiplicative T-gerbes over GG), then Proposition 3.34 implies that this data

determines uniquely a multiplicative T-gerbe over G.

3.2.3 Connective structures on multiplicative gerbes

Definition 3.40. Let (G, m, ) be a multiplicative T-gerbe over G. A connective struc-

ture on it is the following data:

1. A connective structure V on the gerbe G — G,

2. A connection V,,, on the isomorphism of gerbes m such that « is a flat 2-isomorphism.

We often write (Gy, mv,a) or simply Gy for a multiplicative gerbe equipped with a
connective structure. An isomorphism of connective structures on a multiplicative T'-
gerbe (V1,Vm,) — (V2,Vy,) is an isomorphism of connective structures on gerbes
¢ : V1 — V3 such that the following is a commutative diagram of isomorphisms of

gerbes with connective structures

* * (m,Viny) *
91Gv, ® g5Gv, — (9192)*Gv,
(idg;68050) | |Gaooera) (3.105)

919v, ® 95Gv, (m) (9192)*Gv,.

Remark 3.41. In [271], a connection on a multiplicative gerbe is defined as the same piece
of structure as in Definition 3.40 but with an additional curving on G (not necessarily
preserved by m). However, as we will see in Theorem 3.43 below, the data of a connective

structure already determines a canonical curving.
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Given a cocycle description Aj,j k;, Miyjy, iy of the multiplicative gerbe in a good
semi-simplicial cover of BG, as in (3.94), a connective structure on it is then described
by

Aiy, € QNUL Y, My, € QYUE, ) (3.106)

91717 729

satisfying

Ailjl - Aillﬁ + Aj1k1 =A GT?

?1]'1k1
M, + dTAdl(h)dl(Jé) +mi,;, 00 = daAdo(Q)do(Jé) + dZAd2(i2)d2(j2) + Mj,, (3.107)

122

OZ;«FSQT + dSMdO(iS) + dZMd2(i3) = dTMdl (13) + dgMd3(i3))
where 07 € Q(T,t) is the Maurer-Cartan form on 7.

The following is an existence/classification result for connective structures on multiplica-
tive gerbes (see [271] for similar results, with the difference that an additional curving
on the multiplicative gerbe is considered as part of the structure to classify). For fixed
T, G, let Ext(G, BT) be the space of multiplicative T-gerbes over G up to isomorphism
and Fzt(G, BTy) the space of multiplicative T-gerbes with connective structure over G

up to isomorphism.

Proposition 3.42. A multiplicative gerbe G admits a connective structure if and only
if its de Rham class (3.98) admits a representative (73,72, 71,79) with 71 = 0, 79 = 0.
Moreover, there is an exact sequence

Hl

gr,cont

(G,g" ®t) = Ext(G, BTy) = Ext(G, BT) = Hp, 0ny(G,g" ®1).  (3.108)

In particular, Ext(G, BTy) = Ext(G, BT) for compact G.

Proof. Representatives (73,12, 71,0) of the de Rham class of G are obtained from taking
a connective structure and curving on G and a connection on m; since 7| measures
the failure of the associator a to preserve the connective structure it is clear that the
multiplicative gerbe admits a connective structure if and only if the choices can be made
so that 71 = 0. Now it follows from the cocycle data above, as in the proof of Proposition
3.34, that Ext(G, BTy) = H3(BG., C5° — Q}), for C2 — Q! the complex of sheaves on
BG, of smooth T-valued functions and smooth t-valued 1-forms, respectively, with the
map f — f*07 between them. Then the above sequence follows from the exact sequence
of complexes 0 — (0 — Qf) = (C¥ — Q) — (C — 0) — 0 and Theorem 2.13. O

Recall from Example 3.39 the construction of a multiplicative T-gerbe over G from the
data of an Ad-invariant symmetric bilinear form (-, ) : g ® g — t. By Proposition 3.42,

it admits a connective structure, as it was first proven by Waldorf in [271]. We recap
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this in Theorem 3.43 below, along with a converse to this result which seems to be new.
From now on we write 0%, 6% € Q'(G, g) for the left- and right-invariant Maurer-Cartan
forms on G, respectively. We recall the notion of enhanced curving on a gerbe that was
defined in Section 3.2.1 and we write H*(BG,,t) —% H*(BG,,T) for the map induced
by exp:t—T.

Theorem 3.43. Let G, T be Lie groups with T abelian and connected. Given an Ad-

invariant symmetric bilinear form (-,-) : g ® g — t, the differential forms
1
o= 6<9L AL AOE)) € Q3(GL 1), vi=—(gi0" A g30T) € Q*(G? 1) (3.109)

define a class [, —v,0,0] € H*(BG,t). If exp([u, —v,0,0]) € H*(BGs,T) vanishes then
there is a multiplicative T-gerbe with connective structure (Gy, mv,«) over G whose de
Rham class (3.98) is ¢(G) = [u, —1,0,0]. Furthermore, such (Gy, mvy,a) is unique up

to tensor product with flat multiplicative gerbes.

Conversely, a multiplicative T-gerbe with connective structure (Gy, mv, ) over G has a
unique enhanced curving @ = (O h) such that the curvature F € T(T*G?@T*G?®t)
of V. with respect to @1 is determined by h € T(S?T*G ®t) as

F = 2h1(g710" @ g36™), (3.110)

where hy € S%g* @ t is h evaluated at 1 € G. Its curvature is thi (6% A [0F A OF]). In

other words, (Gyv, mv,«) determines the following data.

1. An Ad-invariant symmetric bilinear form hy = (-,-) : g® g — t such that, for p, v
defined as in (3.109), exp([u, —v,0,0]) € H* (BG4, T) vanishes.

2. A curving ©F on Gy with curvature p and such that V,, has curvature v with

respect to 1it.

We call ©L¢" the Maurer-Cartan enhanced curving on Gy and we call OL the Maurer-
Cartan curving on Gy. If T is connected, then both comstructions are inverse to each

other up to tensor product with flat multiplicative gerbes.

Proof. The first part, which is due to Waldorf [271], follows from Example 3.39 and
Proposition 3.42. For the second part, we note first that the equivalence between both de-

scriptions of the data determined by (Gv, my, «) follow from taking the skew-symmetric
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and symmetric part of (3.110). Then we consider the following exact triangle in the de-

rived category of sheaves of abelian groups over BG,.

o0 N N
CT 7 0 7

[

1 d 2
Qt Qt,dfcl ’

where Qf d—c 1s the sheaf of closed t-valued two-forms. This yields the sequence
HY(BG., Q%4 o) — H*(BG,T) — Ext(G, BTy) — H*(BG., 0 4_q) — H'(BG,T).

Consider now the exact sequence 0 — Qf decl 0? A Q} — 0 and apply Theorem 2.13
to obtain H'(BG,, Q,Ed_cl) =0 and

H*(BGe, 0y o) = H*(BGa, Q) = HY, .oni(G, S%g" @ 1); (3.111)
hence,

0 — H*(BG,T) — Ext(G, BTy) — H°

gr,cont

(G,8%g* @t) - HY(BG,T).  (3.112)

The theorem follows from chasing how the maps in this sequence are defined. From the
triangle above it is clear that the map Ext(G, BTy) — H?(BG,, ?) sends a multiplica-
tive gerbe with connective structure (Gy,my,a) to the class of the curvature 2-form
—79 € Q2(G2,t) of V,,, with respect to any choice of curving on Gy (it satisfies 75 = 0
as «a preserves the connection on m). By part (2) of Lemma 2.14 this determines an
Ad-invariant symmetric bilinear form (-,-) : g ® g — t, characterized by the condition

that the curving on Gy can be chosen so that 75 = v. Let ©F be one such curving.

The curvature of ©F is some H € Q3(G,t) with §H = dv; since u satisfies this, we
obtain H = u + h with b = 0, but we see from Theorem 2.13 and Remark 2.10 that
HY(BG,,}) = ker(6 : Q3(G,t) — Q3(G?t)) = 0 and so H = p. Then take O
to be given by ©F and the symmetric tensor h = —%<0L ® 6%); this enhanced curving
satisfies the condition above. It is moreover unique with such property, as any other
enhanced curving differs from this one by b € Q%(G,t) and b’ € I'(S?T*G ® t) but
then the curvature condition imposes h' = (8L ® 6L’ for some Ad-invariant (-, )’ and
§b = {(g;0L A g36T); hence, (-,-) = 0 and b = 0 by part (2) of Lemma 2.14 and by
Theorem 2.13, which yields H!(BG,,Q?) = ker(§ : Q2(G,t) — Q%(G?%,t)) = 0. This

concludes the proof of the theorem. ]

Remark 3.44. Given a multiplicative T-gerbe with connective structure over GG described

by cocycle data (3.94), (3.106), one can use formula (2.46) from Lemma 2.14 to compute
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the pairing from Theorem 3.43 (1) as
1 1
(u,v) = 5cl]\4142|(gl,g2)(0 + uge, 1v + 0) + §dMig|(gl,g2)(0 + vg2, g1u + 0), (3.113)

for any choice of (g1, g2) € G? and any choice of i3 € I with (g1, g2) € Ui. Alternatively,
one can use the cocycle equations (3.107) to check directly that this formula gives a well-
defined Ad-invariant, symmetric pairing. Furthermore, one can prove that the Maurer-

Cartan curving is given by the two-forms @Z-Ll € Q2(Ui11,t) defined by

1

L ~1

@nlg(“m Vg) = dAj do(iz)]g(Ugs Vg) + §dMizl(g*1,g)(0 +ug, vy + vg)
) (3.114)

+ 5 M) (g=1g) (ug "+ 11g, 0+ vg),

as it follows from similar computations to those in the proof of Lemma 2.14 that they
satisfy the required properties. Here is € I is any choice of index such that (g7!, g) € Ui22
and by u;l we mean dinvg(ug) for inv: G = G, g — g~ '. In particular, these explicit
computations yield another proof of the existence of (-, -) and © in Theorem 3.43 which
is also valid when T is not connected. Note also that we can add the two formulas to
obtain a formula for @%€n:

L,en _
Ol (g, vg) = dAj 4o (in)g(Ug, Vg) + dMiy) (g1 gy (g Y b g, 04 vy,), (3.115)

Corollary 3.45. Let G, T be Lie groups with G compact and T abelian. Any multi-
plicative T-gerbe (G, m,a) over G determines an Ad-invariant symmetric bilinear form
(-,") 1 g®g — t, a connective structure (V,Vy,) on (G, m, ) well-defined up to isomor-
phism and a curving ©F on Gy with curvature p and such that V,, has curvature v,

where i, v are as in (3.109).

Proof. Straightforward from Proposition 3.42 and Theorem 3.43. O

Example 3.46. Let 7 be the multiplicative V; /Aj-gerbe over V;/A( constructed from a
bilinear form (-, ) : Ag®Ag — A1 as in Example 3.38 and write (-, ) = (-, -)sy+ (-, -) sk for
its decomposition in symmetric and skew-symmetric forms. The connection 8 described
in Example 3.38 is a connective structure on 7. Its corresponding pairing by Theorem
3.43 is (-, -)sy, while the Maurer-Cartan curving is © = 3(dv A dv)s, € Q*(Vp, V1); thus,

the Maurer-Cartan enhanced curving is 9" = 1(dv ® dv).

Example 3.47. For the multiplicative U(1)-gerbe String(G) over a compact simple Lie
group G from Example 3.37, it follows by construction and by Theorem 3.43 that there
is a connective structure on it inducing as pairing the multiple of the Killing form such
that the corresponding [u] € H3(G,Z) = Z is a generator of H3(G,7Z). [195] provides
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an explicit description of cocycle data for a connective structure and a curving on the
gerbe String(G) — G with curvature p (without a connection on m, as there is no known

explicit description of m itself).

3.2.4 Connective structures as Maurer-Cartan forms and as prequan-
tizations of BG

The main result from [238] states that, for Lie groups G, T' with T abelian, the clas-
sification of multiplicative T-gerbes over G coincides with the classification of central
extensions of G by BT. To state this result we recall from section 3.1.2 that a Lie
2-group & determines topological groups G, T with T abelian such that & fits in an

extension of topological 2-groups of the form
1-BT—-6—-5G—1, (3.116)

as well as a continuous action > of G on T'. We say & is a central extension of G by T

if > is trivial. We recall here the proof of the main result from [238].

Theorem 3.48 ([238]). Let G, T be Lie groups with T abelian. There is an equivalence
of bicategories between the bicategory of central extensions of G by BT as Lie 2-groups

and the bicategory of multiplicative T'-gerbes over G.

Proof. Given a multiplicative T-gerbe over G, we describe it with cocycle data A;, j,1,,
Miyjs, iy (3.94), assuming for simplicity that A; j %, is normalized (i.e., it equals 1
whenever there are two coinciding indices). Then we construct the Lie groupoid & as in
Example 3.6; i.e. welet &g := L er, Ul-ll, &1 = Ui jien Ul-llj1 x T, where (i1, j1,9,t) € &1

is seen as an arrow (i1,9) — (j1,9) and composition is defined as

(J1, k1, 9,t2) 0 (i1, 1, 9, t1) := (i1, k1, g, t1taNiyji ks (9)); (3.117)

the cocycle condition for A; ; x, ensures that this is associative. Then the anafunctor

m:® x & — & is defined by the total space

M = {(i]i?i%7i]i27i27917927t) S If X Z—2 X G2 X T|
. . ) : (3.118)
g1 € UZ}, 92 € Uﬁv 9192 € UZ}Q, (91,92) € U}/ ~,

where the equivalence relation is (i1,4%,12, 42, g1, 92,t) ~ (i1,42,412, jo, 91, go, ') for

. -1 -1 -1
thi=t- )\i%dg(ig)dg(jz)(gl) ' )‘ﬁdo(ig)do(p)@?) TAL2dy (1) (72) (9192) - M5, (915 92)- - (3.119)
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The cocycle condition for m,,;, ensures that this is indeed an equivalence relation. The
anchor maps of the anafunctor are

770([2%’Z%71%277’27915927t]) = ((Z%agl)7 (15792))’ (3 120)

7'&'1([2'%, ngi%% i27glag27t]) = (i%279192)

and the actions are

PO(((i%,j%,gl,tl),(i%,j%,gz,t2))7 [i%,i%,i?,ig,gl,gg,t])
- []117;7%71%27 i27917927t titg - A’L%]%dQ(’LQ)( ) )\’L%]%do(m)(gQ)]
(3.121)

pl([ziﬂ Z%? 2}27 i2a 91,92, t] (j1127 Z}Qa 9192, 2(:12))
(3.122)

[Z%all,]l ,ZQ,Ql,QQ,t t12 >\12]12d1( (9192)]

i2)

The cocycle condition for m;,;, ensures that these are well-defined. The transformation
« is defined as follows. First, the total spaces of the anafunctors F' := mo (m x id) and

F':=mo (id x m) are

1 2.3 12 123 .12 2,3 5 2 3
= {(2177’177’1721 ) U1 /LQ 712 » 91,92, 93, )6‘[1 XIZ XG ><1—Y|

g1 € Uil’ g2 € Ul-z, g3 € Ui3, g192 € Ui112, (3.123)
1 1 1 1

919293 € Ujzs, (91, 92) € Uilé,% (9192, 93) € U%zs}/ ~,

/ 1 .23 .23 123 ;2,3 1,23 5. 72 3
Fro={(ig, 41,07, 17,057,157, 91, 92, 93, ) € 1Y x I3 x G° < T'|

g1 € Ui%, g2 € Ui§7 g3 € Uil;;,, 9293 € Uilfa, (3.124)

919293 € Ul'l%23a (92,93) € Uilgs, (91, 9293) € Uézs}/ ~s

where the equivalence relations are

(12312 123 1,2

-1 .2 123
11,%1,21,%1 57 Z2 aZQ 791792793) ) (

.12,3 /
zlazlazlajl )Zl 7]2 a]2 7917927937t)

1 -1
=t M@ ) Nt ) Nao i 99

2
)\z}le (i%)d, (j%’2)(9192> ‘A 124, (12 3)d2(j%2,3)(9192) A 1234y (3% 3)d1(j%2’3)(919293)
A, 125124, (Zl 2)(9192) A %; 12, (i1 12 3)(9192) : mig,leQl,z (91>92) 'mg%,sjéz,:‘s (9192793)'

(3.125)
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and

1 .2 .3 .23 .123 .2,3 .1,23 1 -2 -3 23 123 2,3 1,23 /
(2171172177’1 211 5l9 519 7g17927g37t)N(thlazlajl s 5 J2 5o 7917927937t)

r_ 1. y1 , B ‘ -1
b=t Az‘%dxi;’%)dxy&’%)(91) Ai%dz@é”)dz(ﬁ’d)(g?) Az‘%do<i§‘”>do<j§‘”>(93)

—1
iz, (29 (72%)(9298) " Migag 12340 1,20, (9208) - Agpaag (31294, (j129) (919293)

) 0lJ2
Aos . 2,3 AL . moL . mTia .
23523, (i2 )(9293) i%gj%;gdo(ié,Qd)(gQgS) 2323 (92793) i128;1,23 (9179293)

(3.126)

The anchors and actions are defined similarly as in (3.121), (3.122). Then we define a
map o : F' — F' by

[(Ziv i%? Z{fv Z}Q? ii23,d3(i3), dl(i?))a 91,92, 93, t)]
= [(Z%a Z%a Z?? Z-%?)’ i%237 dO(ifﬂ)a dZ(i3)7 91, 92, 93, taig (917 92, 93))]’

(3.127)

where i3 € I3 is any choice of index such that (g1, g2, 93) € I3. The simplicial identities
for the index sets of the simplicial cover, together with the cocycle equations for o,
imply that « is a well-defined transformation of anafunctors satisfying the pentagon
identity. The unit and the unitors can be constructed similarly, from the canonical data

of Remark 3.33. This construction can be enhanced to an equivalence of bicategories. [J

Remark 3.49. In the proof of Theorem 3.48 we have presented all the explicit compu-
tations for completeness, but a more straightforward way to prove this is by noting the

following observations that we have used in the proof of Theorem 3.48.

1. A gerbe has an associated Lie groupoid as in Example 3.6.

2. An isomorphism of gerbes determines an anafunctor between the corresponding

Lie groupoids.

3. A 2-isomorphism of gerbes determines a transformation between the corresponding

anafunctors.

Then it is clear that multiplicative gerbes as in Definition 3.31 are equivalent to Lie

2-groups as in Definition 3.9.

Let & be the Lie 2-group corresponding to a multiplicative T-gerbe G — G by Theorem
3.48. From the description of &y and &; in the proof, it is easy to see that its Lie 2-
algebra is the 2-step complex of vector spaces t 9 g. At least when G is compact, simple
and simply connected, and G is the String(G) group from Example 3.37, it is customary
to regard R 9 g as equipped with the L.-structure defined by the Lie bracket of g
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and the 3-bracket {vi,va,v3} = (vi,[ve, v3]), where (-,-) is the pairing associated to
String(G) by Corollary 3.45. We proceed to derive this structure in a natural way using

the notion of Maurer-Cartan forms from Section 3.1.4.

Proposition 3.50. Let & be the Lie 2-group corresponding to a multiplicative T -gerbe

G — G by Theorem 3.48. Then, a connective structure on G determines

0° c QY(B&1,g), ' c QY(B6y, 1), 6°c Q*(BG,1) (3.128)
such that

0 =d30° — d;0° + Ad(da(-))d36°, (3.129)
0=4d6", (3.130)
de° = —%[00 A 09, (3.131)

1
de® = 6<9° A 160 A 6°), (3.132)
dot — 600 = (d36° A Ad(dy(-))d6°). (3.133)

In particular, (6°,0%) is a right-invariant Maurer-Cartan form on & for the action of &

ont > g given by the adjoint action of G on g and the trivial action on t.

Proof. In this case m : B&; — G is the surjective submersion on which the gerbe G is
described and B®3 is the total space of the isomorphism of gerbes m : ¢7G ® ¢g5G —
(9192)*G. Then taking #° := 7*6%, ' the connection 1-form of the connection on m and

O the Maurer-Cartan curving yields the equations above by Theorem 3.43. O

Proposition 3.51. Let & be the Lie 2-group corresponding to a multiplicative T-gerbe
G — G by Theorem 3.48. Then, a connective structure on G determines a differentiation
of & in the sense of Definition 3.24, where t 9 g is equipped with the cubic Lo -structure
defined by

(o1, 3] [v1, v2]q v, V2 € g,
1,02 = 5
0 otherwise
(3.134)
( \ (v1, [v2,v3)) v1, V2, V3 € @,
U1,V2,V37 = )
0 otherwise

where [-,-]q denotes the Lie bracket of g.

Proof. Choose cocycle data A, j ks Miyjs, iy (3.94) for G and use the construction of &

in the proof of Theorem 3.48. Let A;, ;,, M;, be cocycle data for a connective structure
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as in (3.106) and let ©;, be the corresponding Maurer-Cartan curving defined by (3.114).
For v, v1, vz € g and u € t we define XV € T(T®)® and o*, a(v1¥2) € I'(Ag) by

Xv<i1,j1,g,t) = (ilaj17v : g7Ai1j1|g(U . g) . t):
(4,1, 0g, u), (3.135)

a'(i,g) :
a1 (i, g) -

(ivia Oga Gi\g(vl “g,02 - g))

From Definition 2.16 we see that this defines a morphism of L.-algebras gbt[l] — I'(T'®)
if and only if

oa" =0, (3.136)
(X1, Xv2] — X [vva] aa(vlﬂﬂz)’ (3.137)
(XY, a"] =0, (3.138)

alvilv2usl) — xor (a(vz,vs)) _ XUQ(a(UhUS)) 4 X8 (a(v1,v2))

— qlvvvzlos o o (fonesvz) a([vmvs]vvl).

(3.139)

for v, v1, v2, v3 € g and u € t. Now (3.136) and (3.138) follow easily from the definition
of 0 and [, -], while (3.137) is equivalent to dA4;,;, = ©;, — ©;, and (3.139) is equivalent
to (0% A [07 A 6F]) = dO;,, which concludes the proof. O

In Section 3.2.5 we will also show how to use connective structures on multiplicative
gerbes to define an exponential map on their associated Lie 2-groups. There is yet
another interesting construction associated to the choice of a connective structure on
a multiplicative gerbe. Namely, recall from Example 2.35 that, for any Lie group G,
the data of a symmetric, Ad-invariant (possibly not) non-degenerate bilinear form (-, -) :
g ® g — R induces a 2-shifted (pre)symplectic structure w = (i, v) on BG, given by the

differential forms
1
= 6<9L AOE A OF)) € O3(BG1,R), v = (g;i0" A g30") € Q*(BGy,R)  (3.140)

When (-, -) is the pairing associated to a multiplicative U(1)-gerbe with connective struc-
ture over G by Theorem 3.43, and & is the corresponding Lie 2-group from Theorem

3.48, then there is a sequence of simplicial manifolds
B*U(1) — B® & BG (3.141)

(where B2U(1) := B(BU(1))) and equations (3.132) and (3.133) from Proposition 3.50
imply that (6°,601) is a 2-shifted 1-form on B® with total derivative 7*(u,v). In the
language of [231], (B®, 81, O°) is a prequantization of (BG, i1, v). We can also see (81, 00)

as an example of a 2-shifted (pre)contact structure on B®, in the sense of [39] (the author



Lie 2-groups and Maurer-Cartan forms 101

thanks Miquel Cueca and Chenchang Zhu for this observation). In particular, we can

associate to it the analog of the (pre)symplectic cone of a standard contact structure.

Proposition 3.52. Let & be the Lie 2-group corresponding to a multiplicative U(1)-
gerbe G — G by Theorem 3.48. Then, a connective structure on G determines a 2-shifted

presymplectic structure on B& x R* defined by

éw*wL N[O A O] + di A ©° € OF(B®, x R, R), (3.142)

tm* (g0 A g30%) 4+ dt A 0' € Q2 (BB, x R, R), (3.143)

where t is the coordinate in R*, m : B&,, — BG,, is the projection map and (-,-) is the
pairing associated to the connective structure by Theorem 3.43. This is in fact 2-shifted

symplectic if and only if (-,-) is non-degenerate.

Proof. That this is a 2-shifted presymplectic structure is straightforward by Proposition
3.50, since ¢ does not act on the ¢ coordinate. The tangent complex of B& x R* is the

following chain complex of vector bundles over R*
0 0
R[2] = g[l] = R; (3.144)

the cotangent complex is
R* % g*[-1] % R*[-2]. (3.145)

Then t7*(gi0% A g3607) + dt A 6! induces the map g — g given at each t € R* by
v — t(v,-) and the canonical isomorphisms R — R*. Thus, this structure is 2-shifted

symplectic precisely when (-, ) is non-degenerate. O

3.2.5 The exponential map

Let G be a multiplicative T-gerbe over a Lie group G and let exp*G — g be the pull-
back gerbe by the exponential map exp : ¢ — G. The multiplicative structure on G,
and the fact that the exponential map is Ad-equivariant, implies that exp*G — g is an
equivariant gerbe in the sense of [199]. Since g is contractible, it is clear that exp*G — g

is trivial as a gerbe, but one might wonder whether it is trivial as an equivariant gerbe.

Definition 3.53. Let G be a multiplicative T-gerbe over G and let € be a trivialization

of exp*G — g as a gerbe, where exp : g — G is the exponential map. An equivariant
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structure on € is a 2-isomorphism af of gerbes over G X g

(Trivial) v 5 exp(v)*g
(Ad(g)w*el ot [g7in , (3.146)
(exp(Ad(9)v))*G <7~ 9" @ exp(v)*'G @ (971)*G

where Ad := (gexp(v),g~1)*m o (g,exp(v))*m and inv is defined by (3.93), such that

over G X G X g we have

exp(Ad(g192)v)"G (Ad(grgz)u)"e (T'rivial) Ve

€

(g192,v)"

(9192,v)* Ad (9192)"inv

(9192)"G ® exp(v)*G ® (95 '97')*G

(Ad(g1g2)v)*e v*e

exp(Ad(gi192)v)*G ——————— (Trivial) exp(v)*G
(gl,Ad(gg)y)*AdT % (Ad(gg)v)*eJr (g2,0)" e Jgginv

916 @ exp(Ad(g2)v)*G ® (97 1)*G m exp(Ad(g2)v)*G
1

OéAdﬂ

(9192,v)* Ad o (g1g2)*inv

(gmdﬁg ® exp(v)*G ® (95 1)°G

(3.147)

In (3.147) we write a*? for the following 2-isomorphism of gerbes obtained from the

associator of G.

*

(91,92, exp(v)gy g7 ) o o (go, exp(v)gy ', gy ) o (exp(v), g5, 97 M)

I . o (3.148)
0(92,95 »91 )'a " o(g1,92,95 97 ) cn.

The following is a new result that will allow us to define the exponential map of a
multiplicative gerbe with connective structure and to endow the gauge 2-group of a
principal 2-bundle with a smooth structure. The 1-form (3.149) is crucial for the latter

purpose, as it appears in the transition functions of heterotic Courant algebroids (4.73).

Theorem 3.54. Let G be a multiplicative T-gerbe over G. Then,

1. G admits a connective structure if and only if every trivialization ¢ of exp*G — g

admits an equivariant structure.
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2. If (-,-) : g®g — t corresponds to a connective structure on G, then any trivialization
€ can be equipped with a connection such that there exists an equivariant structure

a® whose covariant derivative is n° € QY (G x g,t) defined by
Mgy (Vg +0) = 2(v, g™ g). (3.149)

Proof. Assume first that e is a trivialization of exp*G with equivariant structure af.
Recall from Proposition 3.42 that by choosing any connections on G and m we obtain
7 € Q1(G3, 1) such that 67 = 0, and that a connective structure on G exists if and only
if there is 0 € Q'(G?,t) with §o = 7. By Bott’s Theorem 2.13, we may assume without
loss of generality that

7-(917927573)(vgl + Vg, + U93) = H(927g3a91_17)gl) (3.150)

for k : G x G x g — t, linear on g, satisfying

K(g1, 92,v) — K(g1, 9293, v) + K(g192, 93, v) — K(g2, g3, 97 ‘v ) = O. (3.151)

The existence of o as above is then equivalent to the existence of y : G x g — t with

k(g1, 92,v) = x(91,v) — x(g192,v) + x (g2, Ad(g7 " )v). (3.152)

Now choose a connection on € and let n € Q(G x g,t) be the covariant derivative of af.

Then cocycle condition (3.147) implies the following identity of 1-forms over G x G x g

(9192,v) 0 — (g1, Ad(g2)v)"n — (g2, v)"n =
= —(g1, 92, exp(v) gy *g7 1) T + (g2, exp(v)gy ', 97 )T + (exp(v), g5 ', g7 M) T

— (92,95 97" T+ (91,92, 95 "y )T
(3.153)

Evaluating at (g1,92,0) € G x G x g, (0,0,v) € T,,G1 x T,,G x Tpg and using formula
(3.150) for 7 we see that x(g,v) := —1(4-1,0)(0 + v) satisfies (3.152) and so G admits a

connective structure, as we wanted to show.

Conversely, assume that G has a connective structure and let ¢ be any trivialization of
exp*G — g. The two corresponding trivializations of exp(Ad(g)v)*G in diagram (3.146)
differ by a T-bundle P¢ — G x g and a 2-isomorphism «f is equivalent to a section of
P¢. Since any two trivializations of exp*G — g are isomorphic, we can assume without
loss of generality that 0*¢ = 1g. Then it is easy to see that there is a canonical 2-
isomorphism a¢ over G' x {0}, given by the right unitor of G. This defines a section s of

PfGX op which we proceed to extend to a global section on G x g. For this, choose an
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arbitrary connection V¢’ on e. Since inv and Ad are also equipped with connections,
this defines a connection V*? on P¢. We define then s(g,v) € P(g.) to be the parallel
transport at time 1 of s(g,0) € P along the curve 79 : R — G x g, t = (g,tv).
For the corresponding 2-isomorphism af, the cocycle condition (3.147) is equivalent to
a(s(g2,v) @ s(g1, Ad(g2)v)) = s(g1g2,v), where o : Py, ) @ Plg, ad(gsv) = Pgigaw) 19
an isomorphism defined by the associator of G. Since the associator behaves well with
respect to the right unitor, it follows that o preserves the values at v = 0 of the sections.
Since the associator preserves the connective structure of G, it follows that « preserves
the connections on the T-bundles. Hence, it preserves the sections, as they are defined

by parallel transport.

To prove 2, we note first that the covariant derivative of the 2-isomorphism af con-
structed from V&? but measured with respect to an arbitrary connection V47 := V94-¢,

o € QY(g, 1), is precisely
s*VP0 4 (g™ o —vro € QNG x g,1). (3.154)

From the standard formula for parallel transport and Stokes theorem one can deduce
that
SV (o0 (g + 1) = ) FPY 0+ 0,0y +t - v)dt, (3.155)

where F'0 € O2(G x g, t) is the curvature of V0. If <0 € Q2(g,t) is the curvature of

the trivialization e with connection V¢, then
FPO = (gug™1)*FO —v* FO — (g*0F Nexp(v)*0F) — ((gexp(v)) 0L A (g7 1)*0F). (3.156)

One can then check that the following choice of o yields the desired covariant derivative.

1
oo() = — /0 tFES (v, 0)dt. (3.157)

O]

Now let & be the Lie 2-group corresponding to a multiplicative T-gerbe G — G by
Theorem 3.48. Then it follows from Remarks 3.33 and 3.49 that & has a coherent
inversor (Definition 3.19). We also consider the adjoint action of & on t A g given by

the adjoint action of G on g and the trivial action on t.

Corollary 3.55. Let & be the Lie 2-group corresponding to a multiplicative T'-gerbe
G — G by Theorem 3.48. Then, a connective structure on G determines an exponential
map, in the sense of Definition 3.24, for & equipped with the coherent inversor and the

adjoint action above.



Lie 2-groups and Maurer-Cartan forms 105

Proof. Choose a trivialization € of exp*G — g. If G is given by cocycle data A; jx,,

Migje, iy (3.94), then € is given by functions €, : exp*U;,j, — T, where
exp*Us 5, == {v € g|exp(v) € Ui ; }, (3.158)

such that €;,j, €k, = €1k, Aiyjik (€xp(v)). This determines an anafunctor exp : g//t — &

with total space

E:={(i1,j1,v,t) e 1 x [ x g x T | exp(v) € Uj,; ~
MG ) 1 1X9 | exp(v) it/ (3.159)

(Il‘hjla v, t) ~ (lea j17 v, t- )\2/111]1 (6{1}])(1)))62'/12'1 (v)il)'

The anchor maps are my([i1,j1,v,t]) = v and m([i1, j1,v,t]) = (j1,exp(v)), while the

action maps are

po(u, [i1, j1,v,t]) = [i1, j1,v, texp(u)],
el D=l (w) (3.160)

pl([ilajla th]v (jla kla eajp(v),t’)) = [ib kla th : t/ ' )\i1j1k1 (exp(v”

Since the exponential maps of G and T are local diffeomorphisms, it follows that condi-
tions 2a and 2b from Definition 3.24 are satisfied for the anafunctor exp. Then Remark
3.49 implies that an equivariant structure on € in the sense of Definition 3.53 determines
an equivariant structure on exp in the sense of Definition 3.24. Hence, the result follows
from Theorem 3.54. 0

3.3 Strict Lie 2-groups

3.3.1 Lie crossed modules and adjustments

Definition 3.56 ([19, 55]). A Lie 2-group (&, m,«) is strict if m : & x & — & is a
smooth functor, the quasi-inverse of p; x m is also a smooth functor and o« = id. A
strict homomorphism of Lie 2-groups is a strict smooth functor preserving the product
functors. A Lie crossed module is a quadruple (G’, H, f,>), where C;’, H are Lie groups,
f: H — G is a smooth homomorphism and ¢ > h denotes a smooth left action of G on

H by automorphisms that satisfies

flg>h) =gf(h)g™, (3.161)
f(h1) > ha = hihahit, (3.162)

for g € G, h, hi, hy € H. A strict homomorphism of Lie crossed modules (Gl, Hy, f1,>1) —

(Go, Hy, fa,3) is a pair of group homomorphisms G — Gy, Hy — Hy preserving f, b.
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Proposition 3.57 ([19, 55]). The category of strict Lie 2-groups and strict homomor-

phisms is equivalent to the category of Lie crossed modules and strict homomorphisms.

Proof. Given a Lie crossed module (G, H, f,), construct a strict Lie 2-group (&,m) as
follows. As a groupoid, & := H\\G (cf. Example 3.5), with H acting on G on the left
as h-g = f(h)g. The product m : & x & — & is defined on arrows as the semi-direct
product

m((g1, h1), (92, h2)) = (9192, h1 - g1 > ha). (3.163)

The axioms imply that this is a well-defined associative functor. Conversely, given a
strict Lie 2-group (&, m), the since m is strictly associative it follows that it induces Lie
group structures on &y and &, with s, t : & — &g smooth group homomorphisms.
Let G := &g, H := Ker(s:®; — 6g) and f: H — G be the restriction of ¢ : &1 — Go.
Then G acts on H as g>h := m(m(idy, h), idg,-1) making (G, G, f,>). This construction

can be enhanced to an equivalence of categories, see [19]. t

Let (G, H, f,>) be a Lie crossed module and let & be its corresponding Lie 2-group by
Proposition 3.57. We can present its delooping B®, (cf. Section 3.1.2) in terms of the

Lie crossed module structure. It is the simplicial manifold with

B&,, := {({9ij}icjem) 1 Pijk Ficj<keln) € GG x 5G|
Vi<j<keln] gk = f(hijK)gijgik, (3.164)
Vi<j<k<len], higthijr = hiji - i > hjr

and simplicial maps given by sending a non-decreasing function f : [n;] — [n2] to the

function

f*: B&,, - B®,
’ ' (3.165)

({915 Yicjeina)s Lhijk Yicj<kelna) = (L7 Gis Yicjema), 1 Pijh Yicjckelni))s

where

N E OO RAORSIAC) o S hreroire ) < F(G) < f(R)
[ 9i5 = v fThijr = .
1 if f(2) = f(5) 1 otherwise

(3.166)
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The first levels can also be identified with B&{ = é, B&y = G? x H, B&3 = G3 x H3

with face maps

dO(glv 92,
di(g1, 92, f( )9192;
d2(917927 g1,

92, 93, h2,3), (3.167)

(
(f(h1,2)9192, 93, h12,3),
(
(

QU

91, f(h2,3)g293, 123 - b1z - g1 > hy3),

h) =
h) =
)_
do(91, 92, g3, h1,2, h12,3, ha3) =
) =
da2(91, g2, 93, h1,2, h12,3, ha3) =

) =

(

1(91, 92, 93, h1,2, h12,3, ha 3
(
(

d3(g1, 92,93, h1,2, h12,3, h2 3 g1, 92, h12).

For a Lie crossed module (é, H, f,>), we will write g, b for the Lie algebras of G and
H, respectively. It is clear that the Lie 2-algebra of the Lie 2-group & associated
o} (G',H, f,>) is the complex b i) g, where we abuse notation by writing f for the
linearization of f: H — G.

Definition 3.58 ([220]). Let (G, H, f,>) be a crossed module. An adjustment on it is

amap & : G x § — b, linear in §, such that

7(g192,v) = g1 > R(g2,v) — R(g1, f(K(g2,v))) + R(g1, Ad(g2)v), (3.168)
&(f(h),v) =h-veh L. (3.169)

Proposition 3.59. Let & be the Lie 2-group corresponding to a Lie crossed module
(é, H, f,>). Then, an adjustment & : G x § — b defines a left adjoint action of & in the
sense of Definition 3.23 by

-v = Ad(g)v — fr(g,v), geG,veg, (3.170)
= gvu—&(g, fu), geG, ueh, (3.171)

Q@ @

and a right-invariant Maurer-Cartan form, where
0° € QY(G,§), 0' € QY(G? x H, )
are defined by

09 (vg) :=vg9 ™", (3.172)

9(191,5;2,}1) (vgl + Vg, + Uh) = Up e (Uglvg292_lgl_1) >h! + R(gla ’1)9292_1)- (3‘173)



Lie 2-groups and Maurer-Cartan forms 108

Proof. 1t follows from a straightforward computation using axioms (3.168), (3.169) and
the description in (3.167) of the face maps of B®,. O

Remark 3.60. In the setting of Proposition 3.59, we can also define a right adjoint action

by v-§ = §~'-v. In this case, the following 1-forms define a left-invariant Maurer-Cartan
form.

Hg(vg) = g_lvg, (3.174)

001 go.m) (Vor + Vgs +01) = g5 g7 > AT o+ R(gy ' g7 Hug,)- (3.175)

Example 3.61. The categorical tori from Example 3.14 can be described as Lie crossed
modules by letting G := Vp, H := Ay X Vi/A1 and

J(Xo, [v1]) == Ao, (3.176)
uo > (Ao, [u1]) == (Ao, [u1 + (uo, Ao)])- (3.177)
A canonical adjustment is given by k(ug, vg) := —(ug, vo).

Example 3.62. For G a compact, simple, simply connected Lie group, the Lie 2-group
associated to the multiplicative gerbe String(G) from Example 3.37 admits models as an
infinite-dimensional Lie crossed module. The first such model was constructed in [18],

and is equipped with an adjustment in [220]. A simplified model is presented in [180].

3.3.2 Central Lie crossed modules

Definition 3.63 ([206]). A central Lie crossed module is a Lie crossed module (G, H, f,)
such that the induced action of G := G/Im(f) on T := Ker(f) by > is trivial.

If & is the Lie 2-group associated to a central Lie crossed module (é, H, f,>), then & is
a central extension of G by BT in the sense of Section 3.2.4. Thus, if G is a Lie group,
then Theorem 3.48 implies that there is also a model for & as a multiplicative T-gerbe
over G. As discussed in [206], such model can be explicitly presented (with the language

of bundle gerbes, see Section 3.2.1) in terms of the crossed module structure as follows.

First, in order to give a T-gerbe over G we use the surjective submersion G — G and we
define a T-bundle L — G x¢ G by L := G x H, with projection (g, h) — (g, f(h)g) and
T acting on H through the group multiplication; then there is a canonical isomorphism

PioL @ piaL — pisL over G xg G xg G because

pisl = {(979/79",h0’//) eG*xH|g = f(hU:”)g}

oL @pssL = {(9,9, 9", B> h"") € GEx H? | ¢’ = f(h"")g, g" = F(h*)g}/ ~
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1 11

with (h%' h"") ~ (th%',t~1h"") for t € T and so we may define [h%",h""] — B""h%'.

This completes the construction of the bundle gerbe G — G. Now, in order to give an

1
5

isomorphism ¢7G ® ¢5G — (9192)*G, we cover G x G by G x G and give an isomorphism
between the T-bundles over (G x G) xgxa (G x @) that describe the gerbes g¥G ® g5G
and (g192)*G; these are

{(91,92, 91, Gh b1, ho) € G* x H? | g} = f(h1)g1, g5 = f(h2)ga}/ ~,

{(91,92, 0}, gh, h12) € G* x H | g g5 = f(h12)g192},

respectively, with the equivalence relation (hi,hs) ~ (thi,t 'hg) for t € T. The iso-
morphism is then (g1, 92,91, g5, [h1, h2]) — (91,92,91, 95, h1 - g1 > h2). For this to be
well-defined we use that g>t = ¢ and for it to be an isomorphism of gerbes we have to
check that it is compatible over (G x G) Xaxa (G x G) xgxa (G x G) with the gerbe

product; this reduces to proving

/

BB gy (g hY) = By gy s by b gy s by (3.178)

when ¢} = f (h(l)’,) g1, which follows from the axioms. To conclude the construction of a
multiplicative T-gerbe over G, it only remains to give the 2-isomorphism « but in this

case we can simply take the identity, which follows essentially from

h1 g1 b h2 . (gng) > h3 = hl cg1> (hg © g2 l>h3). (3.179)

We proceed to characterize the category of connective structures on this multiplicative

gerbe in terms of the adjustments from Section 3.3.1.
Definition 3.64. Let (G, H, f,>) be a central Lie crossed module and let G := G /Im(f),
T := Ker(f). A strong adjustment on (G, H, f,») is a pair (s, k), where

1. s: b — tis a linear splitting of the inclusion map t — §.

2. k: G x § — tis linear on § and satisfies

K(g192,v) = kg2, Ad(gy H)v) + K(g1,v), (3.180)
k(f(h),v) =s(h™" v h), (3.181)
k(g, f(u)) = s(g7 >u—u). (3.182)

Given two strong adjustments (s1, K1), (82, K2), an isomorphism between them is a linear

map ¢ : g — tsuch that so(u)—s1(u) = ¢f(u) and ka(g,v) —k1(g,v) = ¢(Ad(g~ v —0).
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Remark 3.65. Given a strong adjustment (s, k) in a central Lie crossed module (G’, H, f>),
then we may obtain an adjustment & in the sense of Definition 3.58 as follows. Consider

the exact sequence of Lie algebras
0ot=hLghgoo (3.183)
and the induced short exact sequences

0= t—=b L Im(f) = o, (3.184)
0—Im(f) =>g>g—0. (3.185)

Choose a linear splitting [ : g — g of (3.185) and note that there is a unique linear map
r: g — b such that

0tEhlgdgeno. (3.186)

is exact. Then one can easily check that &(g,v) := k(g% v) + r(Ad(g~ )v — v) is an
adjustment. In fact, any adjustment % such that #(g, f(u)) = ¢~ ' >u —u and such that
there exist splittings s, [ of (3.184), (3.185) with rf&(g,v) = r(Ad(¢g~')v — v) arises
from a strong adjustment. All the explicit adjustments in [166] and [220] satisfy these

conditions.

Proposition 3.66. Let (é, H, f,>) be a central Lie crossed module such that G :=
@/Im(f) is a Lie group, and let G be the corresponding multiplicative T -gerbe over G.
Then the category of connective structures on G is equivalent to the category of strong

adjustments on (é, H, f>).

Proof. By unwinding the definitions in this case we see that a connective structure on
G is precisely the data of V € Q'(G x H,t) and 7 € Q'(G x G, t) satisfying the following
relations (here #7 € Q(T,t) is the Maurer-Cartan form on T):

(g, ht)*V — (g, h)*V = t*67,
(9,h)*V + (f(h)g, W)V = (9, h)*V,
(f(h1)gr, f(h2)g2)* T — (g1, 92)"T = (9192, h1g1 > h2)*V — (g1, h1)*V — (g2, h2)*V,

(91,92)"T + (9192,93)"T = (91,9293)" T + (92, 93)"T
(3.187)
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Moreover, two such connective structures (V,7) and (V’,7') are isomorphic whenever

there exists o € Q'(G, ) such that

V' =V =(f(h)g)'oc—go, (3.188)

T =7 =(9192)"0 — gio — g30.
Then let (s, k) be a strong adjustment. We claim that Vfg’h)(vg +wp) = s(g7 >h ),

7'(35;':792)(1)91 +vg,) := (g2, 9] vy, ) defines a connective structure on the multiplicative
gerbe, which boils down to straightforward computations. Similarly, one checks that
if ¢ is an isomorphism (s1, k1) — (S2,K2) then ag(vg) = (gt
(VL rs10h1) — (V52 752:52)  In fact, if o @ (V5 75051) — (V52 75252) i3 an arbitrary

isomorphism, then ¢7(v) := o1(v) is an isomorphism (s, k1) — (s2,k2) and 0 = %7,

vg) is an isomorphism

so we have defined a fully faithful functor from the category of strong adjustments to
the category of connective structures. It is also essentially surjective: since any two
connective structures on a gerbe are always isomorphic, we may restrict our attention to
those (V, 1) such that V = V* for a given splitting s : h — t. Then one can check that
for k(g, v) 1= 7(4-1,1)(040) +7(4-1 (¢~ 'v+0) we have that (s, x) is a strong adjustment
with (V?*,7%) isomorphic to (V*, 7). O

Remark 3.67. Proposition 3.66 restricted to the case of the crossed module (G, T, f,r)
with trivial f and trivial > coincides precisely with the isomorphism H?(BG,, Q) —
H} (G,g" ®t) from Lemma 2.14.

gr,cont

In particular, Proposition 3.66 and Theorem 3.43 imply that a strong adjustment (s, k)
on a central Lie crossed module (é, H, f,«) gives an Ad-invariant pairing (-,-) : gRg — t
and a Maurer-Cartan curving ©F € Q2(G, t), which we can compute using the formulas
in Remark 3.44. For this we write first Oyx : Tgé x g — t for the partial derivative of &

at g € é, whose main properties are

Ok (vg,v) = k(g vy, Ad(g~ V),
O k(Ad(g~ M, Ad(g~ M) = d1k(u,v) — k(g, [u,v]), (3.189)
Ohk(f(u),v) =s(v>u)=—01k(v, f(u)).

Here we are writing v u := :Oexp(tv) >u, v € g, u € h for the Lie algebra action of

d
dt|t
u)

g on b, which satisfies f(v>wu) = [v, f(u)] and f(u1)>ug = [u1,ug]. Then,

(1, v) = %(am(u, 0) + Our(v, ) (3.190)

1 _ _ _ _
@g(ug,vg) = —5(81/4(;] 1ug,g 1vg) — O1k(g lvg,g 1ug)). (3.191)
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Although 0;k is in principle defined over g ® g, (3.190) is well-defined over g ® g by
(3.189). Note that (-,-) and —©% are the symmetric and skew-symmetric parts of the
tensor Jik. In terms of the Maurer-Cartan enhanced curving we obtain the simple
formula

05" (ug, vg) = ~O1r (g™ ug, g™ vg) = ~0yri(ug, vgg™"). (3.192)

3.3.3 The exponential map of a central Lie crossed module

The proof of Theorem 3.54 can be made more explicit for a multiplicative gerbe arising

from a central Lie crossed module.

Theorem 3.68. Let (G, H, f,>) be a central Lie crossed module such that G := G /Im(f)
is a Lie group, let (s,k) be a strong adjustment on it, and let | : g — g be a section of

714 — g. Then there exists a function x : G x g — H satisfying

X(9192,v) = g5 > x(91,v) - x(g2, Ad(g; " )v), (3.193)
x(f(h),v) = ht. exp(l(v)) > h, (3.194)
Fx(g,v) = exp(Ad(g~")l(v))exp(lAd(g~")v)) ", (3.195)

forg, g1, 92 € G, h€ H, v €g. There also exists o € Q(g,t) such that
K (g, emp*@lL(v)(l(iz))) — k(g exp(l(v)g, U g vg)) + 2(vgg ™", v)
d : _
=5 ((g_leazp(—l(v))g) > %t:oX(exp(tl(vgg_l))g’ v+ t0)x(g,v) 1) (3.196)
+0ad(g-1y0 (Ad(g™)0 = [97 vy, Ad(g™1)0])) — 00(0)

for g € G, vg € Tgé, v, U € g, and where (-,-) is defined by (3.190).

Proof. For g € G and v € g define the curve

Vg0 : [0,00) -G Xgé

(3.197)
t— (exp(tl(g~ vg)), exp(tg1(v)g)) -

Then let 75, : [0,00) — H be defined by parallel transport of v, , with respect to the
connection V* from the proof of Proposition 3.66 on the T-bundle G x H — G x¢ G.
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That is, 77, is the unique solution to the following ODE.

s(ateapt=titeg > - gale+ i) =0 (3.195)
exp(tg(v)g)exp(tl(g~ vg)) ™" = [} (1), (3.199)
1 =15.,(0). (3.200)

Then we claim that x(g,v) = v;,(1) - exp(k(g,l(v))) satisfies the desired properties.

This is because

Torgaw() = 92 ' & x(g1,0) - x(g2, Ad(g7 " )tv) - exp(~tr(g192,1(v))), (3.201)
Vi) = b1 - exp(tl(v)) > b - exp(—tr(f(h), 1(v))), (3.202)

as it can be shown by checking that the right-hand sides of (3.201) and (3.202) satisfy
their corresponding ODEs. We proceed to construct o. Using (3.190) and our expression

for x, we see that (3.196) at g = 1, vy = u is equivalent to

ov([u, v]) = K(exp(i(v)),l(u)) — 1k(l(v), I(u))

(3.203)
+s <€Cl?p(—l(7))) > Cik:()’ys:cp(eu),v(l)) :
Define, for u € g and v € g,
huw(t) == K(exp(tl(v)), l(u)),
J (3.204)
Puu(t ) = de e 'Yexp(ez(u)) (t).
Using (3.189) we obtain
T (t) = O1r(1(v), Ad ™" (ep(tl(v)))l(w)), (3.205)

while differentiating the ODE for v, ,, yields the following ODE for py .

s (exp(—tl(v)) > puw) = (3.206)
Ad(exp(tl(v))l(u) — l(u) + ea:p*HR y(#lu, v]) = fpuw(t), (3.207)
0 = puo(0). (3.208)
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Using the fundamental theorem of calculus we rewrite (3.203) as

1 .
ou([u,v]) = /0 hoo(t)dt — 016(L(v), 1(w))
1
+ s (/0 (exp(—tl(v)) > pup(t) — U(v) > exp(—ti(v)) > puﬂ,(t)))

1
= 5 O k(l(v), Ad™ (exp(tl(v))l(u) — 1(u))
1

+ ; O k(l(v), 1(u) — Ad~ (exp(tl(v)))l(u) + exp*@tLl(U) (tl[u,v])),

(3.209)

where in the last step we have used (3.205), (3.206) and (3.189). Thus, if we define o

oo(0) 1= /D our (1(0) cap* 0l (€1(6))) de. (3.210)

then (3.196) is satisfied at ¢ = 1. Using the properties of k, (-,-) and y one can show
that it is now sufficient to prove that (3.196) is also satisified for arbitrary g and vy =0
to conclude the proof. That is, we only need to show that o defined by (3.210) satisfies

Tty (Ad(g™)8) = 0u(0) = i (g, eap 0 (1(5)) — 15)) — 5 (97 ean(~1(v)g > v(1))
(3.211)
where v is defined by

d

V() == 2 Vgwres D7) (3.212)

Differentiating the ODE for 79, and using (3.189) and d6 = —1[0 A 6L, we obtain

s (97 exp(—tl(v))g > (1)) = s[(7;.())(0), (v5.(-)=(8)].0)

(3.213)
—0ur(Ad(g™)eap"0yy(,) (H(D)), Ad(g™Hi(v) = I(Ad(g™")v))
fr(t) =
Ad(g_l)exp*eg(v) (tl(0)) — Ad(g_lexp(tl(v))g)emp*@ﬁ(Ad(g,l)v) (t1(Ad(g~ 1)),
(3.214)

where (75 (+))«(?) and (v, .(-))«(0:) stand for the vector fields on H obtained through
push-forward by ~; .(-) : g X [0,00) — H of v € I'(T'g) and 8; € I'(T[0,00)). We can
rewrite this ODE by noting that, for u;, us € b, we have s[uy, ua] = s[rf(u1),rf(u2)] =
A1k (f(ur), f(uz)) and so

s (g_leazp(—tl(v))g > l)(t)) =

(3.215)
—81ﬁ(exp*9£(Ad(g_1v) (t(Ad(g~ 1)), Ad(g~")I(v) — I(Ad(g~)v)).
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Then we use the fundamental theorem of calculus to write

(o7 ean(-1teg5 (1) )
1
s (g_lemp(—tl(v))g >(t) — g_ll(v)g > g_leznp(tl(v))_lg > I/(t)) dt

1
—015(exp* 0/ ag(g-1y0) (L (Ad(g™")D)), Ad(g™)I(v) — I(Ad(g~")v))dt

|

|
1

+ [ untidlg i), Ad(g ey (10) = €0 (LA™ D)
1

_ /0 DU A~ Y0), —eap™ 05 4y, (HAd(g™ i)t

+ /1 O1k(l(v) exp* 0L (tl(0)))dt — /1 k(g, [l(v) exp Ot (tl(0))])dt
0 ) tl(v) 0 ) ) tl(v) :
(3.216)

Finally, we use the standard formula

1
e:vp*@f(i)):/ Ad(exp(—£&v))ovdE (3.217)
0

to show that

1 I ] 1 1 .
- / [10), ewp 0k (#106))]dt = / / (—t1(v), Ad(exp(—tel(v)))I(6)]dédt
1

— exrp(— v v o
_ /0 [Ad(eap(—t&l(v)))1(0)]Ey dt (3.218)

_ /0 Ad(eap(—tl()I(0) — 1(5)

= exp*QlL(v)(l(i))) = (v),

which concludes the proof. O

Let (G, H,f,>) be a central Lie crossed module such that G := G/Im(f) is a Lie
group, let (s,x) be a strong adjustment on it and let Gy — G be the corresponding
multiplicative gerbe with connective structure by Proposition 3.66. We use the data of
Theorem 3.68 to construct a trivialization € of exp*Gy — g with an equivariant structure

af whose covariant derivative is as in Theorem 3.54.

The gerbe exp*Gy — g is described by covering g with

exp*G = {(gy,v) € G x g | 7(gy) = exp(v)} (3.219)
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and taking the T-bundle

exp*L = {(gv, h,v) € G x G x g |7(gy) = exp(v)} — exp*G x4 exp*G
(9v, hyv) = ((90,0), (f(R)gu, v)),

(3.220)

with the obvious isomorphisms piy L ® p33L — pisL defined as in Section 3.3.2, and the

connection exp*Vi, (vg + vp + ) := s(gy* > h~lvy) from the proof of Proposition

3.66. We trivialize this by defining the following 7T-bundle with connection over exp*G

E:=H x g — exp*G, (h,v) = (f(h)exp(l(v)),v), (3.221)
YV (hoy (0 + ) := s(exp(l(v)) ™" > b vp) + 0y (9),

where o is the 1-form in Theorem 3.68, and the following isomorphism of 7T-bundles

with connection over exp*G x4 exp*G.

PIE® LS piE
(3.222)
(hE,'U) &® (gv,hL,v) — (thE,U).

It is easy to check that this behaves well with respect to pjo L ® p55L — pisL. Then over

G x g we have two trivializations of exp*Gy:

1. One is given simply by pulling-back (E, €) through the projection G x g — g.

2. The other one is given by the T-bundle E44 — G x exp*G

EAY = {(gv, h,9,v) €G x H x G x g|

(3.223)
7(gv) = exp(v), f(h)exp(l(Ad(g)v)) = Ad(g)gv}

with projection map (g, h,g,v) — (g, gy, v), equipped with the connection

V(gohgw) = (exp(l(Ad(g)v)), h)*V® = (g, gu)* 5" = (9gu, g~ ) 7"

(3.224)
+(g,97 )" + (Ad(g)v)*o

K

for 7% as in the proof of Proposition 3.66, and the following isomorphism of

T-bundles with connection over G x¢g G X exp*G Xg exp*G.

eAd
piEM @ LS psEA
(9o: higaa, 9,9',0) @ (9o, hr,v) = (f(he)go W, 9,9 0), (8.225)
h/ = ho g > hL . hEAd . €$p(l(Ad(g)v)) > hal’

where hg € H is any element with ¢’ = f(ho)g.
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Then we define an equivariant structure af on the trivialization e¢ by the following

isomorphism of T-bundles over G x exp*G.

E — pAd
(3.226)

(ga hE,gU,U) — (g’u7g‘> hE . X(gilfu)agav)'

The properties of x in Theorem 3.68 ensure that this is indeed an isomorphism of
trivializations of exp*G, and the property of o means that its covariant derivative is

n € QNG x g,t), 1ig0)(vg +0) = =2(vgg ™1, v).



Chapter 4

Principal 2-bundles and Courant

algebroids

Some fields in string theory and supergravity [38, 81], or more generally in two-dimensional
sigma-models, are described by local potential 2-forms with values in the Lie algebra of
an abelian Lie group T, their symmetries are given by 1-forms, and these have them-
selves ‘higher’ symmetries given by functions to 1. Moreover, these fields may interact
non-trivially with classical gauge fields for a non abelian Lie group GG. Based on obser-
vations from [243], it was proposed in [52] that splittings of certain transitive Courant
algeboids could provide a mathematical model for these fields. This approach, later
expanded in [24, 120, 121], has been very fruitful, yielding models for T-Duality and for
the construction of moduli spaces of solutions to string-theoretic equations both in the

mathematical [84, 125, 127] and the physical [13, 14] literature.

However, using Courant algebroids for modelling these fields yields a problem: the
natural symmetries of these fields that are dictated by physics form a 2-group, and
there is no way to construct such 2-group just from the data of the Courant algebroid.
This is similar to how the gauge group of a G-bundle P cannot be recovered from just
the data of its Atiyah algebroid T'P/G. In this sense, splittings of Courant algebroids
are only a shadow of the actual physical fields, which physics suggests should be seen as
some kind of ‘connections’ on bundles whose fibers are isomorphic to some Lie 2-group
& of the form 1 - BT — & — G — 1. There are now many models for the type of Lie
2-groups that appear in physics, among which we can mention [18, 62, 149, 180, 238, 272].

When G = {*}, mathematical formalizations of this idea can be traced back to [131],
which uses Deligne cohomology as a model, and its reinterpretation in terms of gerbes
from [77, 118, 132]. The next step was to develop an analogous theory for strict Lie

2-groups. For these, the original notion of connection that was proposed in [12, 16, 20]

118
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turned out to be problematic, as it needs to impose a condition called fake flatness
for consistency of higher gauge transformations, and this condition renders the theory

essentially abelian [129)].

Based on the original physics literature, it was noticed in [235, 237] that this problem
can be solved for the String(G) 2-groups, as in this case the notion of connection can be
modified by using the existence of an additional structure in their Lie 2-algebras, which
they call Chern-Simons terms. At around the same time, [273] developed an equivalent
notion of connection on String(G)-bundles, also based on the relevance of Chern-Simons
forms in the physics literature and in the work of Stolz-Teichner [253], but using the
notion of multiplicative gerbes from [78] as its mathematical formalism. Some years later,
[245] related these approaches to the one based on Courant algebroids, generalizing a

well-known relation between gerbes and exact Courant algebroids [152, 243].

It is also clear in [273] that its approach can be extended to define connections on
®-bundles, whenever & is the Lie 2-group corresponding to the multiplicative gerbe
constructed from an Ad-invariant, symmetric bilinear form (-,-) : g®g — t as in Example
3.39. Our Theorem 3.43 characterizes such multiplicative gerbes as precisely those that
admit a connective structure. Similarly, but for a different family of Lie 2-groups, the
notion of an adjustment from [167, 220, 230] (cf. Section 3.3.1) abstracts the work of
[235, 237] to characterize the data that a strict Lie 2-group & must have to yield a
good notion of connection on B-bundles. Recall that in Section 3.3.2 we proved that
connective structures and adjustments are essentially equivalent for central Lie crossed

modules.

In this chapter we present principal 2-bundles and we unify all the above approaches
to the modelling of these fields. In Section 4.1.1 we define principal 2-bundles for mul-
tiplicative gerbes and provide cocycle data for them which is equivalent to but a bit
simpler than others in the literature [98, 235, 245]. In Section 4.1.2 we extend the work
of [273] to define connections on bundles for multiplicative gerbes with connective struc-
ture, and we enrich the definition by allowing for enhanced connections. In Section 4.1.3
we provide cocycle data for gauge transformations and their action on connections, and
in Section 4.1.4 we compare this notion of connection with the one based on adjustments.
In Section 4.2.1 we generalize the work of [245] to construct a Courant algebroid out of
a principal 2-bundle with with structure 2-group determined by a multiplicative gerbe
with connective structure. In Section 4.2.2, we prove an original theorem that lets us
model the gauge 2-group of a principal 2-bundle as an infinite-dimensional Lie 2-group
modelled on the space of sections of its associated Courant algebroid. Finally, we use
this in Section 4.2.3 to prove a slice theorem for the space of connections modulo gauge

on a principal 2-bundle.
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4.1 Principal 2-bundles

4.1.1 Definition and cocycle data
For & a Lie 2-group and ‘B a Lie groupoid, recall from Definition 3.16 the notion of an
action of & on .

Definition 4.1 ([205]). Let & be a Lie 2-group. A principal 2-bundle with structure
2-group & over a manifold M is a Lie groupoid P with a smooth functor 7 : g — M
that is a surjective submersion on objects and an action (p, a”) of & on B such that
l.mtop=mop : Px & —> M,
2. The anafunctor p; x p : P x & — P x 7 P is weakly invertible, where p; denotes

projection of the first factor.

Isomorphisms and 2-isomorphisms of principal 2-bundles are defined similarly as in

Definition 3.9, yielding a bicategory.

If & is the Lie 2-group arising from a multiplicative gerbe as in Theorem 3.48, then the
bicategory of &-bundles admits an equivalent description which has been studied for the
2-groups of the form String(G) (cf. Example 3.37) in [64, 78, 273].

Definition 4.2 ([64, 78, 273]). Let (G, m, ) be a multiplicative T-gerbe over G. A
principal G-bundle (P, P, p,a”) over a manifold M is the following data.

1. A principal G-bundle P — M.

2. A T-gerbe P — P.

3. An isomorphism of T-gerbes p : p*P ® g*G — (pg)*P over P x G.

4. A 2-isomorphism of T-gerbes over P x G x GG

PP © g6 ® 956 P2 (pg1)* P ® 3G

(91.92) ml / l(Pglygz (4.1)

PP ® (9192)*G PP (pg192)*P
79192)
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such that, over P x G x G x G, we have

p(((pg1)g2)g3)
a’ p(((pg1)g2)g3)
aPf
- p((p(9192))93) — - p((pg1)(9293)) —
PP ®9iG ® 959 ® g5G a”ﬂ (Pg19293)*P PP R91G®93G 293G 0 (Pg19293)*P
p(p((9192)93)) (o1 (g20a)
p(p(91(9293)))

(4.2)
Given (P!, P, p' ), i = 1,2, then an isomorphism of G-bundles is the following data.

1. An equivariant map u : P! — P2 covering the identity on M.
2. An isomorphism of T-gerbes ¢ : P! — u*Py over P.

3. A 2-isomorphism of T-gerbes over P! x G

( )P1®g*g ph9)*p; ( 1 )*731

(Pl)*lﬂi / J’p 9) (4.3)

WP GGy (ulp))g) P

such that, over P! x G x G,

#((p191)g92)
P ©((p191)g2)
Pl
g2 — __—#pi(9192)) —
PPl @GR g6 av (u(p1)g192)*P? PP @giGRgG 0 (u(p1)gr192)*P?
~__ / =
(plen)an)e: ©(p1)(9192)
aP2

(p1)(9192)

(4.4)

Given (u, p, a®), (u, ¢, a¥) : (Pl,Pl,pl,ozpl) — (PQ,P2,p2,ap2), then a 2-isomorphism
between them can only exist if u = v’ and is then given by a 2-isomorphism v : ¢ = ¢

such that, over P; X G,

e(p19) o(p10)

a¥ ~
_—welp)g — %

PiP'® g*G wﬂ %(U(pl)g)*Pz piP'® g*g\ad_ﬂ/(u@l)glgﬂ*PQ
\ , =
#'(p1)g Tons

(4.5)
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We often abbreviate all the data (P, P, p, a”) of a G-bundle by (P,P) or P.

Proposition 4.3. Let G be a multiplicative T-gerbe over G with associated Lie 2-group
&. There is a canonical equivalence of bicategories between G-bundles in the sense of
Definition 4.2 and &-bundles in the sense of Definition 4.1.
Proof. Analogous to Theorem 3.48. O
Proposition 4.4. Let {M}qcp be a good open cover of M. Then G-bundles on M are
described by the following cocycle data.

1. gap : Moy — G with gapGve = Gac-

2. 0% trivializations of 9 G.

3. 7% mo (6% @ o) — 0% isomorphisms of trivializations of g:.Gv such that

(CabTbe)0cd
a (CabTbe)Tcd
0 (TbcOcd) Tabe
1 e 7 ()G 1 vwri—— (gua)'G
UabUbd/ = %_/l (46)
~abd oad
Tad

Proof. Given a G-bundle (P, P, p, ), one can obtain this data by taking local sections
5q : My — P and trivializations n, of s;P — M,. Then g,, are defined as the unique

functions such that s,gq., = sp, while o are defined as the composition

* 1

—1 —
18 P R ONG syP @ giG ™ g0
and similarly 7% = (54, gap, gpe)* (@?) L. Conversely, given such data one constructs
P:=U,M, x G/ ~

with (a,z, gap(7)g) ~ (b,7,9) and defines r, : 7~ 1(M,) C P — G to be [a,z,g] — g;
these satisfy gqprp = rq. Then P — P is constructed by gluing the gerbes r:G —

71(M,) with the isomorphisms

*m—

abs ! * * J;l *
g "R gug @G ™ rig

and the 2-isomorphisms (gap, gpe, e) ™' @ 7%¢. d
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Proposition 4.5 ([239, 253|). Let G be a Lie group and let P — M be a G-bundle.
For T a connected abelian Lie group, a multiplicative T-gerbe G — G determines a
characteristic class in ¢(P) € HY(M, Z) such that ¢(P) = 0 if and only if P can be lifted
to a G-bundle, where Z := ker(exp) C t. We call this the Pontryagin class of P with
respect to G.

Proof. Let ¢ € H*(BG, Z) be the class corresponding to G by Proposition 3.34. Letting
f M — BG be any map such that f*EG = P we define ¢(P) := f*c and the result
follows by abstract non-sense since BG is the homotopy fiber of the map BG — K (4, Z)
determined by c. Alternatively, we can define ¢ from cocycle data g, : My, — G for
P as follows. Let o4, be any trivializations of ¢g7,G and let 74, be any isomorphisms of
trivializations m o g4, ® Ope — 0qe. For these 74, the failure of equality 4.6 to hold is
measured by functions lgpeq : Mapeq — 1 which define a Cech cocycle by the pentagon
identity for a. This yields an element in H3(BG,T) = H*(BG, Z) which clearly vanishes
precisely when P lifts to a G-bundle. O

4.1.2 Connections

For G a Lie group and P — M a G-bundle, recall that a connection P — M is a
A € QY(P, g) such that, over P x G,

(pg)*A = Ad(g(-)"")p*A + g*6". (4.7)

By taking vectors tangent to either P or G in this equation, we see that this is equivalent

to the two conditions

Apg(vpg) = gflAp(vp)g, Api(pu) =u, for peP v, €T,P,geG, ueTiG.

For the following lemma, recall the simplicial manifold P//G,e (cf. Example 2.5) and its
corresponding simplicial differential 6 : Q*(P x G™) — Q*(P x G"*1) defined by (2.35).
In low simplicial degrees, we can write this explicitly as follows. For a € Q*(P) and

BeQ(PxQ),

da = (pg)*a—p a e Q°(P x G),

(4.8)
58 = —(p,q1)* B+ (. 9192)* B — (pg1, 92)* B € V(P x G?).
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Lemma 4.6 ([246]). Let P be a G-bundle, let A € Q' (P, g) be a connection on it and
let (-,-) : g ® g — t be Ad-invariant and symmetric. Then the forms

CS(A) = (dAN A) + %(A/\ ANAD € 3(P,Y), R(A) = (5" A A g"0%) € Q2(P x G, 1)

satisfy
dCS(A) = (FANFa), dR(A)—0CS(A)=g"u, O0R(A) =gy, (4.9)

where p, v are defined by (3.109), Fyq := dA—i—%[A/\A] and ¢ 1s the simplicial differential
of the simplicial manifold P//G,.

In particular, when T is connected and (-, -) is the pairing associated to a multiplicative T -
gerbe over G, then the image of the Pontryagin class c(P) € H*(M, Z) from Proposition
4.5 in HY(M, t) is represented in de Rham cohomology by (Fa A Fa) € Q*(M,t).

Proof. Equation (4.9) follows from straightforward computations. First,

dC'S(A) = (dA A dA) +

—~

dAN[ANA])

— (dAAdA) + (dA/\[AAAD—i—%([A/\A]/\dA>+i<[A/\A}/\[A/\A]>

N

= (Fa A Fy).
(4.10)

Then, use (pg)*Fa = Ad(g(-)"1)p*Fa, doft — 1107 A 6F] = 0 and (4.7) to see

—p"CS(A) + (pg)"CS(A) + g'pu =
=W Eanr A+ é@*A AP AN A]) + ((pg)"Fa A (pg)*A)

— %<(pg)*x4 Al(pg)*A A (pg)*Al) + %<9*9L Alg 0" A g 0"])

= (" Fa A (" A Ad(g()(po) A)) + (0" A A [ A A p A))
— BT AT SO A A+ g0 A (7 A+ O] + (570 A [g76 A 676"
= (7 Fa A g0 — (g0 A [ AN DAY - (5 AN 707, 670"
= (AN G 0%) — L AN g0 A g"0")) = dR(A).
(4.11)
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Finally,

(p, 91)"R(A) — (p, 9192)" R(A) + (pg1, 92)" R(A) + (g1, 92)"v =
= (p* A, 10™) — (" A, (9192)"0") + ((pg1)* A, g56™) — (916", g56™) (4.12)
= (p* A, —Ad(g1(-))g50") + (Ad((g1(-)")p*A, g36") = 0.

For the second part, recall from Theorem 3.43 that the image of the class ¢ € H*(BG, Z)
in H*(BG,t) classifying the multiplicative gerbe is represented in simplicial de Rham
cohomology of BG, (cf. Theorem 2.12) by the differential forms (u, v, 0,0). Now note
that the simplicial manifold P//Ge has a canonical map g : P//Ge — BG, whose
geometric realization is a classifying map M — BG for P, which implies by the above
that the image of ¢(P) € H*(M,t) = H*(|P//G,|,t) is represented in simplicial de
Rham cohomology by (¢*u, ¢*1,0,0). Finally, (4.9) states precisely that (¢*u, g*v,0,0)
and (F4 A F4) define the same class in simplicial de Rham cohomology, as they differ
by the total derivative of (CS(A), R(A)). O

Connections on String(G)-principal bundles are defined in [273] as trivializations of
an associated Chern-Simons 2-gerbe with connection. The existence of this 2-gerbe
with connection relies essentially on the fact that String(G) has a canonical enhanced
curving. Hence, Theorem 3.43 allows us to generalize loc. cit. to define connections for
G-bundles, where G is any multiplicative gerbe equipped with a connective structure.
We also expand the definition by introducing enhanced connections. From now on we fix
Gv a multiplicative T-gerbe over G with connective structure and write (-,-) : g®g — t,

OF for the associated pairing and curving from Theorem 3.43.

Definition 4.7. Let (P, P, p,a”) be a principal G-bundle. A connective structure on it
is the following data.

1. A connective structure V on the gerbe P — P.

2. A connection V, on the isomorphism of gerbes p : p*Py ® ¢g*Gy — (pg)*Pv such

that o is a flat 2-isomorphism of gerbes.

We write (P, Py, pv, a”) or simply Py for a principal G-bundle with connective structure,
also called a principal Gy-bundle. An isomorphism of connective structures on a G-
bundle (V1,V,,) = (V2,V,,) is an isomorphism of connective structures on gerbes

¢ : V1 — Va3 such that the following is a commutative diagram of isomorphisms of
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gerbes with connective structures
(P, V1) .
PPy, ® g*Gv RARELT (pg)*Pv,
(id’p*‘ﬁ@id)l l(id(pg)*cb) (4.13)

PPy, @ g* Gy o (rg9)*Pv,.

A connection (resp. enhanced connection) on (P, P, p,aP) is

1. A connective structure (V,V,) on (P, P, p,a”).
2. A G-connection A € QY(P,g) on P.

3. A curving (resp. enhanced curving) B on Py — P such that V, has curvature
—(p* AN g %) € Q*(P x G, 1) (4.14)

(resp. —(p*A®g*0%) € T(T*(Px G)@T*(P x G)®t)) with respect to p* B® g* 0
(resp. p*B ® g*©%") and (pg)*B.

An isomorphism of (enhanced) connections (V1,V,,, A1, B1) = (V2,V,,, A2, By) can
only exist if A; = Ay and is then given by an isomorphism ¢ : (V1,V,,) = (V2,V,,), flat
with respect to By, By. We write A(P) for the groupoid of connections on P and A" (P)
for the groupoid of enhanced connections on P. Whenever a connective structure (V, V)
on P is fixed, we write A(Py) for the set of connections with such connective structure

and A" (Py) for the set of enhanced connections with such connective structure.

Remark 4.8. An enhanced connection can also be defined as a pair ((V,V,, A, B), h) of
a connection (V,V,, A, B) and a symmetric tensor h € I'(S?T*M ® t). This is because
condition 3 in Definition 4.7 states that an h”” € T'(S2T* P®t) is the symmetric part of an
enhanced connection with underlying G-connection A if and only if h := h* + % (A0A) €
['(S?T*P®t) is basic, which can thus be identified with a symmetric tensor on M. Note

the relation with the Kaluza-Klein mechanism [166].

Lemma 4.9. Let (P, Py, pv,a”, A, B) be a principal G-bundle with connection. Then
the curvature H € Q3(P,t) of B as a curving on Py — P is of the form H:=7H —
CS(A) for some H € Q3(M,t), where CS(A) is as in Lemma /.6.

Proof. 1t follows from Theorem 3.43 and the general properties of curvings on gerbes
that the curvature of B is some H € Q3(P,t) with 6H — g*u = —d(p*A A g*0%), so
H := H + CS(A) satisfies §H = 0 by Lemma 4.6, which means that it is a basic 3-form

on P, as we wanted to show. O
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Definition 4.10. The curvature of a connection (V,V,, A, B) on a G-bundle (P, P, p, a”)
is the pair (Fua, H) € Q*(M,ad P) & Q3(M, t), where Fo = dA+ 3[A A A] and H is the
three-form in Lemma 4.9. A G-bundle with connection is flat if F4 =0 and H = 0.

The following proposition shows that the curvature of a connection on a G-bundle satis-
fies the Green-Schwartz anomally cancellation equation [137] which is expected in string
theory from the field strength of a Kalb-Ramond field coupled to an ordinary gauge
field.

Proposition 4.11 (Bianchi Identity [273]). Let (P, Py, pv,a”, A, B) be a principal G-
bundle with connection. Then its curvature (Fa, H) € Q*(M,ad P) @ Q3(M, t) satisfies

daF, =0, (4.15)
dH — (Fa N Fy) =0. (4.16)

Proof. The equation doF4 = 0 is the classical Bianchi identity for connections on G-
bundles. On the other hand, the curvature H € Q3(P,t) of B as a curving on the gerbe
Py — P satisfies dH = 0 and so Lemma 4.6 implies dH — (Fa A Fa) = 0. O

We can give cocycle data for connections that generalizes and simplifies the descriptions

of connections on String(n)-bundles in [98, 237, 245].

Proposition 4.12. Let P — M be a G-bundle described in a good open cover {Mg}q
of M by cocycle data gup, Tab, Tabe aS in Proposition 4.4. Then a connection on P is

described by the following cocycle data.

1. Connections Vg on ogp such that 1. are flat.

2. A, € QY(M,, g) such that
Ay — Ad(g, ) Aa = gi0" (4.17)

3. B, € Q%(M,,t) such that
By — Ba = Fap — (Aa A gip™), (4.18)
where Fgy, is the curvature of Vg, with respect to g;b@L.
Its curvature (F, H) is described locally by

1
F = dAq + 3[4 A A, (4.19)

H = dBy + (dAg A Ag) + = (Aq A [Ag A Ad)). (4.20)

1
3
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An isomorphism of connections (V%,, Aq, Ba) — (V2,, Aq, B2) is described by A, €
QY (Mg, t) such that

V2 4+ A=V + Ay, (4.21)
B2 — B! = dA,. (4.22)

Proof. Assume first that P carries a connection. If s, : M, — P, n, : 1 — s}’P define
the cocycle data for P as in Proposition 4.4, then equipping 7, with any connection
defines a connection on o4, = 1,1 0 (54, gap)*p "' 0 My such that 74 is flat. Then we let
Ay = s; A and we let B, be the curvature of 7n,; it is easy to see that the definition of
connection implies (4.17), (4.18). Conversely, from this data recall that P is constructed
as P := U, M, x G/ ~ with (a,z, gap(x)g) ~ (b, z,g), and that we define r, : 71 (M,) C
P — G to be [a, z, g] — g. Then the connection A is constructed as A1) = rioF +
Ad(r;1)A,, while (Py, B) is obtained by gluing the gerbes with connective structure
and curving

(r:Gv, 120 + By — (A Ari0R)) — 771 (M)
with the isomorphisms

*m—

abs ! T
raGy YT g G @i " G
and the 2-isomorphisms (gap, gpe, 7c)*a~! @ 7%¢. The result for isomorphisms of connec-

tions follows similarly. O

Definition 4.13. A G-bundle P — M admits locally constant cocycle data if it admits a
connective structure such that there is a cocycle description as in Proposition 4.12 with

Jap locally constant and oy, flat.

We introduce some notation for the following proposition. For P — M a G-bundle and
ad P — M its associated g-bundle we write Q'(ad P) x (., Q*(M, 1) for the group with
underlying set Q! (ad P) x Q2(M,t) but with product

((Il, bl) . (CLQ, bz) = (a1 + ag, b1 + by + ((Il A CL2>) (4.23)

i.e., it is a non-trivial central extension of Q!(ad P) by Q?(M,t). Recall also the
groupoids A(P), A" (P) and sets A(Py), A" (Py) introduced in Definition 4.7.

Proposition 4.14. Let (P, P, p,a”) — M be a G-bundle.

1. Connective structures on P always exist and any two are isomorphic; the set of

isomorphisms between them is a torsor for QY (M, t).
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2. For any fized connective structure (V,V,) on P, the set A(Py) is a right torsor
for QY (ad P) X (. O%(M,t). In particular, it is an affine bundle over the space of
G-connections on P with fiber Q?(M, t).

3. For any fized connective structure (V,V,) on P, the set A" (Py) is a right torsor
Jor Q' (ad P) x(..y Q*(M, ) x D(S*T*M ®t). In particular, it is an affine bundle
over the space of G-connections on P with fiber T'(T*M @ T*M ® t).
4. P admits locally constant cocycle data (cf. Definition 4.13) if and only if it admits
a flat connection.
Proof. Let gap, 0ap, Tape be cocycle data for P. Choose any connections Vb 00 0gp and
let Nape € QY (Mgpe, t) be the covariant derivative of 7,.. The cocycle condition for 7y,
implies that 1y is a Cech cocycle of 1-forms, so we may write 7gpe = Mab — Yac + Moe
and then Vg := Vg — Nab 18 & connective structure on P. Note any two connections
Vclbb, Vzb on oy differ by a v4, € Q1 ( My, t); if V}Lb, ng define connective structures

on P then 74, is a Cech cocycle and the set of its trivializations, which is a torsor for

QL(M, 1), is the set of isomorphisms V!, — VZ, proving 1.

Once a connective structure Vg, is chosen, the existence of the 1-forms A, is simply
the classical existence of connections on GG-bundles and then the existence of B, follows

from the fact that Theorem 3.43 and the existence of 7,p. implies
_ * nL * nR
Fab — Fac + Fbc = <gab9 A gbce >, (424)

so —(Ag A gzb9R> + F,p is a cocycle of 2-forms in M for any choice of A. The action of
(a,b) € QY(M,ad P) x .y Q*(M,t) on A(Py) is defined by

(Ag, Ba) - (ag,b) := (Ag + aq, B+ (Ag Nag) +b), (4.25)

where a, € Q' (M,, g) satisfies a;, = Ad(ga_bl)aa and b € Q%(M, t); it is easy to see that
A(Py) is a right torsor for this action, proving 2. Then 3 follows directly from Remark
4.8.

If P admits locally constant cocycle data gup, oap, 79b¢ then letting V3 be a flat connec-
tion on o,y such that 7%¢ is flat we see that A, = 0, B, = 0 is clearly a flat connection.
Conversely, if P has a flat connection then a classical result states that there are lo-
cal sections s, : M, — P such that s} A = 0 with corresponding transition functions
Gab : My, — G locally constant. We obtain the rest of the cocycle data 0%, 7¢ ¥V,
B, by the method above and we see that 0 = H = dB, implies B, = dA, for some Ag;
thus, Vg, + Ay — Ap is a flat connection on o, such that 74, is flat, which concludes the

proof. O
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Remark 4.15. Parts 1 and 2 from Proposition 4.14 can be summarized in a single, more
abstract statement by saying that the groupoid A(P) is a torsor (i.e., a principal 2-bundle
over a point) for the Lie 2-group associated to the crossed module

(' (ad P) x (. Q*(M, t),Q' (M, 1), f,>)

e

with > trivial and f : Q' (M, t) — Q' (ad P) x (. yQ*(M, 1), n — (0,dn). Similarly, A*"(P)

is a torsor for (! (ad P) x ..y Q*(M,t) x D(S*T*M ®+t), Q' (M, t), f,>). These results are
analogous to the classical fact that the space of connections on a G-bundle is a torsor
for Q'(M, adP). This analogy will become even more clear in Section 4.2.1, when we

introduce the Courant algebroid associated to a G-bundle.

4.1.3 The gauge 2-group

Recall from Definition 3.28 that isomorphisms and 2-isomorphisms of gerbes act on con-
nections and their isomorphisms. Similarly, there is an obvious way to define the action
of isomorphisms and 2-isomorphisms of G-bundles on connections and isomorphisms of
connections using Definitions 4.2, 4.7. Our next goal is to generalize Proposition 3.30

to the case of G-bundles, for which we need the following definition.

Definition 4.16. Let Py, PZ be G-bundles with connective structure (i.e., Gy-bundles)
and let (u,,a¥) be an isomorphism P! — P?. A connection on it is a connection on
@ such that o is flat. An isomorphism of G-bundles with a connection is also called
an isomorphism of Gy-bundles. Given two isomorphisms with connection (u, py,a?),
(u, oy, a®") and a 2-isomorphism 1 : (u, @, a®) — (u, ¢/, a%/), then we say 1 is flat if it
is flat as a 2-isomorphism of gerbes. We write Gauge(P) for the automorphism 2-group
(cf. Remark 3.11) of a given G-bundle, and Gauge(Py) for the automorphism 2-group

of a given Gy-bundle, with only flat 2-isomorphisms as arrows.

While the 2-group Gauge(P) acts on the groupoid of all connections A(P), the 2-group
Gauge(Py) acts on the set A(Py) of connections whose connective structure is pre-
scribed. In particular, the arrows of Gauge(Py) act trivially on A(Py), as this is a
set (cf. Remark 3.17). As in Section 3.2.1, we regard Gauge(P), Gauge(Py), A(P)
and A(Py) endowed with Fréchet topologies and we construct the simplicial topologi-
cal spaces A(Pv)//Gauge(Py), A(P)//Gauge(P) by the quotient 2-groupoid construc-
tion from Section 3.1.2. We do this because Theorem 4.26 below will let us treat
A(Pv)//Gauge(Py) as a simplicial manifold modelled in spaces of global sections of
familiar vector bundles, which is crucial for our constructions in Chapter 6 and does not

seem to be so easily done for A(P)//Gauge(P), and because the following proposition
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shows that A(P)//Gauge(P) and A(Pv)//Gauge(Pv) are essentially equivalent. It also
provides a description of Gauge(P) and Gauge(Py) closely related to the description of

automorphisms of string Courant algebroids in [126].

Proposition 4.17. Let P be a G-bundle. Then there is an exact sequence of 2-groups
1 — BT(M) — Gauge(P) — Gauge(P) > H¥(X,Z) — 1, (4.26)

where BT (M) is the 2-group whose objects are T-bundles on M (cf. Section 3.2.1) and
the image of r in H3(X,t) can be represented by choosing a connection A € Q' (P, g) as

u s [OS(u*A) — OS(A) — d(u*A A A)] € H3(X, 1). (4.27)

Let Py be a G-bundle with connective structure. Then there is an exact sequence of
2-groups
1 = BTy (M) — Gauge(Py) — Gauge(P) = H*(X,Z) — 1, (4.28)

where BTy (M) is the 2-group of T-bundles with connection on M and the map r is the
same as in (4.26). Moreover, there is a canonical morphism of simplicial topological
spaces A(Pv)//Gauge(Py) — A(P)//Gauge(P) inducing weak homotopy equivalence

on geometric realizations.

Proof. The existence of an exact sequence
1 — BT(M) — Gauge(P) — Gauge(P) (4.29)

follows directly from Definition 4.2. Now the condition for u € Gauge(P) to lift to
a gauge transformation of P can be described as follows. First, note that the gerbe

L and

w*P®P~! — P is equipped with an equivariant structure [199] given by u*p® p~
u*a?®a” L. Thus it defines a gerbe over P/G = M, which is trivial precisely when u lifts
to Gauge(P). The map r assigns to each u the class in H?(M, Z) of the corresponding
gerbe. It can be represented as in (4.27) because a connection on the G-bundle P
(with A the underlying connection on P) determines a curving on uv*P @ P~! — P
that descends to the quotient and has curvature CS(u*A) — CS(A) — d{(u*A N A). The
exact sequence 4.28 is obtained similarly. Then the equivalence A(P)//Gauge(P) =
A(Py)//Gauge(Py) follows from the exact sequences (4.26), (4.28), Proposition 3.30
and the fact that any two connective structures on P are isomorphic (cf. Proposition

4.14). 0

Remark 4.18. The equivalence of quotient 2-groupoids from Proposition 4.17 is useful

because the action of Gauge(Py) on A(Py) is easier to describe than that of Gauge(P)
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on A(P). In fact, using the presentation A(Py)//Gauge(Py) will let us define geometric

structures on moduli spaces of connections on principal 2-bundles in Chapter 6.

Proposition 4.19. Let 73%, 73% be Gy -bundles over M described on a good open cover
{M,}q by cocycle data (g',, U;by,Tébc), 1 =1, 2. Then an isomorphism with connection
77% — 73% s given by the following data.

1. Functions g : Mg — G with cpag;b = ggbgpb.

2. Trivializations with connections ®, v of ¢;Gv.

3. Flat isomorphisms of trivializations g : mo (P, @0k,) — mo (02, @®y) satisfying

m((®act,)ol,) m((®acly)op,)

m(( 2 (I)b)abc)
/ a (j ~
= 1 —m2(®0l) > (92.00)*G.

\ ¢bc§ /‘

m(o5,(05.®c))

(02,02 ) m((02,02.)%c)
(4.30)
If (Pas Pavs Yab), (©h, <I>:l7v, Yl,) are two isomorphisms Py — P2, then a flat 2-isomorphism
between them can only exist if p, = @), and in that case it is given by flat 2-isomorphisms
o' Py = @ such that

(bagab (Pao'ab
1 - m gab(pb 1 —m O—abcbb gabgab
2 CI)’ 2 (I)/

Composition of isomorphisms of Gy-bundles is defined by

1 (‘P s [112V1 ég) (‘P231q>23v7'¢) )

(% Saq)avﬂﬁ ») =Py - PV Pv»
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where @3 := 2312 <I>13 ‘=mo ((I)QBV ® <I) ) and Y13 is

(023042)*G © (94)*G

o

e3)G @ (i) G @ (95)°G — (923)*G @ (pa2gL,) G ———— (p230i%g)*G
w(lzg {1_1
(02)*G @ (g2,)°G ® (ot - (92082)*G @ (9?)*G === (92,)*G @ (pp%pp?
1 / (92,)7°6 @ (¢7)*G @ (4?)*G.

(4.32)
The associator of this composition is given by (3%, 23, pl2)*a for a sequence of iso-

morphisms of the form

(LP(L 7¢12V’ ;g) (4)0(137¢23V1 2[’?) (‘Pa4’q>34V’ Zg)
Py R\ P R\ P R\ Pe. (4.33)

Proof. Let s' : M, — P 77¢ilv 1 — 5273% define the cocycle data by the procedure
in Proposition 4.12. Then for an isomorphism (u,p,a®) we define ¢, : M, — G by

u(sl) = s2p, and @, v as the composition
na : 52 ¢a (3 v) "
Y il (st T p2 g e ) g (4.34)

Then letting ¥qp := (st, gl) a? @ (82, 0a, gy a2 @ (52, 92, )" (a??) 7! yields the de-

sired cocycle condition. The rest follows similarly. O

Remark 4.20. Since isomorphisms of G-bundles and isomorphisms and 2-isomorphisms
of gerbes can be inverted in a canonical, functorial way, it follows that Gauge(Py) has
a canonical coherent inversor in the sense of Definition 3.19. In terms of the cocycle
description from Proposition 4.19, the inverse of a gauge transformation described by
(Pas Pav, ap) is the gauge transformation described by (¢, 1, &)ay, @ab), where &)ay is

the trivialization with connection of (¢, !)*Gy constructed as

prinv Po,v)!

* —1\* ( a, —1\*
LS 0y @ (9 )" (w2 )Gy (4.35)
(for inv defined as in Remark 3.33) and 1) is constructed in a similar way.

If (g, abv’d’ab) =1, 2, is cocycle data for PL, while (04, Py v, 1ap) is cocycle data
for an isomorphism with connection ®y : Py, — P& and (AL, Bl) € A(PY), then we

)G
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define the connection (®g')*(A, B) € A(PZ) by

A% = Ad(pa) A} — 30", (4.36)
B%:= B, — (p:0" N AL) — F,, (4.37)

where F, € Qz(Ma, t) is the curvature of ®, v with respect to the Maurer-Cartan curv-

ing. One can check that this is well-defined by noting that

1
dF, = 2{pa0" Ap30" A 930"]), (4.38)

Fo— Fy = F3— ((92,)°0" Ngp0™) — Fy + (050" A (g2)70™), (4.39)

as it follows from the existence of .. In particular, note that isomorphisms with

connection that are related by a flat 2-isomorphism act in the same way.

4.1.4 Comparison with adjusted connections

Let (G’, H, f,>) be a Lie crossed module and let & be its corresponding Lie 2-group. As
proven in [205], a B-bundle over a manifold M is described in a cover {M,}, of M by
maps Gap : Map — G’, hape : Mape — H such that

t(habc)gabgbc = gaca (4 40)

hacdhabc = habd!}ab > hbcd~

Now let % be an adjustment on (G, H, f,>) (cf. Definition 3.58). Then [220] provides
the following cocycle data for adjusted connections on it. They are given by Ay, €
Q' (Mg, ), Ay € Q' (M,, §) and B, € Q%(M,, h) satisfying

Ave + 5.1 Db = Nac — Gao > (o0 + Aa > hape - hyk),
Ay — Ad(§," ) Ag = Giy0" — f(Aab),
- - 1 ~
G > Ba— By = —day — Aoy A As] — Ay Ay (4.41)
- 1 - - -
+ & (é;bl, dA, + i[Aa N Ag) + f(Ba)> :

An isomorphism of adjusted connections (Agp, Aq, Ba) — (AL, A!,B') is a collection of
1-forms A\, € Q'(M,,b) such that

Ay — Aoy = No — G > Aas
Al — Ay =—f(), (4.42)

- 1 -
B, = B = dha + 5 e Adal + Ay b Ao
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An important property of adjusted connections that can be derived directly from the

above cocycle data is the following equivariance relation:

- 1, - ~ ~ 1. - ~ 1 ~
dAy+ 5[4y A Ay) = Ad(7,) (dAa +5lAa A Aa]) —f (dAab + 5 lAa A Aap] + Ay > Aab>

(4.43)

If r : g — b is the map corresponding to splittings (s,[) as in (3.186), then an adjusted
connection (Agy, Aq, B,) is said to be fake-flat with respect to r if

r <d£1a + %[Aa A AL] + fBa> =0. (4.44)

Proposition 4.21. Let (é, H, f,>,R) be a central Lie crossed module with an adjustment
R obtained from a strong adjustment (s,k) and l: g — § as in Remark 3.65. Let & be
the corresponding Lie 2-group and let Gy be the corresponding multiplicative gerbe with
connection by Proposition 3.66. There is an equivalence of bicategories between the
bicategory of G-bundles with connection in the sense of Definition 4.7 and the bicategory

of B-bundles with adjusted connections that are fake-flat with respect to r.

Proof. The equivalence between the bicategory of G-bundles and the bicategory of &-
bundles is Proposition 4.3, so we only need to prove that the categories of connections
on a fixed bundle are equivalent in both approaches. For this we use first Proposition
4.12 adapted to the multiplicative gerbe with connective structure from Proposition
3.66. Unwinding the definitions and using the formulas for (-,-) and ©F, this is: o, €
QY ( Mgy, t), Ay € QY (M,, g), By € Q%(M,, t) such that

Oab — Oac + Tpe = —K(Gbe, 5307) — (G52 > hip 07), (4.45a)
Ay = Ad(g;) Aa + g50", (4.45b)

By — By = doay — %(&H(ézb@L A Gay0") + O1k(Aa A G307 — 01k (530" A Ag)),
(4.45¢)

where gqp := 7™(gap) : Mapy — G. An isomorphism of connections (044, Ag, Ba) —
(o!,, Al B!) can only exist if A, = A/, and is then given by \, € Q!(M,,t) such that

ab’

Tub = Tab = Ap — Aa, (4.46)
B! — B, = d),. (4.47)
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Now letting &up := (K(Fabs {(Aq)) +7(Ad(F,, )1(Aa) +35,0)), a quick computation reveals
that

/{(gbcv g;b‘gL) = gl;l > gab - gac + fbc + ?];cl > (Z(Aa) > habc : h;blc) + Tf(gac abceR)v

(4.48)
s(déap) = 01k (G0 N Ad(G,)(Aa)) + K (Gab, d(Aa)), (4.49)
which can be used to see that
Aab = gab + Oap, (450)
A, = 1(A,), (4.51)
Ba = Bo+t éam(l(Aa) AI(Ag)) — %T[Z(Aa) A I(Ag)] (4.52)

is an adjusted connection which is fake-flat with respect to r. It is then clear that this
map can be extended to a fully faithful functor. It is also essentially surjective, since for
(A, A, Ba) a r-fake-flat adjusted connection, one has that o := s(Agp — K(Jabs fla)),
Ay :=7(A,), By := s(Ba 815(A AA,)) is a G-connection that maps under the above
functor to an adjusted connection isomorphic to the original one. An isomorphism is
given by the one-forms A, := 7(A,) (here the fake-flatness condition is used to prove

that this is indeed an isomorphism). O

Proposition 4.21 leads us to the following two observations. Firstly, we recall that the
models for the String(G) 2-groups that are currently known are either explicit models
as infinite-dimensional (adjusted, central) Lie crossed module, or non-explicit models as
finite-dimensional multiplicative gerbe. Our cocycle equations (4.41) combine advan-
tages from both approaches, since they can be defined over a fixed String(G)-principal
bundle defined by transition functions with values in an explicit crossed module, but
model connections in terms of differential forms taking values in the finite dimensional

vector spaces g, t, allowing for a good theory of moduli spaces.

Secondly, we note that in [220] there is no definition of a connective structure on a
bundle for an adjusted crossed module. In fact, in the cocycle equations (4.41), A,y and
A, are coupled, so in principle it is unclear how one could write such definition. Our
Proposition 4.21 decouples the cocycle data, so in particular it gives the first notion of
connective structure on a bundle for an adjusted, central Lie crossed module. This is
particularly important in the holomorphic category, since Theorem 5.26 below states
that supersymmetric equations in heterotic string theory are related to the existence of

holomorphic connective structures, which cannot be defined with the approach in [220].
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4.2 Courant algebroids

4.2.1 The Atiyah algebroid of a principal 2-bundle

The following definition is a mild generalization of the notion of Courant algebroid based
on [52, 140, 227].

Definition 4.22. Let M be a manifold and let V' be a vector space. A V-Courant-
Dorfman algebroid over M is a quadruple (E, (-,-),[-,],dg), where
1. E — M is a smooth real vector bundle,
2. () 1 T(E) @coe(ary T(E) = C*(M, V) is a symmetric C*°(M, R)-bilinear map,
3. []: T(E) @r T'(F) — I'(E) is a R-bilinear map,

4. dp : C>®°(M,V) = I'(E) is a R-linear map

such that, for e, e9, e3 € I'(E), s, t € C°(M,V) and f € C*°(M),

(e1,dp(ea, e3)) = (le1, ea], e3) + (e, [e1, e3]), (4.53)
[e1, 2] + [e2, €1] = dp(er, e2), (4.54)
[e1, [e2, es]] = [[e1, e2], es] + [ea, [e1, €3]], (4.55)

le1, fea] = flex, ea] + m(e1)(f)ez, (4.56)

[dgs,e] =0, (4.57)
(dgs,dgt) =0, (4.58)
de(fs)(p) = de(f - s(p))(p) + f(p) - (dEs)(p), (4.59)

where 7 : T'(E) — T'(TM) is the anchor map defined as m(e)(f)v = (e,dg(fv)) for
any v € V. The coanchor map is the unique vector bundle map 7* : T"M ® V — E
determined by dg : C*°(M,V) — I'(E) as 7*(ds) = dgs for s € C*°(M,V) and d the
exterior derivative. A V-Courant-Dorfman algebroid £ — M is called transitive if 7 is

surjective and it is called ezact if the sequence
0-T*MRVSESTM =0

is exact. We say F is in fact a V-Courant algebroid if the pairing (-, -) is non-degenerate.

Let T be an abelian Lie group and let Ly — M be a T-gerbe with connective structure
over M described on a cover { My}, of M by Aape : Mape — T and oqp, € QH(Myp, t). As
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described in [243], one may construct an exact t-Courant algebroid E., from Ly. As a

vector bundle, Erp = UgeaT M, & (T*M, @ V')/ ~ with the equivalence relation
(av Ug + Sx) ~ (bv Ug + Sx + Luzdo'ab|m) (4'60)

fora, be A, (x,uy+&) € TMuy®T* My, ® V. Thus a section of E., is an object of the
form X + {&,}q with X € T'(TM) and &, € I'(T*M, ® V) satisfying & = &, + txdogp.

The t-Courant structure is given by

(X4 (oY + nada) = 5 (V) +ma(X)), (161)
[X + {fa}aa Y + {na}a] = [X’ Y] + {LXna - LYdéa}aa (4'62)
de(f) =0+ {df }sea- (4.63)

An enhanced curving on Ly described by (Bg,g) with B, € Q%(M,,t) such that B, —
By = dog and g € T(S?T*M ® t) induces a splitting of 7 : Er, — TM, defined by
sending X € I'(T'M) to the section X + {tx B, + g(X, ) }4. This yields an isomorphism
E=TM®T*"M ®t and the t-Courant structure is given in this form by

(X &Y +n) = SEY) + (X)) +9(X,Y), (164
(X 4+ &Y +9] = [X,Y]+ Lxn — tydé + 2VH9H X (Y, ), (4.65)
dp(f) =0 + df, (4.66)

where V*9H X € T(T*M @ T*M ® t) is defined as

oVl X (Y, Z) =H(X,Y,Z) + X (9(Y, Z)) — Y (9(X, Z))
+Z(g(X.Y)) —9([X. Y], Z2) = g(Y, [X, Z]) + 9(X, [V, Z]),

(4.67)

for H := dB, € Q3(M,t) the curvature of the curving. Formula (4.65) can be obtained
by using first the isotropic splitting induced by just { B, }, which induces an isomorphism
with the standard H-twisted exact Courant algebroid, and then computing the bracket
[X+9(X,-),Y+g(Y,-)]. The notation is chosen because, when g is non-degenerate, then
V9 X(Y, 7Z) = g(V%HX, Y) for V9 the unique g-metric connection with torsion

g(V{Y = VX — [X,Y],2) = H(X,Y, Z). (4.68)

That is,
1
g(VET X, Y) = g(VLX,Y) + SH(X.Y, 2), (4.69)

for V9 the Levi-Civita connection of g.
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The following result generalizes this construction for an arbitrary Gy-bundle Py. One
way to prove it is to show that the exact Courant algebroid E — P associated to the
gerbe with connective structure Py — P has the necessary structure to descend to a
t-Courant-Dorfman algebroid E — M by the procedure in [66], and this follows from
Lemma 4.9 as in [120]. However, for the purposes of this thesis it is better to have a
cocycle description of E, which we proceed to present. This generalizes a construction
for String(n)-bundles in [245].

Theorem 4.23. Let Gy be a multiplicative T-gerbe with connective structure over G
and let M be a manifold. There is a functor Py — Epg from the bicategory of Gy -
bundles over M to the category of transitive t-Courant-Dorfman algebroids over M with

the following properties.

1. For each Py there is a canonical exact sequence of vector bundles
0->T"M®t— Ep, - TP/G — 0,

where the map Ep, — TP/G preserves the anchor and the bracket.

2. There is a canonical bijection between the set of enhanced connections on Py and
the set of splittings of m: Epg, — T'M.

3. Any enhanced connection (A, B, g) € Aen(Py) with curvature (Fa, H) € Q*(M, ad P)&®
Q3(M, t) induces an isomorphism Epg, = TM @ ad P & T*M ® t on which the t-

Courant-Dorfman structure is given by

<X+u+gy+v+m=%omm+gw»+@m»+¢xyy (4.70)
(X +u+&Y +v+n=[X, Y]+ (—[u,v] + Viv — Viu — F4(X,Y))
+(Lxn — tydé +2VHIH X (Y, ) + 2(VAu, ) 4+ 2(tx Fa,v) — 2(ty Fa, u)),
(4.71)

d(f) = 040+ df. (4.72)

4. Epg is a t-Courant algebroid if and only if the pairing (-,-) : g®@ g — t is non-

degenerate.
We call Ep, the Atiyah algebroid of Py .

Proof. If Py is described by ({gab}, {0ab v}, {Tabc}) in a cover { M, }qca of M, write Fy €
Q2(Myp, t) for the curvature of o4, v. Then define Epg := U, TM, ® g® T*M, @t/ ~,
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where the equivalence relation is

(a,,vz,€,&) ~ (b, 2, v, Ad(ga_bl)e - va92b9L7§ac + by, Fap — <Lv192b‘9R - 2€7g:;b0R>)7
(4.73)
fora,be A,z € My, vy € T M, e € g, & € T;M®t. This is a well-defined equivalence
relation by (4.24). In other words, sections of E can be described as X + {f, + &a}a
with X € T(TX), f, € C%®(My,g), & € Q' (Mg, t) satisfying

fo=Ad(g;") fa — txgi,0", (4.74)
& = &a + ixFup — (txgip0T — 2fa, g2 07). (4.75)

The t-Courant-Dorfman structure is given by

(X4 Lfat &1 Y + {0+ 1) = 5 (0a(X) + Eal0) + (a0, (4.76)

X+ (o €ab Y - fa bl = BOYT 4 (Mol + XG0 =Y ()
+ (Lxna — tyd€a + 2(dfa; ga)),

d(f) =0+ (0 + df). (4.78)

(4.24) and the fact that dFy, = ¢(g5,0" A [g5,0% A g5,0"]) imply that these operations
are well-defined, and then it is straightforward to check that they satisfy all the required
axioms. An enhanced connection on the G-bundle given by A, € Q'(M,,t), B, €
O2(M,, 1), g € T(S?T*M ®t) gives a splitting of E defined by

X = X+ {~Aa(X) + 1xBa — (Aa(X), Aa()) + 9(X, ) }- (4.79)
Such an enhanced connection gives an isomorphism TM @ ad P& T*M ® t — E by
X4u+&— X +{—Aa(X)+uq+txBs — (Aa(X) — 2ua, Aa (1)) + £+ 9(X, ) }. (4.80)

A straightforward computation shows that the t-Courant-Dorfman structure is pulled-
back under this isomorphism to the one in part 3 of the theorem. Part 2 is then immedi-
ate, since both spaces are torsors for the same group and we have defined an equivariant

map between them.

At the level of morphisms, the functor is defined as follows. Let E', E? be the t-Courant-
Dorfman algebroids corresponding to two Gy-bundles described by ({gib}a,b, {F alb}a,b)>
({g%}aps {F%}ap). Then an isomorphism between the bundles given by cocycle data
(0a, ®a,v; Yap) yields in particular the two-forms F, € Q%(M,, t) satisfying (4.38), (4.38).
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This can be used to check that

(B — I'(E?) (4.81)
X+{fo+&}a= X +{f0 + &3, (4.82)
where
f2 = Ad(pa) f1 + tx 0", (4.83)
€ =& —uxFa— (uxpib” +2f1,050") (4.84)

is well-defined and preserves all the structure maps. Note also that 2-isomorphic isomor-

phisms of Gy-bundles give the same morphism of t-Courant-Dorfman algebroids. 0

In particular, Theorem 4.23 implies that for a fixed Gy-bundle Py — M with Atiyah
algebroid E' — M, there is a map Gauge(Py) — Aut(E). Write Autp(E) C Aut(E) for
the image of this map. Motivated by the observation in [245] that Autp(E) # Aut(E)
for the case of String(n)-bundles, [127] defines two classes Ham(E) C Autsyring(E) C
Aut(E) of restricted automorphisms of string algebroids. We claim that Ham(E) C
Autp(FE) C Autgiring(E), but none of these is in general an equality, as we proceed to

show.

In terms of the cocycle data above, Autsying(£) amounts to taking functions ¢, :
M, — G for an isomorphism u : P! — P? of the underlying G-bundles and two-
forms F, € Q*(M,,t) satisfying (4.38, 4.39). In particular, Autp(E) C Autsying(E)
is not an equality, as the 2-forms F, of the automorphisms in Autp(E) must arise as
the curvature of a trivialization of Gy (so they form a torsor for dA'(X,t) instead
of A%(X,t)). On the other hand, Ham(E) is defined by integrating formally inside
Aut(E) the Lie algebra of Autp(E), so Ham(E) C Autp(E) but this integration fails to
capture automorphisms in Autp(F) not connected to the identity, such as those given

by topologically non-trivial line bundles with connection.

4.2.2 The gauge 2-group as a Lie 2-group

If P is a G-bundle with Atiyah algebroid Ep = TP/G, then ad P = Kerm C Ep is a
sub-Lie algebroid and there is an exponential map I'(ad P) “¥ Gauge(P) which can be
used to model Gauge(P) as an infinite-dimensional Lie group with Lie algebra I'(ad P);
in particular, Gauge(P) acts through the adjoint action on I'(ad P). In this section we

perform a similar construction for a Gy-bundle Py .
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Recall from Section 3.2.1 and Example 3.15 that already in the case of a T-gerbe L
it is a good idea to fix a connective structure V, so that we can model the space
of curvings A(Ly) as a torsor for the space Q%(M,t) and the 2-group BTy (M) as
Ueec A(LC)//C®(M,T), where C is the discrete abelian group of isomorphism classes of
T-bundles on M, each class ¢ represented by the T-bundle L¢, and A(L¢) = Q'(M, t) is
the space of connections on L. In this description, A(Lv) can be considered as a Fréhet
manifold and BTy (M) can be considered as a Fréchet Lie 2-group acting smoothly on
A(Ly) and with Lie 2-algebra C*°(M,t) 4 IN(T*M @ t).

The Lie 2-group BTy (M) was also equipped with a coherent inversor in Example 3.21.
As explained there, the corresponding conjugation action from Lemma 3.20 is trivial
when restricted to the groupoid of connections on the trivial T-bundle. Thus, if we
equip BTy (M) with the trivial adjoint action on its Lie 2-algebra, then the following
functor, equipped with the trivial equivariant structure, is an exponential map in the

sense of Definition 3.24.

exp: T(T"M ®t)//C*°(M,t) - BTy (M)
£ (M x T, 07 +¢),
(f: &€= &+df) = (exp(f) : (M x T,07 + &) — (M x T,07 + ¢+ df)),
(4.85)

Indeed, conditions 2a and 2b from Definition 3.24 follow from the fact that a connection
on the trivial T-bundle is just a t-valued 1-form and from the fact that C°(M,t) =¥
C*°(M,T) is a local diffeomorphism.

Now let Py be a Gy-bundle with Atiyah algebroid E. We write from now on ad Py :=

Kerm C E. This is a sub-Courant-Dorfman algebroid of F fitting in exact sequences

0—=T"M®t—adPy — ad P — 0, (4.86)
0= adPy —E — TM — 0. (4.87)

Recall from Theorem 4.23 that isomorphisms of Gy-bundles induce isomorphisms of their
corresponding Atiyah algebroids. In particular, Gauge(Py) acts on the space of sections
of the Atiyah algebroid of Py. One can check that this action preserves I'(ad Py) and
is trivial on all of I'(T*M ® t). We call this the adjoint action of Gauge(Py) because,
as it will follow from Theorem 4.26, there is a structure of Lie 2-group on Gauge(Py)

such that this is an adjoint action in the sense of Definition 3.23.

Remark 4.24. Tt follows from the proof of Theorem 4.23 that the adjoint action of
Gauge(Py) can be described as follows. Given s +¢ € I'(ad P) @ I'(T*M ® t), write
(s +&)(a,B) € I'(adPy) for the section corresponding to s + £ through the isomorphism



Principal 2-bundles and Courant algebroids 143

I(adPy) =T(T*M ® t) ®T'(ad P) induced by a connection (A, B) € A(Py). Then the

action can be written as

u-(s+8)(a,p) = (Ad(gu)s +E+2(u" A= A, Ad(gu)s)) (a,8) = (Ad(gu)s +&)u.(a,) (4.88)

for u € Gauge(Pv)o, where g, : M — Ad P denotes the corresponding gauge transfor-

mation of P and u - (A, B) denotes the action of u on the connection (A, B).

Write I'(ad Py)//C>(M, t) for the quotient groupoid associated to the 2-step complex
of vector spaces C*°(M, 1) i I'(adPy). Instead of defining a smooth structure on
Gauge(Py) and then trying to define an exponential map in the sense of Definition 3.24,
we will construct first a continuous functor exp : I'(ad Py)//C®(M,t) — Gauge(Py)
and then use it to define a smooth structure on Gauge(Py). This is analogous to how a
topological group G can be given a smooth structure by giving a local homeomorphism
from a neighborhood of 0 on a vector space to a neighborhood of 1 € G, and then

translating this chart with the group product of G.

Proposition 4.25. Let Py be a Gy-bundle with Atiyah algebroid E. Then there is a
continuous functor exp : I'(ad Py)//C*(M,t) — Gauge(Pv) fitting in a sequence

0 — T(T*M ®1t)//C>®(M,t) —— I'(ad Py)//C>®(M,t) —— T'(adP) ——— 0

lexp iemp lemp

1 ——— BTy(M) Gauge(Py) — Gaugep(P) —— 1,
(4.89)
where Gaugep(P) C Gauge(P) is the subgroup of gauge transformations of P lifting to

P. Moreover, for u € Gauge(Py)o and e € I'(ad Py), there are canonical isomorphisms

(u-exp(e)) - ut QA@’E) exp(Ad(u)e) (4.90)

such that the diagram

((u1 - uz) - exp(v)(uz ' - uy") —*= (ur - ((u2 - eap(v)) - uy)) - uy’!

aA‘i(u1u2,’U)l l(idufO‘Ad(g?vv))‘idul—l (491)

aAd(ul,ugvugl) 1

exp(urugvuy 'uit) (u1 - exp(ugvuy ™)) - uy

commutes, for « the associator of Gauge(Py).

Proof. Let € be a trivialization of exp*Gy, let af be an equivariant structure on it and
equip € with a connection as in Theorem 3.54. We use this to define the functor exp as
follows. Let (gap, 0ab,v, Tabe) be cocycle data for Py. A section of ad Py is given by f, :
M, — g and &, € Q' (M,, t) such that f, = Ad(g,,') fo and & = &, +2(fa, g%,07). Define
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then ¢, : M, — G by ¢, = exp(f,) and trivializations ®, v of @Gy as @, v := frev.

There are 2-isomorphisms

P,
(Trivial) ———~— ©*G
(9ap fa)" ot 1y 4.92
@b’vl XX/ Jr(gab )*zn'u ( . )
016 i (9 )G @G @ g1,
with covariant derivative (ga_bl, fa)n® = =2(fa, g;b0R>. Thus these 2-isomorphisms are

flat if we change the connection on @, v by adding the 1-form &,. Then equation (3.147)
implies the necessary cocycle condition for (¢q, ®q v + &a, (ggbl, fa)™n) to give a well-
defined gauge transformation of Py. At the level of arrows, the map exp is defined
similarly as in the abelian case. Finally, a gauge transformation u = (@, i’a,v, Vap) acts
on e = f, + &, sending it to u - e = Ad(@qa) fa + Ea — 2(fa, §50F) and it follows from the
formula in Proposition 4.19 for the product in Gauge(Py) and from cocycle condition
(3.147) that a??(u, e) := (@q, fa)*a¢ defines the desired isomorphisms (uoexp(e))ou™" —
exp(Ad(u)e). O

Theorem 4.26. Let Py be a Gy-bundle. The 2-group Gauge(Py) admits a model as a
Fréchet Lie 2-group with Lie 2-algebra C*°(X,t) dr I'(adPv). There is a right-invariant
Maurer-Cartan form on Gauge(Pvy) for the adjoint action on I'(ad Py) and the trivial
action on C*°(X,t). The functor exp from Proposition 4.25 is an exponential map in

the sense of Definition 3.2/ for the coherent inversor from Remark 4.20.

Proof. We proceed to construct a smooth structure for the 2-group Gauge(Py). First,
choose a neighborhood U of 0 € I'(ad Py) such that exp : U — Gauge(Py)o is injective,
which exists because it exists for the left and right vertical arrrows of (4.89), and define
for each u € Gauge(Py)o the set U, := {exp(e) - u|e € U}. Then choose a set
A C Gauge(Py)o such that every object of Gauge(Py) is isomorphic to some element
of U,, for some u € A. Tt follows that Gauge(Py) is equivalent to a groupoid X with

Xo=| | U, (4.93)
ueA

X = |_| (UUO X um)idxz‘dxsxtGauQe(PV)l' (4‘94)
uo,uleA

Since U, 2 U C T'(ad Py), it is clear that Xy is a Fréchet manifold. As for X;, we model
a neighborhood of any point (ezp(ep)uo, exp(er)ur, ¢po1) € X1 on a neighborhood V x W
of (0,0) inside I'(ad Py) & C*°(X,t) as follows. First, choose V C U C I'(ad Py) such
that

(exp(e)(exp(e())UO)a exp(e)(ea:p(el)ul), idexp(e) : ¢01) € Xy (495)
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for e € V. Then choose W C C*°(X,t) such that exp : W — C>(X,T) is injective. It
follows that

{(exp(e)(cap(eo)uo) — df exp(e)(expler)ur), cxp(f) - (ideapie) - do1)) | (€, f) € V x W}
(4.96)
is a neighborhood of (exp(eg)uo, exp(er)ui, ¢o1) € X1 which is isomorphic to V x W C
I'(ad Py) & C*®(X,t). Here we write u 4+ a when u € Gauge(Py)o, a € Q' (X, t) for the
gauge transformation of Py which coincides with uw with connection shifted by a. It is
easy to check that this gives a smooth atlas on X;. Next we construct a manifold M

which can serve as the total space of the product anafunctor m : X x X — X. We let

M = {(u1,ug,u12, €1, €2, €12, P) eA3 x U3 x Gauge(Py )1 (4.97)
| ¢ : exp(ern)uia — (exp(er)ur)(exp(ez)uz)}. .

Provided that M is a manifold, there is an obvious structure making it into the total
space of the desired anafunctor. To show that it is indeed a manifold, we construct local
sections of mp : M — Xo x Xo. Given (u1,us) € A2, choose u1z € A, e1o € U and an
isomorphism ¢19 : exp(e12)uie — ujug in Gauge(Py). Then for eq, es € T'(ad Py) we

note that there is an isomorphism

12
(effp(el)eiﬂp(glezgfl))(Uluz)

Zdew(ﬁl)czp(glcﬂfl).
%

(exp(er)exp(greagy ")) (exp(er2)ur2)

eartr L, s (e (ureaplea)ur ) (una)
2 (exp(er)ur)(exp(e2)us),
(4.98)

where g1 € I'(Ad P) is the gauge transformation of P underlying u; and « is a shorthand

for

o Hexp(er), ur, exp(ea)us) o (deap(er) - (u1, ezp(ez), uz))) (4.99)

o(idegp(e) - (urezp(ea), uyt, urug)) o aexpler), (urexp(er))u ™, uiuz).

Then for small e;, e3 the source of (4.98) remains in U,,,,, which lets us give a local section

o U542 C Xg x X9 — M. Then we can write ﬁal(Uff?dsm) = Uiz 15 Xt X1, Where

w19 = w1 © 0, which is a smooth manifold. For the same ui, us, changing the choice of

(u12, €12, P12) to (u}y, €)9, P}5) induces the diffeomorphism

[y P12,€12

b12.€12
ul,u2 T2 thl — Uu17“2 '12 thl

s

(4.100)
(u1,e1,uz, ez, P) = (uy,e1,us, e, (idezp(el)exp(glezgfl) (¢35 0 ¢12)) 0 ¢)

and so this is indeed an atlas for M. One can check that the associator o and the
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adjoint action are smooth, for the unique way of defining them in this atlas. The
functor exp from Proposition 4.25 is an exponential map in the sense of Definition 3.24

by construction of the smooth structure.

To show that Gauge(Py) has a Maurer-Cartan form we have to construct 1-forms
0 € Q' (BGauge(Pv)1,T(ad Py)), 6' c QY(BGauge(Py)2, C*(X,1))  (4.101)
satisfying

56" =0, (4.102)
dp(0Y) = d50° + Ad(ds(-))d5e° — di6°, (4.103)

where dg : C®°(X,t) — I'(ad Py) and we write Ad(-) for the adjoint action of Gauge(Py)
on I'(ad Py). First, 6° is defined simply by the inverse of the isomorphism I'(ad Py) —
Twexp(eynyUu, € — %u:o(u’ exp(té)(exp(e)u)). Then #' is constructed by defining 1-
forms §u1-u2:d12.€12 € QL(UD12012 1, X¢X1,0%°(X, t) that are preserved by the diffeomor-
phisms (4.100). These are given by

™

ui-uzsP12,e12 . TU¢12’612

ul,Uy T

x, X1 — C®(X,t
2 X9 (4.104)

(u1,ug,e1, ez, é1,€,0) — f,

where we are using 0 to see é; € Ty cap(esyus)Uu; = T'(ad Py) and f is defined as follows.
Recall that ¢, ¢ are of the form

¢ 5(¢) — (eap(er)exp(gieagy ') (exp(erz)ua),

¢ s(d) — 5“0((efﬂp(tél)e$p(€1))e:vp(gllog(efvp(te'z)ewp(@))gl M) (exp(e12)ur2),
(4.105)

where log : U C Gauge(Pv)o — I'(ad Py) is the local inverse for exp. Write

((eap(ter)exp(er))exp(gilog(exp(tez)exp(e2) gy ) (exp(greagy ) eapler) ™)

= T
= &tzo((eﬂ:p(tél)exp(el))exp(glezgfl))(emp(ngg;l)_1exp(61)_1)
+ &tzo(eﬁp(el)61329(91lOg(eznp(te'g)ewp(eg))gfl))(emp(glewfl)—1exp(el)—1)

(4.106)
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and note that there are canonical vectors in the space of arrows

o4 é1 + Ad(exp(er)uq)éz, (4.107)

- s(6) S H(), (4.108)

where w is constructed from a and o?, while y is constructed from « and ¢. Then
it follows from how the smooth structure of X; is defined that there exists a unique
f € C®(X,t) such that ¢ coincides with the arrow

d )-L _exp(tf)

(é1 + Ad(exp(er)ur)éz) - s(¢) — %t:otdEf = 0 - s(9) X t(9), (4.109)

and this is the f in (4.104). A direct computation shows that the 1-forms defined by
(4.104) are preserved by (4.100). Now (4.103) follows directly from the definition of f,
while (4.102) is obtained by a direct computation, using the cocycle property of atl,
The additional conditions in Definition 3.23 for #°, #' to be a Maurer-Cartan form are

also straightforward to check. O

Theorem 4.26 suggests that there is a differentiation of Gauge(Py) in the sense of Def-
inition 3.24, relating the brackets from the Lie 2-algebra of vector fields on Gauge(Pv)
with the brackets from the Lie 2-algebra associated to the Courant-Dorfman algebroid
ad Py by the procedure in [224], as in the finite-dimensional case from Proposition 3.51.
We leave this for future work, as our main results from Chapter 6 do not require such

construction.

4.2.3 Slice theorem

Let GG, T be Lie groups with T abelian. Let Gy be a multiplicative T-gerbe with
connective structure over G and let Py — M be a Gy-bundle over a manifold M with
Atiyah algebroid E — M (cf. Theorem 4.23). We write ad Py := Ker(w) C E.

Recall from Proposition 4.14 that A(Py) is a right torsor for Q(ad P) x ..y Q*(M, t).
This means that we can regard it as an infinite-dimensional manifold in which vector
fields are described by functions f : A(Py) — Q(ad P) ® Q*(M,t). For each such
function f, write X; for the corresponding vector field and f = (f¢, 1) for its decom-
position in terms of the projections onto Q! (ad P) and Q?(M, t). In this description, the

Lie bracket of vector fields corresponds to

[f:9] = Lx;9 — Lx,f — (0,2(f* A g*)), (4.110)
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which follows from computing the Lie bracket of Q'(ad P) x(. 4 Q*(M,t). The gauge

2-group Gauge(Py) acts on A(Py) and using Proposition 4.25 we can define an in-
finitesimal action of I'(ad Py) on A(Py) by

e (A, B) = jtu:oexp(—te)*(A, B) (4.111)

for e € I'(ad Py), (A, B) € A(Py).

Proposition 4.27. The infinitesimal action (4.111) is given by the homomorphism of
Lie algebras p : T'(ad Py)/dC®(M) — T(TA(Py)), p = (p% p°) defined by

p(e)*(A, B)(X) := —maq ple, sMB) (X)), (4.112)
p(e)’(A, B)(X,Y) i= =2([e, s"MP) (X)), s/HP) (V) (4.113)

where X, Y € I'(TM), mgap : adPy — ad P denotes the canonical projection and

sAB) . TM — E is the splitting corresponding to the connection (A, B). Equivalently,

using (A, B) to identify ad Py = adP®T*M @1, e — v+ &, then

ple)*(A, B) = dv, (4.114)
p(e)’(A, B) = dé + 2(Fa,v). (4.115)

Proof. Let (gab, 0ab,v, Tabe) be cocycle data for Py as in Proposition 4.4 so that (A, B) €
Py is given by A, € QY(M,, g), By € Q?(M,,t) as in Proposition 4.12 and e € I'(ad Py)
is given by f, : M, — g, & € Q(M,, t) satisfying (4.74), (4.75) (with X = 0). Then
using formulas (4.36), (4.37) for the gauge action we can see that the infinitesimal gauge

action is given upon identifying T4 ) A(Py) = Q! (ad P) & Q*(M, t) as above by
e (A, B) = (dfy + [Aa, fa), déa + (fa, [Aa N Ad)) — 2{dfs N Ay)). (4.116)

Use then (4.77) and (4.80) to show that this is equivalent to the formulas above. O

Proposition 4.27 lets us prove a slice theorem for the topological space
B(Pv) := A(Pv)/Gauge(Pv) (4.117)

of equivalence classes of connections on a Gy-bundle Py, where we identify two connec-
tions if there exists some (u, @, a®) € Gauge(Py)p relating them. Given a connection

(A, B) € A(Py), consider the following elliptic operator

dAP)  Q0ad P) @ QY(M, t) — Q(ad P) ® Q*(M, 1)

, (4.118)
v+ &> dMv 4 dE + 2(Fa,v).
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We choose a Riemmanian metric on M and a positive-definite, Ad-invariant pairing on g
(not necessarily related to the bilinear form arising from the 2-group), and we let dAB)*

be the adjoint of the above operator with respect to these metrics.

Theorem 4.28. Let G, T be Lie groups with T abelian. Let Gy be a multiplicative
T-gerbe with connective structure over G and let Py — M be a Gy-bundle. Then, for
each (A, B) € A(Pv), the map

{a+be Q' (adP)® Q*(M,t) | dAP)*(a +b) = 0} /T4 — B(Py)

(4.119)
[(a,0)] = [(4, B) + (a,b)]

is a local homeomorphism around 0, where I'y C Gauge(P) is the isotropy subgroup of

A, acting on Q' (ad P) through the adjoint action.

Proof. Fix (A, B) € A(Py) and consider the map

[m(d(AB)*) « Q1 (adP) ® QQ(X, f) N Im(d(A’B)*)

(s +&, (a,0) = 4B ((eap(s + &) - (4, B) + (a,b))) — (A, B)).
(4.120)

Its partial differential at 0 is
dAB gAB) - I (dAB*) 5 I (dAB)*), (4.121)

which is an isomorphism, and so by the implicit function theorem there exist neighbor-
hoods of zero U C Q' (ad P)®Q%*(X,t), V C Im(d“5)*) and amap h : U — V inducing

a homeomorphism
U — {(s+¢&,(a,b)) € VxU|dAP*(exp(s+£)-((A, B)+(a, b)) — (A, B)) = 0}. (4.122)

This means that (4.119) is locally surjective around 0, and that in a neighborhood of
[(A, B)] the conditions

[(A, B) + (a1,b1)] = [(A, B) + (a2, b2)], (4.123)
dAP* (a1, b1) = dAP)* (ag,by) = 0 (4.124)

imply that the gauge transformation relating the two connections either is the identity
or it does not lie in V. Thus, to prove local injectivity of (4.119), it suffices to show

that, under the conditions above, and if (a;, b;) are sufficiently close to 0, then one can



Principal 2-bundles and Courant algebroids 150

find gauge transformations (u;, i, a¥?) € Gauge(Py), ¢ = 1, 2, such that

(u1,01,0%1) €V, (4.125)

(ug, p2,0%?) - (A, B) = (4, B), (4.126)
(u1,1,07") - ((A, B) + (a1, b1)) = (uz, p2,0%?) - (A, B) + (az,b2))
= (

(4.127)
A, B) + (Ad(UQ)_lag, b2).

This can be shown by applying standard estimates for the Green operator (see [169, Th
3.17] for details) of the Laplacian

dABY gAB) 4 g(AB) g(AB)" Ol (ad P) & Q2 (M, t) — Q' (ad P) & Q*(M, 1), (4.128)

where

d4P) QY ad P) @ Q3 (M, t) — Q*(ad P) @ Q*(M, 1),

. (4.129)
a+b— da+db—2(F4 Aa).

O]

We conclude by noting that results similar to Theorem 4.28 have been proved in related
contexts with tools from generalized geometry [84, 125, 127, 229]. The main difference is
that in those papers the symmetries are given by a group whose Lie algebra is a quotient
of I'(ad Py ), while in our approach the symmetries are given by a 2-group with Lie 2-
algebra C*° (X, t) KN I'(ad Py ). Since these are spaces of sections of vector bundles, while
I'(ad Py)/ ~ is not, elliptic operator theory applies in a much more straightforward way

in our approach.



Chapter 5

Complex Lie 2-groups and

holomorphic principal 2-bundles

A complex Lie 2-group & is a Lie 2-group as in Definition 3.9 such that &g, &; are
complex manifolds and such that all structure maps are holomorphic. By a straight-
forward generalization of Theorem 3.48, a family of complex Lie 2-groups is given by
holomorphic multiplicative gerbes, which have been studied in [59, 268] based on previ-
ous work on holomorphic gerbes [57, 82, 193]. In particular, the main result in [268] can
be thought of as the construction of a complexification for the Lie 2-group String(n). It
is also noted there that equipping holomorphic multiplicative gerbes with holomorphic

connective structures is interesting for applications to complex geometry.

Given a complex Lie 2-group & and a complex manifold X, one can define holomorphic
principal &-bundles over X similarly as in Section 4.1. A special feature of higher gauge
theory is that, at least for complex Lie 2-groups & that arise from holomorphic multi-
plicative gerbes with holomorphic connective structure, one can also define holomorphic
B-bundles with holomorphic connective structure over X. These are intermediate objects
between holomorphic &-bundles and holomorphic &-bundles with holomorphic connec-
tion. The abelian case (i.e. holomorphic gerbes with holomorphic connective structure)
is studied in all the literature on holomorphic gerbes [57, 82, 193], as well as in general-

ized complex geometry [142].

A natural problem in this context is the construction of well-behaved moduli spaces of
holomorphic B-bundles (or holomorphic &-bundles with holomorphic connective struc-
ture) over X, and geometric structures on them. The analog of this problem in classical
gauge theory can be approached through gauge-theoretic methods thanks to two funda-
mental results. Firstly, for G a complex Lie group and P a smooth G-bundle, holomor-

phic structures on P are in bijection with integrable semiconnections on P. Secondly,

151
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when G is the complexification of a compact Lie group K and P is the complexification
of a K-bundle P, then integrable semiconnections on P are in bijection with connec-
tions on P, whose curvature is of type (1,1) [233]. This theorem is called the Chern
correspondence. There are analogs of these results for holomorphic gerbes [2, 82, 142],
while a similar result in the context of Courant algebroids of string type is presented
in [127], relating holomorphic Courant algebroids to supersymmetric configurations in

heterotic string theory.

In this chapter we study complex Lie 2-groups, and we generalize the description of
holomorphic structures on principal bundles in gauge-theoretic terms to this setting. In
Section 5.1.1 we review fundamental aspects of holomorphic gerbes. In Section 5.1.2 we
discuss the subtleties associated to connective structures on holomorphic multiplicative
gerbes, and we prove an original theorem that generalizes the construction in [268] to
complexify multiplicative gerbes over arbitrary compact groups. In Section 5.1.3 we
discuss how Maurer-Cartan forms interact with the complex structure of a complex Lie
2-group, and the shifted holomorphic symplectic structures that they give rise to. In
Section 5.2.1 we provide a gauge-theoretic description of holomorphic structures, and
holomorphic structures with holomorphic connective structure, on &-bundles. In Section
5.2.2 we generalize the Chern correspondence to this context, using the complexification
construction and our notion of enhanced connections from Section 4.1.2. Finally, in
Section 5.2.3 we relate holomorphic B-bundles to holomorphic Courant algebroids, which
lets us establish a link between our work and [127], as well as define structure of complex

Lie 2-group on the gauge 2-group of a &-bundle, for & a complex Lie 2-group.

5.1 Complex Lie 2-groups

5.1.1 Holomorphic gerbes and holomorphic connective structures

We establish first a notational convention that will be used for the rest of the thesis.
For real vector spaces V, W with complex structures Jy, Jy, a skew-symmetric R-
multilinear map ¢ : A¥V — W is of type (p,k — p) if the map ¢ : A¥(V @ C) - W
defined by ¢(iv,-) = Jy¢(v, -) is zero outside AP(V10) @ AF—P(VO1) ¢ A¥(V ®C), where
V10 and V9! are the ¢ and —i eigenspaces of JS :V®C — V®C, respectively. The

type of a symmetric map is similarly defined.

Let X be a complex manifold, let 7' be a complex abelian Lie group with Lie algebra t.

Recall the definition of smooth gerbes from Section 3.2.1.

Definition 5.1 ([57, 82]). A holomorphic T-gerbe over X is a T-gerbe ({U;}, {\iji})

over X such that );j; are holomorphic functions. In this case, a connective structure
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{A;;} is compatible with the holomorphic structure if A;; € QM0(Uyj,t). A curving {B;}
for a compatible connective structure is itself compatible with the holomorphic struc-
ture if B; € Q*9YLY(U; t). A holomorphic isomorphism ({Va},{sa}) between holo-
morphic T-gerbes is an isomorphism of T-gerbes such that s, are holomorphic. If,
moreover, the holomorphic gerbes have compatible connective structures, then a con-
nection A, on a holomorphic isomorphism is compatible with the holomorphic structure
if Ay € QY0(V,,t). A holomorphic 2-isomorphism ({W,},{t,}) between holomorphic

isomorphisms is a 2-isomorphism such that the functions ¢, are holomorphic.

A holomorphic T-gerbe with holomorphic connective structure is a holomorphic T-gerbe
({Us}, {N\ijx}) with a connective structure {A;;} such that A;; € Q10(U;;,t) and 04;; =
0. In this case, a curving {B;} is compatible with the holomorphic connective structure if
B; € Q20(U;, t). Tt is a holomorphic curving if, moreover, B; = 0. Given a holomorphic
isomorphism ({V,}, {sa}) between holomorphic T-gerbes with holomorphic connective
structures, a holomorphic connection on it is a connection {A,} such that A, € Q10(V,, t)

and OA, = 0.

Let £ = ({U;}, {\ijr}) be a smooth T-gerbe. A I-semiconnection on L is the data of
Dij S Qo’l(Uij,t), D; € QO’Z(Ui,’L) such that

Dij — Diyp, + Dj, = 2},69071, (5.1)
Di — D]’ = (le'j)O’2. (52)

A 1-semiconnection ({D;;}, {D;}) is integrable if
(dD;)%3 = 0. (5.3)

Let ¢ = ({U;}, {sij}) : L' — L£? be an isomorphism of smooth T-gerbes. If £!, £2 have
1-semiconnections D', D?, then a 1-semiconnection on ¢ is the data of D? € Q¥Y(U;, b)
with

D{ — D¢ = D}; — D} — s3;6™" (5.4)

and it is integrable if
(dD?)°? = D} — D2. (5.5)

Let v = ({U;}, {t:}) : 6 = ¢' : L — L2 be a 2-isomorphism of smooth T-gerbes. If £,

L2, ¢, ¢ have 1-semiconnections, then we say that 1 preserves the 1-semiconnections if

DY — D¢ +1:6%! = 0. (5.6)
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Let £ = ({U;}, {\ijr}) be a smooth T-gerbe. A 2-semiconnection on L is the data of
Dij S Ql(Uij, t), D, € Q1’1+0’2(Ui,t) such that

Dij — D + -Dj/c = )\fjke, (57)
Di — Dj = (dDij)1’1+0’2. (58)

A 2-semiconnection ({D;;}, {D;}) is integrable if
(dD;)12103 = 0. (5.9)

Let ¢ = ({U;}, {sij}) : L' — L£? be an isomorphism of smooth T-gerbes. If £!, £2 have
2-semiconnections D', D?, then a 2-semiconnection on ¢ is the data of DZ) € QYU;, t)
such that

D{ — D} = D}; — D — s3;0 (5.10)

and it is integrable if
(dDf)"'*%* = D} - D}. (5.11)

Let v = ({U;},{t:}) : ¢ = ¢’ : L' — L2 be a 2-isomorphism of smooth T-gerbes. If £

L2, ¢, ¢ have 2-semiconnections, then we say that 1) preserves the 2-semiconnections if
DY —D? + 0 =0. (5.12)

Let Tg be a compact abelian Lie group with Lie algebra tg and let j7 : Tg — T be its
complexification (inducing an inclusion djr : tg — t). For a Tr-gerbe with connection
(L,A,B) = ({Us}, {\ij }, {Aij}, {Bi}), its fibrewise complexification is the smooth T-
gerbe with connection (£, V&, B®) given by ({U;}, {ir(Nije)}, {diT o Aij}, {djr o B;}).

Write Op for the sheaf of holomorphic T-valued functions and Q%fclt for the sheaf of

holomorphic t-valued 1-forms.

Proposition 5.2 ([2, 57, 82, 268)). 1. Holomorphic T-gerbes over X are classified
by H?(X,O7), their automorphisms are classified by H'(X,Or) and there are

HO(X,Or) 2-automorphisms of a given isomorphism.

2. A smooth gerbe is isomorphic to a holomorphic gerbe if and only if it admits a
connection with curvature H satisfying H*® = 0. A smooth isomorphism be-
tween holomorphic gerbes with compatible connective structures is 2-isomorphic to
a holomorphic isomorphism if and only if it admits a connection with curvature F
satisfying F%? = 0. A smooth 2-isomorphism between holomorphic isomorphisms
with compatible connections is holomorphic if and only if its covariant derivative

n satisfies n>1 = 0.
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3. The bicategory of holomorphic T-gerbes, holomorphic isomorphisms and holomor-
phic 2-isomorphisms is equivalent to the bicategory of smooth T -gerbes with inte-
grable 1-semiconnections, smooth isomorphisms with integrable 1-semiconnections

and smooth 2-isomorphisms preserving the 1-semiconnections.

4. Holomorphic gerbes with holomorphic connective structure over X are classified
by H2(X, Oxr LS Q%_Cl t), their automorphisms with holomorphic connection by

1 o)
H (X, OX,T — Qg—cl,t

of a given automorphism .

) and there are H(X, Ox KN Q%_Cl ) flat 2-automorphisms

5. A smooth gerbe is isomorphic to a holomorphic gerbe with holomorphic connec-
tive structure if and only if it admits a connection with curvature H satisfying
HY2+03 — 0. A smooth isomorphism between holomorphic gerbes with compatible
connective structures is 2-isomorphic to a holomorphic isomorphism if and only if

it admits a connection with curvature F satisfying F11792 = 0.

6. The bicategory of holomorphic T-gerbes with holomorphic connective structure,
holomorphic isomorphisms with holomorphic connection and flat 2-isomorphisms is
equivalent to the bicategory of smooth T-gerbes with integrable 2-semiconnections,
smooth isomorphisms with integrable 2-semiconnections and smooth 2-isomorphisms

preserving the 2-semiconnections.

Proof. We give a brief sketch of the proof of 3. If £ is given by holomorphic data A;jz,
then we define a 1-semiconnection by D;; = 0, D; = 0. Conversely, if (£, D) is a smooth
gerbe with 1-semiconnection given by \;jx, Dij, D; then we choose ¢; € Q% (U;, 1), fi; €
C*>®(Uij,t) with Oc; = D; and 0fij = ¢; — ¢; — Dj; then Njjpexp(fij)exp(fix) texp(fjk)
is data for a holomorphic gerbe. Different choices of ¢;, f;; yield canonically isomorphic
holomorphic gerbes. These maps can be extended to an equivalence of bicategories in a
similar way. O
For a fixed smooth gerbe £ we note that we can form a groupoid Djn:(L) (resp. D, (L))
with objects integrable 1-semiconnections (resp. 2-semiconnections) on £ and with ar-
rows integrable 1-semiconnections (resp. 2-semiconnections) on the identity automor-
phism of £. The 2-group BT(M) acts on these in a similar way to the gauge action
from Definition 3.28. Then we define the quotient 2-groupoids (cf. Section 3.1.2)

1. H(L) := Dine(L)// BT (M).

2. H/(L) := Dl (L)//BT(M).
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Proposition 5.20 implies that H (L) is the space of holomorphic structures on £ and that
H'(L) is the space of holomorphic structures with holomorphic connective structure on
L. For a fixed smooth gerbe with connective structure Ly we recall that A(Ly) is the

set of curvings on Ly and we write the following.

1. D(Ly) = A(,Cv)/QQ’O'H’l(X, t).

2. D(Ly) = A(Ly)/Q20(X, ).

Finally, we write BTyo,1(X) for the groupoid whose objects are T-bundles over X
equipped with an equivalence class of connections, up to addition of 1-forms in Q'9( X t),
and whose arrows are isomorphisms of T-bundles whose covariant derivative with respect
to any choice of representing connection is of type (1,0). This is a 2-group, with product
given by tensor product of T-bundles with connection. All these objects are considered

with Fréchet topology.

Proposition 5.3. Let Ly be a smooth gerbe with connective structure. Then

1. BTgo,1(X) acts on D(Ly) and there is a canonical map of simplicial topological
spaces {[B] € D(Ly) | H*? = 0}//BTgo1(X) — H(L) inducing weak homotopy

equivalence on geometric realizations.

2. BTy(X) acts on D'(Ly) and there is a canonical map of simplicial topological
spaces {[B] € D' (Ly) | HHDH03) = 0} )/BTy(X) — H'(L) inducing weak homo-

topy equivalence on geometric realizations.

Proof. Analogous to the proof of Proposition 3.30. O

5.1.2 Holomorphic multiplicative gerbes

Definition 5.4. Let G, T be complex Lie groups with 7' abelian. A holomorphic
multiplicative T-gerbe over G is a multiplicative T-gerbe (G, m, &) over G as in Definition
3.31 such that G, m and « are holomorphic. A compatible (resp. holomorphic) connective
structure on it is a compatible (resp. holomorphic) connective structure on the gerbe G
with a compatible (resp. holomorphic) connection on the isomorphism of gerbes m such

that « is a flat 2-isomorphism of gerbes.

In terms of cocycle data (3.94) in a good semi-simplicial cover of BG,, a holomorphic
multiplicative T-gerbe over G is a multiplicative T-gerbe for which A;, j, ,, M4, j,, i, can

be chosen to be holomorphic. In terms of cocycle data (3.106), a compatible connective



Complex Lie 2-groups and holomorphic principal 2-bundles 157

structure is one for which A;, ;,, M;, can be chosen to be of type (1,0) and a holomorphic
connective structure is one for which they can be chosen to be of type (1,0) and to satisfy
A j, =0, OM;, = 0.

For a smooth multiplicative gerbe G, we say that it admits a holomorphic structure
(with compatible or holomorphic connective structure) if it is isomorphic as a smooth
multiplicative gerbe to the underlying smooth multiplicative gerbe of a holomorphic

multiplicative gerbe (with compatible or holomorphic connective structure).

Proposition 5.5 ([268]). Let G, T be complex Lie groups with T abelian and let G be

a smooth multiplicative T -gerbe over G. Then

1. G admits a holomorphic structure if and only if its de Rham class (3.98) admits a

representative (T3, T2, 71,0) with Tg’?’ =0, Tg’ =0, Tf’ —0.

2. G admits a holomorphic structure with compatible connective structure if and only

if its de Rham class (3.98) admits a representative (73, 7T2,71,0) with T:?’S = 0,

2
Tg’ =0, =0.

3. G admits a holomorphic structure with holomorphic connective structure if and only

if its de Rham class (3.98) admits a representative (13,72, 71,0) with T§’2+0’3 =0

1,140,2 _
Ty =0, =0.

)

Proof. Straightforward by Proposition 5.2. O

For a smooth multiplicative gerbe with connective structure Gy, we say that it admits a
holomorphic structure with compatible (resp. holomorphic) connective structure if it is
isomorphic as a smooth multiplicative gerbe with connective structure to the underlying
smooth multiplicative gerbe with connective structure of a holomorphic multiplicative

gerbe with compatible (resp. holomorphic) connective structure.

Proposition 5.6. Let G, T be complex Lie groups with T abelian and let Gy be a smooth

multiplicative T-gerbe with connective structure over G. Then

1. Gy admits a holomorphic structure with compatible connective structure if and
only if the pairing (-,-) : g ® g — t from Theorem 3.43 satisfies {-,-)%2 = 0. In
this case, there is a unique such holomorphic structure with compatible connec-
tive structure up to holomorphic isomorphism with compatible connection, and the

Maurer-Cartan curving is compatible with it.

2. Gv admits a holomorphic structure with holomorphic connective structure if and

only if the pairing (-,-) : g ® g — t from Theorem 3.43 satisfies (-,-)"1792 = 0. In
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this case, there is a unique such holomorphic structure with holomorphic connective
structure up to holomorphic isomorphism with holomorphic connection and the

Maurer-Cartan curving is holomorphic.

Proof. We only prove 1, as 2 follows similarly. If Gy is holomorphic with compatible
connective structure, then take cocycle data (3.106) such that A; ;,, M;, are of type
(1,0) and compute O, (-,-) as in Remark 3.44. Since dA?l’?l =0, dMl-OQ’2 =0, it follows
that (-,-)%2 = 0, as we wanted to show. But we also see that (95)0’2 = 0, which means
that the (0,2)-part of the Maurer-Cartan curving is an integrable 1-semiconnection for
Gv, and that the (0,1)-part of the connection on m is an integrable 1-semiconnection
on m. Since the (0,2)-part of the Maurer-Cartan curving and the (0,1)-part of the
connection on m are preserved by isomorphisms of smooth Gy-bundles, this means that
a smooth Gy-bundle admits at most 1 structure of holomorphic multiplicative gerbe
with compatible connective structure, and it does so whenever the (0,2)-part of the
Maurer-Cartan curving and the (0, 1)-part of the connection on m are integrable as 1-
semiconnections. That is, when the corresponding p, v from (3.109) satisfy u%3 = 0 and

192 = 0, which happens precisely when (-,-)%? = 0. O

For G a smooth multiplicative T-gerbe over G, recall from Definition 3.53 the notion of
an equivariant structure on a trivialization of exp*G — g. We can analogously define a
holomorphic equivariant structure on a holomorphic trivialization of exp*G — g. Then

the proof of Theorem 3.54 can be adapted to yield the following result.

Corollary 5.7. Let G, T be complex Lie groups with T abelian and let G be a holomor-
phic multiplicative T-gerbe over G. Then,

1. G admits a holomorphic connective structure if and only if every holomorphic triv-

talization € of exp*G — g admits a holomorphic equivariant structure.

2. If (-,-) 1 g® g — t corresponds to a holomorphic connective structure on G, then
any holomorphic trivialization € can be equipped with a holomorphic connection
such that the covariant derivative of a holomorphic equivariant structure of is
n° € QYO(G x g, t) defined by

M(g) (Vg + 1) 1= 2(v, g™ "g). (5.13)

Recall the fibrewise complexification £& of a gerbe £ from Definition 5.1. Upmeier
[268] used the theory of Stein manifolds to construct a holomorphic C*-gerbe with holo-

morphic connective structure over GL(n,C) that restricts over U(n) to the fibrewise
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complexification of the U(1)-gerbe String(U(n)). The following theorem generalizes

that construction.

Theorem 5.8. Let K, Tr be compact, connected Lie groups with Tr abelian and let
Je IR = T, ji : K — G be their complezifications. For K any Tr-multiplicative gerbe
over K there is a unique holomorphic multiplicative T'-gerbe with holomorphic connective
structure Gy over G such that j7.G = KC as smooth multiplicative T-gerbes over K. We

call Gy the complexification of K.

Proof. Let (-,-) : £t® ¢t — tg be the pairing associated to K via Corollary 3.45, and
let (-,-)c : g ® g — t be its complexification. If Gy as in the theorem exists, then by
Proposition 5.6 its pairing g®g — t must be (-, )¢, as it must be C-linear and restrict to
(-,-) on ¢, so let us show that there exists a Gy with pairing (-, -)c. By Theorem 3.43, this
happens if and only if the forms pc = :(0XA[0LAOL)) ¢, ve = — (9707 Ng360™) ¢ determine
[uc, —ve,0,0] € HY(BG,t) such that exp([uc, —ve,0,0]) = 0 € H*(BG,T). Now the
inclusion jg : K — G is a homotopy equivalence, therefore there is a commutative
diagram
HYBG,t) =2 HYBG,T)
iie| iie|

H*BK,t) — HYBK,T)

where the vertical arrows are isomorphisms, and it is clear that jj[uc, —vc,0,0] =
[, —1,0,0] for u, v given by (3.109). Now we have exp([u, —v,0,0]) = 0 because of
the existence of I, and so exp([uc, vc, 0,0]) = 0, implying that there is a smooth multi-
plicative T-gerbe with connective structure Gy over G whose associated pairing is (-, -)¢.
Moreover, it follows from Proposition 5.6 that Gy has one and only one holomorphic
structure with holomorphic connective structure. In principle, Theorem 3.43 implies
that Gy as a smooth gerbe is only determined by (-,-)c up to flat gerbes, i.e., classes
in H3(BG,T), but again since j} : H3(BG,T) — H3(BK,T) is an isomorphism, this
dependence is fixed by imposing j*G = KC. O

Remark 5.9. Theorem 5.8 is also true for K non compact and not connected and 1" non
compact, as long as K and Tg are Lie groups admitting complexifications G and T' with
jr + K — G a homotopy equivalence and K is a multiplicative Tr-gerbe with connective

structure over K.

Example 5.10. Let Ag C Vj, Ay C Vi be real lattices inside complex vector spaces,
let (-,-) : Ag ® Ag — Ay be a bilinear form and write (-,-) = (-,-)sy + (-,-)sx for its
decomposition in symmetric and skew-symmetric forms. Let 7 be the corresponding
multiplicative V;/Aj-gerbe with connective structure over V5/Ag from examples 3.38,

3.46. Then we note the following.
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1. We see by construction that 7 is a holomorphic multiplicative gerbe < (-,-) is
C-linear in the first entry. In this case, the connection 8 is compatible with the

holomorphic structure.

2. The connection 6 is holomorphic < (-, -) is C-linear in both entries.

Moreover, recall from Example 3.14 that these multiplicative gerbes are actually classi-
fied by (-,-)sy. We obtain the following.
1. T is isomorphic to a holomorphic multiplicative gerbe < (-, -)85,2 = 0. In this case,

it carries a compatible connective structure.

2. T isisomorphic to a holomorphic multiplicative gerbe with holomorphic connective

structure < (-, )5 T = 0.

This gives a direct proof of Proposition 5.6 for this family of multiplicative gerbes with

connective structure.

Example 5.11. For G a complex reductive Lie group with compact form K, Brylinski
[59] constructs a holomorphic C*-gerbe G over G that restricts over K to the fibrewise
complexification of the gerbe String(K') from Example 3.37 (see also an alternative con-
struction when G = GL(n,C) in [268], based on [195, 200]). It follows from Theorem 5.8
that G admits a unique holomorphic multiplicative structure with holomorphic connec-
tive structure, which defines the complexification of String(K’) as a multiplicative gerbe.
As in the smooth case (cf. Example 3.37), there is no known explicit cocycle description
of the multiplicative structure on G but there is an explicit equivariant structure in the

original work of Brylinski [59].

5.1.3 Maurer-Cartan forms and shifted holomorphic symplectic struc-

tures

Definition 5.12. A complex Lie groupoid X is a Lie groupoid as in Definition 3.1
such that Xy, X; are complex manifolds and such that all structure maps are holo-
morphic. A holomorphic anafunctor between complex Lie groupoids is an anafunctor
of Lie groupoids whose total space is a complex manifold, and such that all structure
maps are holomorphic. A holomorphic transformation between holomorphic anafunc-
tors is a transformation of anafunctors which is holomorphic as a map between complex

manifolds.

A complex Lie 2-group & is a Lie 2-group (8,1, m, a,r,[) as in Definition 3.9 such that

® is a complex Lie groupoid and 1, m, «, r, [ are holomorphic. A holomorphic action
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of a complex Lie 2-group (&,1,m,a, 1) on a complex Lie groupoid P is an action as

in Definition 3.16 such that p, r?, o are holomorphic.

A (left) adjoint action (cf. Definition 3.23) of a complex Lie 2-group & with Lie 2-algebra
h b g is compatible with the holomorphic structure if, for every g € &g, Ad(g) : g — ¢
and Ad(g) : h — b are C-linear. For such a left adjoint action, a (right-invariant)
Maurer-Cartan form (6%, 0') on & is compatible with the holomorphic structure if 80, 61
are of type (1,0). A (left) adjoint action is holomorphic if the actions of & on both g
and h are holomorphic, and in this case a (right-invariant) Maurer-Cartan form (6°,6!)

on & is holomorphic if 0°, 6! are of type (1,0) and satisfy 90° = 0, 99! = 0.

Example 5.13. Let (é, H, f,>, k) be a Lie crossed module with & : Gx§— bhan
adjustment, as in Definitions 3.56, 3.58. By Propositions 3.57 and 3.59, this determines

a Lie 2-group & with an adjoint action Ad and a Maurer-Cartan form (69, 61).

1. & is a complex Lie 2-group if and only if G, H are complex Lie groups and f, >

are holomorphic.

2. In that case, Ad and (6°,0') are compatible with the holomorphic structure if and

only if & is C-linear on g.

3. In that case, Ad and (6°,6') are holomorphic if and only if % is a holomorphic

function.

Let & be a complex Lie 2-group with Lie 2-algebra b by g. In the following proposition
we regard the dual g* 5 h* of this chain complex as the complex derived manifold (cf.

Section 2.2.2) (g*, h*[-2],Q), where Q is given simply by the ‘curvature’ g* Iy h*.

Proposition 5.14. Let & be a complex Lie 2-group with Lie 2-algebra b b g. Then,
a holomorphic left adjoint action determines a holomorphic action of & on the derived
manifold g* Iy bh* and a holomorphic right-invariant Maurer-Cartan form for this action

defines a 1-shifted holomorphic symplectic structure on the derived quotient 2-groupoid

(g* E> h*)//® (cf. Remark 3.18).

Proof. Analogous to Proposition 3.27. We just emphasize that the 1-forms A\°, \! defined
as in (3.68), (3.69) are of type (1,0) as long as the Maurer-Cartan form is compatible
with the holomorphic structure, while the 2-forms w® = d\°, w! = dA! are of type (2,0)

as long as the Maurer-Cartan form is holomorphic. O

We proceed to summarize the holomorphic analogs of the results in Section 3.2.4 that re-
late multiplicative gerbes and connective structures on them to Lie 2-groups and Maurer-
Cartan forms on them, and to shifted symplectic structures on associated derived stacks.

The proofs of these results are completely analogous to their smooth counterparts.
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Corollary 5.15. Let G, T be complex Lie groups with T abelian. There is an equivalence
of bicategories between the bicategory of central extensions of G by BT as complex Lie

2-groups and the bicategory of holomorphic multiplicative T-gerbes over G.

Proposition 5.16. Let & be the complex Lie 2-group corresponding to a holomorphic
multiplicative T-gerbe G — G by Corollary 5.15.

1. There is a holomorphic adjoint action of & on t o g given by the adjoint action

of G on g and the trivial action on t.

2. A compatible connective structure on G determines a compatible right-invariant

Maurer-Cartan form on & for this adjoint action.

3. A holomorphic connective structure on G determines a holomorphic right-invariant
Maurer-Cartan form on & for this adjoint action. In particular, it induces a 1-

shifted holomorphic symplectic structure on (g* 2 t)//&.

Proposition 5.17. Let & be the complexr Lie 2-group corresponding to a holomorphic
multiplicative C*-gerbe G — G by Corollary 5.15. Then, a holomorphic connective
structure on G determines a 2-shifted holomorphic presymplectic structure on B& x C*
defined by

%w* (0 A6 A O]) + di A ©° € OFO(B®, x C*,C), (5.14)

t* (g10% A g307) + dt A 0! € Q20(B&,y x C*,C), (5.15)

where t is the coordinate in C*, w : B®,, — BG,, is the projection map and (-,-) is the
pairing associated to the connective structure by Theorem 3.483. This is in fact 2-shifted

holomorphic symplectic if and only if (-,-) is non-degenerate.

5.2 Holomorphic principal 2-bundles

5.2.1 Semiconnections on principal 2-bundles

Fix X a complex manifold, G, T' complex Lie groups with 7" abelian and (Gyv, mv, «) a
holomorphic multiplicative T-gerbe over G with holomorphic connective structure as in
Definition 5.4.

Definition 5.18. A holomorphic principal G-bundle over X is a principal G-bundle
(P,P,p,a”) over X (cf. Definition 4.2) such that P is a holomorphic manifold with
the action of G on P holomorphic, P — P is a holomorphic gerbe and p, o are an

isomorphism and a 2-isomorphism of holomorphic gerbes. A connection (V,V,, A, B)
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(cf. Definition 4.7) on it is compatible with the holomorphic structure if (V, B) is com-
patible with the holomorphic structure of the gerbe P — P, V, is compatible with the
holomorphic isomorphism p and A € Q(P, g) is of type (1,0). Note FE’Q =0, H%? =0

in this case.

A holomorphic principal Gy -bundle over X is a holomorphic G-bundle (P, P, p, a”) over
X with a connective structure (V, V) as in Definition 4.7 such that V is a holomorphic
connective structure on P — P and V,, is a holomorphic connection on p. A connection
(A, B) for this connective structure is compatible with the holomorphic connective struc-
ture if B is compatible with the holomorphic connective structure V and A € Q1(P, g)
is of type (1,0). Note FE{Q =0, H?193 = 0 in this case.

In terms of the cocycle data from Propositions 4.4 and 4.12, a holomorphic G-bundle
is one for which gu, 04y and 74 can be chosen to be holomorphic. In that case, a
compatible connection is one for which V,; can be chosen to be compatible with the
holomorphic structure on o4, A, can be chosen to be of type (1,0) and B, can be
chosen to be of type (2,0) + (1,1). On the other hand, a holomorphic Gy-bundle is
one for which gup, O, Tabe, Vap can be chosen to be holomorphic and in that case a
compatible connection is one for which A, can be chosen to be of type (1,0) and B,
can be chosen to be of type (2,0). It can be proven similarly as in Proposition 4.14
that compatible connections on holomorphic G-bundles and on holomorphic Gy-bundles

always exist.

Recall that, for any complex Lie group G, the category of holomorphic G-bundles is
equivalent to the category of smooth G-bundles with integrable semiconnections [101].
Here a semiconnection on a smooth G-bundle P is defined as an equivalence class
of smooth G-connections A € Q'(P,g), where we identify A; ~ Ay if A — Ay €
OY09(X, ad P), and we say that it is integrable if F2’2 = 0 for any choice of representing
connection. Recall also that we proved the equivalent result for gerbes in Proposition
5.2, based on Definition 5.1.

Definition 5.19. The bicategory of smooth G-bundles with integrable 1-semiconnections

is defined in the following way.

1. A smooth G-bundle with integrable 1-semiconnection (P, P,p,a”, D, Dp,DP) is a
smooth G-bundle (P, P, p, a”) with:
e An integrable semiconnection D4 on the G-bundle P — X.

e An integrable 1-semiconnection Dg on the gerbe P — P, where we see P as

a complex manifold with the complex structure induced by D 4.
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e An integrable 1-semiconnection D? on the isomorphism of gerbes with 1-

semiconnection
p:(p"P®g*G,p"Dp ® g*(©%)) = ((pg)*P, (p9)* D)

that is preserved by a”. Here we see ©F as a 1-semiconnection by Proposition
5.6.

2. An isomorphism of smooth G-bundles with integrable 1-semiconnections
(u,6,0%, D%) : (P!, P',p! 0!, DY, D, D) = (P*,P?, p*, 0?2, D}, D, D7)

is an isomorphism of smooth G-bundles (u, ¢, a®) such that u*D?% = D}4 with an in-
tegrable 1-semiconnection D? on the isomorphism of gerbes with 1-semiconnections
¢ : (PY, D1) — (u*P? u*Ds) that is preserved by a®.

3. A 2-isomorphism of smooth G-bundles with 1-semiconnections v : (u, ¢, a®, D?) =
(W', ¢, a?, D?) is a 2-isomorphism 1 of smooth G-bundles such that ¢ : ¢ = ¢/

preserves the 1-semiconnections D?, D?.

We define in an analogous way the bicategory of smooth G-bundles with integrable

2-semiconnections.

The following proposition follows directly from Definition 5.19 and Proposition 5.2.

Proposition 5.20. The bicategory of holomorphic G-bundles is equivalent to the bicat-
egory of smooth G-bundles with integrable 1-semiconnections. The bicategory of holo-
morphic Gy-bundles is equivalent to the bicategory of smooth G-bundles with integrable

2-semiconnections.

For a fixed smooth gerbe £ Proposition 5.20 implies that H (L) is the space of holo-
morphic structures on £ and that H'(L) is the space of holomorphic structures with
holomorphic connective structure on £. For a fixed smooth gerbe with connective struc-

ture Ly we recall that A(Ly) is the set of curvings on Ly and we write the following.

1. D(Ly) = A(Ly)/Q*TH(X,1).
2. D(Ly) = A(Ly) /220X, 1)
Finally, we write BTgo,1(X) for the groupoid whose objects are T-bundles over X

equipped with an equivalence class of connections, up to addition of 1-forms in Q'9( X t),

and whose arrows are isomorphisms of T-bundles whose covariant derivative with respect
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to any choice of representing connection is of type (1,0). This is a 2-group, with product
given by tensor product of T-bundles with connection. All these objects are considered

with Fréchet topology.

For a fixed smooth G-bundle P we note that we can form a groupoid Djn:(P) (resp.
D!

'+ (L)) with objects integrable 1-semiconnections (resp. 2-semiconnections) on P and

with arrows integrable 1-semiconnections (resp. 2-semiconnections) on the identity au-
tomorphism of P. The 2-group Gauge(P) acts on these in a similar way to the gauge

action on connections. Then we define the quotient 2-groupoids (cf. Section 3.1.2)

1. H(P) := Dine(P)//Gauge(P).

2. H'(P) =D, ,(P)//Gauge(P).

Proposition 5.20 implies that H(P) is the space of holomorphic structures on P and that
H'(P) is the space of holomorphic structures with holomorphic connective structure on

P.

For a smooth Gy-bundle Py, write Dj,:(Py) for the set of integrable 1-semiconnections
(Da,Dp,DP) on P such that {(Dp);j, DI} is the (0,1)-part of the given connective

structure. We write D/

't (Pv) for the set of integrable 2-semiconnections whose under-

lying connective structure is the given one.

It is convenient to describe 1l-semiconnections and 2-semiconnections on G-bundles in
a more straightforward way than the one in Definition 5.19. For this, we recall from
Proposition 4.14 that the space A(Py) of connections on a Gy-bundle over X is a torsor
for the group Q'(ad P) x ..y *(X,t) with product given by (4.23) and define similarly

e

subgroups Q'(ad P) x (. y Q*0t11(X t) and QM0(ad P) x ..y Q*0(X, ).

.

Proposition 5.21. Let Py be a smooth Gy-bundle. There are canonical bijections

Dint(PV) — {(Av B) € A(PV) ‘ F,%Q =0, H% = O}/QLO(adP) X QQ70+171(M7 t)?

e

Dint(Py) = {(A, B) € A(Py) | Fy* =0, H'**%% = 0}/Q"(ad P) x () Q**(M, ).
These maps send an integrable 1-semiconnection (resp. an integrable 2-semiconnection)
(Da,Dp,DP) to the set of all connections on Py that are compatible with the holo-
morphic structure (resp. holomorphic structure with holomorphic connective structure)
induced by (Da,Dp, D).

Proof. We prove the case of integrable 2-semiconnections, as the other one is similar.

It follows from Definition 5.19 and Proposition 5.2 that an element of D;,(Py) is a
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pair ([A],[B]) of an equivalence class of connections A on the G-bundle P such that
Fg’z = 0 up to addition of 2%°(ad P) (yielding a holomorphic structure on P such
that A € Q19(P,g) and which we use in the following), and an equivalence class of
curvings B on the gerbe with connective structure Py — P whose curvature H is of
type (3,0) 4+ (2,1) and such that the curvature of py : p*Py ® ¢*Gy — (pg)*Py with
respect to p* B®g*OF, (pg)*B is some 75 € Q(P x G, t) of type (2,0), up to addition of
Q29(P,t). For such pair ([A],[B]) choose a representing connection A € [A]. We claim
that we may always choose a representing curving B € [B] such that 75 = —R(A),
for R(A) as in Lemma 4.6. This is because for any representing B € [B] we have that
5+ R(A) € Q?Y(P x G, t) satisfies (75 + R(A)) = 0 for § the simplicial differential of
P//Gl, hence there is b € Q*0(P,t) with 6b = 75 + R(A). Then for such a choice of B
we have (4, B) € A(Py) with F}? = 0 and HV2103 = 12403 4 0§(A)12+03 = 0; it

is easy to check that this gives a bijection as above. O

In light of Proposition 5.21, we define

S
3

4
i

A(Py) /" (ad P) x .y Q*0TH1(M, b),

(5.16)
A(Pg) /0 (ad P) x .., @*°(M, 1),

o

B

4
i

B

and refer to these as the spaces of 1-semiconnections and 2-semiconnections, respectively.
Finally, for Py a smooth Gy-bundle we define the 2-group Gauge(Pyo,1) whose objects
are equivalence classes of (u,pv,?) € Gauge(Py), where we identify (u,ov,9) —
(u, v + A, ) for A € QYO(X,t), and whose arrows [(u, v, v¥)] — [(u, ¢, 1) are 2-
isomorphisms ¢ : (u, @, ) — (u,¢’,1') whose covariant derivative with respect to any

choice of representing connection on ¢, ¢’ is of type (1,0).

Proposition 5.22. Let Py be a smooth G-bundle with connective structure. Then

1. Gauge(Pyo,1) acts on D(Py) preserving Dint(Pv) and there is a canonical map
of simplicial topological spaces Dini(Pv)//Gauge(Pygoi) — H(P) inducing weak

homotopy equivalence on geometric realizations.

/
wnt

2. Gauge(Py) acts on D(Py) preserving D, . (Pv) and there is a canonical map of

simplicial topological spaces D}, ,(Py)//Gauge(Py) — H'(P) inducing weak homo-

wnt

topy equivalence on geometric realizations.

Proof. 1t follows directly from Propositions 4.17, 5.3 and 5.21. 0

Proposition 5.23. Let Py be a smooth G-bundle with connective structure over X

described in a cover {X,}aeca by cocycle data gap, Tab, Tabe, Vab aS in Propositions 4.4,
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4.12. Then an integrable 1-semiconnection on Py is given by
A, € Q%Y (X, 0), Do € Q% (X,,0) (5.17)

such that

Ap — Ad(g,N) Aa = (g1,0%)%1,
Dy — Dy = Fi2 — (Ag A (g6,

5.18
8Aa:—%[Aa/\Aa], (5.18)

= = 1
ODq = —(04a A Aa) = 3{Aa A [Aa A Adl),
where Fyy, is the curvature of Vap. An integrable 2-semiconnection on Py is given by
Aq € Q" (X4, 9), Do € QMTO2(X, 1) (5.19)

such that

Ay — Ad(g, ) Aa = (g1,0%)%,
Dy — Dy = Fi' %% — (A A g205) + ((5,6%)10 A A),

) 5.20
8Aa:—%[Aa/\Aa], (5:20)

1
(dD,)"2103 = —(dA, N Ay) — 5 (Aa A [Aa A Ad]) = 0.
An isomorphism Py — 73% described by (pq, o, v, Yap) as in Proposition 4.19 acts on

a 1-semiconnection (Aq, Dy) for Py by sending it to the 1-semiconnection (A2, D?) for
PZ with

42 = Ad(pa) Aq — (92070, (5.21)
D2 = Dy — {(¢36")" A Aa) — 22, (5.22)

where Fy, is the curvature of ®q v, and it acts on a 2-semiconnection (Aq, Dq) for Py

by sending it to the 2-semiconnection (A%, D2) for P& with

A?L = Ad(@a)Ai - (@ZQR)OJa (5.23)
D2 = D~ (95092 A ALY + (42 A (5187)10) — (050910 A ALy — FR102. (5.20)

Proof. We prove the result for 2-semiconnections, as the other follows similarly. Straight-

forward computations show the following.
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1. If {A,}, {Ba} is a connection with F$? =0, H'2103 =0 | then {40},
{Dg := Ba'T0% 4 (AFY A AT} satisfies (5.20)

2. Given A4, € Q%" (X,,9), D, € QM1T02(X, 1) satisfying (5.20), one can always
find a connection (Ag, B,) such that D, = By t%2 4 (ALY A ADT).

3. Two connections differ by a € Q'9(ad P), b € Q*°(X,t) if and only if the corre-
sponding data (A9, By %% + (AY° A AY1)) coincides.

4. Under the map (Aq, By) — (AY, B2 4 (A9 A ADYY), equations (4.36), (4.37)
become (5.23), (5.24).

Hence, the result follows from Proposition 5.21. 0

5.2.2 The Chern correspondence

We fix compact connected Lie groups K, Tr with Tk abelian, a multiplicative Tr-gerbe I
over K and a complex manifold X. We write G, T' and Gy for the complexifications of K,
Tr, K, respectively, as in Theorem 5.8, and we write j : K — G for the complexification

map.

If P, — X is a K-bundle, then its fibrewise complexification is the smooth G-bundle
PF = (P, xG)/K, where k € K acts as (p, g)-k = (pk,k~1g). Note there is a canonical
K-equivariant map [ : P, — P;LC. This defines a functor from K-bundles to G-bundles.
It can also be promoted to a functor from K-bundles with connection to G-bundles
with connection which we denote by (P, Ay) — (PF, AY). Recall also the fibrewise

complexification of gerbes from definition 5.1.

Proposition 5.24. Let (Pp, Ph, pn, ) — X be a K-bundle. Then, there is a unique
smooth G-bundle (P, P, p,a’) — X such that P = P and

1. There is an isomorphism of T-gerbes ¢ : ’P;(L: — I*P over Py.

2. There is a 2-isomorphism of T-gerbes over Py x K

o5

PPy @ k*KC (pk)*Pf
posid| - |y

* - * N *
Up) P @ k)G — =iy, Up)i(R)*P

commuting with afh and of .

We call (P,P) the fibrewise complexification of (P, Py) and denote it by (PF,PF).
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Proof. If such G-bundle exists then it is unique up to isomorphism because if P!, P? — P
are any two such bundles then p; ® pgl, alt ® arz’ equips the T-gerbe P! @ (P?)* — P
with the necessary descent data to give a T-gerbe over X which is trivial precisely
when P! is isomorphic to P? as G-bundles [199]. But since K — G is injective this 7-
gerbe can also be obtained by descending [*P! ® [*P; and the maps ¢, 1 give precisely
a trivialization of the descent of this T-gerbe. In order to construct the G-bundle,
choose cocycle data {gaph,Tabh, Tabe,n ) for (Ph, Py.p) over a cover {Xg}qea of X as
in Proposition 4.4. Then define g, := j o ggb : Xap — G and we note that g7, G =
(ggb)*j*g = (ggb)*/C(C; hence (gap, O'Sbﬁ,Tg:bc’h) is cocycle data for a G-bundle with ¢,

as above. O

Remark 5.25. Fibrewise complexification can also be promoted to a functor of bicat-
egories C' : (Smooth L — bundles) — (Smooth G — bundles). Similarly, there are
complexification functors between the bicategories of bundles with connective struc-
tures and between the bicategories of bundles with connections which we denote by
(Phs Pr.vy,» Ans Br) = (P, Py, » A By

The Chern correspondence from ordinary gauge theory relates connections on K-bundles
with holomorphic structures on their complexifications [233]. Analogous results for
gerbes appear in [82, 142]. Our next theorem generalizes all these. Recall enhanced
connections from Definition 4.7 and use Remark 4.8 to write ((A, B),g) € A“*(Py) for
an enhanced connection thought of as a pair of a connection (A, B) € A(Py) and a
g € T(S’T*X ®t). Write d°: QP(X,t) — QPFL(X ) for the operator d° := Ji(0 — 9)

and note that it preserves tg-valued forms.

Theorem 5.26. Let Py v, be a K-bundle with connective structure over X and let Py

be its fibrewise complexification. Then

1. There is a canonical bijection
Dint(Py) = {(An, Br) € A(Puyv,) | Fiy? =0, Hy? = 0}/ (X, tg).

This map sends a 1-semiconnection (D, Dpg, DP) to the set of connections on
Ph,v, whose complezification is compatible with the holomorphic structure on Py
determined by (D4, Dp, DP).

2. There is a canonical bijection
D;nt(,PV) — {((Ah7Bh)7g) € Aen(Ph,Vh) ‘ 9072 = 07 F,(L)lf = 07 Hh = dc(g(J7 ))}

This map sends a 2-semiconnection (D4, Dpg, DP) to the unique enhanced con-
nection ((Ap, Br),g9) € A (Pny,) such that g%? = 0 and that the connection
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(AT, B —Jig(J-,+)) on Py is compatible with the holomorphic structure with holo-

morphic connective structure determined by (Da, Dg, DP).

Proof. We only show the proof of part 2, as the other one is similar. Recall (5.16). We
shall prove that the map

¢ : {((An, Bn),9) € A (Prv,) | 9"% =0} = D'(Py)
((Ah,Bh),g) = [A%:’B;(L: - th(‘]'a )]

is a bijection. The theorem will follow then from Proposition 5.21 and the fact that
the curvature (Fa,, Hy) of (Ap, B,) satisfies Fgf =0, H, = d(J-,-) if and only if the
curvature (Fu, H) of (A%, Bf — Jig(J-,+)) satisfies Fg’Q =0, H%?703 = 0. To see that
¢ is a bijection, recall from part 3 of Proposition 4.14 that the space

{((An, Bn), 9) € A" (Prv,) |g°% = 0}

is a Q2(X, tg) x (S T* X ® tg)-bundle over A(P,). Here I'(SYT*X ® tg) stands for
the intersection of the symmetric t-valued tensors of type (1,1) on X with the tg-valued

tensors. On the other hand, the space

D'(Py) = A(Py)/Q"0(ad P) x .y @*°(X, 1)

is a 02(X,t)/Q*°(X, t)-bundle over A(P)/Q'%(ad P). Now the map

A(P,) — A(P)/Q"(ad P)
Ap = [AF]

is a bijection, while the map

Q*(X, tg) x T(SHIT* X @ tg) — Q*(X,1)/Q*0(X, 1)
(bvg) = [b - th(J'7 )]

is an isomorphism of groups. Thus ¢ may be regarded as an equivariant map between

affine bundles with the same fiber over the same space and so it is a bijection. O

We obtain the following corollary, which can be interpreted as saying that holomorphic
Gy-bundles with a reduction to a Ky-bundle are the geometric objects prequantizing
the Hermitian metrics proposed by Yau [280] as a generalization of Kéhler metrics with

the potential to fulfill Reid’s fantasy [217].
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Corollary 5.27. Let (Ph, V) be a K-bundle with connective structure over X. A
holomorphic structure with holomorphic connective structure on its complezification de-

termines an w € QY (X tg) such that
ddw — <Fh VAN Fh> =0, (5.25)

where Fy, € Q%(ad Py) is the curvature of the Chern connection on P,.

Definition 5.28. For (P, V}) a K-bundle with connective structure and a choice
of holomorphic structure with holomorphic connective structure on its complexifica-
tion (P, V), the corresponding enhanced connection ((Ap, By),g)) € A“(Ppyv,) from
Theorem 5.26 is called the wunitary Chern enhanced connection, while the connection

(AL, BY — Jw) € A(Py) is called the complex Chern connection, for w = g(J-, ).

We write now - : g — g, - : t — t for the C-antilinear involutions that leave Jyt and Jitg
invariant, repectively, and we write Im : t — tg, Re : t — Jitg for the two projections,

by analogy with the case tg = iR, t = C.

Proposition 5.29. Let ({g"}, {O'%b’h}7 {T%bc’h}) be cocycle data in a cover { Xy}, of X
for a Ky-bundle (Py,Py.p), as in Proposition 4.4. Let ({ga}, {a%b}, {T%bc ) be holo-
morphic cocycle data for a holomorphic Gy -bundle (P, Py) and let ({pa}, {Pa v}, {¢ar})
be cocyle data for an isomorphism (P, Py) — (P}(F,Pg’h) as in Proposition 4.19. Then

the unitary Chern enhanced connection on (P, Py n) is given by
Al = = (a0 + (z67)0 L,
Bl = —Jm (F2* + 20 = {(950")10 A (930")01) = (220710 A (236 ) |

w=—JiRe (Fy'' = ((056")" A (950M)"1)
(5.26)

while the complex Chern connection on (P, Py) is given by

Aq = (@508 0 + (0L )01,

2.0 0,2 INLO A 7= ALN01 (5.27)
By = F" + Fo " + ((9a0)"" A (¢10F)01),

where Fy, is the curvature of @, v .

Proof. Let F é‘b be the curvature of O'%b’h and let Fy; be the curvature of a%b . Recall from
(4.39) that

Fup— (Aa N gsp0™)) = (Fily = (AR A (gl)"0")) = (Fo+ (950" A Ap)) — (Fu + (930" A Au)).
(5.28)
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Then take — JIm((-)11+2(:)%2), (1)294-(-)02 and —JiRe((-)1') on both sides to see that
(5.26) and (5.27) are well-defined connections on (P, Py 1), (P, Py), respectively. Use
(4.36), (4.37) to prove that ({¢a}, {®av}, {¥as}) sends (Ag, By) to (AR, B — Jiw). O

The classical Chern correspondence also states that, if Pﬁ, P,? are K-bundles with holo-
morphic structures on their complexifications determining Chern connections A}, A}QL,
then an isomorphism of K-bundles Pﬁ — P}% is flat with respect to A}L, A%L precisely
when its complexification is holomorphic with respect to the corresponding holomorphic
structures. Similarly, our Chern correspondence can be improved to an equivalence of
bicategories of which Theorem 5.26 is the result at the level of objects. To state this

equivalence, consider the forgetful functors of bicategories

F' : (Holomorphic G-bundles) — (Smooth G-bundles),
Fy : (Holomorphic Gy-bundles) — (Smooth Gy-bundles)

and the complexification functors of bicategories

C : (Smooth K-bundles) — (Smooth G-bundles),
Cy : (Smooth Ky-bundles) — (Smooth Gy-bundles).

We define the following bicategories as categorical fibered products.

(Holomorphic K-bundles) := (Holomorphic G-bundles) X ~(Smooth K-bundles),

(Holomorphic Ky-bundles) := (Holomorphic Gy-bundles) p X ¢ (Smooth Ky-bundles).

Corollary 5.30. 1. The bicategory of holomorphic IC-bundles is equivalent to the
bicategory D with:

e An object in D is an equivalence class of KC-bundles with connection (Pp, Vi, Ap, Br)
whose curvature satisfies Fgf =0, H2’3 = 0 and we identify (Pn, V, An, Bp) ~
(Ph, Vi, An, By +b) for any b € QX tg).

o Isomorphisms (Pn, Vi, An, [Br]) = (Ph2, Vh2, An2, [Bh2]) in D are isomor-
phisms of IC-bundles with connection (Pp, Vi, An, Br,) = (Ph2, Vh2, An2, Bp2)
that are flat up to forms in Q1 (X, tg).

o 2-isomorphisms in D are flat 2-isomorphisms between the corresponding iso-

morphisms of K-bundles with connection.

2. The bicategory of holomorphic Kv-bundles is equivalent to the full sub-bicategory
D’ of the bicategory of smooth K-bundles with enhanced connections ((Ap, Bp),g))
spanned by objects such that g%? =0, Ffl’hz =0, H, =dg(J-,-).
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Proof. We show the proof of part 2, as the other one follows similarly. First, it fol-
lows from Proposition 5.20 that the bicategory of holomorphic Ky-bundles is equivalent
to the bicategory whose objects are Ky-bundles with 2-semiconnections in their com-
plexifications, whose isomorphisms are isomorphisms of Ky-bundles that complexify to
isomorphisms of 2-semiconnections, and whose 2-isomorphisms are 2-isomorphisms of

KC-bundles preserving the 2-semiconnections.

Theorem 5.26 implies then that every object in (Holomorphic Ky-bundles) can be de-
scribed by an object in D', and conversely. An isomorphism in (Holomorphic Ky-bundles)
between the Ky-bundles corresponding to (Pp, Vi, Ap, Bh, g) and (Ph 2, Vi 2, A2, Bh2, 92)
is then an isomorphism of Ky-bundles (u, p%,a") : (Py,Vy) — (P?,V3) such that u
is flat (by the classical Chern correspondence) and that (¢%)C has curvature of type
(2,0) with respect to the curvings By, 1 — Jigi(J-,-) and u*(Bp 2 — Jig2(J-,-)) (by The-
orem 5.26 and Proposition 5.2). But its curvature with respect to these curvings
equals its curvature with respect to By 1, u*Bp 2 (which is tg-valued because so are
By, B and @) plus the Jitg-valued form Ji(g1(J-,-) — g2(J-,-)); such a sum can
only be of type (2,0) when both terms are zero. This means that all isomorphisms in
(Holomorphic Ky-bundles) are described by isomorphisms in D', and conversely. The

same holds trivially for 2-isomorphisms, which concludes the proof. O

5.2.3 Holomorphic Atiyah algebroids

Definition 5.31 ([126]). Let X be a complex manifold and let V' be a complex vector
space. A complex V-Courant-Dorfman algebroid over X is a quadruple (E', (-,-),[,+],d),

where
1. B — X is a smooth complex vector bundle,
2. () T(E") @coo (o) T(E') = C*(X, V) is a symmetric C>°(X, C)-bilinear map,
3. [ ] : T(F') @c T'(E") = I'(E') is a C-bilinear map
4. d: C®(X,V) —T'(E) is a C-linear map
satisfying the same axioms as in Definition 4.22. In particular, for V a real vector space
and E a V-Courant-Dorfman algebroid, the complexification of E is the complex V &g C-
Courant-Dorfman algebroid F ®@g C with its obvious bracket, pairing and differential.

A holomorphic V-Courant-Dorfman algebroid over X is a quadruple (@, (-,-), [, ], d),

where

1. Q@ — X is a holomorphic vector bundle with sheaf of sections also denoted by Q,
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2. () Q®oy Q = Oxy is a symmetric morphism of sheaves,
3. []: Q@ ®c @ — Q is a morphism of sheaves,

4. d: Oxy — @ is a morphisms of sheaves
such that the same axioms as in Definition 4.22 are satisfied.

If E' is a complex V-Courant-Dorfman algebroid, then there is a C-linear anchor map
7w B — TcX with 7([e1,e2]) = [m(e1),m(e2)] as in Definition 4.22. We note that
7 YT X) C E' is always a V-Courant-Dorfman subalgebroid. We say E’ is transitive
if 7 is surjective. In this case, or more generally if 7 : B/ — T%!'X is surjective, we
define an (involutive) lifting of T®'X to E' to be an isotropic (involutive) splitting
s:TWX - B of m: 771 (T X) ¢ B/ — T%' X. An involutive lifting of T%!'X to
E’ determines a holomorphic V-Courant-Dorfman algebroid Qg s as in [127]. Namely,
write L := s(T%'X) C E" and define Qp , := L*/L, with holomorphic structure given
by
Oxe = [s(X),¢] mod L,

for X e T(T%'X), e € T(L*+/L) and & € T(L*) any representative of e. Then (-,-), [, "]
and dg are well-defined on holomorphic sections of Qg s by restricting them from L+,
This construction is related to the description of holomorphic G-bundles and holomorphic

Gy-bundles in terms of semiconnections from Theorem 5.26.

Proposition 5.32. Let X be a complex manifold and let Gy be a holomorphic multi-

plicative T-gerbe with holomorphic connective structure.

1. A smooth Gy-bundle (P, Py) over a complex manifold X gives rise to a complex

t-Courant-Dorfman algebroid E;Dv fitting in a sequence
0—=T'X®t— Ep_ — AtcP — 0, (5.29)

where AtcP := (TP/G ® C)/(ad P)%' is the complex Atiyah algebroid of P. The
quotient m~H (T X) /(T* X @ )10 is also a complex t-Courant-Dorfman algebroid.

2. If Gy 1is the complezification of Ky and Py = Pﬁvh, then E;Dv = FES

Ph,v,,”
3. (Integrable) 1-semiconnections on Py are in bijection with (involutive) liftings of

TOYX to 7Y (T X)) /(T*X @ )10, (Integrable) 2-semiconnections on Py are in
bijection with (involutive) liftings of T®' X to E;Dv.
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4. A holomorphic Gy-bundle (P, Py) over X gives rise to a holomorphic t-Courant-

Dorfman algebroid Qp, fitting in a sequence
0— (T"X @0 = Qpy — Aty P — 0, (5.30)

where Aty P = TYOP/G is the holomorphic Atiyah algebroid of P. Compatible

connections on (P, Py) are in bijection with isotropic splittings of Qpy, — T1°X.

5. Given an integrable 2-semiconnection on a smooth Gy-bundle Py, the holomor-
phic Courant algebroid constructed from E;Dv and the involutive lifting of TO1X
of 3 coincides with the holomorphic Courant algebroid constructed in 4 from the

corresponding holomorphic Gy -bundle.

Proof. For 1, let ({gab}, {0ab v}, {Tave}}) be cocycle data for (P, Py) in a cover { X, }aca
of X and construct E;DV by gluing TX, @ C® gd T* X, ® t as in the proof of Theorem
4.23. Equivalently, E' = Ep, ® C/(Kerm)%!. With this description, 2 is clear and
the formula for the bracket and pairing in Theorem 4.23 implies that (T*X ® t)10
is an isotropic ideal inside 7= }(7%1X), so that the bracket and pairing descend to
a1 (T X)/(T*X @ t)10. For 3, note that connections on Py induce complex linear
splittings of E;’v — TX ®C as in Theorem 4.23, and check how these splittings behave
when moving the connection by a € Q'9(ad P), b € Q@O+ (X t). The relation
between being integrable and involutive follows from the formula for the bracket in
Theorem 4.23. For 4, let ({gab}, {Tab,v }s {Tabc})) be holomorphic cocycle data for (P, Py)
(so in particular g%,0 € QY9(X,g) and F,, € Q*°(X,t)) and construct Qp, by gluing
TYOX, ®g@ (T*X @ )10 as in Theorem 4.23. Then 5 follows directly by construction,
as we can also use this cocycle data to construct E;Dv as before and then the lifting of
T%! X is obtained in this gauge by gluing 7% X, @ {0} @ {0}. O

Remark 5.33. Given an integrable 1-semiconnection on a smooth Gy-bundle, the holo-
morphic t-Courant-Dorfman algebroid constructed from the involutive splitting of 701 X
to 71T X) /(T*X @ t)10 of part 3 of Proposition 5.32 is simply T+°P/G, the holo-
morphic Atiyah algebroid of P.

Let Gy be a holomorphic multiplicative T-gerbe with holomorphic connective structure.
As in Theorem 4.23, Proposition 5.32 can be enhanced to give a functor from the bicat-
egory of smooth Gy-bundles to the category of complex t-Courant-Dorfman algebroids.
In particular, for a fixed Gy-bundle Py with complex Atiyah algebroid E’ we obtain an
action of Gauge(Py) on E’, which we call the adjoint action. This can be described
as in the proof of Theorem 4.23; in particular, it preserves ad Py := Ker(mw) C E'.
Recall also the 2-group Gauge(P%’l) from Section 5.2.1 and note that it acts similarly
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on ad P& /(T*X ®t)10. The proof of Theorem 4.26 can be adapted in a straightforward
way to yield the following.

Corollary 5.34. Let Gy be a holomorphic multiplicative T -gerbe with holomorphic con-

nective structure and let Py be a smooth Gy -bundle. Then

1. The 2-group Gauge(Pyo,1) admits a model as a complex Lie 2-group with Lie 2-
algebra C* (X, t) dg L(adPL/(T*X & £)10).

2. The 2-group Gauge(Py) admits a model as a complex Lie 2-group with Lie 2-
algebra C*>*(X,t) dg I'(ad Pg).

In both cases, the adjoint action is holomorphic and it admits a holomorphic right-

invariant Maurer-Cartan form in the sense of Definition 5.12.

Remark 5.35. Let Py be a holomorphic Gy-bundle and take a compatible connection
(A, B) € A(Py) to split ad Py, = T*X ® t @ ad P. Define the operator

0 :T(ad P) @ QY(X, 1) — Q% (ad P) @ QM 102 (X 1)

A . (5.31)
v+ € O s+ (dE)VITO2 L 2(F ).

As it follows from Proposition 4.27, the Lie 2-algebra of the 2-group of holomorphic
automorphisms of Py can be described as HO(X, t) 4 K er(9). In particular, the Lie 2-
algebra H°(X,t) LN Ker(r: H(Q) — H°(T'YX)) embeds there but in a non-surjective

way, as one might have expected a priori from Corollary 5.34.



Chapter 6

Geometry of moduli spaces

In Section 2.3.3 we presented the derived moduli stack of flat connections on a G-bundle
P — M, for G a Lie group and M a smooth manifold, and the derived moduli stack
of holomorphic structures on a G-bundle P — X, for G a complex Lie group and X a
complex manifold, and we constructed shifted symplectic structures on them. In this
chapter we show that similar constructions can be performed in the context of higher

gauge theory.

Recall that the ‘derived’ structure of the moduli spaces from Section 2.3.3 arises from
the curved DGLA (Q22(ad P),d",[-,-]) associated to a connection A on a G-bundle P.
This curved DGLA is obtained from a general procedure which takes a Lie algebroid
E — M with a sub-bundle D C E and an ideal L C E such that D' ® L = E, and
produces a curved DGLA structure on I'(A®*D* ® L) whose Maurer-Cartan elements are
in bijection with involutive sub-bundles D’ C F such that D & L = E [156, Section 6.2].
Indeed, applying this construction to E = TP/G, D = s4(TM) for s* : TM — E the
splitting induced by A and L = ad P yields the desired curved DGLA.

In light of Theorem 4.23, we can mimic this construction within the context of higher
gauge theory as follows. Given a multiplicative gerbe with connective structure Gy
and a Gy-bundle Py — M with Atiyah algebroid £ — M, each enhanced connection
((A,B),g) on Py induces a splitting s : TM — E. Deforming ((A, B),g) to a flat
connection is equivalent to deforming s to an isotropic, involutive splitting, and so we
can recast the problem of finding the ‘derived’ structure on the moduli space of flat con-
nections on Py as the problem of finding a curved Lo.-algebra controlling deformations

of a sub-bundle of a Courant-Dorfman algebroid.

177
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The deformation theory of Dirac structures on Courant algebroids was one of the first
problems to be addressed in generalized geometry [179]. Since then, many generaliza-
tions and alternative constructions have appeared [91, 115, 143, 163, 228]. They all use
techniques from generalized and graded geometry to define curved L.-algebras control-
ling the problem of deforming a given Lagrangian subbundle inside a Courant algebroid
D C FE to an involutive Lagrangian subbundle. The L,-algebra is presented upon choos-
ing a Lagrangian complement to L. Note that, for the applications we have in mind, D
and L are coisotropic and isotropic, respectively, but not Lagrangian, so the results in
these papers cannot be applied directly. We propose a more general construction that
yields the previously studied L,-algebras when D and L are Lagrangian, and which is

also related to Loo-algebras in the literature on mathematical physics [13].

Once these Loo-algebras are constructed, defining simplicial derived manifolds repre-
senting our moduli spaces of interest is immediate from Theorem 4.26, which states
that the gauge 2-group of a principal 2-bundle is smooth. In order to construct shifted
symplectic structures associated to these, we recall that the shifted symplectic struc-
tures from Section 2.3.3 were motivated by Theorem 2.29 and the 2-shifted symplectic
structure from Example 2.35. The analog of this in higher gauge theory is the 2-shifted
symplectic structure on B® x R>? from Proposition 3.52, suggesting the existence of
shifted symplectic structures on the moduli spaces of pairs ((A, B), ¢), where (A, B)
is a flat connection on a principal 2-bundle over an oriented manifold M and ¢ is a
non-vanishing constant function on M. As we will see, we can indeed construct such a
shifted symplectic structure if we interpret ¢ as a rescaling of the volume form on M,

relating it with the dilaton from string theory as suggested by [174].

An interesting observation from Section 2.3.3 is that some of the moduli spaces studied
there can be constructed as symplectic reductions or derived critical loci. Recall also
from Examples 2.34 and 2.32 that the shifted symplectic structures on these spaces
are related to the shifted symplectic structure on g*//G from Example 2.33, while in
Proposition 3.27 we constructed an analogous structure for Lie 2-groups with a Maurer-
Cartan form. We can use this result to define Hamiltonian actions of Lie 2-groups and
their corresponding symplectic reductions, as well as derived critical loci for Lie 2-group-

invariant functions, illustrating the constructions with some of our moduli spaces.

In Section 6.1.1 we present our approach to the deformation theory of isotropic, invo-
lutive sub-bundles on a Courant-Dorfman algebroid. In Section 6.1.2 we apply this to
construct derived moduli stacks of flat connections, holomorphic stuctures and holo-
morphic structures with holomorphic connective structures on principal 2-bundles. In
Section 6.2.1 we construct shifted symplectic structures on these moduli spaces, and in

Section 6.2.2 we provide a theory of Hamiltonian reduction for actions of 2-groups which
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we can apply to some of our examples of moduli spaces. Finally, in Section 6.2.3 we

relate these constructions to the study of the Hull-Strominger system from [127].

6.1 Derived moduli stacks

6.1.1 Deformations of isotropic, involutive sub-bundles of a Courant-

Dorfman algebroid

Let E — M be a V-Courant-Dorfman algebroid, let D C F be an arbitrary sub-bundle
and let L C E be an ideal with DN L = {0} and D& L = E. We write I, : E — L
and IIp : E — D for the corresponding projections. Then

'(D*®L)—={D' CcE| D' NL=0}

(6.1)
a— {v+a)|veD}

induces a bijection between isotropic, involutive sub-bundles D’ C E with D'N L = {0},
D'®L=F and a € I'(D* ® L) satisfying

L (X, Y]) + [X, a(Y)] + [a(X), Y] = a(TIp[X, Y]) + [a(X), a(Y)]
(X,Y) + {(X),Y) + (X, Y)) + ((X), a(Y))

Il
o o
—
&
)
S~—

Conditions (6.2) and (6.3) can be modelled as the Maurer-Cartan equation of a curved
DGLA as follows. First, define for p > 2 the vector space KP(D, L) consisting on pairs

(w, T), where

1. 7 € T(AP72D* ® S?D* ®@ V) satisfying

(X1, Xp3, Xp2, Xp 1, Xp) +7(X1, ..., Xp3, Xp1, Xp, X 2)

(6.4)
+ T(Xl') ey Xp—37 va Xp—27 Xp—l) = 07
z
2. w:I'(D)® --- @I'(D) — I'(L) R-linear satisfying
(X1, s [X,) — f(X1, .y Xp) = 0, f e C®(X,R),
(6.5)
W(Xl, ey X4y Xig1, ...,Xp) + W(Xl, ey X1, Xy ...,Xp) =0, 1<i<p—2,
(6.6)

w(Xla "'7Xp—17Xp) + W(Xb "'7Xp7Xp—1) = dE(T(Xla 7Xp))
(6.7)
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We also define
KYD,L):=T(D*® L), KYD,L):=T(L), K YD,L):=C>(X,V), (6.8)

and K% =0 for i < —2.

The bracket [-,-] : KP*(D,L) ® KP?(D, L) — KP1*P2(D, L) is defined as
[(wlle)7 (w277-2)] = ([wth]aT[wsz])v (69)

where

[lewQ](Xla“'vXlerpz) =
Z (_1)0[(‘}1 (XU(1)7 SX3) Xa(pl))a w2 (Xa(p1+1)’ 00y Xa(p1+p2—1) ) Xp1+p2)]

0ESpy py—1

+(_1)p2+1 Z (_1)0[w2(Xa(p1)7-~-aXa(p1+p2—1))aw2(Xo(l)a"'aXcr(pl—l)aXp1+p2)]v
o€Sp1—1.py

(6.10)

Tlwy ,w2] (X17 X Xp1+p2) =

(_1)P2+1 Z (—1)U<W1(Xa(1)7---7Xa(p1—1)7Xp1+p2—1)7w2(Xa(p1)a---7X0(p1+p2—2)7Xp

0€Sp;—1,pg—1

+<w1 (XJ(1)7'-'7 Xa(pl—l) ) Xp1+]72)7 w2 (Xa(p1)7 R Xa(p1+p2—2) ) Xp1+p2—1)>

(6.11)
The differential d : KP(D, L) — KP*1(D, L) is
d(w, ) = (dw,dr + (—1)P"1w?®), (6.12)
where
dw(Xla ey Xp-‘rl) = Z (_1)J[XU(1)7W(XU(2)7 ey Xa(p)7 Xp-‘rl)]
0EST p—1
- (*1)p[w(X1’ s Xp)’ Xerl}
(6.13)

+ Z (_1)Uw(7TM[Xo(1)7XU(2)]7XU(3)’ '"7Xo(p)7Xp+1)

0'652,1,72

- Z (_1)UW(XU(2)a"'aXo‘(p)va[XU(l)aXp+1])a

0'65'111;71

1+P2>>
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dT(Xl, ...,Xp+1> = Z (—1>O7T(X0.(1))(T(XO.(2), ~--7Xo-(p—1)7Xp7Xp+l))

0€S1,p—2

+ Z (_1)UT(WM[XU(1)7XU(?)]7XU(3)7"‘7Xo(p71)7Xp7Xp+1)
0632,7)73

= Y (DT (Xo@) Xo(@)s - Xop-1): I [ Xo(1): Xpl, Xpi1)
UESLpr

- Z (—1)JT(X0(2),XU(3),...,Xa(p_l),Xp,HD[XU(l),Xp+1]),
0€S1,p-2

(6.14)
wS(Xl, ...,Xp+1) = <w(X1, ...prl,Xp),Xp+1> + <W(X1, ~--7Xp717Xp+1)aXp> (615)

The curvature is ® € K2(D, L), ® = (we, 7¢), where

w.:p(Xl,XQ) = —HL[Xl,XQ], (616)
7o (X1, X2) = — (X1, Xo). (6.17)

Note that all these formulas are analogous to the invariant formulas for the DGLA

controlling deformations of an involutive sub-bundle of a Lie algebroid [156, Cor. 6.2.17].

Proposition 6.1. (K*(D,L),®,d,[-,-]) is a curved differential graded Lie algebra whose
Maurer-Cartan elements are in bijection with isotropic, involutive subbundles D' C E
such that D'NL =0 and D' ® L =E.

Proof. Tt follows from tedious but straightforward computations analogous to the cor-
responding statement for Lie algebroids [156, Section 6.2.], using the axioms from Defi-

nition 4.22 and the fact that the bijections of shuffle permutations (see (2.63))

Sp1,ps X Spi+paps — Spipaps Opipa+ps X Spaps — Spi,pa.ps Spip2 = Spa,p (6.18)
(01,2,0123) = 0123, (01,23,02,3) — 01 93, 012+ 021
defined by
o12,3(01,2(7)) 1<i<pi+p2
01,2,3 = . . (6.19)
012,3(%) p1+p2 <t < p1+p2+ps,
01,23(% 1<i<p
0/1,2,3 = ®) _ ' (6.20)
o1,23(p1 + 02301 —p1)) p1 <i < p2+ps3,
o12(p1 +1 1<i<po
021 = ( ) (6.21)

o12(p2 — 1) p2 < i < p1+ pe,
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satisfy

(_1)‘73,2,3 — (_1)01723(_1)02»37 (6.22)

O]

It is often desirable to present the DGLA structure on K*(D, L) by a smaller — albeit
algebraically more complicated —, quasi-isomorphic Ly.-algebra. For this, define
WP(D,L) :={(w,7) € KP(D,L)|7=0,w’ =0} CT(A’D*® L) p>2,

(6.23)
W?(D, L) := K”(D, L) p<l.

Lemma 6.2. Assume that 7o = 0 and that there exists a map |l : D*®V — L such that

a(X) = (i(a), X), (6.24)
(), ") = 0, (6.25)
(), 1] =0 (6.26)

forae D*®V, X € D,l' € L. Then there is a structure of curved cubic Lso-algebra
on @p WP(D, L) and a quadratic morphism W*(D,L) — K*(D, L) which is a quasi-

1somorphism when ® = 0.

Proof. Note first that we can use [ to define for each 7 € AP72D* ® S?D* ® V satisfying
(6.4) an a, € AP"1D* @ L ¢ KP~1(D, L) with af = (—1)P~!7; namely,

—1)p—1
aT(X17 ...,Xp_l) = ( 13 (l(T(Xl, ...,Xp_Q,Xp_l, ) — l(T(Xl, ...,Xp_l,Xp_Q, )) —

—Z(T(Xl, Xp—h ceey Xp_Q,XQ, )) — l(T(Xp_l,XQ, ceey Xp_Q,Xl, )))

(6.27)
Then define f, : W*(D, L) — K*(D, L) as the inclusion and
fo: W*(D,L)® W*(D,L) - K*(D, L)
by fao(wi,ws) := —0r,. ,- Note that [f2(w1,w2), ] = 0. We will show that this gives

a quasi-isomorphism between a curved cubic Ly-algebra structure on W*(D, L) and
K*(D, L) by applying the axioms of the DGLA structure of K*(D, L) to elements of
We(D,L).
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1. For w € W?(D, L) C KP(D, L),

~([2,0), Tlg0)) = P (w,0) = (FPw, (1) (dw)*) = (dw)’ = —fo(®,w)*;
(6.28)
thus we may define
dVw = dw + fo(®,w) (6.29)

2. For w; € WPi(D, L) C KPi(D, L), i=1, 2, note first that

0= —([®, fa(w1,w2)]; T(®, fo (w1 ,w2)])
= (d® fo(w1,w2), ATy wy) + ()PP (dfy (w1, w2))*) (6.30)

= (df2(wlaw2))s = (_1)p1+p2d7—[w1,w2]’
Then we see

([dwr, wa]+(=1)P* lwr, dwa], Tiduw, ws] + (= 1) Ty duvs))
— (d[wl,wg],dr[mm] + (—1)p1+p2*1[w1,wg]8)
= w1, w2]® + df2 (w1, w2)® + fa(dwr,wa)® + (—1)P! fa(wr, dws)® = 0,
(6.31)

and so we may define
[wi,wa]V := [w1,wa] + dfa(wr,ws) + foldwr,ws) + (—1)P fo(wr, dws).  (6.32)
3. For w; € WPi(D, L) C KPi(D,L),i=1, 2, 3, we note

follwr, wa]™ w3)* — (1) fo([wr, w3]" , wa)® + (—1)12T€3) fy ([wa, ws], w1)*

— (_1)p1+p2+p3 (T[[wl,wg]‘/,wg] . (_1)62637_[[“)1,“)3]‘/7&)2] + (_1>61(62+63)T[[w2,w3}‘/,w1])
0,

(6.33)

and so we can define

{wi,wa, w3} == fo([wr,wa]™, ws) + (—1)2 fo([wr, ws]" , w2)

(6.34)
_ (_1)61(62+63)f2<[w27wg]w,(/.)1).

By construction, this defines a structure of curved cubic Loo-algebra on W*(D, L) with
f1, fo defining a quadratic morphism to K*(D, L). To see that this is in fact a quasi-
isomorphism when ® = 0, let (w,7) € KP(D,L) satisty d(w,7) = 0; ie. dw = 0
and dr = (—1)Pw®. Then we claim that (w,7) + d(c,,0) € WP, which implies that
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HP(W,d) — HP(K,d) is surjective. Indeed,

d(ar,0) = (dar, (—1)Pal) = (dar, —7), (6.35)

T

0=d*(ar,0) = (o, —dr + (=1)P" (day)®) = (doy)® = =P, (6.36)

which shows the claim. To show that HP(W,d) — HP(K,d) is injective, we let w €
WP(D, L) and (u,0) € KP~1(D, L) satisty d(u,0) = w; i.e., du = w and do + (—1)Ppu* =
0. Then, by a similar reasoning as before, (i1, 0) +d(ay,0) € WP~ which concludes the
proof. O

6.1.2 Derived stacks of flat connections, holomorphic structures and

holomorphic connective structures

We proceed to apply the general procedure of Section 6.1.1 to obtain curved Lso-algebras

controlling deformation problems in higher gauge theory.

Example 6.3 (Deformations of flat connections). Let G, T be Lie groups with 7" abelian,
let Gy be a multiplicative T-gerbe with connective structure over G, and let Py — M
be a Gy-bundle with Atiyah algebroid E (cf. Theorem 4.23). Let (A, B) € A(Py) be

(A,B)

a connection on Py and let s : TM — FE be its corresponding splitting. We wish

to construct a curved Loo-algebra controlling the problem of deforming (A, B) to a flat

connection.

We note that deforming (A, B) to a flat connection is equivalent to deforming the
sub-bundle s(4-5) (TM) C E to an isotropic, involutive sub-bundle complementary to
Kerm C E. Hence, we perform the construction from Section 6.1.1. We define the
vector spaces (6.23) and apply Lemma 6.2 with [ the inclusion T*"M @ t — Ker . We
also use (A, B) to identify Kerm = T* M ®@t@®ad P, obtaining the following curved cubic
Lo-algebra.

The graded vector space is
W= P Q(adP) & Q"™ (M, 1)
p=—1
with WP := QP(ad P) @ QPT1(M, t) in degree p. The curved L..-structure is given by
AP .= F, — H,
dAB) (@ +b) == dda+ (db+ (—1)*(Fa A a)),

(6.37)
(6.38)
[a1 + b1, az + ba] := —[a1 A ag] + 0, (6.39)
{a; + b1, a2 + by, ag + b3} := 0+ (=1) 792193 A ag A ag)). (6.40)
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for a; € Q*(ad P) and b; € Q*TH(M, t).

Now consider the derived manifold N' = (A(Py), W=2,Q), where Q is defined by the
fiberwise structure of curved cubic Lo-algebra on W22 — A(Py). The gauge 2-group
Gauge(Py), which is a Lie group by Theorem 4.26, acts smoothly on A(Py) and we
can lift this to an action on AN by letting (u, pv,a?) € Gauge(Py)o act on a + b €
OP(ad P) @ QPHL (M, t) as

u-(a+b) = Ad(gy)a+ b,

where g, : M — Ad P is the underlying gauge transformation of P. It is easy to check
that the curved Ly-algebra structure is equivariant for this action; hence, this is a well-
defined action on N'. We write B*%(Py), := N //Gauge(Py) for the quotient 2-groupoid
(cf. Remark 3.18) and call this the derived moduli stack of flat connections on Py.
Note that, since 2-isomorphic gauge transformations act in the same way, Bb’d(Pv)n =

N x BGauge(Py)n, with simplicial maps defined in a similar way to Example 2.5.

Example 6.4 (Deformations of holomorphic structures). Let G, T be complex Lie
groups with T abelian, let Gy be a holomorphic multiplicative T-gerbe with holomor-
phic connective structure over GG, and let Py — X be a smooth Gy-bundle over a
complex manifold X with complex Atiyah algebroid E’ (cf. Proposition 5.32). Let
D € D(Py) be a l-semiconnection and let s? : T91X — 7= HT%1X)/(T*X @ t)1¥ be
its corresponding splitting. We wish to construct a curved L-algebra controlling the

problem of deforming D to an integrable 1-semiconnection.

We note that deforming D to an integrable 1-semiconnection is equivalent to deforming
the sub-bundle s?(T%'X) c 7= H(T%'X)/(T*X ® )10 to an isotropic, involutive sub-
bundle complementary to Ker(n) C 7~ YT X)/(T*X ® t)*°. Hence, we perform the
construction from Section 6.1.1. We define the vector spaces (6.23) and apply Lemma
6.2 with [ the inclusion (T*X ® t)%!' — Ker(7), using also D to obtain a splitting
Ker(r) = (T*X ® t)%! @ ad P. The result is the following curved cubic L.-algebra.

The graded vector space is

W= Q0 (ad P) & Q0P (X, 1)
p=—1
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with W? := QOP) (ad P) ® QOP+D (X t) in degree p. The curved Loo-structure is given
by

ol .= F? — HO3 (6.41)

dAB) (a+b) =" a+ (Db + (—1)(F2? A a)), (6.42)

[a1 + b1, a2 + ba] := —[a1 A ag] + 0, (6.43)

{ay +b1,a2 + by, a3 + bz} = 0+ (=1)"122T5 gy A as A ag)). (6.44)

for a; € Q) (ad P) and b; € QO+ (X ¢).

Now consider the derived manifold ' = (D(Py), W=2,Q), where @ is defined by the
fiberwise structure of curved cubic Le.-algebra on W=2 — D(Py). The complex Lie
2-group Gauge(Pyo,1) acts on D(Py) and we can lift this to an action on N by letting
(u, [pw], a¥) € Gauge(Pyo1)o act on a + b € QOP(ad P) & QOPTL(M, t) as

u-(a+b) = Ad(gy)a+b,

where g, : M — AdP is the underlying gauge transformation of P. It is easy to
check that the curved L .-algebra structure is equivariant for this action; hence, this is
a well-defined action on N'. We write H4(Py)e := N //Gauge(Pyo.1) for the quotient
2-groupoid (cf. Remark 3.18) and, in light of Proposition 5.22, we call this the derived
moduli stack of holomorphic structures on Py. Note that, since 2-isomorphic gauge
transformations act in the same way, H%(Py), = N x BGauge(Pyo,1 )y, with simplicial

maps defined in a similar way to Example 2.5.

Example 6.5 (Deformations of holomorphic structures with holomorphic connective
structure). Let G, T be complex Lie groups with 7" abelian, let Gy be a holomorphic
multiplicative T-gerbe with holomorphic connective structure over G, and let Py — X
be a smooth Gy-bundle over a complex manifold X with complex Atiyah algebroid E’ (cf.
Proposition 5.32). Let D € D'(Py) be a 2-semiconnection and let s” : T X — E' be
its corresponding lifting of 79! X. We wish to construct a curved L.-algebra controlling

the problem of deforming D to an integrable 2-semiconnection.

We note that deforming D to an integrable 2-semiconnection is equivalent to deforming
the sub-bundle s”(T%1X) c 7= H(T%'X) to an isotropic, involutive sub-bundle comple-
mentary to Ker(n) C 7~ }(T%!'X). Hence, we perform the construction from Section
6.1.1. We define the vector spaces (6.23) and apply Lemma 6.2 with [ the inclusion
(T*X ® )% — Ker(r). The result is a structure of curved cubic Ls-algebra on the

graded vector space

W =wr?,
p=2
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where WP is defined by

WPP = (b eA"PT*X @ (Ker) |

(6.45)
(W(X1, ey Xp)y 8P (Xpi1)) + (W(X1, oy Xpi1), 8P (X)) = 0.

In order to write the curved Loo-structure, we choose a connection (A, B) compatible
with the holomorphic structure induced by D. This gives an isomorphism Ker(mw) =
T*X ® t® ad P and thus an isomorphism WP = Q02 (qd P) @ QP)+O0r+) (X ¢). In

this presentation, the structure is described as follows.

(PD = F272 _ H(1’2)+(0’3)’ (646)
dP(a +b) = 8" a+ (db)PTOHOPE) L (_1ya(pQ2 4 opbl A g),
(6.47)
[(Ll + b1, a9 + bQ]D = —[(Il AN CLQ] + (—1)a1+a2(<8Aa1 VAN (I2> — (_1)a1 <(11 AN 8Aa2>),
(6.48)
{a1 + by, as + by, az + b3} =0+ (_1)a1+a2+a3 <CL1 VAN [ag VAN CL3]>, (6.49)

for a; € Q0 (adP) and b; € QO+TO+D (X {). Note that when Gy is the com-
plexification of Ky and Py is the complexification of a Ky-bundle Pp, v, then each
D € D'(Py) determines by Theorem 5.26 a compatible connection (Ay, By — Jw), so
the formulas above can be written with respect to it. If we do not want to choose a
compatible connection in the general case, we can simply check how the isomorphisms
WwpD =(4.B) Q0»(qd P) @ QUP)+Or+1) (X {) behave under changing the connection by
a € Q'%(ad P) and b € Q2°(X,t). This gives a canonical isomorphism

WwrD .= (AD(PV) x Q0P (ad P) @ QUP+0r+D) (x| t)) / ~, (6.50)

where Ap(Py) is the set of connections that are compatible with D, and the equivalence
relation is

(A,B,a,b) ~ (A, B',a,b—2(a A (A — A)) (6.51)

for a € Q°P(ad P), b € QP)TOP+D (X ). The curved Ly.-algebra above is well-defined

over the spaces (6.50) independently of any choices.

Now consider the derived manifold V' = (D'(Py), W22, Q), where W22 — D'(Py) is
the graded vector bundle with fiber W2%P at D € D'(Py), and Q is defined by the
preceding fiberwise structure of curved cubic Lso-algebra on W. The complex Lie 2-

group Gauge(Py) acts on D(Py) and we can lift this to an action on N by letting
(u, pv, a?) € Gauge(Py)o act on a + b € QOP(ad P) @ QUPHFOPH (M 1) as

u-(a+b) = Ad(gy)a+b,
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where g, : M — AdP is the underlying gauge transformation of P. This defines an
action on the graded vector bundle W22 — D'(Py) since (6.51) is equivariant. It is
also easy to check that the curved L..-algebra structure is equivariant for this action;
hence, this is a well-defined action on N'. We write H 4(Py) := N//Gauge(Py) for
the quotient 2-groupoid (cf. Remark 3.18) and, in light of Proposition 5.22, we call
this the derived moduli stack of holomorphic structures with holomorphic connective
structures on Py. Note that, since 2-isomorphic gauge transformations act in the same
way, H 4 (Py)n = N x BGauge(Py),, with simplicial maps defined in a similar way to
Example 2.5.

Remark 6.6. The Ly.-algebra in Example 6.5 is closely related to constructions in the

literature on mathematical physics [13] and generalized geometry [126].

1. The Loo-algebra in [13] is defined for an integrable 2-semiconnection D € D'(Py)

(i.e., F2’2 =0, H12%03 = 0) over a vector space of the form

P 2% (ad P) & QPP (X 1) @ QOP(T10X).
p

The subspace @, 2" (ad P) ® QLP)HOP+D (X t) is a subalgebra, and its bracket

coincides with ours in the uncurved case.

2. The differential graded Lie algebra in [126] is defined for an integrable 2-semiconnection
D e D'(Py) (i.e., FE;Z =0, H12%03 = 0) over a vector space of the form

QO (ad P) & QEPIT-HEE20) (X ),
p

The map a + b +— a + (—1)%0b1P + 2<Fj’0 A a) gives a morphism between our

Loo-algebra (in the uncurved case) and the one in [126].

6.2 Shifted symplectic structures

6.2.1 Shifted symplectic moduli spaces

Let Gy be a multiplicative U(1)-gerbe with connective structure over a Lie group G such
that the induced bilinear form (-,-) : g ® g — R from Theorem 3.43 is non-degenerate.
Then Proposition 3.27 and Theorem 2.29 suggest that, for M an oriented, compact
manifold with dimg M = n, there is a (2 —n)-shifted symplectic structure on the moduli
space of pairs ((A, B), ¢), where (A, B) is a flat connection on a G-bundle and ¢ : M —

R* is a constant function. We proceed to construct such structure.
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First we introduce the following notation. For any manifold M we define the following

derived manifold, called the dilaton moduli.
Qar(M)* == (C®(M,R*), Q=1 (M, R)[-1],Q), (6.52)

The notation is such that we regard the trivial vector bundle with fiber €/ (M,R) in
degree j + 1. Here Q is defined by the curvature map d : C*(M,R*) — Q'(M,R) and
the differential d : Q®(M,R) — Q*T1(M,R), both given by the exterior derivative. Note
that Qgr(M)* is a model in derived geometry for the space of non-vanishing constant
functions on M. Its role in the following result seems to be related to the role of dilatons

in heterotic string theory.

Theorem 6.7. Let Gy be a multiplicative U(1)-gerbe with connective structure over a
Lie group G such that the induced bilinear form (-,-) : g @ g — R from Theorem 3.43
18 mon-degenerate, let M be an oriented, compact manifold with dimgr M = n and let
Pv — M be a Gy-bundle. Then there is a (2 — n)-shifted symplectic structure on the
Cartesian product (see (2.95))

M, := B (Py)e x Qar(M)*, (6.53)

where B> (Py ), is as in Example 6.3 and Qqr(M)* is as in (6.52).

Proof. Note that M; = N x BGauge(Py); X Qqr(M)*, where

N = (A(Py), @2%(ad P) & QZ3(M,R)[1], Q)

is as in Example 6.3. The simplicial maps of 9, are defined by the action of Gauge(Pv)
on N as in Example 2.5. We define the (2 — n)-shifted symplectic structure on 9, first
for n > 3. Recall the Maurer-Cartan 1-form on Gauge(Py) constructed in Theorem 4.26.
We use this to send vectors tangent to BGauge(Py)1 and BGauge(Py)2 to elements
a¥ 4+ b' € T(ad P) ® Q'(X,R) =AB) D(adP) and b° € C®(X, 1), respectively. The
differential forms defining the shifted symplectic structure only depend on these images
and so we will abuse notation by writing just a® + b! and ©° in their entries. The
identification I'(ad P) @ Q' (X,R) =45) T'(ad P) is done at each point of M; using the
corresponding connection (A, B) € A(Py). We let

W e 2(My)an, wheD2OM)1n, w?e QM) , (6.54)
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be given by w; = (—1)"*1d)\; for
M@ + 0P+ + .+ + b+ ") =
/M<2<an1 AL+ (@2 A G2+ (@B NG ot (a2 A A2 4 (= 1))
[ @A) @A) (@A) et (1) A 45 A 6!
+ /M(2<a”_3 Aa) + (@ NG + (@A) 4+ (@ A G 4 (=) A P

+ ot /M(2<a2 Aaty 4 (=1)"D*) A "3 + /M b2 A2,
(6.55)
M@+ bt +a' + 02+ %+ .+ a0+ ") =
/M((—l)”Q(a”, a%)¢? — (=1)"2(a" 1, a0 A ¢t + 4+ 2(a, %) A"+ D AT,
(6.56)

N0+l B2 0 a4 b ) = — /M Bgn, (6.57)

where af € QF(ad P), VY € QF(M,R), ¢! € QP(M,R) stand for the parameters of a
function on M, and a? € QP(ad P), ¥ € QP(M,R), ¢! € QP(M,R) determine vector
fields on 9; as discussed in Section 2.3.1. Computations similar to the ones from Section

2.3.3, and in particular (2.165), show that the Lg-derivative of the first line in (6.55) is
/ (d{a™ 2 Na') + ... +d(a® A a3y + (—1)"H1ghn—1) ¢
M

+ /M(<dAa”_2 Aaby +(Fana™2)e + (s > /M<ai Alad A a ) g0

2 2<i<n—4
2<j<n—2—i
o _1)nt1 dA-l n—2 F s n—2 0 1 _1)i+n -1 J n—i—j1\ 40
()" @ Aa" )+ (Fana" )¢+ 5 Y (=) (@ Ala? A a9
M 2 ; M
2<i<n—4
2<j<n—2—i

= / d2(@ 2 nat) + (@3 Aa) + . 4 (a® A a3 4 (=)l
M

(6.58)

The terms in the third line of (6.58) arise from applying L¢ to the term |’ M i)”(bo. Then,

similarly, the Lg-derivative of the second line in (6.55) is

/ d(20a™ 3 Aty — (@A) + o+ (=1 (@® A G + 52 A gl
M (6.59)
+/ (=D (2(a™ 2 A GY) + (@3 AG2) + o+ (a2 A G 3)) + 57 1) A do,
M

and thus iterating and integrating by parts we obtain LQ)\O = 0. Then LQ)\1 =60,
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LoA? = 6\ and 6A? = 0 follow similarly, using relations (4.102), (4.103) for computing
the -differentials. This implies that (w®, w', w?) defines a (2 — n)-shifted presymplectic
structure on M, for n > 3. When n = 2 the formulas for w!' and w? still work, but in

this case we define w° as follows.
Pttt ot i) = [ 2l nade’— [ @ -izh. o0

Note that dw® = 0, as it follows from formula (4.110) for the Lie bracket of vector fields
on A(Py). To check the non-degeneracy condition for (w”,w!,w?), we note that the

tangent complex of 91 is the following chain complex of vector bundles over the space
[((A, B),6) € A(Pg) x C=(M,R*) | (Fa, H,d6) = (0,0,0)}.

00 d ~0 1 d4+d ~1 2 0o
C%(M,R) %0%(ad P) @ Q'(M,R) “3% 01 (ad P) ® Q2(M,R) & C=(M, R) —
P 0244 PY @ OF(M,R) @ Q'(M,R) ¥ T4+

LA o244 Py g "1 (M, R) @ Q"3 (M, R) ¢ T
Q" Y(ad P) @ Q"(M,R) ® Q"2(M, R) “-5% 0" (ad P) ® Q"1 (M, R) % 0"(M, R),

(6.61)

with Q!(ad P) @ Q?(M, t) & C*°(M,R) in degree 0 and all other vector bundles graded
accordingly. Here we are slightly abusing notation by writing V for the trivial vector
bundle V with fiber the vector space V. One can check that (w?,w',w?) induces the

pairing

Ge(a] + 0+ @ Ay by g 1)_/ (2(a] A ay )
M

i/ (A It 4 It p il
M
(6.62)

which is non-degenerate, as we wanted to show. O

There is a holomorphic analog of Theorem 6.7. To state the result, we define for any
complex manifold X with dimc X = n the following complex derived manifold, called

the axio-dilaton moduli.
Qr*(X)* == (X, )", "2V (X,0)[-1],Q), (6.63)

The notation is such that we regard the trivial vector bundle Q) (M, C) in degree

j + 1. Here we write Q™°(X,C)* for the space of nowhere-vanishing (n,0)-forms on X,
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and @ is defined by the curvature map d : Q9(X,C)* — Q™! (X, C) and the differential
d:Q*)(X,C) — Qe+t (X, C), both given by the exterior derivative.

Theorem 6.8. Let Gy be a holomorphic multiplicative C*-gerbe with holomorphic con-
nective structure over a complex Lie group G such that the induced bilinear form (-,-) :
g®g — C from Theorem 3.43 is non-degenerate, let X be a complex, compact manifold
with dimc X = n admitting holomorphic volume forms, and let Py — X be a smooth

Gv-bundle. Then there is a (2 —n)-shifted holomorphic symplectic structure on
X = H(Py) x Q2 (X), (6.64)

where HY(Py) is as in BExample 6.4 and Qg"(X)* is as in (6.63).

Proof. Analogous to Theorem 6.7. Note that X; = N x BGauge(Pgo.1); X Qg'(X)*,
where

N = (D(Py), 2922 (ad P) ® Q23 (M, C)[1], Q)

is as in Example 6.4. Recall the holomorphic Maurer-Cartan 1-form on Gauge(Pyo,1)
from Corollary 5.34 and use it to send vectors tangent to BGauge(Pyo,1); and to
BGauge(Pyo.)s to elements a° + b%! € I'(ad P) & Q%(X,C) =P T'(ad P'/T},X) and
b0 € C®(X,C), respectively. The identification I'(ad P)&Q%! (X, C) =P T'(ad P /Ty X)
is done at each point of X; using the corresponding 1-semiconnection D € D(Py). The

(2 — n)-shifted holomorphic symplectic structure is defined for n > 3 by
wO € Q2’0(.’fo)2_n, wl S QQ’O(%l)l_n, w2 S 92’0(%2)_7“ (665)
w; = (=1)"*1d)\;, where
)\O(do’l + 60,2 + Qn,(] 4o+ aO,n + i)O,n + Qn,n) —
/ (2<a0,n—1 /\d0’1> + <a07n—2 Ad0’2> 4o <a072 /\a[),n—2> + (_1)71[')0,71)971,0
X
_|_/ (2<a0,n—2 Ad0’1> _ <a0,n—3 A d0’2> 4+ (_1)n<a0,2 A aO,n—3> _{_[')O,n—l) A Qn,l
X
+/ (2<a0,n73 Ad0’1> + <a0,n74 /\d0’2> 4.+ <a0,2 /\d(],nf4> + (_1)ni)0,nf2) /\Qn,2
X

+---+/ (2<a0,2/\a0,1>+(_1)n60,3)AQn,n—3+/ 60,2/\Qn7n—2,
X M

(6.66)
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)\1(@0 + 60,1 + a(],l + 1'70,2 + Qn,O 4o+ dO,n) + Z’)O,n + Qn,n) _

[ (200,800 — (17200760 A @M 44 2(a0%, ) A @)
X
+/ bO,lAQn,nfl'
X

)\2(60 +d0’1 +l')0,2 +Qn,0 4. +C-L0,n +l')0,n +Qn,n) — _/ bOQn,n’ (668)
X

(6.67)

where a®? € QP (ad P), bP € Q"P(M,C), Q*P € QP(M,C). When n = 2, the formula
for w? is
W@yt + .+ 0P ) L+ 037 = /

2! N3P0 [ (A5 52 A 030)
M

M
(6.69)

The tangent complex of X is the following chain complex of vector bundles over the
space {([(4, B)],Q) € D(Py) x Q0(X,C)* | (F}*, H*3,d2) = (0,0,0)}.

—_ 7A —
(M, C) 30%(ad P) @ Q% (M, C) 732 0% (ad P) @ Q°2(M, C) @ C(M, C) —
A = = —A = —
T 00244 P) @ QO3(M, C) @ Q0L (M, C) ¥ 0
L0 Q=244 Py @ Q0L (M, C) @ QO 3(M, C) ¢ 90

_>
7A — —
QO L(ad P) ® QO"(M, C) & QO"~2(M, C) /32 QO (ad P) & QO (M, R) & Q0 (0, ©),

(6.70)

and then non-degeneracy of (w?,w',w?) follows as in Theorem 6.7. O
Remark 6.9. Let

X = H 4 (Py) x QN (X), (6.71)

where H 4(Py) is as in Example 6.5 and Qg"(X)* is as in (6.63). There is an obvious
map X' — X, where X is as in Theorem 6.8, and the pull-back of the (2 — n)-shifted
holomorphic symplectic form on X is a (2 — n)-shifted holomorphic presymplectic form
on X’. In Section 8.2.2 we comment on some conjectural ideas to make this form non-
degenerate by introducing the complex structure on X as a parameter on the moduli

space.

6.2.2 Action functionals and moment maps for Lie 2-group actions

We proceed to present alternative constructions for some of the moduli spaces in Section

6.2.1. They are based on general constructions of derived critical loci for Lie 2-group
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invariant functionals and symplectic reduction for actions of Lie 2-groups. While inspired
by Examples 2.32 and 2.34, which we can generalize to the context of Lie 2-groups thanks
to Proposition 3.27, these are original constructions that have not appeared before in

the literature on algebraic derived geometry.

Proposition 6.10. Let & be a Lie 2-group with a Maurer-Cartan form (6°,0') acting
by a smooth functor p: M x & — M on a manifold M, and let S : M — R be a smooth,
&-invariant function. Then there is a model dCrit(S) for the space {dS = 0}/® as a

simplicial derived manifold with a (—1)-shifted symplectic structure.

If (6,0°,0Y) is a complex Lie 2-group with a holomorphic Maurer-Cartan form acting
holomorphically on a complex manifold X and S : X — C is holomorphic and &-
invariant, then dCrit(S) is (—1)-shifted holomorphic symplectic.

Proof. In the algebraic setting, this follows from [67, 210], as discussed in Example 2.32.
We present a model as a simplicial derived manifold. Define first the derived manifold
N = (M, T*[-2]M & g*[-3] ® h*[—4],Q), where Q is defined by ® : M — T*[-2]M,
® = dS and the differential d : T*[-2]M — g*[-3], d = p*, d : g*[-3] — b*[-4],
d = t¥. This gives a derived manifold, since d® = 0 follows from S being &-invariant

and t,p. = 0 because isomorphic elements in & must act in the same way on M.

The action of ® on M lifts to an action on N, where the action on g*[—3], h*[—4] is
the (dual of the) adjoint action defining the Maurer-Cartan form on & and the action
on T*[-2]M is given by pull-back. More precisely, g € &g acts on a € T, M sending

it to g*a € T* M defined by (¢*a)(v) = a(p«(v,g7 1)), where g~ € & is any point

such that thel;(gi)xists m € B®y with do(m) = g, do(m) = g7, di(m) = 1. Tt is clear
that dS is equivariant, while the fact that p* is equivariant follows from Lemma 3.25.
Then define dCrit(S) := N //® in the sense of Remark 3.18. Its tangent complex is the
following chain complex of vector bundles over M.

b[2] by gl1] LM T*[-1M LN g [-2] t—% b*[-3], (6.72)
The canonical isomorphism 7'(dCrit(S)) = T*(dCrit(S))[—1] is induced by a (—1)-
shifted symplectic structure on dCrit(S) which we describe as follows. It is given by
the canonical symplectic structure on T*M, seen as a degree —1, d-exact, 2-form w® =
d\° € Q2(N)_1, and the symplectic structure induced by the Maurer-Cartan form as in
Proposition 3.27, seen now as a pair (w!,w?) of a degree —2, d-exact, 2-form w! = d\! €
O?(N x B&1)_5 and a degree —3, d-exact, 2-form w? = dA\! € Q?(N x B®y)_3. Then
LQwO = 0 follows as in Example 2.32, LQw2 = dw! = 0 and dw? = 0 are implied by
Proposition 3.27, and Lle = 6w follows from the fact that 69 is the identity. Hence,



Geometry of moduli spaces 195

(w9 wl, w?) is indeed a (—1)-shifted symplectic structure on dCrit(S). The holomorphic

case follows analogously, using Proposition 5.14. ]

Proposition 6.11. Let & be a Lie 2-group with Lie 2-algebra b b g and Maurer-Cartan
form (6°,0Y) acting by a smooth functor p : M x & — M on a symplectic manifold
(M,w). Let u: M — g* be a map such that

d(p(-)(v)) = tx,w, vEg (6.73)
p(g-z)(w) =p(z)(g-v), g€y, veg xeM (6.74)
w(x)(teu) =0, ueh, xeM, (6.75)

where Xy(p) = ps,,, (0 +v) € TyM. Then there is a model M//,& for the space
p=1(0)/& as a simplicial derived manifold with a 0-shifted symplectic structure.

If (8,60°,0Y) is a complex Lie 2-group with a holomorphic Maurer-Cartan form acting
holomorphically on a holomorphic symplectic manifold (X,w) and p: X — g* is holo-
morphic, then M//,& is 0-shifted holomorphic symplectic.

Proof. Define first the derived manifold N' = (M, b*[-3]®g*[-2], Q), where Q is defined
simply by the curvature p : M — g* and the differential g* 2t h*. Note that (6.75)
implies that the differential of the curvature is zero. Then the action of & on M, together
with (the dual of) the adjoint action defining the Maurer-Cartan form, determines an
action of & on N (note that (6.74) and ¢ : b Ly g being Ad-equivariant ensures that
the action preserves Q). Then we define M//,& := N//& (cf. Remark 3.18), which
is a simplicial derived manifold with (M//,8), = N x B®,. We define a 0-shifted
symplectic structure on M//,& as follows. Consider the symplectic form w on M, seen
as a d-closed 2-form w® € Q?(M) C Q%(N)g, and the 2-forms w! € Q'(B®; x g*,R),
w? € Q1 (B®;y x h*, R) defined by w’ = d\!, where

AL (g +€) = E(60(0,), (6.76)
A2 (o + 1) = (05 (v7)). (6.77)

As in Proposition 3.27, w! and w? can be seen as d-closed 2-forms in (M //, &)1, (M//,®)2
by linearity on the g*, h* components, and they satisfy dw! = LQwQ, dw? = 0. Then
Low® = 0 follows for degree reasons and dw” = Lgw! is precisely condition (6.73). Thus
(wP, w!, w?) is a 0-shifted presymplectic form on M //,&. Note that the tangent complex

of M//,® is the following complex of vector bundles over {z € M | u(x) = 0}.

b g BT M g By (6.78)
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Then non-degeneracy of w and of the symplectic form in Proposition 3.27 implies non-
degeneracy of (w”, w!,w?). The holomorphic case follows analogously, using Proposition
5.14. O

Example 6.12. Let Gy be a multiplicative U(1)-gerbe with connective structure over
a Lie group G such that the induced bilinear form (-,-) : g ® g — R from Theorem
3.43 is non-degenerate, let M be an oriented, compact manifold with dimg M = 3
and let Py — M be a Gy-bundle. Consider the infinite-dimensional manifold M =
A(Py) x C*°(M,R*) and the function

S:M—=R

6.79
(A, B),¢) /M Ho. (079)

Its differential is

dS((A7B)7¢)(C'L+i)+<Z'>) = /M(db¢—2<FA/\éL>¢)—|—H(i)) ( |
6.80
_ / (b Adg — 2(Fa A )+ HY).
M

Ignoring foundational questions about infinite-dimensional manifolds, we may identify

M x Q%(ad P) & Q' (M, R) & Q3(M,R) — T* M

(480086 ((AB10), [ @ndo [ dne [ i),
(6.81)
M x Q3(ad P) & Q2(M,R) = M x Q°(ad P)* & Q' (M, R)*

(48009 (480, [ 6o [ 6n), "

o

M x Q¥ (M,R) — M x C*(X,R)*

(((A,B), ), ) — (((A,B),qﬁ)’/ ¢> (6.83)

M
then we see that dCrit(S) as in Proposition 6.10 coincides with the simplicial derived
manifold 9t from Theorem 6.7.

Similarly, when Gy is a holomorphic multiplicative C*-gerbe with holomorphic connec-
tive structure over a complex Lie group G and X is a complex, compact manifold with
dim¢e X = 3 admitting holomorphic volume forms, then the simplicial derived mani-

fold X from Theorem 6.8 can be constructed as in Proposition 6.10 from the following
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Gauge(Pyo.1 )-invariant holomorphic functional on D(Py) x Q30(X, C)*

D(Py) x @*°(X,C)* —
([(A ) / HAQ. (684)

Note both (6.79) and (6.84) are analogs of the heterotic superpotential [13], adapted to
our setting. In Section 8.2.2 we mention a conjecture regarding the moduli space that
could be built as the derived critical locus of the full heterotic superpotential from string

theory.

Example 6.13. Let Gy be a multiplicative U(1)-gerbe with connective structure over
a Lie group G such that the induced bilinear form (-,-) : g ® g — R from Theorem
3.43 is non-degenerate, let M be an oriented, compact manifold with dimgr M =
and let Py — M be a Gy-bundle. Consider the infinite-dimensional manifold M =
A(Py) x C*°(M,R*) and define a symplectic form w on it by

s + B+ i B+ ) = [ atitnadio- [ -2, @)

where a} € Q'(ad P), b? € Q*(M,R), ¢ € C®(X,R), i = 1, 2. This is d-closed, as it
follows from formula (4.110) for the Lie bracket on A(Py). The 2-group Gauge(Pv)
acts on M and the map

p: M = T(adPy)* = 02 (ad P) ® Q1(X,R)

(6.86)

that is,
HA B s+€) = [ (P s)o+Endo) (6.87)
(4,B)
for s + & € Q%ad P) ® QY(M,R) = T(adPy) satisfies the conditions of Proposition
6.11. It is easy to check that M //,& = I, for M the simplicial derived manifold from
Theorem 6.7.

Similarly, when Gy is a holomorphic multiplicative C*-gerbe with holomorphic connec-
tive structure over a complex Lie group G and X is a complex, compact manifold with
dim¢ X = 2 admitting holomorphic volume forms, then the simplicial derived complex
manifold X from Theorem 6.8 can be constructed as in Proposition 6.11 from the infinite-

dimensional complex manifold M = D(Py) x Q29(X, C)* with holomorphic symplectic
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form

0,1 | 30,2 52,0 20,1 | 302 |, 2,0
w(A,B),) (@ + 077 +Q77 4y +by" +Q37)

: ) . ) (6.88)
= [ 2t naghe - [ 2050 -3 A0,
X M
on which Gauge(Pyo,1) acts holomorphically with holomorphic moment map
p: M= T(adPy/(T*X @ )10 =2 0%%(ad P) @ Q>1(X, C) (6.5

([(A, B)], Q) v F3? +d.

6.2.3 Pre-Kahler and universal geometry of the Hull-Strominger sys-

tem

Let K be a compact Lie group and let K be a multiplicative U(1)-gerbe over K whose
induced pairing (-,-) : £® ¢ — R by Corollary 3.45 is non-degenerate. Let G, Gy
be the complexifications of K, K, respectively, as in Theorem 5.8. Let Py, — X
be a Ky-bundle over a complex manifold with dim¢ X = n and recall from Remark
4.8 that enhanced connections on P}, v, can be identified with pairs ((Ap, By), g) with
(An, Bp) € A(Phv,) and g € T(S?T*X).

We write AY"(Ph,v,) for the open subset of A" (Py, v, ) consisting of ((Ay, By), g) with

g"! positive definite.

Definition 6.14. Let Py, — X be a K-bundle over a compact, complex manifold
X of dim¢ X = n with a holomorphic volume form € Q™%(X,C). A solution to the
Hull-Strominger system is ((Ap, Bp), g) € AL (Ph,v,) such that

0,2
g*? =0, Fy; =0, H=dw, (6.90)
Fa AWt =0, de /w1t =0, (6.91)

where w := g(I-,-) for I the complex structure on X and f: X — R is defined by

n(n—1)

— =M1z QA (6.92)

Note that Theorem 5.26 implies that equations (6.90) state precisely that ((An, Br), 9)
induces a holomorphic structure with holomorphic connective structure on Py := Pﬁvh.
These are called F-term equations. The remaining equations (6.91), called D-term equa-
tions, are interpreted as moment map conditions in [127]. We recall (a slightly adapted

version of) their construction.
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Let M = AY(Phyv,), considered as an infinite-dimensional complex manifold with

complex structure given by identifying

T(ap.Br) oM = Q' (ad P,) & T (T X ®r T3 X)
= Q% (ad PF) & T(T§1 X ®c TEX) (6.93)
= 0% (ad P,

where ad Pg; C E' is the kernel of the anchor of the complex Courant algebroid associated

to Py. In other words,
I, By g @+ 0+ §) = (6% — a0, gh (1), b (1) + g% —ig™0).  (6.94)

We define a presymplectic structure w™ of type (1,1) on M as follows. Consider the
1-form A € Q'(M, R) given by

. . . 1 . _ wn—l

where w = g(I-,-) and f is defined by (6.92). This can also be written as A = d°M for
M : M — R the dilaton functional

wn n(n—1) —

M((AnB)g) = [ 1= ()" [ g (6.96)
X n. X

in particular, it is clear that w™ = d\ = dd°M is a presymplectic form of type (1,1).

Now Gauge(Pp,v,) acts on M through its action on A(Py), and this action preserves

A by (4.88). This implies that it admits a moment map in the sense of Proposition 6.11,

which is given by

p:M—=T(adPyy,)",

(6.97)
((An, Bn), g) = 1((An, Bn), 9)
defined over s + & € T'(ad P) =4, B,) ['(adPp v, ) as
n—1
H((An B g+ ) = 5 [ (a2 ) ne g (098)

Equations (6.91) are equivalent to p = 0. In particular, Proposition 6.11 implies that
M/, Gauge(Py v, ) has a natural 0-shifted presymplectic structure. In fact, if we define
MO C M to be the subspace of points satisfying the F-term equations (6.90), then (ig-
noring possible smoothness problems) one can check that MY is a complex submanifold
invariant by Gauge(Py) and so one can also obtain a presymplectic structure on the

moduli space of solutions to the Hull-Strominger system M"//, Gauge(Pp v, ).
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We conclude with some speculative comments on this construction based on Remark 2.37
and previous work in mathematical physics [72, 73]. First we note that there is an analog
of formula (2.170) in this setting. Namely, consider the Ky-bundle M xPp, v, - Mx X,
which carries a canonical connection (A, By,). If {X,}, is a cover of X on which Py, v,
has cocycle data as in Proposition 4.4, then M x P}, y, is described by the same cocycle
data over the cover {M x X,}, and we can define (A, Bj) by the local forms
iy (@ F D G 02) = AR (v0), (6.99)

BZ\(((Ah,Bh),g),z) (CL + b + g + ”Ux) = BZ‘I (Um)a (6100)

where (A}, Bjt) are the local forms defining (Ap, Bp). The curvature of (Ay,By) is
(Fa,,Hp) defined by

F . ; . 1 . ; . 2
Ahl(((Ah,Bm,g),z) (@1 +b1+ g1+ Vg, G2 + b2 + g2 + Um) (6.101)
= FAh (Uiv v:?:) =+ dl (’Ug) - d2(v;)’

Hlhy(a, 5y0.00.00 (@1 D1+ 1+ 03 42+ by + G2 + 03, a3 + by + g3 + v3)

. | | (6.102)
= Hy(vy, 07, 07) + b1 (07, 07) = ba(vy,03) + b3 (vg, v7)
We also define € QUM x X,R) and f: M x X — R by
I(((Ah,B;L),g),x)<a1 + ...+ 'Ugls7 as + ...+ Ug) = w(vglc,vg), (6.103)
f(((An, Br), 9), %) = f(x). (6.104)

Then it is straightforward to check that the 1-form A from (6.95) can be written as

n—1

1
A== [ Hyne . 1
2/}( R (6.105)

This shows that the presymplectic form w™

(Fy ANFy) € Q*(M x X, R) appearing in Donaldson’s formula (2.170) is the pull-back of
the 2-shifted symplectic form on BK, by the map M x X — BK given by the universal

= d\ on M is very natural: while the term

K-bundle (as it follows from Lemma 4.6), the term d(Hj, A e~) appearing in w™ is the
pull-back of the 2-shifted symplectic form on BK, x R* (cf. Proposition 3.52) by the
map M x X — BK x R* given by the universal -bundle and the functional f.

Secondly, we comment on the relation between the presymplectic form w™ defined here
and the (2 —n)-shifted holomorphic symplectic form from Remark 6.9. As in the case of
ordinary gauge theory (cf. Remark 2.37), we can make sense of this relation when n = 2.
In this case, note that a point ((Ax, By),g) € p~1(0) C M determines by the Calabi-Yau
theorem complex structures J, K such that (I,e~/“w), (J, e /@w;), (K,e @uwg) is



Geometry of moduli spaces 201

a hyperkihler structure on X with Q = e 7@Ww; + e F@wy, where wy := g(J-, ),
wr = g(K-,-).

This means that we can also define presymplectic forms wﬁ\/‘ and wIA{‘ on u~1(0) c M

by a similar formula to (6.105). Each of these has again a moment map for the action
of Gauge(Pyv,) and so they descend to the quotient M°//,Gauge(Py). Now there
is a map ¢ : M°//,Gauge(Py) — H4(Py) x Q2*(X)* and the pull-back of the 0-
shifted holomorphic presymplectic form from Remark 6.9 coincides with the reduction
of w(/]\/l +iw§\</‘. Note that other interpretations of the Hull-Strominger equations in terms

of hyper-Kéhler moment maps have been studied in [122].

The conclusion of this observation is the following. If 1) was proven to be a diffeomor-
phism between appropriate open smooth locus of both spaces, then such moduli space
would be hyper-(pre-pseudo)-Kéhler. One can probably get rid of the degeneracy of
such structure by considering larger moduli spaces in which the complex structure on
the base manifold X is also included as a parameter, as we discuss in more detail in
Section 8.2.2.



Chapter 7

Higher derived differential

geometry

In Chapter 6 we have constructed moduli spaces parameterizing geometric structures in
higher gauge theory, and we have modelled them as simplicial derived manifolds using
the formalism of Chapter 2. While there is a well-defined category of simplicial derived
manifolds, the fundamental nature of these moduli spaces is more properly captured by
regarding them as objects in the (oo, 1)-category of derived differentiable oo-stacks, as
explained in Sections 1.2 and 1.3. We expect our results to have applications in the
construction of invariants with good functorial and combinatorial properties, but such

applications will necessary require understanding the formalism of oco-categories.

Informally, an (0o, 00)-category is

a collection of objects or 0-cells, for which we use letters z, y, z, ...,

a collection of arrows or I-cells between objects f : z — v,

f

a collection of 2-cells between arrows x jE‘ Y,
g

f f
a collection of 3-cells between 2-cells x jg Y %& x jE‘ Y
g g

in which all cells can be composed in many different ways. For r € N, an (oo, r)-category

is the same data, but in which all m-cells for m > r + 1 are invertible. For n € N and

202
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r < n, an (n,r)-category is the same data, but in which all m-cells for m > r + 1 are

invertible and all m-cells for m > n + 1 are identities.

The study of higher categories has at least two different origins. The first one is the ob-
servation that sets form a category, while categories form a bicategory or (2, 2)-category
[35, 106], and bicategories form a tricategory or (3,3)-category [135], which suggests
the natural problem of providing a rigorous axiomatization of all these structures. The
second one arises from noting that many results about derived categories are proven
by chasing morphisms and homotopies between them in the original abelian category,
yielding the question of finding an algebraic structure that is well-suited for dealing
with these homotopies. Quillen’s answer [214] is to consider simplicial model categories,
which provide examples of what we now call (oo, 1)-categories. These ideas motivated
Grothendieck to envision models for oo-categories and oo-stacks in his manuscript Pur-
suing Stacks [138], which already included many of the fundamental ideas of co-category
theory. This has now become a well-developed theory thanks to the work of many au-

thors, such as [17, 26, 29, 104, 157, 181, 218, 255] and others.

We will focus our attention on (oo, 1)-categories and (oo, 0)-categories. An example of
(00, 1)-category is the (oo, 1)-category with objects topological spaces, arrows continu-
ous maps, 2-cells homotopies, 3-cells homotopies between homotopies, etc. [214]. An
example of an (oo, 0)-category is the fundamental co-groupoid Tl (X) [138, 203] of a
topological space X: an object in IIo(X) is a point in X, an arrow = — y is a contin-
uous map v : [0,1] — X with v(0) = xz and (1) = y, a 2-cell is a homotopy of paths
inside X, etc. Note that the composition of two paths x R Y By 2 s only well-defined
up to homotopy, in the sense that any two of the following paths could equally well be

considered a composite of v and 7.

T P N T P
n2t—1) 1/2<t<1 n((3t—1)/2) 1/3<t<1
(7.1)

This highlights a feature of (oo, 1)-categories that one should try to model: given k-cells
in an (oo, 1)-category with adequate source and target, composites must exist but they
may be non-unique; instead, any two composite k-cells must be related by a (k+ 1)-cell.
In particular, note that this implies that composition of n-cells in an (n, 1)-category is

uniquely well-defined.

Most models for (oo, 00)-categories can be classified as either algebraic or geometric.
Algebraic models axiomatize all the ways in which composites of cells can be assigned
to composable cells in an (n,1)-category, and the conditions that these compositions

must satisfy. For n < 4, this is covered by the theory of [135, 144, 266], but for general
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n € N U {oo} these sort of definitions require too much combinatorial effort and are
replaced by operadic approaches [29]. Geometric models axiomatize only the existence of
composites of composable cells, without prescribing preferred composites. Most models
are based on some category of ‘prescribed shapes’ for the k-cells such as the globe [254],
the simplex [26, 157, 218, 255] or the opetope [17] categories. Comparisons and reviews
of all these models can be found in [27, 83, 176, 219, 248].

The idea of seeing moduli spaces as objects in a higher category can be traced back to
[10, 97, 197], where the notion of algebraic stack was introduced based on ideas from
[9, 133] to deal with some aspects of the moduli space of curves of fixed genus over
an algebraically closed field. Algebraic stacks model spaces with an internal notion of
symmetry. It was suggested in [138] that a notion of higher algebraic stack could be
useful for studying moduli problems in which the symmetries have themselves some
notion of ‘homotopy’ between them, but it was not until [248] that a rigorous notion of

higher algebraic stack was presented.

A parallel story is the development of derived geometry for the study of moduli spaces.
Derived geometry started with the observation that the deformation theory of schemes
can be studied by resolving them with smooth dg-algebras [7, 139, 155, 216], setting
the foundations for what are now known as derived schemes. These model spaces with
an internal notion of smooth deformation, which makes them suitable for dealing with
iterated fibered products of schemes. The theory of derived algebraic geometry was
developed and combined with the theory of higher algebraic stacks in [182, 183, 262, 263],
observing in particular that many moduli spaces of interest in algebraic geometry have

a natural structure of higher derived algebraic stack.

The use of higher derived geometry for the study of moduli spaces has also been im-
mensely influenced by the literature on mathematical physics. The BV-BRST [28, 30]
approach for quantizing gauge-theories is based on the idea of adding extra coordinates
(ghosts and antifields) in the configuration space of a field theory. These extra coordi-
nates were interpreted in [240, 241] as the variables of non-zero degree on a differential
graded supermanifold, as defined in [37, 171], which is an infinitesimal approximation to

the kind of geometric object that is studied in higher derived geometry.

In the differential geometric context, the full theory is less developed. Regarding higher
differential geometry (i.e., the extension of differential geometry in which quotients can
always be taken but intersections can still be problematic), differentiable co-stacks can
be defined by a straightforward generalization of the algebraic setting from [247], as
done for example in [239]. A more explicit approach is proposed in [282], defining Lie
oo-groupoids as simplicial manifolds satisfying certain conditions, and the results of [213]

imply that both approaches are equivalent. In particular, all the simplicial manifolds
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that appear in this thesis aim to model objects in higher differential geometry and should

therefore be thought of as objects in the (00, 1)-category of differentiable stacks.

On the other hand, the (oo, 1)-category dMans of derived manifolds is an extension
of the category of manifolds in which fibered products always exist and satisfy good
combinatorial properties, but in which quotients can still be problematic. The first
attempt at constructing dMan, traces back to [250]. More recent approaches [46, 158,
252] mimic the definitions in the algebraic context, replacing commutative rings by C>°-
rings in order to capture the subtleties of the smooth setting. As proven in [76], all
these approaches yield the same (0o, 1)-category dMan.,. Based on work from [32], an
alternative construction of dMans, is presented in [75] using the theory from Section
2.2.2; as it had originally been proposed by Kontsevich [170]. In particular, all the
derived manifolds in this thesis aim to model objects in derived differential geometry

and should therefore by thought of as objects of the (oo, 1)-category dManx.

Given a model for dManss, constructing the co-category of derived differentiable stacks
is immediate by mimicking the definitions from algebraic geometry [261]. Moreover,
the results in [213] imply that simplicial objects in the category dMan from Section
2.2.2 satisfying certain horn-filling conditions provide examples of derived differentiable
stacks, and all the simplicial derived manifolds in this thesis should be regarded as such.
However, at the time of writing of this thesis it is still an open problem to give an explicit
model, along the lines of the Lie co-groupoids from [282], that suffices to construct all
derived differentiable stacks [89].

In Section 7.1.1 we present the first definitions and examples of co-categories. In Section
7.1.2 we discuss the method of localization of categories of fibrant objects to construct
oo-categories, and in Section 7.1.3 we present the basics of oo-sheaf theory. In Section
7.2.1 we define the (00, 1)-category of differentiable stacks, and we discuss how to present
its objects by Lie oco-groupoids. In Section 7.2.2 we define and present examples of Lie
m~groups for high m € N, relating them to the theory from Chapters 3 and 4. In 7.2.3
we construct dMans in terms of the category dMan from Section 2.2.2, and we combine
this theory with the one from Section 7.1.3 to define the (0o, 1)-category codManSt of
derived differentiable oo-stacks. The content of this chapter is mostly adapted from
[32, 75, 181, 204, 213, 261, 282] and there is no claim of originality, except for Example

7.31 and some aspects of the presentation of Example 7.30.



Higher derived differential geometry 206

7.1 oo-categories

7.1.1 Kan conditions

Recall the categories A and A;,; from Definition 2.2.

Definition 7.1 ([106]). Let C' be a category. A simplicial object in C is a functor

X 1 A% — C. A semi-simplicial object in C'is a functor X : AP, — C. A morphism
of (semi-)simplicial objects X — Y is a natural transformation of functors X — Y. If
C' is a monoidal category, the Cartesian product of two (semi-)simplicial objects X, Y
is the (semi-)simplicial object X x Y defined by point-wise product in C. We write Ca
for the category of simplicial objects in C' and Ca,,; for the category of semi-simplicial

objects in C.

A simplicial object X in C can equivalently be described by a sequence of objects X,,
in C, n € N, with face arrows d? : X, — X,—1 and degeneracy arrows s? : Xn — Xnt1,
j =0, ..., n satisfying the simplicial identities (2.3). Similarly, a semi-simplicial object
in C is described by objects X, and face maps d;-‘ ¢ X, — X1 satisfying the first
equation in (2.3). We will often use the notation X, when we present a (semi-)simplicial
object in this way, and we will omit the superscript in the face and degeneracy maps
when it is clear from context. When C' is the category of sets, groups, manifolds, etc. we
refer to a simplicial object in X as a simplicial set, simplicial group, simplicial manifold,

etc.

Example 7.2. For each n € N we define the combinatorial n-simplex A™ as the
simplicial set associated to the object [n] € A by the Yoneda embedding. That is,
A™ @ A — Set is defined as A"([m]) = A([m],[n]) on objects, and it sends an arrow
f i [m1] — [ma2] to the corresponding pull-back map f* : A([ma],[n]) — A([m1], [n]).
In particular, note that fully faithfulness of the Yoneda embedding implies that for any

simplicial set X, the corresponding set X,, can also be written as X,, = Seta (A", X,).

Example 7.3. For n € N2! and j = 0, ..., n, the (n,j) horn is the simplicial set A?
obtained from A™ by ‘removing the jth face’. More explicitly, this means that

Aj([m]) = {f € A([m],[n]) | f(Im]) U {7} # [n]}. (7.2)
In particular, there is a canonical inclusion morphism A? — A", The inner horns of A™
are the horns A7 with j =1, ...,n — 1 and the outer horns of A™ are the horns A7 with
j=0,n.

Example 7.4. If A is a small category, then we can build a simplicial set N(A),, called
the nerve of A, as follows. Let N(A)y be the set of objects of A, N(A); be the set of
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arrows of A and for n > 2 let
N(A)n = N(A)lsxtN(A)lSXt...SXtN(A)l; (73)

i.e., an element of N(A), is a string (g1, ..., gn) of n composable arrows of A. The face

and degeneracy maps are then defined as

dO(glw'wgn gQa"'aQﬂ)?

91, "'7gn—1))

)
)
)= (
dj(g1; s 9n) = (915,951, 95 © Gj+15 Gj+2, > gn)s G =1, .o m—1, (7.4)
dn (g1, -y gn) = (
)
)

Sj(g17 <5 9n) = (917 "'7gj7ids(gj)7gj+17 ~--;gn); j = 07 ooy T

The usual axioms of a category, such as associativity of composition, imply the simplicial

identities.

It is not hard to prove that, for X a simplicial set, there exists a small category A and

an isomorphism X 2 N(A), if and only if the following condition is satisfied.
Condition 1. Forn > 2 and 1 < j <n — 1, the map

Seta (A", X) — Seta (A7, X) (7.5)
induced by the inclusion A7 — A™ is a bijection.

In this case, the category A is completely determined by X and so one can define small
categories as simplicial sets satisfying Condition 1. Note also that A is a groupoid (i.e.,
every arrow is invertible) if and only if the map (7.5) is also a bijection for j = 0, n and

n>2

The previous observation motivates the following approach to define co-categories. Given
a (small) (oo, 1)-category A in the informal description from the introduction to Chapter

7, we should be able to define a simplicial set N(A)e such that

e N(A)g is the set of objects of A,
e N(A); is the set of arrows of A,

e N(A)y is the set of quadruples (fi, fa, fi2, @) such that f;, fo are composable

arrows in C' and « : f1 0 fo = f12 is a 2-cell in A,
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e N(C)s is the set of tuples

(f1, f2, f3, f12, fo3, f123, 01 2, 12,3, 23, @1 23, V)

such that fi, f2, f3 are composable arrows in A, a2 : fi o fa = fi2, a123 :

fizo f3 = fi23, @23 : fao f3 = fo3, 123 1 f1 0 fo3 = fi23 are 2-cells in A and

P (1230012 = (¥123 0 (2.3 is a 3-cell in A,

Since N(A)e contains all the information about compositions of cells in A and the
properties that these satisfy, anything that we want to do with A should be possible
to be done with N(A),, as it is the case with standard categories. Thus, instead of
trying to define small (oo, 1)-categories by axiomatizing all the ways in which cells can
be composed, we may define (0o, 1)-categories as simplicial sets satisfying the analog of
Condition 1 that we would expect from the nerve of an ‘informal’ (oo, 1)-category. This
idea is due to [157], based on [44]. From now on we will ignore size issues, which can

always be dealt with by working in appropriate universes.

Definition 7.5 ([44, 157, 181]). An (o0, 1)-category A is a simplicial set Ao such that,
forn>2and 1 <j <n-—1, the map

Seta (A", A) — Seta (A7, A) (7.6)

induced by the inclusion A} — A™ is a surjection. An oo-groupoid, (0o, 0)-category or
Kan complex is an (oo, 1)-category such that the maps (7.6) are also surjections for
j=0,nand n > 2. For m € N, an (m,1)-category is an (oo, 1)-category such that
the maps (7.6) are bijections for n > m, 1 < j <n — 1, and an m-groupoid is an is an

(00, 1)-category such that the maps (7.6) are bijections for n > m, 0 < j < n.

The motivation for Definition 7.5 is that, as it is clear from the informal description
of the nerve of an (0o, 1)-category, imposing surjectivity of (7.6) for n = 2 and j = 1
amounts to imposing existence of composites of 1-arrows, while imposing surjectivity for
n>2and 1 <j <n—1amounts to imposing existence of composites and inverses of
(n — 1)-cells, and imposing that (7.6) is a bijection amounts to imposing uniqueness of

such composites.

Example 7.6. For X a topological space, we define its fundamental co-groupoid Ty (X)
as follows. First, recall that there is a functor |-| : A — Top, called the standard cosim-

plicial topological space of topological simplices, where Top is the category of topological
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spaces and continuous maps, such that

(A" = {(0, ) € 0,11 ;s = 1},
‘5j‘(.’L’0, ""x”—l) = (3}07 s Lj—1, vaj7 'nyn—l)a (77)

|O'j|(.%’(], "'7xn+1) = (x07 sy Lj—1, T4 + Lj+1, Lj+2, "'7xn+1)-

Then I (X) is defined by

Moo (X)n := Top(|A™], X),
d; = 16" : Top(JA™], X) - Top(|A™ 1], X), (7.8)
s;j == |oj|* : Top(|A"|, X) — Top(JA™ |, X).

This construction can be enhanced to give a functor Il : Top — Seta. Moreover, I,

has an adjoint |- | : Seta — Top, called fat geometric realization, and defined on objects
as
1 Xo]] == | | X0 x |A"]/ ~, (7.9)
neN

where the equivalence relation is (p, de (x)) ~ (dj(p), z). A theorem of Quillen states that
for any compactly generated topological space X and for any Kan complex X, the counit
and unit of this adjunction induce a weak homotopy equivalence of topological spaces

|ITIo(X)|| 2 X and a weak homotopy equivalence of simplicial sets Xo¢ == I (]| Xe||).

Recall that, given categories A, B, then functors A — B form a category Fun(A, B),
where arrows are given by natural transformations. It is easy to check that N (Fun(A, B)),
Seta(N(A)e x A™, N(B)s), which justifies the following definition.

Definition 7.7 ([181]). Let A, B be (00, 1)-categories. The (00, 1)-category of functors
from A to B is the simplicial set Fun(A, B) with

Fun(A, B),, := Seta(A x A", B),
dj = (s7)", (7.10)

sj = (d)*,

where de AT 5 AT sjA : A"~1 — A" are the face and degeneracy maps between the
combinatorial simplices (see Example 7.2). Element of Fun(A, B)y are called functors,
elements of Fun(A, B), are called natural transformations and elements of Fun(A, B)y

are called modifications.

For Definition 7.7 to make sense, one must check that when A, B satisfy the Kan

condition from Definition 7.5 then the simplicial set defined by (7.10) also satisfies it;
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this is proven in [181, Prop 1.2.7.3|. In fact, it is also true that when B is an co-groupoid
then so is Fun(A, B), and that when B is an (n, 1)-category then so is Fun(A, B).

7.1.2 Simplicial categories and localization

In the following definition, and for the rest of this chapter, we shall abuse language
by using the term simplicial categories for certain objects which are not equivalent to
arbitrary functors A°? — Cat (cf. Definition 7.1), although they can be identified with

those functors A% — Cat which are ‘constant on objects’ [185, Remark 3.6].

Definition 7.8 ([181]). A simplicial category or simplicially enriched category A is the

following data.

1. A class of objects Ay
2. For each pair of objects z, y € A, a simplicial set of arrows A(x,y) € Seta,

3. For each triple of objects x, y, z € Ag, a composition morphism of simplicial sets
o: A(z,y) x A(y, z) — A(z, z) such that for z, y, z, t € Ay we have a commutative
diagram

Az, y) x Ay, 2) x Az, 1) 2% A(z,2) x A(z,t)
loxid l , (7.11)

Az, y) x A(y,t) ———— A(z,1).

4. For each object € Ag, a map id, : A° — A(x,z) such that for z, y € Ag we have

commutative diagramas

A(xy)%Amx x Az, y) Az, y) *>Aajy x Ay, y)

\ l : \ l . (7.12)

A fibrant simplicial category is a simplicial category A such that all the simplicial sets
A(x,y) are oco-groupoids. The underlying fibrant simplicial category A(s 1) of a sim-
plicial category A is the fibrant simplicial category with same objects as A but with
Aoo)(@,y) = Tloo(||A(z, y)|]), where || - [| denotes fat geometric realization (cf. Exam-
ple 7.6). The homotopy category of a simplicial category A is the category Ho(A) with
same objects as A but with Ho(A)(z,y) = mo(||A(z,v)]|])-

As discussed in [181, Section 1.1.5], a simplicial category A has a simplicial nerve N(A)a,

which is a simplicial set constructed similarly as the nerve of a category. If A is a fibrant
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simplicial category, then N(A)e is an (oo, 1)-category as in Definition 7.5. Up to set-
theoretic considerations, and with the right notion of equivalence, the simplicial nerve
construction induces an equivalence between fibrant simplicial categories and (oo, 1)-

categories.

Most of the (large) co-categories that we consider in this thesis are presented as fibrant
simplicial categories, and the only reason why we have defined (oo, 1)-categories as in
Definition 7.5, instead of as fibrant simplicial categories, is that the (oo, 1)-category of
functors between two (0o, 1)-categories is much easier to define in the model from Defi-
nition 7.5. For this reason, given fibrant simplicial categories A, B we write Fun(A, B)

for the (0o, 1)-category of functors between the (oo, 1)-categories associated to A, B.

Example 7.9. The fibrant simplicial category Spc of spaces is the simplicial cate-
gory whose class of objects is the class of all co-groupoids as in Definition 7.5, with
Spc(A, B) = Fun(A, B) and where composition and identities are defined in an obvious
way. Note that this is a combinatorial model for the (informal) (oo, 1)-category of topo-
logical spaces, continuous maps, homotopies and higher homotopies. Indeed, Quillen’s
theorem that we recalled in Example 7.6 implies that the homotopy category of Spc co-
incides with the localization of the category of compactly generated topological spaces

at the weak homotopy equivalences. [181, Section 1.1.4]

We define homotopy limits and homotopy colimits in Spc by taking them in topological
spaces; i.e., given a small category C' and a functor F' : C — Spc, then its homotopy
limit is I (lim || - || o F") € Spcy, where lim || - || o F' € Top,, denotes the homotopy limit
in the sense of topology [146] of the functor ||- || o F': C'— Top.

A common technique in category theory is localization; i.e., constructing a category
A[W] out of a category A and a class of morphisms W (weak equivalences) in A that
are formally inverted in A[IW]. For example, a span 2 & 2’ % y with w € W induces an
arrow (w, f) : « — y in A[W], and given a second span z <> 25, 23 y with wy € W one
has (w, f) = (we, f2) if there exists some « : ' — 2, commuting with the two spans.
This identification, which is necessary for the composition on A[IW] to be well-defined,

loses the information of the arrow «, which is important in some contexts.

If we are working in one such context, then we might try to construct instead an (oo, 1)-
category A[W]s in which pairs (w, f) as before induce arrows, and in which « induces
a 2-cell from (w, f) to (wa, f2). The systematic way to do this for an arbitrary class of
morphisms W is called hammock, Dwyer-Kan or simplicial localization [104]. If (A, W)
satisfy additional conditions, then the co-category obtained from Dwyer-Kan localization
is equivalent to an easier to present fibrant simplicial category [204, Section 3.6.2], and

for the purposes of this thesis this situation is general enough.
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Definition 7.10 ([204]). Let A be a category, let W, F' C A be two subcategories,
whose arrows we call weak equivalences and fibrations, respectively, and call the arrows
that are both in F' and W acyclic fibrations. The data (A, W, F) is a category of fibrant

objects if the following axioms are satisfied.

1. Isomorphisms are acyclic fibrations.

2. For x i> Y Iy 2, if any two of {f,g,g9 0 f} is a weak equivalence, then so is the

other one.
3. For every x € Ay, x — 1 is a fibration.

4. Any diagram
x
|7 (7.13)
Yy L) z

in A such that g is a fibration has a pull-back z FXgy = zin A. This is again a

fibration and, if g is an acyclic fibration, then so is the pull-back.
5. Any arrow x EN y in A factorizes as x Al y, where f’ is a fibration and \ is a

weak equivalence that is a section of an acyclic fibration =’ — x.

The localization A[W]( 1) of a category of fibrant objects (A, W, F) is the underlying
fibrant simplicial category of the simplicial category A[W ]y defined as follows.

1. The class of objects of A[W]y is Ag .

2. For z, y € Ay the simplicial set A[W ] (x,y) is the nerve of the following category:

(a) Tts objects are spans z < z/ EN y in A with w an acyclic fibration.

(b) An arrow between the spans z < z’ EN y and = £ i3 y is a weak

equivalence « : @’ — z, in A such that

N

x @ Yy (7.14)

SN

!
Lo

commutes.

(¢) Composition and identities are induced by composition and identities in A.
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3. For z, y, z € Ag, composition A[W]s(x,y) x AW]x(y, 2) = A[W]s(z, 2) is de-

fined by
/ \ / \ / \ (7.15)
4. The identity of x € Ag is z e % g,

Remark 7.11. Since the simplicial sets A[W]so(x,y) in Definition 7.10 are nerves of cat-
egories, one can think of A[W],, as a category internal to categories, or equivalently as
a strict (2,2)-category. It might seem counter-intuitive that it is possible to construct
an (0o, 1)-category A[W](, 1) with non-trivial k-cells for k& > 3 out of a (2, 2)-category
A[W]s. However, this is related to the surprising fact that the geometric realization
of any oo-groupoid (such as A[W]( 1)(z,y)) is weakly homotopy equivalent to the geo-
metric realization of some category (such as A[W]s(z,y)) [260]. For example, note that
A[W]s(z,y) are groupoids if and only if every weak equivalence is already invertible in
A, in which case A[W]o = A[W]( 1) is a (2,1)-category which is actually canonically
equivalent to the category A.

The motivation for Definition 7.10 is that, although arbitrary fibered products need not
exist on the nose on A, they do exist ‘up to weak equivalences’. Hence, if we pass from A
to A[W](Oo,l), then we can take arbitrary fibered products. More precisely, if (A, W, F')

is a category of fibrant objects and we are given a diagram in A

lf ) (7.16)

y*>2

we may choose a factorization x A i; z of f, with f’ a fibration and \ a weak
equivalence. Then we define the corresponding homotopy fibered product to be x 7 x;‘ Y=
x’ 7 Xg ¥ Since this depends on the choice of factorization, the homotopy fibered product
is not really a well-defined fibered product on A, but it is well-defined as an operation on
A[W](s0,1)- In fact, it satisfies an analogous universal property (it is an (oo, 1)-limit [181,
Section 1.2.13]). Notice the similarity with how derived functors in abelian categories

are computed in terms of resolutions.

Example 7.12. Let A be the category whose objects are oo-groupoids and whose mor-
phisms are functors between them. We define weak equivalences in A to be functors
fo 1 Xo — Yo such that |fe] : | Xe| — |Ys| is a weak homotopy equivalence of topological
spaces and fibrations in A to be Kan fibrations; i.e., functors f, : X4 — Y, such that for
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n>1and 0 < j <n, the map
Seta (A", X) — SetA(A?,X) XSeta (A7,Y) Seta (A™,Y) (7.17)

induced by the inclusion A7 — A™ and the map f, is surjective. This is a structure of
category of fibrant objects on A, and its localization coincides with Spc [214, Section
I1.3].

Example 7.13. For a field k of characteristic 0, write dgAlg for the category of dif-
ferential Z=%-graded commutative k-algebras, with degree and differential-preserving
morphisms of algebras as arrows. This has structure of category of fibrant objects [50] if
we define weak equivalences to be quasi-isomorphisms (i.e., morphisms that induce iso-
morphisms in cohomology) and fibrations to be morphisms that are surjections on each
degree. The localization of dgAlg is by definition (the opposite of) the (oo, 1)-category
AffdSch of affine derived schemes. AffdSch is an enhancement of the category of
smooth schemes in which fibered products always exist and behave better than the

standard fibered products of schemes.

7.1.3 oo-stacks

The easiest way to define rigourously the (oo, 1)-category of derived differentiable oo-
stacks is to adopt the functor of points approach. For this we need some basic notions

of sheaf theory on (0o, 1)-categories.

Definition 7.14 ([261]). Let A be a fibrant simplicial category. Then its opposite is
the fibrant simplicial category AP with same objects as A but A% (x,y) = A(y, z). The
(00, 1)-category of co-presheaves on A is P(A) := Fun(A°,Spc). For each j € N; the
jth homotopy presheaf of X € P(A) is mj(X) € Fun(A°P, Set) obtained by composing X
with the jth homotopy group functor 7; : Spc — Set. The homotopy limit or homotopy
colimit of a diagram in P(A) is the presheaf that assigns to each z € Ay the homotopy

limit or homotopy colimit of the corresponding diagram in Spc.

A sieve on an object x € A is a sieve on Ho(A); that is, a collection of arrows in Ho(A)
T;,X = {UZa — :):}Z-e[

such that for [ € 7& and V ER U¢ an arrow in Ho(A) we have lo f € 7%. A Grothendieck
topology on A is a Grothendieck topology 7 on Ho(A). Equivalently, it is the data of,
for each x € A, a class of distinguished sieves on x, called covering sieves and denoted

T, subject to the following axioms.
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1. The class of all arrows in Ho(A) with target x is a covering sieve on z.

2. If f:2 — yis an arrow in Ho(A) and 7' is a covering sieve on y, then f*7;* :=

{h:s(h) = x| fohe,}is a covering sieve on z.

3. If 7% is a covering sieve on x and Tf is an arbitrary sieve such that for any [ :
x
U — x in 7 the sieve l*Tf is a covering sieve on U/*, then Tf is a covering sieve

on xr.

Example 7.15. Let A = Man be the category of manifolds. Define a good open cover
of X € Man to be a collection {U; — X };er of morphisms in Man such that U; — X
are inclusions of open sets with X = U;c;U; and all finite intersections of the open sets
{Ui}ier are contractible. A Grothendieck topology on Man is given by letting a sieve

be a covering sieve if and only if it contains a good open cover.

Example 7.16. Let A be the fibrant simplicial category of affine derived schemes from
Example 7.13. There is a notion of étale morphism between affine derived schemes
[261] that can be used to define a Grothendieck topology by letting {U; — X };cs be a
covering sieve if each U; — X is étale and the induced morphism | |;.; to(Us;) — to(X)

is a surjective morphism of schemes, where for
7 = Spec(O(Z)g & O(Z)_1 & ...) € AffdSch

we define to(Z) := Spec(O(Z)o/dO(Z)_1) € Af fSch.

For A a fibrant simplicial category and an object X € Aj, we write j(X) € P(A) for
the presheaf associated to j by the Yoneda embedding (i.e., j(X)(Y) = A(X,Y)). It
is proved in [181, Prop 6.2.2.5] that, as in ordinary category theory, sieves on X are in
bijection with pairs (U, s) of a presheaf U € P(A) and a monomorphism U % j(X). For
example, when A = Man, a sieve 7x = {U; £> X }ier over a manifold X determines the
presheaf

UM):={{fi: M —=>Uticr |Vi,j €I, liofi=10 f;}, (7.18)

which has an obvious monomorphism U — j(X). When A is an arbitrary (oo, 1)-
category, the presheaf U can be constructed as follows. First, construct the Cech reso-
lution of the sieve Tx; this is a simplicial object C(7x) : A% — P(A) in P(A) defined
as

Clrx)n = || 3Wi) ¥}y - xixy 3(U), (7.19)

20)-++5%n
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with obvious face and degeneracy maps. Then U € P(A) is defined as the homotopy
colimit of C(7x); that is,

vn) = tim (L] 5000 <han - <oan dGI0OD), 120

yeensln

where x ;L( X)(M) denotes homotopy fibered products of spaces and lim denotes homotopy

colimit of spaces. We can then formulate the descent condition of a sheaf as follows.

Definition 7.17 ([181, Def. 6.2.2.6]). Let A be a fibrant simplicial category with a
Grothendieck topology 7. A sheaf on A is a presheaf X : A’ — Spc such that for
every covering sieve 7x = {U; i x tier over X € Aj determining the monomorphism

U — j(X) in P(A) we have that the induced map
P(A)(j(X),X) = P(A)(U, %) (7.21)

is a weak homotopy equivalence of topological spaces. The fibrant simplicial category
of sheaves Sh(A, T) (or simply Sh(A)) is the full simplicial subcategory of the simplicial
category of presheaves spanned by the sheaves. A subcanonical Grothendieck topology

on A is a Grothendieck topology 7 such that for every X € Ay we have j(X) € Sh(A, 7).

For any Grothendieck topology, the inclusion functor Sh(A) — P(A) has a left exact (in
the sense of (oo, 1)-categories) adjoint functor L : P(A) — Sh(A), called sheafification
[181, Lem. 6.2.2.7]. This implies in particular that Sh(A) is closed under the homotopy
limits of P(A), while homotopy colimits on Sh(A) are defined by taking them on P(A)
and then sheafifying with L. Moreover, [181, Lem. 6.2.2.7] also implies that Sh(A) has
all internal homs, meaning that for any X, ) € Sh(A) there exists some Sh(A)(X,)) €
Sh(A) such that Sh(A)(3, Sh(A)(X,)) = Sh(A)(3 x X,9).

In the applications we have in mind, A is an (oo, 1)-category of (possibly very singular)
geometric objects and 7 is a subcanonical Grothendieck topology. In this case, an
arbitrary sheaf X € Sh(A) represents the functor of points of a moduli problem on A,
and we want to characterize which of these sheaves are geometric, in the sense that they

can be represented in some way by objects of A.

Definition 7.18 ([261]). Let A be a fibrant simplicial category and let j : A — P(A) be
the Yoneda embedding. Then a groupoid object in A is a functor X : A% — A satisfying
the Segal condition: for n > 2 and for every subdivision [n] = SU S’ with SN S" = {s},

the map
X, — X(9) x X(9") (7.22)
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induced by the inclusions S, S’ — [n] exhibits j(%¥,,) as the homotopy fibered product

in P(A)
(%) = §(X(S)) Xix(spy 4 (X(S")- (7.23)

A morphism of groupoid objects is a natural transformation of functors.

Let (A, 7) be a fibrant simplicial category with a subcanonical Grothendieck topology.
Let (A, 7') be a full simplicial sub-category of Sh(A) containing the image of the Yoneda
embedding j : A — Sh(A), with a Grothendieck topology 7’ restricting to 7 over A.
A morphism U — X in A is called smooth if {U — X} is a covering sieve for 7/. We
define inductively, for each n > 0, the fibrant simplicial category of n-geometric stacks

and their smooth morphisms as follows.

1. The fibrant simplicial category of 0-geometric stacks 0gSt(A) is A.

2. For n > 1, a smooth groupoid in (n—1)-geometric stacks X : AP — (n—1)gSt(A)
is a groupoid object in the simplicial category of (n— 1)-geometric stacks such that
X1 ﬁ Xo is a smooth arrow for j = 0, 1. A smooth morphism between two such
groupoids X — ) is a morphism of groupoid objects such that the corresponding

map Xo — Qo is a smooth morphism of (n — 1)-geometric stacks.

3. For n > 1, the fibrant simplicial category ngSt(A) of n-geometric stacks is the
full simplicial sub-category of Sh(A) spanned by objects that can be obtained as
colimits of i 0 X : A’ — Sh(A), for X a smooth groupoid in (n — 1)-geometric
stacks and i : (n —1)gSt(A) — Sh(A) the inclusion functor. A smooth morphisms
of n-geometric stacks is an arrow in ngSt(A) arising as the colimit of a smooth

morphism of groupoid objects in (n — 1)gSt(A).
4. A geometric stack is X € Sh(A)y such that X € ngSt(A) for some n € N.

Remark 7.19. When A is actually an ordinary category, then groupoid objects on A
as in Definition 7.18 coincide with groupoid objects as in Definition 7.5 (replacing Set
by A and bijection by isomorphism). In this case, n-geometric stacks in the setting of
Definition 7.22 form an (n+ 1, 1)-category [213]. Another interesting remark is that the
homotopy presheaves of a sheaf are actually sheaves, but even if the original sheaf was

geometric then its homotopy presheaves might not be so, if A does not have all colimits.

Example 7.20. If we take A to be the category Af fSch := Ring° of affine schemes,
with étale covers as covering sieves, and A to be the image under the Yoneda embedding
of the category of all schemes, also with étale covers as covering sieves, then the corre-
sponding n-geometric stacks are precisely the Artin n-stacks that model higher algebraic

geometry. If we take A to be the fibrant simplicial category of affine derived schemes
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with the étale Grothendieck topology from Example 7.16, and we let A be the image
under the Yoneda embedding of the fibrant simplicial category of all derived schemes
in the sense of [261] with étale topology, then the resulting geometric stacks are called

derived Artin stacks and provide the framework for higher derived algebraic geometry.

The following proposition provides a way to present examples of geometric stacks over

a fibrant simplicial category A in terms of simplicial objects on A.

Proposition 7.21 ([213]). Let (A, T) be a fibrant simplicial category with a subcanonical
Grothendieck topology and a fully faithful embedding Set — A. Let (A,7') be a full
simplicial sub-category of Sh(A) containing the image of the Yoneda embedding j : A —
Sh(A), scuh that 7' restricts to T over A, and such that homotopy fibered products along
smooth maps remain in A. Let m > 1 and let X : A’ — A be a functor such that

1. Face maps X, = X,_1 are smooth. In particular, for every horn A?
hom Fun(A%, A)(A},X) exists in A.

, the internal

2. The arrows in A
X, = Fun(A°P, A)(A", X) — Fun(A%, A)(Ag‘, X) (7.24)

induced by the inclusion A;” — A" are isomorphisms forn > m, 0 < j < n and

smooth for 2 <n <m, 0<j<n.

Then the colimit of joX : A? — Sh(A) is an m-geometric stack. Moreover, if A, A are
ordinary categories and the class of smooth morphisms satisfies the conditions in [213,

Properties 1.8/, then all m-geometric stacks arise in this way.

7.2 Higher derived differential geometry

7.2.1 Lie oco-groupoids

Definition 7.22 ([213, 282]). For m € N, the (m + 1, 1)-category of differentiable m-
stacks is the (m + 1,1)-category of geometric m-stacks X : Man®’ — Spc in the sense
of Definition 7.18, for (A, 7) = (A, 7’) the category of manifolds with the Grothendieck
topology from Example 7.15. The (oo, 1)-category Dif fSt of differentiable stacks is the

(00, 1)-category of all stacks that are m-geometric for some m € N.
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For m € NU {oo}, a Lie m-groupoid is a simplicial manifold X : A” — Man (cf.

Definition 2.1) such that the restriction maps
Xp = Mana (A", X) — Mana (A7, X) (7.25)

are diffeomorphisms for n > m, 0 < j < n and surjective submersions for 1 < n < m,

0<j<n.

Remark 7.23. [282] proves that, for any N € N, the right-hand side of (7.25) is a manifold
forn = N and any 0 < j < N if for n < N and all 0 < j < n the right-hand side of
(7.25) is a manifold and the restriction maps (7.25) are surjective submersions. Thus, it
follows by induction that Definition 7.22 makes sense. It is also useful to know that, as
shown in [177, Def. 2.39, Lem. 2.44], all face maps of a Lie m-groupoid are submersions.
Moreover, the tangent complex of a Lie m-groupoid as defined in Section 2.1.1 is indeed

a complex of vector bundles, as the quotients (2.17) have constant rank in this case.

Example 7.24. For & a Lie 2-group acting on a Lie 1-groupoid 3, the quotient 2-

groupoid constructed in Section 3.1.2 is a Lie 2-groupoid in the sense of Definition 7.22.

By definition, the category of manifolds is equivalent to the category of differentiable 0-
stacks. The bicategory of Lie groupoids, anafunctors and smooth transformations from
Section 3.1.1 is equivalent to the bicategory of differentiable 1-stacks, as shown in [33].
An explicit way of assigning a differentiable 1-stack X to a Lie groupoid X is to construct
its nerve N(X)e as in Section 3.1.1, which is a Lie 1-groupoid in the sense of Definition
7.22, and then take the homotopy colimit X := lima (INV(X)e) as in Section 7.1.3. Note
that, for Lie groupoids X, ), the simplicial set Fun(N(Xe), N(2s)) is (the nerve of)
the groupoid of smooth functors X — ) with smooth transformations between them,

and not the groupoid of all smooth anafunctors.

For arbitrary m € N, Proposition 7.21 implies that all differentiable m-stacks admit a
description as colimits of Lie m-groupoids in the sense of Definition 7.22. In particular,
Lie m~groupoids defining equivalent differentiable m-stacks have weak homotopy equiv-
alent geometric realizations (but equivalence as geometric m-stacks is stronger). As we
have just seen for m = 1, given two Lie m-groupoids X, ) : A’ — Man defining stacks
X, 9, the space DiffSt(X,2)) contains but can be strictly bigger than the simplicial set
Fun(%,9).

The idea is that the Lie m-groupoid X is only a presentation of its corresponding m-
stack X, and so an arbitrary morphism of stacks might only be defined as a functor
of m-groupoids in some other presentation X’. Thus, a rigorous presentation of the

whole (m + 1, 1)-category of differentiable m-stacks purely in terms of Lie m-groupoids



Higher derived differential geometry 220

requires allowing for resolutions of X and then localizing in an appropriate way to remove
the dependence on the resolution, similarly as in the construction in Section 7.1.2. A
rigorous construction for arbitrary m € N in the algebraic setting is in [213], while [222]
solves the problem in the smooth setting through the notion of incomplete categories of
fibrant objects. The result for m = 1 is the bicategory of Lie groupoids and anafunctors

from Section 3.1.1. A useful intermediate result is the following.

Proposition 7.25. Let M be a manifold and let Q) be a Lie m-groupoid defining differ-
entiable stacks M and?Q). For {U;}icr a good cover of M, there is a canonical equivalence
of m-groupoids

Fun(C(M,U)e,) — Dif fSt(M, ), (7.26)

where C(M,U)q is the Cech groupoid from Ezample 2.7.

Proof. 1t follows directly from the sheaf condition from Definition 7.17 and the definition
of the Grothendieck topology on Man. O

Remark 7.26. Complex differentiable m-stacks are defined analogously as in 7.22, replac-
ing Man by the category of complex manifolds with similar Grothendieck topology, and
similarly for complex Lie m-groupoids. Then Proposition 7.21 implies that every complex

differentiable m-stack can be represented as the colimit of a complex Lie m-groupoid.

7.2.2 Lie m-groups and principal m-bundles

Given a Lie group GG we can associate to it two simplicial manifolds.

1. The one that is just G at all levels. This is a Lie 0-groupoid in the sense of
Definition 7.22.

2. Tts delooping BG,e (cf. Example 2.6). This is a Lie 1-groupoid in the sense of
Definition 7.22.

Note Proposition 7.25 implies that for any manifold M the groupoid DiffSt(M, BG) is
equivalent to the groupoid of principal G-bundles on M. Moreover, for {*} — BG, the
unique map of simplicial manifolds extending the map {*} — {x} at level 0, one can
easily see that a map of differentiable stacks M — BG factorices through {*} — BG,
if and only if the corresponding G-bundle P — M is trivial. This means that

G = {x} xBe, {x}, (7.27)
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because for any manifold M we have G(M) = ({x} x%G. {*})(M), meaning that the
set of functions from M to G equals the set of automorphisms of the trivial G-bundle
over M. Similarly, given a Lie 2-group & in the sense of Definition 3.9 we can associate
to it the Lie 1-groupoid N(®), and the Lie 2-groupoid B®,, and their corresponding
differentiable stacks satisfy N(®), = {*} x?%. {*}.

Definition 7.27 ([239]). For m > 1, a Lie m-group is a Lie (m — 1)-groupoid & in the
sense of Definition 7.22 such that there exists a Lie m-groupoid, denoted B® and called
its delooping, with

B®y = {x}, (7.28)
® = {x} xs {*} € Sh(Man), (7.29)

where the map {*} — B® is the inclusion of the point {*} € B®,. For X a Lie I-groupoid
X and a Lie m-group &, the m-groupoid of &-principal bundles over X is DiffSt(X, B®).

The equivalence between Lie 1-groups in the sense of Definition 7.27 and ordinary Lie
groups follows from the familiar fact that a Lie groupoid with one object is determined
by a Lie group. The equivalence between Lie 2-groups in the sense of Definition 7.27 and
Lie 2-groups in the sense of Definition 3.9 is proven in [281]. By spelling out in detail
the definition of the homotopy fibered product of sheaves, one sees that imposing (7.29)
is equivalent to imposing that for any manifold M there is a canonical equivalence of
(m — 1)-groupoids between DiffSt(M, &) and the (m — 1)-groupoid of automorphisms
inside DiffSt(M, B&) of the unique functor M — B® that extends the smooth map
M — {x} at level 0.

We proceed to present examples of Lie m-groups for higher m € N. We define a Lie
m-group & by presenting its delooping B®, from which & can be recovered by definition.
One of the advantages of this approach is that cocycle data for &-bundles is obtained
immediately. We also comment on how to define connections on &-bundles in each case,
for which we use some extra data on & generalizing the Maurer-Cartan forms from
Definition 3.23.

Example 7.28 ([178]). For T' an abelian Lie group and ! > 1, recall the simplicial
manifold B'T, from Example 2.8. It is clear that B'T, is a Lie I-groupoid with BT, =
{x}. We claim that B!~'T = {x} x%lT{*}, implying that B'~1T is a Lie [-group for each
I. One way to see this is by noting that for a manifold M we can compute DiffSt(M, B'T)
as in Proposition 7.25, by taking a good cover U = {U;}ier of M. Then an object in
DiffSt(M, B'T) is precisely a T-valued Cech I-cocycle, an arrow between two I-cocycles
is a coboundary for the difference of the l-cocycles, a 2-cell is a coboundary between

coboundaries, etc. In particular, the (I — 1)-groupoid of automorphisms of any given
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object in DiffSt(M, B'T) is equivalent to DiffSt(M, B'~'T), which means precisely that
{x} X%ZT {x} = B'7'T.

In conclusion, DiffSt(M, B'T) is the I-groupoid of T-(I — 1)-gerbes over M in the sense
of [57, 82, 133]. The preceeding discussion implies that we can think of T-(I — 1)-
gerbes as B 'T-principal bundles over M. If T is connected, so that the exponential
sequence 1 — Z — t =¥ T — 1 is exact (for Z := ker(exp)), then for a B'~!'T-bundle
described by a T-valued cocycle t;,..;, we may choose a lift to t-valued functions f;,.
with exp(fiy...i;) = tio...i,- One can easily prove that the Z-valued cocycle \i,._i,, =6 f
determines a class in H'*1(M, Z), which we call the Chern or Dizmier-Douady class,

and which classifies the B'~!T-bundle completely.

Note that the Maurer-Cartan form on 7' defines a canonical 1-form 6 € Q' ((B!T);, t) such
that 66 = 0 and df = 0. This means that we can define connections on a B~ 'T-principal
bundle described by coycle data t;,..;, : Us,..;;, — T as follows. Since 60 = 0, t*0 €
Ol (Uig...i, Uig..i1» £) s a Cech cocycle and so there exist Al € Q' (Ui, 4y, t) with

i0-nit—1
§A' = t*0. Then df = 0 implies dA' = 0 and so there exist A7 ; € Q*(Uiy..i;_,t)
with 642 = dA'. This procedure continues until we have Al € Q!(U;,t) with Aé- -
Al = dAligl; these define a global closed (I + 1)-form F := dA!, which is a de Rham
representative for the Chern class. In the literature (A, ..., Al) is called a connection on

the [-gerbe and F' is its curvature.

Given a Lie m-group &, one can compose the sheaf & : Man — Spc with the Postnikov
tower construction [189, Theorem 4.35] on Spc, as explained in [181, Section 6.5.1]. It
follows that the composition of & with each homotopy group functor Spc — Grp defines
(possibly not representable) sheaves Gy : Man — Grp and T3, Tb, ..., Tj—1 : Man —
AbGrp such that G acts on each T; and & can be decomposed as

& = ®m—1 — @m_Q — . — (’51 — 60 = Go, (7.30)

where the fiber of each &; — &,_1 is B/Tj. It follows that one way to construct Lie
m-groups is by characterizing extensions of Lie (m — 1)-groups by Lie m-groups of the
form B™1T,,_; and then proceeding inductively. A cocycle characterization of such
extensions is in [178, Ex. 4.7], which can be used to construct many examples of relevance

in physics.

Example 7.29 ([119]). Given vector spaces Vp, V1 with lattices Ag C Vp, A1 C V7 and
a bilinear form (-,-) : Ag® Ag — Ay, the Lie 2-group 7 from [119] presented in Example
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3.14 has delooping BT defined by

n+1 n+1

n+1
(BT )n = ({0 et Ik bicyeneps bl € V2 ) e a8 s (v /a5 |
Vi<j <k, ov)—u+ol =
Vi<j<k<l, [vf—vij+vig—vjul = () A}
(7.31)

with simplicial maps defined as in Example 7.28. Using that (-,-) is Aj-valued over
Ao®Ay, one can see that (BT ), = V' XA((JS) X (Vl/Al)(g) and that the Kan conditions are
satisfied. As proven in [119], the 2-group constructed from the bilinear form (-, -)! defined
by (u,v)! := (v,u) is isomorphic to the one constructed from (-,-). In this approach this

can be seen from the fact that, if {[Uiljk]}i,j,k satisfies (0vl);jp = [(v%, )\?klﬂ, then

wz‘ljk = [’Uiljk - <Uz0jav?k> + <>‘%k’”?k>] (7.32)
satisfies (dwl);jm = [<)\9klv”?j>]'

Let M be a manifold and let v?j, )\%k,
{Ui}ier of M (i.e., these are local functions satisfying the same relations as in (7.31)).

This has an underlying Vo/Ag-bundle P whose Chern class ¢(P) € H?(M, Ay) is repre-

[viljk] be cocycle data for a 7T-bundle on a cover

sented in Cech cohomology by the cocycle )\%k. We may choose lifts Uiljk 1 Usjr, — V1 of
[viljk,} and define )\lekl : Uijiy — A1 by
1 1 1 1 0 10 1
Vijk = Viji T Vigr — Vjg = (Vi Nk ) — Nijs (7.33)

then we see that (SA1)jk1m = <)\?jk, A%, ), which means precisely that 0 = (¢(P)Ac(P)) €
H*(M, Ay). This recovers Proposition 4.5 for the Lie 2-group 7.

The Maurer-Cartan form on 7 determined by Example 3.46 and Proposition 3.50 is
given by the 1-forms ° € QY(BTy, Vo), 0 € Q1 (BTz, V1) defined by

0° := duvg, (7.34)
01 = duiy — (dvdy, v12). (7.35)

They satisfy
60° =0, 601 =0, di®=0, do* = (d36° Ad;0°). (7.36)

0
ij
cover {U, }ier of M, Proposition 4.12 implies that a connection on it is described by a

Given a 7-bundle over a manifold M described by cocycle data v )\?jk, [viljk] on a
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family ({A;}i, {Aij}ig, {Bi}i) with

A; € QY UL Vo), Ayj € QY (Ui, ), By € Q*(Ui, VA)

such that
Aj— Ay = (v]))"6°, (7.37)
Aij = A+ Aji = (viy) "0, (7.38)
1 .
Bj — B; = dAij + §<d1)?] A dv%) — <Az VAN (U?]) 90>Sy. (7.39)

We can do a change of variables B} := B; — %(AZ A A;) to obtain a simpler relation
B — B} = dAi; — (A; A (v];)6°). (7.40)
The curvature of the connection is the pair (F, H) € Q*(M, Vp) © Q3(M, V1) defined by
F = dA;, H =dB + (dA; N A;) (7.41)
and one can check directly that it satisfies the Bianchi identity

dF =0, (7.42)
dH — (FAF) =0, (7.43)

giving an explicit proof of Proposition 4.11 for 7. When Vj/Ag = R"®(R")* /Z"&(Z™)*,
Vi =R/Z and

(,):Z"e(Z"))Z"®(Z™)) > Z (7.44)
(1)1 + Aq,v9 + AQ) — LleQ, (745)

the corresponding Lie 2-group is denoted TID,, and plays a role in the description of
T-Duality from [166, 207, 274].

Example 7.30. The same data from Example 7.29 can be used to construct for each
p € Na (2p+ 2)-group T which extends BP(Vy/Ag) by B?*1(V;/A1). Tt is defined by

(BT )n = {{vh),iper b Py ipra b Li,iag 0] 1) © Vo X Ag X Vi/ Ay

7.46
| 60% = X, [6v'] = [(v°, A)]}, (0

where the indices belong to [n] and the equations are defined similarly as in (7.31),
suppresing the indices from the notation. Similar arguments as in Example 7.29 show

that a BP(Vy/Aog)-bundle with Chern class ¢ € HPT2(M, A) lifts to a T-bundle if and
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only if 0 = (cAc) € H?P*4(M, A;). This implies that when p is even, then two (2p + 2)-
groups constructed in this way are isomorphic if and only if the symmetric parts of the
corresponding bilinear forms (-,-) coincide, and when p is odd then the same is true
but for the skew-symmetric part of (-,-). Indeed, in these cases we have that for any
c € HPY2(M, Ay) the classes (c Ac) € H*P*4(M, Aq) coincide for the two bilinear forms,
and so a coboundary relating them can be used to give an isomorphism between the

corresponding (2p + 2)-groups as in Example 7.29.

The 1-forms 6° € QL ((BT)p+1, Vo), 01 € QY ((BT)2pt2, Vi) defined by

0 = dv? i
) 10'“ P . . (7.47)
0 = dvio...i2p+2 - <dvi07~~~:ip+1’vip+1"'i2p+2>7
can be used to define a connection on a 7-bundle described by cocycle data U?Omipﬂ,
?07.“71»“2, [ }Ouhwz] as a sequence of differential forms
Agg...ip+1_r € QT(Uio...ip+1—r? %)7 r= 17 ey D + 17 (748)
AfO-~-i2p+2—s S QS(UiO‘,.i2p+27S, Vl)a s = 17 ceey 2p + 27
such that
SAY = (v°)*6°, (7.49)
SAT = dA™ L, r=2,...p+1, (7.50)
SAY = (v1) 0t (7.51)
OAS = dAS™ 4 (1) TLH(AS A (00)*0°), §s=2,.,p+2, (7.52)
OA® = dAS™P 4 (1) THdAPTI AN ASP7) ) s=p+3, ..., 2p+2, (7.53)

where ¢ denotes the Cech differential and the products (- A -) are defined by taking the
indices similarly as in (7.47). Its curvature is (F, H) € QPT2(M,Vy) @ Q2*H3(M, W)
defined locally by

Fi=dAP" ) H = dAPP? 4 (dAPT A AP (7.54)
and it satisfies the Bianchi identity
dF =0, dH — (FANF) =0. (7.55)

The 6-group corresponding to p = 2, Vo /Ao = Vi/A1 = R/Z and (-,) : ZR Z — Z the
canonical product provides a model for prequantizing M5-branes [234]. The (4k + 2)-
groups for p = 2k, k > 1 and the same choice of V/Ag, V1/A1, (-,-) that gives TD,, in



Higher derived differential geometry 226

Example 7.29 are called higher T-duality groups in [108], where their role in string and
M-theory is discussed.

Example 7.31. Let 7 be the Lie 2-group constructed from Ag C Vo, Ay C Vi, (-,)o :
Ao ® Ag — Ay as in Example 7.29. Given another vector space with a lattice Ay C V5,
we construct a Lie 3-group 72 extending 7 by B?(Va/A3) from the data of a bilinear
form (-,-)1 : Ao ® Ay — Ag such that

(uo, (vo, wo)o)1 + (vo, (w0, wo)o)1 = 0. (7.56)

We also choose a section of the map of Z-modules Afj® Aj — A2Af defined by B — Bk,
where

B**(u,v) := B(u,v) — B(v,u). (7.57)

Then for \g € Ay we write
(- (5 A0)o) P € Af @ Af ® Ay (7.58)
for the corresponding bilinear form such that

{ug, (vo, Mo)o)1 = (ug, (v, Ao)o)™™ — (vo, (1o, Xo)o )™ (7.59)
Then we define 72 by

(BTQ)n = {({U?j}v {)‘?jk}7 {viljk}a {)‘zljkl}W {[U%kl]}) C Vo xAgx Vi xApxVa/Ay
’ U?j — vgy + 'U?k = /\?jka
Uiljk - Uiljl + Vi + Ujl'kl = <U?j7 )‘?kl>0 - )\}jkb
[Uinkl - Uinkm + Uinlm — Vphim + szk'lm]
= [(v0) A1 + Adjier (V5 A )0) T = (05 (0 A )0) 1

(7.60)

Given a T-bundle P — M, the obstruction to lift it to a 72-bundle can be described as

follows. First, recall from Example 7.29 that the topological class of P is characterized

0 .
ijk *

[\°] € H%(M, Ap) and a coboundary )\iljkl  Uijia — A1 for (AO A X9 g; iee, (OAY)ijhim =

<)\?jk, Ab0. Given this data, one can check that

on a good open cover {U;};cr of M by a Ag-cocycle A Uij. = Ao defining a class

_<)‘?jk7 Allflmn>1 + <A?jk7 <A?kla A?177,n>0>l10w - <)‘?kl7 <)‘?jl? )‘?mn>0>l10w (761)

is a Cech cocycle defining a class in H?(M, As) which vanishes precisely when P can be
lifted to a 72-bundle. The image of this class in H®(M, V3) is represented in de Rham
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cohomology by [—(F A H)1] € H3(M,Vz), where (F, H) € Q2(M, Vp) © Q3(M, V) is the

curvature of any connection on the 7-bundle. This follows from the following discussion.

We define the 1-forms

00 € Q' (BT?)1, Vo), 6" € Q' ((BT?)2, V1), 6% Q'((BT?)s,Va)

by

0._ 3.0
0" = dvy,,

1. 4.1 0 .0
0 = dvga — (dvgy, v19)0,

2 2 0 .1 0 0 0 l
0% = dvgiag + (dvgy, via3)1 — (Vo1 (dvgy, Alag)o) 1™ -
These satisfy

56° =0, de® =0,
50t =0, dot = (d30° A d36°),

6% =0, df9? = —(dvgy A dvigs)1 — (dvgy A (dugy, Adas)o) .
Then we define a connection on a 72-bundle to be the data of

A; € QUL V), Ay € QYU V1), B € QX(U;, V1),
Eijk € L (Uijn, Va), Zij € Q*(Uij, Vo), Ci € Q¥ (U, Vo)

satisfying the relations

AJ —A; = (U?j)*eoa
Aij — Azk + Ajk == (Uiljk)*el,
Bj —B; = dAl] — <AZ AN (U%)*90>0,

= = .= = 2 Vg2
Eijk — Ziji + Sikt — Ejr = (v5)707,

Eij — Yk + Ejk = dEijk + (dv?] A Ajk>1 + <dU?J A <d'l)%, U?k>0>l10w

Cj - C; = dZij — <dU?J A Bj>1 + <Az A <A1 A dU?j>0>llow.

(7.62)

(7.63)

(7.64)

Its curvature is the triple (F, H,G) € Q?(M, Vo) ®Q3(M, V1) @ Q*(M, V) defined locally

by

F:=dA;,
H :=dB; + (dA; A Ao,
G :=dC; — (A; NdBy)1,

(7.71)
(7.72)
(7.73)
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and it satisfies the Bianchi identity

dF =0, (7.74)
dH — (F A F)o =0, (7.75)
dG + (F A H)y = 0. (7.76)

In [117] we study a certain duality for 2-branes in M-theory which is closely related
to U-Duality, and we model it in terms of Lie 3-groups T3D!3 ToDE3 which can be

constructed as above from the following data.

1. TyDEs is the Lie 3-group constructed from

‘/0 — Rna Vl - (Rn)*v V2 - Ra
Ay = Z7", Ay = (ZM), Ay =7,
<’U1,’U2>0 = 0, <U, A>1 = LvA. (7.77)

2. ToDE? is the Lie 3-group constructed from

Vo =R" @ A*(R™)", Vi = (R"), Vo =R,
Ao = Z" @ A*(Z")*, Ay = (Z"), Ay =7,
<’U1 + Bi,vo + B2>0 = LleQ, <’U + B, A>1 = 1, A. (778)

7.2.3 The oco-categories of derived manifolds and derived differentiable

stacks

There is an (0o, 1)-category dMans, which can be characterized axiomatically as the
minimal (oo, 1)-category in which manifolds can be embedded and in which fibered
products always exist [76]; this is the framework of derived differential geometry. The
results of [32, 75] imply that dMan, can be presented in terms of the derived manifolds

from Section 2.2.2.
Definition 7.32 ([32]). Let M! = (M, B!, Q'), M? = (M2, E%, %) be derived mani-
folds. A morphism (i, 1) : Mt — M? is

1. a fibration if ¢! : E' — E? is a submersion,

2. étale if ¢, : TM' = p*TM? is a quasi-isomorphism of chain complexes of vector
bundles over Z(M?),



Higher derived differential geometry 229

3. a weak equivalence if it is étale and ¢ : M1 — M? restricts to a bijection Z(M') —
Z(M?).

The following theorem recaps the main results of [32] and [75].

Theorem 7.33 ([32, 75]). The category dMan from Definition 2.17 is a category of
fibrant objects in the sense of Definition 7.10 with the fibrations and weak equivalences

from Definition 7.32. Its localization is the (00, 1)-category dMans.
As it follows from Section 7.1.2, Theorem 7.33 states the following.

1. Given morphisms of derived manifolds

Ml
(p1,%1) (7'79)

M2 (502,1112; N

such that (¢1,11) is a fibration, then the fibered product M! x My exists.
Indeed, we define this fibered product by the vector bundle L := E' x px E? —
M?' xy M?, which satisfies S®L[1]* = S*E'[1]* ® ge pN1]* S*E2[1]* and so it has
a natural homological vector field @, since tensor product is a coproduct in the

category of dg-algebras.

2. Any morphism of graded manifolds M? EN N factorizes as M1 & M! il) N,
where ) is a weak equivalence and f’ is a fibration. Thus, given a diagram (7.79)
where (g;, ;) are arbitrary morphisms, we may choose a factorization (¢1,11) =
(@], %)) o A1 and construct the fibered product of (¢},v]) and (¢2,12) as in 1.
This is called the homotopy fibered product of (v1,11) and (p2,19), as it is only

well-defined up to weak equivalences.

We show how to perform homotopy fibered products in dMan,, with some examples.

Example 7.34. Let ® : M — FE be a section of a vector bundle 7 : £ — M and write
0 : M — F for the zero section. We claim that the derived manifold constructed in
Example 2.20 coincides with the homotopy fibered product M q)ng of ® and 0. This
can be seen by factorizing 0 : M — E as M L VA E, where M’ is the derived
manifold associated to the vector bundle 7*E[—2] — E with homological vector field
given by the identity section E — 7*E[—2], A is defined by the zero section and 0’ is the
identity on E. In particular, one can easily show that when & is transversal to 0 and
rk(E) = dim(M) then M 4 x2M is weakly equivalent to the manifold given simply by

the standard zero set of ®.
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Moreover, if there is a map of vector bundles d : £ — F such that d® = 0, then
we claim that the corresponding derived manifold from Example 2.20 is obtained by
defining first the homotopy fibered product E; := F dng , letting ®; be the map
M — Eq induced by ® and then taking the homotopy fibered product Z := M 4 XSM .
This can be checked similarly as before, resolving the zero sections 0 : M — F' by the
derived manifold M’ = (F, 7*F[—2],id) and the zero section 0 : M — Eg4 by the derived
manifolds M), = (E, 7*E[-2]® F[-2|®F[-3]),Q), with @ defined by the identity section
E — 7*E[—2] and the identity map F[—2] — F[-3].

Example 7.35. Let i : X — Y be an embedded submanifold. We construct a derived
manifold modelling the fibered product X Xél/ X, called the self-intersection of X within
Y. For this we use the tubular neighborhood theorem to obtain a neighborhood V' of the
zero section of the normal bundle 7 : N(X) — X, defined by N(X) :=*TY/T X, and a
diffeomorphism V/ % U onto an open neighborhood U C Y of i(X) such that i = ¢ 00,

i,

for 0: X — V the zero section. Then we factorize i as X -5 X’/ Y, where X' is the
derived manifold associated to the vector bundle 7*N(X)[—2] — V with homological
vector field given by the identity section V' — 7*N(X)[—2], A is defined by the zero
section of N(X) and i’ is defined by ¢. Then we can compute X x2 X = X' xy X,
which is the derived manifold with underlying vector bundle N(X)[—2] — X and 0 as

homological vector field.

Finally, once we have a model for the (oo, 1)-category dMany, of derived manifolds, the
construction of the (oo, 1)-category dDiffSt of derived differentiable stacks is a straight-

forward analog of its algebraic geometric counterpart.

Definition 7.36. Let M := (M, E, Q) be a derived manifold. A covering sieve on M
is a family {U; — M};cr of étale morphisms of derived manifolds such that the induced
map U;er Z(U;) — Z (M) is surjective.

For m € N, the (0o, 1)-category of derived differentiable m-stacks is the (oo, 1)-category
of m-geometric stacks as in Definition 7.18, for (A,7) = (A, 7') the (oo, 1)-category
dMan,, with the Grothendieck topology induced by the above covering sieves. The
(00, 1)-category dDiffSt of derived differentiable stacks is the (oo, 1)-category of stacks

that are m-geometric for some m € N.

For m € NU {o0}, a derived Lie m-groupoid is a simplicial derived manifold X : AP —
dMan (cf. Definition 2.22) such that the restriction maps

X, = Mana (A", X) — Mana (A7, X) (7.80)

are weak equivalences for n > m, 0 < j < n and fibrations for 1 <n < o0, 0 < j < n.
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Remark 7.37. The right-hand side of (7.80) is a derived manifold, as it follows from the
proof in [282] applied to the category dMan with the Grothendieck topology given by

fibrations.

Since all homotopy fibered products exist in dMany, it follows by general sheaf theory
that dDiffSt is an enrichment of the category of manifolds in which all fibered products
and quotients exist. Derived Lie m-groupoids provide examples of derived differentiable
oo-stacks by Proposition 7.21 but, as opposed to the case of (not derived) differentiable
stacks, it is not necessarily true that all derived differentiable co-stacks arise in this way.
It is easy to check that the simplicial derived manifolds from Examples 6.3, 6.4 and 6.5
are derived Lie 2-groupoids in the sense of Definition 7.36, and so they should actually
be regarded as derived differentiable 2-stacks.



Chapter 8

Discussions, open problems and

conclusions

8.1 Discussions

8.1.1 On the need for Maurer-Cartan forms

Maurer-Cartan forms on Lie 2-groups play a prominent role in our work. We proceed
to discuss some thoughts on whether these are actually necessary and/or fundamental.
For a Lie 2-group & with Lie 2-algebra b b g, our approach requires choosing a Maurer-

Cartan form on & for the following purposes.

1. Defining a 1-shifted symplectic structure on (g* By h*)//® which can be used for

defining Hamiltonian actions of & (see Propositions 3.27 and 6.11).

2. Defining an Lo-structure on b by g that maps into the Lie 2-algebra of vector
fields on &, at least when & arises from a multiplicative gerbe (see Proposition
3.51).

3. Defining connections on &-bundles, at least when & arises from a multiplicative

gerbe or from a Lie crossed module (see Sections 4.1.2 and 4.1.4).

Item 1 seems to be related through Theorem 3.43 to the observation in [66] that the Lie
algebra of a Lie group acting on a Courant algebroid in a way that Hamiltonian reduction
can be performed is naturally equipped with an Ad-invariant, symmetric bilinear form.
Item 2 reflects the problem that an L.,-algebroid structure on the tangent complex of

a simplicial manifold can only be obtained after choosing connections [178]. Item 3

232
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reflects the problem that a consistent, fully non-abelian notion of connection is for now
only available for Lie 2-groups with an additional structure [220, 237, 273] (Chern-Simons

forms or adjustments).

What we seem to be experiencing in all situations is that, while the tangent bundle of a
Lie group is trivial, and the Maurer-Cartan form provides a canonical trivialization that
behaves well with respect to the group product, a trivialization of the tangent complex
of a Lie 2-group is only available after choosing a Maurer-Cartan form (which we have

not proved to always be possible).

For example, as we mentioned in Example 2.33, the 1-shifted symplectic structure on
9" //G for G a Lie group exists essentially because the Maurer-Cartan form on G induces
an isomorphism g*//G = T*[1](BG); thus, it seems reasonable to expect that the 1-
shifted symplectic structure from Proposition 3.27 exists because a choice of Maurer-
Cartan form on the Lie 2-group & induces an isomorphism (g* 5 h*)//& = T*[1]B&
(although here we have not defined T*[1] B® rigorously, this is perhaps possible following
[90, 223]). Similarly, the fact that a connection on the trivial G-bundle P := M xG — M
(thought of as a splitting of TP/G — T'M) is given by a g-valued 1-form on M follows
from the isomorphism T'G = G X g, and so it is natural that a connection on a &-
bundle can only be defined in terms of g- and h-valued forms once we have chosen an

isomorphism 7% = & x (h — g).

Following this line of thought, a natural objection to our approach is that we should just
acknowledge the fact that T'® is not canonically trivial, instead of trying to fix this with
a seemingly arbitrary choice of trivialization. Indeed, it is perhaps possible to define
Hamiltonian actions of & and connections on &-bundles in this way, probably leading
to moment maps that take values in some non-trivial vector bundle with fiber g* — bh*
and to connections described locally by differential forms with values in some non-trivial
vector bundle with fiber h — g, and this is perhaps the only way to develop a natural
theory that is valid for any Lie 2-group (or even higher Lie group).

A possible answer to this objection is that results such as Corollary 3.45 show that, for
important families of Lie 2-groups, there is a canonical choice of Maurer-Cartan form,
up to a notion of isomorphism that does not change the notion of Hamiltonian actions
or connections. Moreover, our examples of higher Lie groups from Section 7.2.2 are
also equipped with canonical Maurer-Cartan forms (see Section 8.2.1 for a discussion
of how likely it is that this is in fact true for all higher Lie groups). Hence, in these
situations, there is no reason not to use Maurer-Cartan forms, since they are essentially
canonical, they simplify the presentation of definitions and examples with respect to an
hypothetical abstract theory that does not trivialize T'®, and their corresponding notion

of connection behaves exactly as expected from the physics literature.
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A more elaborate answer is that some of our results and the intuition from physics suggest
that Maurer-Cartan forms are not just useful gadgets, but actually fundamental objects.
The first observation in this direction is Proposition 3.52, which follows from the fact
that the Maurer-Cartan form associated to a connective structure on a multiplicative
U(1)-gerbe over G (defining a 2-shifted presymplectic structure on BG through the
pairing (-,-)) provides a prequantization of this 2-shifted presymplectic structure on
B® — B(G. This is an important remark, as Theorem 2.29 suggests that the structure
from Proposition 3.52 is essentially the one that leads to the shifted symplectic structures
in our moduli spaces (Theorem 6.7 and 6.8), hence that the Maurer-Cartan form on &

is a fundamental object.

On the other hand, to illustrate the meaning of Maurer-Cartan forms in physics, recall
from Theorem 3.48 that a multiplicative T-gerbe G over G defines a central extension
of Lie 2-groups

1-BT -G —-G—1. (8.1)

This can also be read as a sequence of differentiable 1-stacks, where G : Man — Gpd is
the stack with G(M) the groupoid of pairs (g,0), where g : M — G is a smooth map
and o is a trivialization of g*G. Now a connective structure on G determines a lift of

this sequence to a sequence of stacks
1— BTy -Gy -G — 1, (8.2)

where BTy : Man — Gpd is the stack with BTy (M) the groupoid of T-bundles with
connection over M. Namely, Gy (M) is the groupoid of pairs (g,0v) of a function
g: M — G and oy a trivialization with connection of ¢*Gy. Then Gy is a stack of 2-
groups, in the sense that pairs (¢', ov,), (¢, 0%) can be multiplied in a weakly associative
way. Proposition 4.12 can be interpreted as saying that a principal bundle for Gy is a

G-bundle with connective structure (hence the terminology used throughout the thesis).

At different points throughout the thesis we have decided to fix a connective structure
on a G-bundle for convenience (for example, for constructing the Atiyah algebroid in
Theorem 4.23 or for presenting the moduli spaces in Theorems 6.7 and 6.8). From the
discussion above, this can be interpreted as the idea of fixing a Gy-bundle as background
geometry, and then seeing the data (A, B) as a connection on it, instead of fixing a G-
bundle and then seeing the data of a connective structure and (A, B) as a connection

on it.

This is arguably the natural way to proceed from the point of view of 2-dimensional
sigma-models. Indeed, a 2-form B on M is supposed to model the interaction of a

physical field with a closed oriented surface ¥ — M, defined as exp(2mi [ ¥*B) € U(1).
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Since this expression does not change under B — B + F, for F' the curvature of a
line bundle, it leads naturally to determine that the physical field is actually given by
locally defined 2-forms B; that satisfy the gluing condition B; — B; = Fj;, for Fj; the
curvature of local U(1)-bundles with connection (P;j, Ai;) — Uj;. In short, the 2-forms
B; describe the physical field, while the U(1)-bundles with connection (P;;, A;;) describe
how it transforms. This suggests that the 2-group describing the local symmetries of
these fields is BTy, instead of BT'; thus why in the context in which B is coupled to
an ordinary G-connection we need to consider extensions of the form (8.2) instead of
extensions of the form (8.1). Using a related physics terminology, for our theory to have
local 1-form symmetries, we must have a ‘gauge group’ containing the information of

how to glue those 1-form symmetries, which is what (8.2) provides.

A philosophical discussion of whether a connective structure on a principal 2-bundle
should be considered as part of the principal 2-bundle or as part of a connection on it
might seem superficial, considering that for quantizing the theory all that we care about
is the moduli space of all connections modulo gauge, and this coincides in both points of
view by Proposition 4.17. However, it becomes more relevant once we impose equations
of motion: our Theorem 5.26 (generalizing the abelian version from [142]) states that
supersymmetric configurations in heterotic string theory are related to holomorphic G-
bundles with holomorphic connective structure (i.e. holomorphic Gy-bundles and not
plain holomorphic G-bundles). This can be compared with how holomorphic G-bundles
are related to the Yang-Mills equations, but holomorphic connections on G-bundles do
not often play a significant role in physics, and is important for constructing geometric

structures on moduli spaces that are natural from the point of view of complex geometry.

We summarize our conclusion in the following slogan. The local symmetries of higher
gauge theory are described not by plain higher Lie groups, but rather by higher Lie
groups equipped with Maurer-Cartan forms (or some generalization of these, such as the
cleavages in [265]). The observations above show in which sense this is the natural point

of view in physics, and how it leads to a well-behaved mathematical theory.

8.1.2 On the interplay between higher geometry, generalized geometry
and string theory

Our main results are obtained from a fruitful interaction between higher geometry and
generalized geometry, inspired by string theory. We comment on some generalities about
the relation between these theories. Firstly, we note that the bijection between connec-
tions on a principal 2-bundle and splittings of its associated Courant-Dorfman algebroid

from Theorem 4.23 might suggest that higher geometry is not necessary to describe
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heterotic string theory coupled to supergravity, as long as one uses Courant algebroids.
However, this is not entirely true. The reason is that, as already noted in [245], au-
tomorphisms of principal 2-bundles do not coincide with automorphisms of the corre-
sponding Courant algebroid, leading to different moduli spaces when quotienting fields
by symmetries. We proceed to justify that higher geometry describes the symmetries
of 2-dimensional field theories in a way that is closer to the original literature on string

theory than the approach from generalized geometry.

Consider, for example, the description of parallel transport along surfaces associated to
a U(1)-gerbe with connection (£, A, B) — M in [131] (see also [116, 186]). This assigns
to each smooth map v : S' — M a U(1)-torsor L., and to each smooth map ¥ — M,
where ¥ is a connected, oriented, compact, 2-dimensional manifold, a morphism of U (1)
torsors PT(X, B) : @epon+Ly = @yepon- Ly, where #0951 (resp. #0%X7) denotes
the set of positively (resp. negatively) oriented connected components of the boundary
of ¥. For example, for (£,A) the trivial gerbe with trivial connective structure and
B € Q2(M) a connection on it, L, is the trivial torsor for every v and PT(X, B) is the

automorphism of the trivial torsor given by exp(27i [5, B).

An automorphism of the gerbe with connective structure (£, A) given by a U(1)-bundle
with connection (P, A) — M induces for each v : S' — M an automorphism L, — L.,
(given by acting with the holonomy of A around +), and these automorphisms induce
a commutative diagram relating PT(X, B) and PT (X, B + Fy) for any ¥ — M. In
particular, if (P, A) and (P’, A’) are related by an isomorphism (P, A) — (P’, A, then

they induce the same automorphisms L. — L.

We learn two things from this construction. The first one is that the isomorphisms
(P,A) — (P', A") (i.e., 2-isomorphisms of gerbes) are natural symmetries of the theory
and so a mathematical framework that accounts for them is desirable. The second one,
perhaps more interesting, is that, while a Kalb-Ramond field B can be equivalently
modelled by a connection on £ or by a splitting of its associated Courant algebroid
E, from the point of view of parallel transport the natural symmetries of B are the
automorphisms of (£, A); i.e., the U(1)-bundles with connection (P, A). Automorphisms
of E are general closed 2-forms by € Q2(M), acting on B as B + by, but this is not a
symmetry of the parallel transport construction above unless by has integral periods (i.e.
exp(2mi fz bp) = 1 for every ¥), which happens precisely when it is the curvature of a
U(1)-bundle with connection (P, A). Restricting to ezact or Hamiltonian symmetries of
E as in, for example, [127], would amount to restricting by to be exact, but this does

not capture all the symmetries of the theory.

To sum up, we can conclude that higher geometry is faithful to physics on encoding the

symmetries of 2-dimensional sigma-models, while generalized geometry is not. Thus,
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moduli spaces associated to these field theories are more rigorously defined in terms
of the symmetries dictated by higher geometry. We can also see that this pays off
with moduli spaces that behave better than those in [84, 125, 127], in the sense that
the shifted symplectic structures from Theorems 6.7 and 6.8 only exist because we are
taking this approach: the tangent complex of a similar moduli space not keeping track
of 2-isomorphisms of G-bundles will never have the right dimensions to admit a shifted
symplectic structure, if the last term in the deformation complex of volume forms is

included.

However, this is not to say that generalized geometry is of no use for dealing with these
moduli spaces. In fact, our construction of simplicial derived manifolds in Section 6.1.2
relies completely on the construction of the Atiyah algebroid E of a principal 2-bundle
P from Theorem 4.23. Indeed, Theorem 4.26 uses E to give a smooth structure on the
gauge 2-group of P, which is responsible for the ‘higher’ smooth structure on the moduli
spaces, while the ‘derived’ structure follows from the deformation theory of sub-bundles

of Courant-Dorfman algebroids developed in Section 6.1.1.

The preceeding discussion shows what higher geometry offers to string theory, and what
generalized geometry offers to higher geometry. As for what string theory and higher
geometry offer to generalized geometry, we can only make some general comments based
on the work of other authors. A key construction is the result from [226, 243] that
Courant algebroids are equivalent to degree 2 symplectic dg-manifolds, which is used
in [242], based on the AKSZ construction from [1], to associate a 2-dimensional sigma-
model (the Courant sigma-model) to any Courant algebroid E — M. This implies that
essentially every construction in generalized geometry has a counterpart within string
theory, with the interpretation of generalized Kéahler geometry as the imposition of

N = (2,2) supersymmetry on the corresponding field theory [141] as its prime example.

This suggests that the construction of invariants in generalized geometry can be ap-
proached by a deep understanding of the Courant sigma-model and its quantization,
and so that such invariants will naturally be of higher categorical nature. Examples of
this line of thought can be traced back to Weinstein’s observation that Poisson manifolds
are integrated by symplectic groupoids [275], and the complex analog of this result [22],
while a more recent construction is the interpretation of the generalized Kéhler potential

within a double symplectic groupoid in [3].
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8.2 Open problems

8.2.1 On the theory of higher Lie groups and connections on higher

principal bundles

In this thesis we have developed some original tools for dealing with Lie 2-groups. As
we had concrete applications within the theory of moduli spaces in mind, some of these
tools might seem ad hoc from a more abstract point of view, or only applicable to certain
families of Lie 2-groups. Thus, a general problem to address in the future is to translate
our tools to a language that allows for generalizations to all Lie 2-groups, or even to all

higher Lie groups. A concrete problem in this direction is the following.

Problem 8.1. Find a notion of Maurer-Cartan form on a Lie co-group & that subsumes

Definition 3.23 and which has the following properties.

1. The choice of a Maurer-Cartan form on & leads to a good notion of connection on
a G-bundle P — M, based on local differential forms with values on the tangent
complex of B&, and with an associated parallel transport map from the fundamental

oo-groupoid of M to B®.

2. The choice of a Maurer-Cartan form on & leads to an Lo -structure on the tangent

complex of B® that maps to an Leo-algebra of vector fields on &.

3. The choice of a Maurer-Cartan form on & leads to a good notion of exponential

map for &.

4. BEvery Lie co-group admits a Maurer-Cartan form, and any two choices of Maurer-
Cartan forms lead to equivalent notions of connections on &-bundles, Ly -structures

and exponential maps.

It could seem that property 4 of Problem 8.1 contradicts Proposition 3.42, which de-
scribes an obstruction to the existence of connective structures on a multiplicative T-

gerbe over G (living in H?2 (G, g*®t)), and identifies the space of inequivalent choices

gr,cont

of connective structures as H gl

ever, there could be a notion of Maurer-Cartan form solving Problem 8.1 which for the

rcont (G, 8% @1), which could be larger than a point. How-

case of a multiplicative T-gerbe over GG is more flexible than the notion of connective

structures, allowing for a twist by an element in H 92T760nt

(G,g" ®t), and whose corre-

sponding notion of connection is unaffected by H, gl,nycom(G, 9" ®t).

We wish to emphasize here that there are consistent notions of connections on bundles for

general Lie co-groups in the literature [110], with associated notions of parallel transport.
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However, as already noticed in [235], the connections defined in this way are in general
too strict, as they satisfy additional Bianchi identites (such as fake flatness) which are not
expected from physics. This is only solved in [235] for Lie co-groups with an additional
structure. This additional structure is axiomatized in the notion of adjustments for Lie
oo-algebras [230] and for strict Lie 2-groups [220] (we interpreted the latter in terms
of Maurer-Cartan forms in Proposition 3.59). We expect a solution to Problem 8.1 to
be a global, perhaps also weaker, version of the adjustments from [230]. A very recent
alternative approach to define general connections uses Atiyah L..-algebroids defined
abstractly as formal moduli problems [61]; perhaps Theorem 4.23 and Proposition 4.21,
or the work of [111], help on relating both approaches.

A good candidate to solve Problem 8.1 is the notion of cleavage from [95, 265]. This
is a connection-like object on the simplicial manifold B®, which provides a ‘horizontal
transport’ of vectors along the products of &. A cleavage on a Lie co-group always
exists and, as shown in [265], it induces an adjoint (homotopy) action on the tangent
complex of B® which is independent (up to homotopy) of the choice of cleavage. It is
thus natural to expect that this can be used to define connections, as local differential
forms with values on the tangent complex of B® that are glued in terms of this adjoint
action and the horizontal projections of the cleavage. We believe, however, that for a
complex Lie 2-group it is not reasonable to expect existence of holomorphic cleavages in

general.

Asides from the satisfaction of developing the theory in its most general possible form,
solving Problem 8.1 could lead to applications in high-dimensional field theories. Exam-
ples of physical phenomena that have been modelled with higher Lie groups include the
3-forms and 6-forms that couple to fivebranes in M-theory [11, 236], topological defects
in topological phases of matter [25] and higher form symmetries in axion electrodynam-
ics [150]. However, the study of geometric structures in moduli spaces associated to
these theories is yet to be done. Some aspects of M-theory have also been treated with
the language of exceptional generalized geometry [23, 60, 154, 211], in which Courant
algebroids are replaced by more complicated objects called exceptional algebroids. Thus,

an interesting problem to approach is the following.

Problem 8.2. Find a family of higher Lie groups & with the following properties.

1. There is a good notion of connection on &-bundles.

2. A B-bundle with connection B3 determines an exceptional algebroid E with a split-

ting of m: EE— TM.

3. Sections of E can be exponentiated to give automorphisms of 3.
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In relation to Problem 8.2, it is worth mentioning that some of the examples of higher
Lie groups that we presented in this thesis (namely, Examples 7.30 and 7.31), with a
notion of connection on their associated principal bundles, play a role in M-theory. It
is thus plausible that a solution to Problem 8.2 is related to these, as well as to the
fivebrane 6-group from [236, 237].

Finally, recall that we also used Maurer-Cartan forms to define Hamiltonian actions
of a Lie 2-group & on a symplectic manifold M (see Proposition 6.11). Although the
constructions of moduli spaces in Section 6.2.2 provide interesting examples of these,
the arrows of & play a rather trivial role, as M is a manifold. For a more interesting
action, M must be replaced by a Lie groupoid 91, which is the natural object where a

Lie 2-group acts.

Problem 8.3. Find a notion of Hamiltonian action of a Lie 2-group & equipped with a
Maurer-Cartan form on a quasi-symplectic groupoid 9 such that a symplectic quotient

M// .G can be defined. Provide natural examples of this construction.

The formalism of [210] suggests how to proceed for solving Problem 8.3. Namely, one
can construct in a similar way to Proposition 3.27 a 2-shifted symplectic structure on

the simplicial manifold

Y = (b"//a%)//&, (8.3)

where g* acts on h* by ¢ and & acts on h*//g* by the adjoint action. It is such that the
canonical morphisms h*//g* — 2 and B& — 2) have canonical Lagrangian structures.
Then a Hamiltonian map for the action of a Lie 2-group & on a quasi-symplectic groupoid

I is the following data.

1. A morphism with a Lagrangian structure p : 9//& — (h*//g")//®.

2. An equivalence of 1-shifted symplectic derived stacks 91 = M//& ,x,;b*//g".

The corresponding symplectic reduction is the 1-shifted symplectic derived differentiable
stack 9//® ,x;,BG. So the problem is actually to characterize this construction in
terms of more classical data, perhaps for the case in which & is a multiplicative gerbe
with connective structure or an adjusted Lie crossed module. Whether there are already
natural constructions in the literature that can be interpreted within this formalism is
unknown to us, but it is possible that the work on reduction of Courant algebroids [66],
homotopy moment maps [71] or reduction of symplectic graded manifolds [21, 65, 194]
is related to this.
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8.2.2 On the theory of moduli spaces in higher gauge theory

In Section 6.1.2 we construct simplicial derived manifolds presenting moduli spaces of
flat connections, holomorphic structures and holomorphic structures with holomorphic
connective structure on principal 2-bundles, and in Section 6.2.1 we show that we can
equip the first two moduli spaces with shifted symplectic structures, if we also include a
new parameter in the moduli representing, respectively, a smooth or holomorphic volume
form on the base manifold. The most natural problem that arises from this thesis is

thus to perform a similar construction with the third moduli space.

Problem 8.4. Let Gy be a holomorphic multiplicative C*-gerbe with holomorphic con-
nective structure over a complex Lie group G such that the induced bilinear form (-,-) :
g®g — C from Theorem 3.43 is non-degenerate. Let X be a smooth, compact manifold
with dimp X = 2n admitting SU (n)-structures, and let Py — X be a smooth Gy -bundle.
Construct a simplicial derived manifold with a (2 — n)-shifted holomorphic symplectic
structure parameterizing SU (n)-structures on X and holomorphic structures with holo-

morphic connective structure on Py.

The idea that SU(n)-structures are the parameters to include in order to obtain a shifted
symplectic structure is motivated by two observations. The first one is that, as shown
in [136], the natural deformation complex associated to a SU(n)-structure on X (i.e. a

complex structure .J and a holomorphic volume form Q € Q0 (X, C)) is

Q=19 (x C) & orO+n-L1)(x ) 4 orD+n—12)(x ) 4 ..
i> Q(n,n—Q)—i-(n—l,n—1)(X—7 C) i) Q(n,n—1)+(n—l,n) (X, (C) i> Q(n,n) (X, C),
(8.4)

which is canonically dual to the deformation complex of holomorphic structures with

holomorphic connective structure on a gerbe

QO(x,c) % al(x,c) 4 02+ (x ) 4 .. 55)
8.5
. b QOn-D+An-2)(x ) 4 QOm+1n-D(x ) 4 oln)(x, C).

The second one is that, for n = 3, this is exactly what the literature on heterotic
string theory expects [13, 14, 94, 174]. These references also suggest how to construct
the moduli when n = 3 using the derived critical locus construction from Proposition
6.10. Namely, let M be the space of equivalence classes [(€2, (A, B))], where Q is a
totally decomposable form on X in the sense of [153] (in particular, it defines an almost
complex structure Jg on X), (A, B) is a connection on Py, and we identify (£2, (A, B)) ~
(Q, (A, B)-(a,b)) for (a,b) € Q°(ad P) x . ,Q2*°(ad P), where the types are with respect

‘e



Discussions, open problems and conclusions 242

to Jo. Then the superpotential is the function S : M — C defined by
S(Q, (A, B)) = / HAQ. (8.6)
X

Its critical points are the [(€2, (A, B))] such that Jq is integrable, € is a holomorphic
volume form and (A, B) is an integrable 2-semiconnection. Moreover, it is invariant
by the action of the 2-group Aut(Py) of automorphisms of Py covering possibly non-
identity diffeomorphisms of X. If we had a smooth structure with a Maurer-Cartan
form on Aut(Py), which should probably be modelled on the space of all sections of
the Atiyah algebroid of Py, then we could apply Proposition 6.10 to obtain the desired

moduli space when n = 3.

The idea of working with derived moduli stacks is not to replace classical moduli spaces
of stable objects, as discussed in Section 1.3, but rather to produce new geometric
structures on them. For example, [34, 160, 164] construct a perverse sheaf on the
moduli space of stable bundles over a Kahler Calabi-Yau threefold using the —1-shifted
holomorphic symplectic structure from Section 2.3.3, which categorifies the Donaldson-
Thomas invariants from [102, 259]. The existence of a well-behaved moduli space of
stable objects, which can be obtained either by algebraic-geometric methods or from the

Donaldson-Uhlenbeck-Yau theorem [100, 267], is crucial for their construction.

Similarly, the shifted holomorphic symplectic structure from Theorem 6.8, or the con-
jectural shifted holomorphic symplectic from Problem 8.4, could be used in a similar
way to produce categorified invariants, provided we have a good notion of stable holo-
morphic principal 2-bundles (with holomorphic connective structure). An ‘infinitesimal
Donaldson-Uhlenbeck-Yau’ theorem from [127] suggests that the gauge-theoretic analog
of such stability condition is given by the Hull-Strominger system from Definition 6.14.

Problem 8.5. Let K be a compact, connected Lie group and let I — K be a multi-
plicative U(1)-gerbe whose associated pairing (-,-) : €@ € — R is non-degenerate. Let
(X, Q) be a complex manifold with a holomorphic volume form and let Py, v, — X be a

K-bundle with connective structure. Write Py for its complexification and let

M = {((An, Bn), 9) € AT (Pnv,) | (An, Br), g) solves (6.90), (6.91)}/Gauge(Phv, )
H := Dj(Pv)/Gauge(Py).

Prove that the map M — H given by Theorem 5.26 induces a homeomorphism between
large open subsets U C M and V. C H with manifold structure. Use this and the
holomorphic shifted symplectic structure from Theorem 6.8 and Problem 8.4 to produce

mvariants.
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The problem of relating the Hull-Strominger system to complex-geometric stability con-
ditions has been approached with the language of Courant algebroids in [122, 123]; it
is expected that the natural geometric flows of generalized geometry can help solve this
problem [124]. A solution to Problem 8.5 could also relate our shifted holomorphic
symplectic structures with the presymplectic structure from [127] by means of some
hyperKahler structure, as sketched in Section 6.2.3. Note hyperKéhler structures asso-

ciated to the Hull-Strominger system have been considered in [122].

Other geometric structures on higher gauge moduli spaces could also arise from relating
connections with representations of fundamental 2-groupoids by the parallel transport
construction from Problem 8.1. This, together with a good description of fundamental
2-groupoids of manifolds in terms of generators and relations, could also give rise to
global finite-dimensional descriptions for the moduli spaces, as in the case of ordinary
Lie groups [31, 42]. This point of view has been adopted for studying moduli spaces of

flat connections on principal 2-bundles with finite structure 2-group in [41].

It would also be interesting to quantize the shifted symplectic structures from Theorems
6.7 and 6.8 in some sense that recovers constructions in mathematical physics. For
example, BV quantization in its different incarnations has been interpreted as a form of
either deformation quantization or geometric quantization for shifted symplectic derived
stacks [70, 145, 231] which we could try to apply. Another approach for quantizing
these systems, based on the theory of vertex algebras [191], is also related to Courant
algebroids [4, 5, 51, 148] and should therefore have an interpretation within the language
of higher gauge theory. Perhaps a necessary step to perform these constructions is to

understand first the representation theory of the main Lie 2-groups of interest [172, 173].

Finally, developing the representation theory of Lie 2-groups could also lead to an ex-
planation and generalization of the construction of instanton towers in [93]. As shown
there, a solution to the gravitino equations over a spin manifold M with a G-bundle
P — M induces for each k € NZ! an instanton Vj on a vector bundle V;, of the form
Vi = T*M & A*Vy | @ A?V}® |, with Vi = ad P. A potential explanation for this is
that there is a Lie 2-group Gy extending G such that a solution to the gravitino equa-
tions can be understood as a special type of connection (A, B) on a principal 2-bundle
Pv — M extending P, and that each instanton (Vj, Vy) is obtained from (A, B) by

some assoctated vector bundle construction.

Problem 8.6. Let & be a Lie 2-group (perhaps with a Maurer-Cartan form) with a
homotopy representation in the 2-vector space V_1 A Vo in the sense of [265]. Define, for
each B-bundle P — M (with connection), an associated vector bundle (with connection)

with the following properties.
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1. For & the Lie 2-group associated to a multiplicative T-gerbe Gy with connective
structure over G and its adjoint representation from Proposition 3.50, the associ-
ated vector bundle of a Gy-bundle Py is Ker(mw) C E, for E the Atiyah algebroid
of Py from Theorem 4.23.

2. For each Lie 2-group &, there is a sequence of Lie 2-group homomorphisms & Ad
B A &9 AL such that each &; has a natural homotopy representation in the
Lie 2-algebra of &;_1.

3. The tower of instantons from [93] is constructed from the associated vector bundle
construction, applied to some initial connection on a Gy-bundle and the corre-

sponding sequence of Lie 2-group homomorphisms starting with Gy .

8.3 Conclusions

The main goal of this thesis has been the development and application of general tools for
studying the geometry of moduli spaces that can be expressed in terms of equations for
connections on categorified principal bundles. More precisely, we have studied principal
bundles for Lie 2-groups & that can be decomposed as central extensions [238] of the
form 1 - BT — & — G — 1 for Lie groups G, T' with T abelian. This family of Lie
2-groups is relevant in string theory and supergravity [235, 253].

A mathematical study of this sort of moduli spaces has only been carried out until now
for the case in which & = BT for an abelian Lie group T' [63, 109, 110, 192, 256]. One
of the main ingredients of our work is the fact that, for & a Lie 2-group as above, a
®-bundle P — M with connection determines a transitive Courant algebroid £ — M
with a splitting. This was proven in [245] for a specific choice of Lie 2-group. Apart
from extending their result to a larger family of Lie 2-groups (Theorem 4.23), we have

used it for the following two purposes.

1. The construction of a smooth structure on the automorphism 2-group of B, mod-

elled on the space of sections of a sub-bundle of E' (Theorem 4.26).

2. The identification of the deformation theory for connections on B with the defor-

mation theory for sub-bundles of E (Section 6.1.2).

These two results constitute fundamental blocks in higher gauge theory, as they can be
applied to the construction of any (derived) moduli space that can be expressed in terms
of equations for connections on ®-bundles. We have applied them in Section 6.1.2 to

construct derived moduli spaces of flat &-connections, of holomorphic &-bundles and of
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holomorphic &-bundles with holomorphic connective structures. This last moduli space
parameterizes supersymmetric configurations in heterotic string theory, as it follows
from our Theorem 5.26, inspired by analogous results for Courant algebroids [127] and
gerbes [142]. This means that our constructions are crucial for a rigorous mathematical

understanding of string theory.

Besides constructing these derived moduli spaces, we have shown that they can be
equipped with canonical shifted symplectic structures (Theorems 6.7 and 6.8). These
are geometric structures that were introduced in [210] and which have attracted a lot of
attention in recent years for their relation with the obtainment of invariants for man-
ifolds [69, 160, 208], suggesting that our constructions also have potential applications
in this respect. Moduli spaces of flat connections and holomorphic structures on ordi-
nary principal bundles also have shifted symplectic structures which generalize work of
Atiyah-Bott [15] and Mukai [196]. While these have inspired our results, an interesting
difference is that, in order to be equipped with a shifted symplectic structure, our moduli
spaces need to include an additional parameter representing a volume form on the base
manifold. This agrees with the expectations from string theory, where this volume form

can be interpreted as a dilaton.

We wish to emphasize that, for & a Lie 2-group, defining connections on &-bundles is
already a subtle point in the literature. Over the last fifteen years, different authors
[220, 235, 273] have managed to formalize previous work on supergravity [38, 81] to
obtain a satisfactory notion of connection on &-bundles, whenever & arises from either
a multiplicative gerbe with connection or from a Lie crossed module with an adjustment.
However, there is still no conceptual framework for defining connections on fully general
Lie 2-groups in such a way that the work of [220, 235, 273] is recovered as a special
case. This is a fundamental problem, as it shows a conceptual insufficiency in our

understanding of connections.

We have also contributed to this general problem by proving that the different approaches
from [273] and [220] are equivalent. Moreover, we have shown that connections on
multiplicative gerbes and adjustments on Lie crossed modules are both examples of a
more general object that can be defined for any Lie 2-group, and which we have called
Maurer-Cartan forms. These play a very important role in all our main results, and we
expect that they can be used in the future for defining connections on principal bundles

for arbitrary Lie 2-groups.
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8.4 Conclusiones

El objetivo principal de esta tesis ha sido el desarrollo y la aplicacién de herramientas
generales para el estudio de la geometria de espacios de méduli que pueden ser descritos
en términos de ecuaciones para conexiones en fibrados principales categorificados. Con-
cretamente, hemos estudiado fibrados principales para 2-grupos de Lie & que pueden
ser descompuestos como extensiones centrales [238] de la forma 1 — BT — & — G — 1
para grupos de Lie G, T con T abeliano. Esta familia de 2-grupos de Lie es relevante

en teorfa de cuerdas y supergravedad [235, 253].

El estudio matematico de este tipo de espacios de méduli solo se ha llevado a cabo hasta
ahora en el caso en que & = BT para un grupo abeliano T [63, 109, 110, 192, 256].
Uno de los ingredientes principales de nuesto trabajo es el hecho de que, para & un
2-grupo de Lie del tipo mencionado anteriormente, un &-fibrado 8§ — M con una
conexién determina un algebroide de Courant transitivo £ — M con una escisiéon. Esto
fue demostrado en [245] para un 2-grupo concreto. Ademéds de extender este resultado
para toda una familia de 2-grupos de Lie (Teorema 4.23), lo hemos utilizado para los

siguientes propoésitos.

1. La construcciéon de una estructura suave en el 2-grupo de automorfismos de ‘R,

modelada en el espacio de secciones de un sub-fibrado de E' (Teorema 4.26).

2. La identificacién de la teoria de deformaciones de conexiones en 3 con la teoria
de deformaciones de sub-fibrados de E (Seccién 6.1.2).

Estos dos resultados constituyen pilares fundamentales para la teoria gauge de tipo su-
perior, ya que pueden ser aplicados a la construccién de cualquier espacio de mdduli
derivado que pueda expresarse en términos de conexiones en ®-fibrados. Nosotros
los hemos aplicado en la Seccién 6.1.2 para construir espacios de moéduli derivados de
B-conexiones planas, &-fibrados holomorfos y &-fibrados holomorfos con estructuras
conectivas holomorfas. Este ltimo espacio de méduli parametriza configuraciones su-
persimétricas en teoria de cuerdas heterdtica, como se sigue de nuestro Teorema 5.26,
inspirado por resultados andlogos para algebroides de Courant [127] y gerbes [142]. Por
tanto, nuestras construcciones son cruciales para entender la teoria de cuerdas de manera

matematicamente rigurosa.

Ademas de construir estos espacios de méduli derivados, hemos demostrado que estan
equipados con estructuras simplécticas desplazadas canénicas (Teoremas 6.7 y 6.8). Es-
tas son estructuras geométricas que fueron introducidas en [210] y que han atraido

mucha atencién en los tltimos anos por su relacién con la obtencion de invariantes para
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variedades [69, 160, 208], sugeriendo que nuestras construcciones también podrian ser
aplicadas para este propdsito. Los espacios de méduli de conexiones planas y estructuras
holomorfas en fibrados principales ordinarios también tienen estructuras simplécticas
desplazadas que generalizan trabajos de Atiyah-Bott [15] y Mukai [196]. Si bien esto ha
inspirado nuestros resultados, una diferencia interesante es que, para aceptar estructuras
simplécticas desplazadas, nuestros espacios de méduli deben incluir un parametro adi-
cional representando una forma de volumen en la variedad base. Esto se corresponde con
las previsiones de teoria de cuerdas, donde esta forma de volumen puede ser interpretada

como un dilaton.

Queremos destacar que, para & un 2-grupo de Lie, incluso definir conexiones en &-
fibrados constituye ya una tarea sutil en la literatura. En los tltimos quince anos,
distintos autores [220, 235, 273] han logrado formalizar trabajos previos sobre super-
gravedad [38, 81] para obtener una nocién satisfactoria de conexién en un &-fibrado, si
® puede construirse a partir de un gerbe multiplicativo con conexién o de un mddulo
cruzado con un ajuste. Sin embargo, no existe ain un paradigma conceptual capaz de
definir conexiones para 2-grupos de Lie totalmente generales que recupere el trabajo
de [220, 235, 273] como un caso particular. Este es un problema fundamental, ya que

muestra una deficiencia conceptual en nuestra comprension de las conexiones.

También hemos contribuido a este problema general demostrando que los distintos enfo-
ques de [273] y [220] son equivalentes. Ademés, hemos demostrado que tanto conexiones
en gerbes multiplicativos como ajustes en médulos cruzados son ejemplos de objetos maés
generales que pueden definirse para cualquier 2-grupo de Lie, a los que hemos llamado
formas de Maurer-Cartan. Estas juegan un papel fundamental en todos nuestros resul-
tados, y confiamos en que puedan usarse en el futuro para definir conexiones en fibrados

principales para 2-grupos de Lie arbitrarios.
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