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Abstract

In this thesis we initiate the program of studying the geometry of moduli spaces associ-

ated to principal 2-bundles. We consider Lie 2-groups G that arise from a Lie group with

an Ad-invariant, symmetric, bilinear form satisfying an integrality condition on its Lie

algebra. In this setting, we construct derived moduli stacks of flat G-connections over a
smooth manifold, holomorphic G-bundles over a complex manifold and holomorphic G-
bundles with holomorphic connective structure over a complex manifold. We introduce

dilaton derived moduli and use them to obtain canonical shifted symplectic structures on

these derived stacks, which are naturally identified with the derived critical locus of the

heterotic superpotential. For this, we relate holomorphic G-bundles with holomorphic

connective structures to solutions of the Hull-Strominger system, which models super-

symmetric configurations in string theory. Our results follow from a thorough study

of higher connections on principal 2-bundles, unifying previous approaches in terms of

trivializations of Chern-Simons 2-gerbes, adjusted connections, and splittings of Courant

algebroids by introducing a new notion of Maurer-Cartan form on a Lie 2-group.

Resumen

En esta tesis iniciamos el programa de estudiar la geometŕıa de espacios de móduli aso-

ciados a 2-fibrados principales. Consideramos 2-grupos de Lie G que se obtienen de

un grupo de Lie junto con una forma bilineal, simétrica, Ad-invariante y satisfaciendo

una condición de integralidad en su álgebra de Lie. En este contexto, construimos

stacks derivados de G-conexiones planas sobre una variedad diferenciable, G-fibrados
holomorfos sobre una variedad compleja y G-fibrados holomorfos con estructura conec-

tiva holomorfa sobre una variedad compleja. Introducimos modulis derivados de dila-

tones y los usamos para obtener formas simplécticas desplazadas canónicas en estos

stacks derivados, que identificamos de manera natural con el locus cŕıtico derivado del

superpotencial heterótico. Para ello, establecemos una relación entre G-fibrados holo-

morfos con estructura conectiva holomorfa y soluciones al sistema de Hull-Strominger,

que modeliza configuraciones supersimétricas en teoŕıa de cuerdas. Nuestros resultados

se siguen de un cuidadoso estudio de la teoŕıa de conexiones superiores en 2-fibrados

principales, unificando enfoques anteriores en términos de trivializaciones de 2-gerbes de

Chern-Simons, conexiones ajustadas y escisiones de algebroides de Courant gracias a la

introducción de una nueva noción de forma de Maurer-Cartan en un 2-grupo de Lie.
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Chapter 1

Introduction

The main result of this thesis is the construction of a moduli space parameterizing

pairs consisting of a holomorphic volume form on a fixed complex compact manifold X,

and holomorphic structures on a higher principal bundle P → X. This moduli space

is presented as a simplicial derived manifold and equipped with a shifted holomorphic

symplectic structure. This problem is motivated by the existence of shifted holomor-

phic symplectic structures on moduli spaces parameterizing holomorphic structures on

ordinary principal bundles over Calabi-Yau manifolds [210] which extend classical work

of Atiyah-Bott [15] and Mukai [196], their relation with the Yang-Mills equations es-

tablished by the Donaldson-Uhlenbeck-Yau theorem [100, 267], and the search for an

analogous complex-geometric counterpart for supersymmetric Yang-Mills equations cou-

pled to supergravity in heterotic string theory based on [127, 245].

In Section 1.1 we motivate the language of higher derived differential geometry, which

we use both to pose our problem and to present its solution. In Section 1.2 we discuss

how much of ∞-category theory is needed for understanding our results. In Section

1.3 we provide a brief introduction to the use of higher derived geometry and shifted

symplectic geometry for studying moduli spaces, with examples from ordinary gauge

theory that motivate our work. In Section 1.4 we present our main results, relating

them with constructions in generalized geometry, and motivating the study of higher

gauge theory from mathematical and physical points of view.

1.1 Higher derived differential geometry

The problems and results of this thesis are expressed within the language of higher

derived differential geometry. This is an extension of differential geometry which can

1
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be motivated as follows. Smooth manifolds model a notion of space which is locally

equivalent to Euclidean space and which has enough global structure so that we can study

it using techniques from differentiable calculus. These techniques are very powerful, but

they are limited by the following facts.

1. The topological quotient X/G of a smooth manifold X by the smooth action ρ

of a Lie group G does not always have structure of smooth manifold such that

X → X/G is smooth. (More generally: the category of manifolds is not closed

under colimits).

2. The topological preimage f−1(y) of a value y ∈ Y by a smooth map f : X → Y

between smooth manifolds does not always have structure of smooth manifold such

that f−1(y) → X is smooth . (More generally: the category of manifolds is not

closed under limits).

Furthermore, even when X/G or f−1(y) are actually manifolds, it is not always true

that they satisfy the properties that one would expect from these constructions. For

example, the expected dimensions

dim X/G = dim X − dim G,

dim f−1(y) = dim X − dim Y,
(1.1)

fail for G a Lie group with dim G ≥ 1 acting trivially on X, or for f : X → Y a constant

function and dim Y ≥ 1. The classical way to address these issues is to acknowledge them

as features of the category of manifolds that our naive expectations could not foresee.

An alternative approach is to replace the category of manifolds by an enhanced theory

in which colimits and limits of manifolds always exist and satisfy all the combinatorial

properties that one would expect. This could be useful, for example, to construct some

functorial invariant for all manifolds that behaves well with respect to quotients and

preimages.

Higher differential geometry is an enhancement of differential geometry in which the

notion of smooth manifold is generalized in such a way that finite colimits always exist

and behave well. Similarly, derived differential geometry generalizes the notion of smooth

manifold in such a way that finite limits always exist and behave well; when both theories

are combined we are working with higher derived differential geometry.

The basic idea behind these theories is the following. While quotients and preimages of

manifolds do not behave well in general, two classical results provide conditions under

which they do.
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1. If G is a Lie group acting freely and properly on a manifold X, then there is

a canonical structure of manifold on X/G such that X → X/G is smooth and

dim X/G = dimX − dimG.

2. If f : X → Y is a smooth map between manifolds such that df|x : TxX → Tf(x)Y

is surjective for every x ∈ X with f(x) = y, then f−1(y) ⊂ X is a submanifold

with dim f−1(Y ) = dim X − dim Y .

Thus, one way to solve our problem would be to find a category C, including the category

Man of manifolds as a fully faithful subcategory, and whose objects can be studied with

differential geometric tools, such that the following conditions are satisfied.

1. The notions of free, proper action and submersion can be generalized to C in such

a way that the analogs of 1 and 2 remain true.

2. There is a distinguished class of arrows in C, called quasi-isomorphisms, and such

that objects related by a quasi-isomorphism are considered to represent the same

space.

3. Every smooth action ρ : X × G → X can be lifted to a free and proper action

ρ̃ : X̃ ×G→ X̃ along a quasi-isomorphism q : X̃ → X.

4. Every smooth map f : X → Y factorices as f : X
q→ X̃

f̃→ Y , where q is a

quasi-isomorphism and f̃ is a submersion.

If these conditions are satisfied, then we can construct the preimage of a value by an

arbitrary smooth function f : X → Y by factorizing it as in 4 and taking f̃−1(y) instead

of f−1(y). Since f̃ is a submersion, f̃−1(y) is an object of C, and since q is a quasi-

isomorphism, f and f̃ should represent the same map of spaces, hence f̃−1(y) should

be a good geometric model for the topological space f−1(y). For quotients we could

proceed in a similar way.

As we will see in Section 2.1.1, following [282], the category of simplicial manifolds allows

us to perform arbitrary quotients by smooth actions using this idea. Roughly speaking,

while any two points in a manifold are either distinct or equal, a simplicial manifold is

a manifold such that any two points determine a smooth manifold of arrows between

them, while any three arrows determine a smooth manifold of 2-cells whose boundary

is given by the three arrows, etc. For m ∈ N, a simplicial manifold is called a Lie

m-groupoid if the spaces of k-cells for k > m are determined by the spaces of k-cells

for k ≤ m. While the tangent space of a manifold at a point is a vector space, the

tangent space of a simplicial manifold at a point is a Z≤0-graded cochain complex of

vector spaces.
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One possible model for the quotient of X by G as a simplicial manifold X//G, which

can be obtained resolving X as above, is given simply by considering X as the manifold

of points, and adding an arrow from x to x · g, for every x ∈ X and g ∈ G. Its tangent
space at x ∈ X is the cochain complex g[1]

ρ∗→ TxX, where ρ∗ denotes the infinitesimal

action; note that its Euler characteristic is the expected dimension dim X − dim G. A

more general simplicial manifold, in which arrows could have non-trivial 2-cells between

them, would be suitable, for example, for modelling iterated quotients.

As we will see in Section 2.2.2, following [32], the category of derived manifolds allows us

to take arbitrary preimages of smooth maps using the preceding idea. Roughly speaking,

a derived manifold is a manifold M equipped with a N≥1-graded vector bundle E →M

and an algebraic structure encoding a sequence of smooth maps M
s0→ E1

s1→ E2
s2→ ...,

smooth overM and polynomial on the fibers, such that sj ◦sj−1 = 0. While the tangent

space of a manifold at a point is a vector space, the tangent space of a derived manifold

at a point is a Z≥0-graded cochain complex of vector spaces.

One possible model for the preimage of y ∈ Y by f : X → Y as a derived manifold,

which can be obtained resolving X as above, is given by takingM an open neighborhood

of f−1(y) ⊂ X where f|M : M → Y can be identified with a function f ′|M : M → TyY

after taking a chart of Y around y, and letting E → M be the trivial vector bundle

with fiber TyY on degree 1 and section f ′|M : M → E. Its tangent space at a point

x ∈M is the cochain complex TxM
df ′|x→ Tf(x)Y [−1]; note that its Euler characteristic is

the expected dimension dim X − dim Y . A more general derived manifold, in which E

could have coordinates of higher degrees, would be suitable, for example, for modelling

iterated preimages.

In Section 2.2.3 we will combine both approaches in the notion of simplicial derived

manifolds, whose ‘tangent space’ at each point is a Z-graded cochain complex of vector

spaces. In any case, the punchline is that simplicial derived manifolds are differential

geometric objects, in the sense that one can develop differentiable calculus and define

notions such as symplectic structures, Riemannian metrics, complex structures, etc.

over them, which have good combinatorial properties, and which can model possibly

very singular spaces. See the introductions of Chapters 2 and 7 for historical accounts

of simplicial derived manifolds and higher derived differential geometry.

1.2 The need for ∞-categories

A proper treatment of higher derived differential geometry requires familiarity with

the quite technical notion of ∞-categories. However, this can be avoided for treating
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some problems and results. We proceed to explain why and when ∞-category theory is

necessary with some motivating examples. First, the idea of enhancing the category of

manifolds to a category C satisfying properties 1-4 is inspired by homological algebra

and homotopy theory, where we find the following situations.

1. Let f : x• → y• be a morphism of N-graded cochain complexes in an abelian

category. Then the mapping cone of f is computed by choosing a factorization of f

as x•
q→ x̃•

f̃→ y•, where q is a quasi-isomorphism and f̃ is degreewise injective, and

taking the degreewise cokernel coker f̃•. For any two factorizations x
qi→ x̃i

f̃ i→ y•,

i = 1, 2, there exists a quasi-isomorphism coker f̃1• → coker f̃2• , unique up to

homotopy.

2. Let fi : Xi → Y , i = 1, 2 be continuous maps of topological spaces. Then the

homotopy fibered product X1 ×hY X2 is computed by choosing a factorization of

f1 as X1
q→ X̃1

f̃1→ Y , where q is a weak homotopy equivalence and f̃1 is a Serre

fibration, and taking X̃1×YX2. For any two factorizationsX1
qi→ X̃i

1

f̃ i1→ Y , i = 1, 2,

there exists a weak homotopy equivalence X̃1
1 ×Y X2 → X̃2

1 ×Y X2, unique up to

homotopy.

The classical way to deal with the dependence of coker f̃• (resp. X̃1 ×Y X2) on the

factorization is to localize; i.e., to regard coker f̃• as an object in the derived category

of complexes instead of as an object in the category of complexes (resp. to regard

X̃1 ×Y X2 as a homotopy type instead of as a topological space). This approach is

technically flawless and sufficient for understanding what the mapping cone of a specific

morphism of cochain complexes is (resp. what the homotopy fibered product of a specific

pair of continuous maps is).

However, when regarded as a construction in the localized category, the mapping cone

(resp. the homotopy fibered product) is not functorial. This is a consequence of the

fact that different factorizations yield objects that are related by a non-unique quasi-

isomorphism (resp. weak homotopy equivalence). But, since this quasi-isomorphism is

unique up to homotopy, we might ask for a generalization of the notion of category that

also contains the information of some notion of homotopy between arrows, and in which

constructions such as the mapping cone or the homotopy fibered product are naturally

understood as ‘functorial up to homotopy’, for a precise meaning of this concept.

Properties 1-4 are formalized in Quillen’s notion of a model category [214], of which the

category of N-graded cochain complexes and the category of topological spaces are the

main examples. The problem of formalizing mapping cones and homotopy fibered prod-

ucts (more generally: homotopy limits and colimits in model categories) as functorial
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constructions was one of the inspirations for the development of∞-categories envisioned

by Grothendieck [138] and carried out later by many authors (e.g. [17, 26, 29, 104, 157,

181, 218, 255]). For a more detailed history of this theory see the introduction of Chapter

7.

The same technical problems apply to the setting of Section 1.1 that is of interest for this

thesis, and so we can summarize our conclusions as follows. The categories of simplicial

manifolds, derived manifolds and simplicial derived manifolds that we present in Sections

2.1.1, 2.2.2 and 2.2.3, respectively, are sufficient for the following purposes.

1. Presenting specific examples of geometric spaces within the context of higher,

derived and higher derived differential geometry.

2. Presenting specific examples of maps between geometric spaces within the context

of higher, derived and higher derived differential geometry.

3. Computing specific examples of quotients (resp. fibered products) of manifolds by

non-free smooth actions (resp. along non-transversal smooth maps) as geometric

spaces within the context of higher (resp. derived) differential geometry.

On the other hand, the ∞-categories of differentiable ∞-stacks, derived manifolds and

derived differentiable ∞-stacks from Sections 7.2.1 and 7.2.3 are necessary for the fol-

lowing applications.

1. Understand all maps between geometric spaces within the context of higher, de-

rived and higher derived differential geometry.

2. Understand the symmetries of a geometric space within the context of higher,

derived and higher derived differential geometry, such as dualities in certain field

theories.

3. Perform functorial constructions over manifolds that behave well under quotients

and fibered products, such as certain enumerative invariants.

For each m ∈ N, the full sub-∞-category of the ∞-category of differentiable ∞-stacks

spanned by Lie m-groupoids is actually an (m+1)-category, which is a simplified version

of an ∞-category. In particular, for m = 1 we obtain the 2-category of Lie 1-groupoids

that is described completely in Section 3.1.1, using the classical algebraic approach to

bicategories [35]. Insight into this bicategory is necessary for a good understanding of

the symmetries of differentiable 1-stacks.
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The main results of this thesis consist on presenting specific examples of geometric ob-

jects in higher derived differential geometry that represent moduli spaces parameterizing

structures associated to certain differentiable 1-stacks. Thus, these results require famil-

iarity with the category of simplicial derived manifolds, and with the bicategory of Lie

groupoids, but not with the ∞-category of derived differentiable ∞-stacks. Chapter 7

is nevertheless included in order to put our results into the right context, and to relate

them with possible future applications that might need this machinery.

1.3 Higher derived geometry and moduli spaces

One of the reasons why we consider higher derived differential geometry in this thesis is

because it provides a framework to construct well-behaved moduli spaces. When study-

ing the problem of parameterizing a certain class of geometric objects with complicated

symmetries, it is often necessary to restrict these objects by imposing conditions such

as irreducibility or stability in order to obtain a non-singular moduli space [101, 112].

While these notions yield important theories with applications in mathematical physics

and the construction of invariants, the fundamental nature of the moduli space param-

eterizing all (i.e., possibly non-stable) geometric objects is singular, and so it is also

desirable to have tools for handling this sort of spaces.

As discussed in Section 1.1, higher derived geometry is precisely the context in which the

notion of a geometric object is generalized to deal with possibly singular spaces, making

it an appropriate framework for studying fundamental aspects of moduli spaces. For a

historical review of the development of higher derived geometry applied to the study of

moduli spaces, see the introduction to Chapter 7. Here we will comment on a specific

example that motivates our work.

Consider the space B♭(P ) of flat connections modulo gauge on a principal G-bundle

P → M , for G a compact Lie group and M a smooth compact manifold of dimension

n. Classically,

B♭(P ) = {A ∈ A(P ) | FA = 0}/Gauge(P ), (1.2)

for A(P ) the space of connections on P and Gauge(P ) the group of automorphisms

of P covering the identity on M . Note A(P ) is an affine space modelled on Ω1(adP ),

the curvature FA of a connection A lives in the vector space Ω2(adP ) and Gauge(P )

is a Lie group with Lie algebra Ω0(adP ). Then, by differentiating the map A 7→ FA

and computing the infinitesimal action map we see that a manifold structure on B♭(P )
should be modelled around [A] ∈ B♭(P ) on the middle cohomology of the complex

Ω0(adP )
dA→ Ω1(adP )

dA→ Ω2(adP ). (1.3)
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However, since the gauge action is in general not free, and the map A 7→ FA is in general

not transversal to the zero section, it is not true in general that B♭(P ) is a manifold.

One way of interpreting the philosophy of higher derived geometry is that it replaces

the expected tangent space

Ker(dA : Ω1(adP )→ Ω2(adP ))/dAΩ0(adP ) (1.4)

by the elliptic complex

Ω0(adP )
dA→ Ω1(adP )

dA→ Ω2(adP )
dA→ Ω3(adP )

dA→ ...
dA→ Ωn(adP ). (1.5)

More precisely, there exists a simplicial derived manifold B♭,d(P ) (see Section 2.3.3 for

the construction) having (1.5) as its ‘tangent complex’ at each point. The fact that

the cohomology groups of this complex are finite-dimensional means that B♭,d(P ) can

be represented locally by finite-dimensional data. While this sort of construction has

been performed using differential graded supermanifolds [240, 241] (inspired by the BV-

BRST approach to quantizing gauge theories [28, 30]), we emphasize that these can be

interpreted as the tangent bundle of B♭,d(P ), but not as B♭,d(P ) itself.

An important observation from [240, 241] is that the differential graded supermanifolds

modelling the BV-BRST formalism are naturally equipped with a certain symplectic-like

structure which is crucial in the quantization procedure from [28]. We can see a shadow

of this symplectic structure in the elliptic complex (1.5): the fact that Ωj(adP ) is nat-

urally dual to Ωn−j(adP ) (after choosing an Ad-invariant, non-degenerate, symmetric

bilinear form on the Lie algebra of G and a volume form on M) can be interpreted

as an isomorphism between the tangent complex of B♭,d(P ) and its (shifted) cotangent

complex, behaving similarly as the isomorphism between the tangent and the cotangent

bundles of a manifold induced by a symplectic structure on it.

This structure is formalized in [210] as a (2 − n)-shifted symplectic structure on (the

algebraic analog of) the simplicial derived manifold B♭,d(P ). For n = 2, it extends the

Atiyah-Bott symplectic structure on the smooth locus of the moduli space of G-local

systems over a Riemann surface [15]. For general n, this structure is interpreted in terms

of the AKSZ formalism, a construction of field theories based on sigma-models whose

target is a symplectic differential graded supermanifold and which had been introduced

in [1, 242]. The improved language of shifted symplectic structures on higher derived

stacks has recently lead to a proof [69] that the field theories from [1] can be modelled

as extended topological field theories in the sense of [184], a notion that is itself inspired

by the literature on mathematical physics [113].



Introduction 9

Similarly, the moduli space of holomorphic G-bundles over a compact Calabi-Yau n-fold

X, for G a reductive complex Lie group, has a (2 − n)-shifted holomorphic symplectic

structure [210]. Again, we can see a shadow of this structure by looking at the elliptic

complex associated to a holomorphic structure on a principal G-bundle P → X

Ω0(adP )
∂
A

→ Ω0,1(adP )
∂
A

→ Ω0,2(adP )
∂
A

→ Ω0,3(adP )
∂
A

→ ...
∂
A

→ Ω0,n(adP ) (1.6)

and noting that a holomorphic volume form on the base manifold (with a non-degenerate,

Ad-invariant, symmetric C-bilinear form on the Lie algebra of G) allows us to see

Ω0,j(adP ) as the complex dual of Ω0,n−j(adP ), in a way which is compatible with the

differential ∂
A
. For n = 2, this extends Mukai’s holomorphic symplectic structure on

the smooth locus of the moduli space of holomorphic G-bundles over a K3 surface [196].

For n = 3, [34] argues that this shifted holomorphic symplectic structure is responsible

for the existence of Donaldson-Thomas invariants [102, 259], presenting a point of view

that has lead to a categorification of these invariants [160, 164] and a generalization for

Calabi-Yau fourfolds [47, 208, 209]. To sum up, we can conclude that shifted-symplectic

structures on higher derived stacks parameterizing geometric objects seem to be useful

for constructing invariants of manifolds.

1.4 Main results

In Section 1.3 we motivated higher derived differential geometry as a tool for studying

moduli spaces parameterizing structures in ordinary differential geometry. The main goal

of this thesis is to use higher derived differential geometry for studying moduli spaces

parameterizing structures that are themselves best described within higher differential

geometry. To be more precise, we construct moduli spaces parameterizing geometric

structures on fibrations of the form P→M , where M is a manifold and P is a principal

2-bundle for a Lie 2-group G.

Lie 2-groups are analogs of Lie groups in higher differential geometry: geometric objects

that describe symmetries of differentiable stacks (i.e. the differentiable 1-stacks from

Definition 7.22) as Lie groups describe symmetries of manifolds (i.e. differentiable 0-

stacks). One way to define a Lie 2-group is as a differentiable stack G equipped with a

morphism m : G×G→ G which may not be strictly associative, but which is equipped

with a natural transformation α : m ◦ (m × id) ⇒ m ◦ (id × m) : G × G × G → G,

expressing a weak form of associativity of m. For a brief history of the notion of Lie

2-groups, see the introduction of Chapter 3.
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Given a Lie 2-group G, there is a natural way to define actions of G on differentiable

1-stacks. One can also define a principal G-bundle π : P → M to be a fibration

of differentiable 1-stacks carrying an action of G that is principal in the sense that

it induces an equivalence P × G ∼= P ×M P. However, the notion of connection on

these bundles is in general not well understood. We review in more detail the history

of this concept in the introduction to Chapter 4. For now we will just mention that

non-flat connections on G-bundles behaving as expected from physics have been defined

for certain Lie 2-groups which by results of [238] admit an alternative description as

multiplicative gerbes [235, 237, 273]. This notion of connection depends on the choice of

some additional data on the multiplicative gerbe, called itself a connection in [271, 273].

The definition from [273] is inspired by early work on string theory and supergravity

[38, 74, 81, 137, 165, 277], where the bosonic field content of these theories is described

as a connection A on a G-bundle over spacetime P →M and some 2-forms Bi, defined

only locally over M , and coupled to A in such a way that the combination

H := dBi + ⟨dAi ∧Ai⟩+
1

3
⟨Ai ∧ [Ai ∧Ai]⟩ (1.7)

is a globally well-defined 3-form on M satisfying

dH − ⟨FA ∧ FA⟩ = 0, (1.8)

for FA ∈ Ω2(adP ) the curvature of A. Here ⟨·, ·⟩ : g ⊗ g → R is an Ad-invariant,

symmetric, bilinear form that must be chosen beforehand. If ⟨·, ·⟩ satisfies a certain

integrality condition, then [271] defines a multiplicative gerbe with connection G such

that the notion of a connection on a G-bundle, as defined in [273], formalizes the bosonic

field content in [38, 81, 137]. The pair (FA, H), with H defined by (1.7), is called the

curvature of the connection.

In particular, the study of moduli spaces of connections on G-bundles, where G is con-

structed as in [271], is related to the study of configuration spaces in supergravity and

string theory, suggesting rich geometries on them, as in the case of moduli spaces of

connections on G-bundles sketched in Section 1.3. This is precisely the content of our

main results. In fact, these physical theories often include an additional parameter,

called the dilaton and represented by a global function, and the spaces we construct

need to accommodate this freedom in order to be equipped with non-degenerate shifted

symplectic structures. The following theorem is presented in the body of the thesis as

Example 6.3 and Theorem 6.7.

Theorem 1.1. Let G be the multiplicative gerbe with connection associated to a Lie

group G and an Ad-invariant, symmetric, integral, bilinear form ⟨·, ·⟩ : g⊗ g→ R, and
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let P →M be a G-bundle over a compact manifold of dimRM = n. Then

1. There is a simplicial derived manifold B♭,d(P) parameterizing gauge equivalence

classes of flat connections on P.

2. If ⟨·, ·⟩ is non-degenerate and M is orientable, then there is a (2 − n)-shifted

symplectic structure on B♭,d(P) × ΩdR(M)∗, where ΩdR(M)∗ is a derived mani-

fold parameterizing locally constant positive functions on M and called the dilaton

moduli.

Lie 2-groups can also be defined in the holomorphic context. Such objects have not

been studied in detail in the literature (see, however, the introduction to Chapter 5

for a summary of some precursors). A straightforward generalization of the results in

[238] and [271, 273] enables us to construct a holomorphic multiplicative gerbe G with

holomorphic connection from the data of a complex Lie group G and an Ad-invariant,

symmetric C-bilinear form ⟨·, ·⟩ : g⊗ g→ C satisfying an integrality condition.

We can also define holomorphic structures on G-bundles, as well as holomorphic con-

nections on holomorphic G-bundles. Interestingly, one can also define the notion of a

holomorphic structure with holomorphic connective structure on a G-bundle, which is an

intermediate structure between a holomorphic structure and a holomorphic structure

with holomorphic connection. Then Examples 6.4 and 6.5 and Theorem 6.8 can be

summarized as follows.

Theorem 1.2. Let G be the holomorphic multiplicative gerbe with holomorphic con-

nection associated to a complex Lie group G and an Ad-invariant, symmetric, integral,

C-bilinear form ⟨·, ·⟩ : g⊗ g→ R, and let P → X be a smooth G-bundle over a compact

complex manifold of dimCX = n. Then

1. There is a simplicial derived complex manifold Hd(P) parameterizing holomorphic

structures on P, up to isomorphism.

2. There is a simplicial derived complex manifold H′,d(P) parameterizing holomorphic

structures with holomorphic connective structures on P, up to isomorphism.

3. If ⟨·, ·⟩ is non-degenerate and X admits holomorphic volume forms, then there is

a (2 − n)-shifted holomorphic symplectic structure on Hd(P) × Ωn,•
∂

(X)∗, where

Ωn,•
∂

(X)∗ is a derived manifold parameterizing holomorphic volume forms on X

and called the axio-dilaton moduli.

The moduli spaces from Theorems 1.1 and 1.2 are inspired by work in mathematical

physics [13, 14, 94, 174] and generalized geometry [84, 125, 127], but rigorous mathe-

matical constructions reflecting all the symmetries of higher gauge theory have only been
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carried out until now for G = {∗} [63, 109, 110, 192, 256]. Even in this case, our shifted

symplectic structures seem to be new. Theorem 1.2 is proved by applying the same

techniques we develop for Theorem 1.1, after obtaining a gauge-theoretic description of

holomorphic structures and holomorphic structures with holomorphic connective struc-

tures on G-bundles similar to the description of holomorphic structures on a complex

vector bundle E in terms of Dolbeault operators.

Recall that this classical description has a particularly nice expression when E is the

complexification of a Hermitian vector bundle Eh. In this case, the so-called Chern

correspondence establishes a bijection between holomorphic structures on E and unitary

connections on Eh with curvature of type (1, 1) (see e.g. [233] for a generalization to

principal bundles for a complex reductive Lie group). Moreover, this is the relation

that is used to define a map between the moduli space of solutions to the Hermitian

Yang-Mills equations on Eh and the moduli space of semistable holomorphic structures

on E, which the Donaldson-Uhlenbeck-Yau theorem [100, 267] (extended to principal

bundles for complex reductive Lie groups in [6]) proves to be a homeomorphism.

Our next result, which summarizes the content of Theorems 5.8 and 5.26, extends the

Chern correspondence to the setting of Lie 2-groups, identifying the F -term equations

that appear in supersymmetric heterotic string theory as the gauge-theoretic descrip-

tion of holomorphic structures with holomorphic connective structures on a principal

2-bundle. For this, we need to introduce the notion of enhanced connection on a prin-

cipal 2-bundle, which generalizes the definition of connection from [273] by introducing

an additional symmetric covariant tensor g on the base manifold.

Theorem 1.3. Let K be the multiplicative gerbe with connection associated to a compact

Lie group K and an Ad-invariant, symmetric, integral, bilinear form ⟨·, ·⟩ : k ⊗ k → R.
Then

1. There exists a holomorphic multiplicative gerbe KC with holomorphic connection

over the complexification KC of K, such that there is a canonical faithful functor

Ph 7→ PC
h from the bicategory of smooth K-bundles to the bicategory of smooth

KC-bundles.

2. If Ph → X is a K-bundle over a complex manifold X, then holomorphic struc-

tures with holomorphic connective structure on PC
h are in bijection with enhanced

connections ((A,B), g) on Ph such that

g0,2 = 0, F 0,2
A = 0, H = i(∂ − ∂)g(J ·, ·), (1.9)

for J the complex structure on X and (FA, H) the curvature of the connection

(A,B).
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Part 1 of Theorem 1.3 is to be regarded as a complexification theorem for Lie 2-groups.

It generalizes a result from [268], which is equivalent to ours when KC is a Stein group.

Part 2 of Theorem 1.3 is proven for the case G = {∗} in [142], and is strongly related to a

similar result in [127] relating equations (1.9) to holomorphic Courant algebroids. This

relation is more than an analogy, as it follows from another original result (Theorems

4.23 and 4.26 and Proposition 5.32).

Theorem 1.4. Let G be the multiplicative gerbe with connection associated to a Lie

group G and a non-degenerate, Ad-invariant, symmetric, integral, bilinear form ⟨·, ·⟩ :
g⊗ g→ R. Then

1. For a manifold M , there is a canonical functor P∇ 7→ EP∇ from the bicategory of

G-bundles with connective structure over M to the category of Courant algebroids

over M .

2. (Enhanced) connections on P∇ →M are in bijection with (possibly non-)isotropic

splittings of the anchor π : EP∇ → TM .

3. Let adP∇ := Ker(π) ⊂ EP∇. There is a map from Γ(adP∇) to the 2-group

Gauge(P∇) of automorphisms of P∇ which induces a structure of Lie 2-group on

Gauge(P∇).

4. If G is a holomorphic multiplicative gerbe with holomorphic connection and X

is a complex manifold, then there is a canonical functor P∇ 7→ QP∇ from the

bicategory of holomorphic G-bundles with holomorphic connective structure over

X to the category of holomorphic Courant algebroids over X.

The special case of Theorem 1.4 when G = {∗} is well-known in the literature as the

construction of an exact Courant algebroid playing the role of the ‘Atiyah algebroid’ of

a gerbe [85, 99, 142, 152, 221, 243]. Parts 1 and 2 of Theorem 1.4 are proven in [245],

for a specific choice of multiplicative gerbe with connection called String(n). Part 3,

which is an original contribution of this thesis, is crucial for our proof of Theorems 1.1

and 1.2, as the smooth structure on Gauge(P∇) is responsible for the smooth structure

on simplicial manifolds obtained as quotients by actions of Gauge(P∇).

The following theorem is an original result on the general theory of multiplicative gerbes

which can be found as Theorems 3.43 and 3.54 in the body of the thesis. Part 1 of

Theorem 1.5 implies that the definition of connection on G-bundles from [273] is valid

for G any multiplicative gerbe with connection, and that so are all our main results. On

the other hand, part 2 provides the main tool we use for proving part 3 of Theorem

1.4, where the role of the 1-form (1.10) is important because of its appearance in the

transition functions (4.73) of the Courant algebroid EP∇ .
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Theorem 1.5. Let G be a multiplicative gerbe over a Lie group G with Lie algebra g.

Then

1. G admits a connection if and only if it arises from an Ad-invariant, symmetric

bilinear form ⟨·, ·⟩ : g⊗ g→ R as in [271].

2. G admits a connection if and only if exp∗G → g is trivial as an equivariant gerbe,

for the adjoint action of G on g and the equivariant structure on exp∗G induced

by the multiplicative structure. In this case, an equivariant trivialization can be

chosen to have covariant derivative η ∈ Ω1(G× g,R) defined by

η(g,v)(vg + v̇) := 2⟨v, g−1vg⟩, (1.10)

where ⟨·, ·⟩ is the bilinear form from part 1.

Theorem 1.5 is also used to derive in a natural way the brackets on the Lie 2-algebra of

the Lie 2-group associated to a multiplicative gerbe equipped with a connection (Propo-

sition 3.51), while Corollary 3.55 interprets the equivariant trivializations from part 2 of

Theorem 1.5 as a sort of exponential map. These constructions, along with the fact that

part 1 can be used for defining connections on G-bundles, raise the natural question of

interpreting connections on multiplicative gerbes as special cases of some natural struc-

ture that can be defined for a general Lie 2-group G. We answer this by introducing the

notion of Maurer-Cartan forms on Lie 2-groups (Definition 3.23).

We show that another example of Maurer-Cartan form on a Lie 2-group is provided by

the notion from [220] of an adjustment on a Lie crossed module (see the introduction to

Chapter 4 for a brief historical account). Notably, Lie crossed modules equipped with

an adjustment are the only other family of Lie 2-groups for which there is a good notion

of fully non-flat connection, apart from the multiplicative gerbes with connection from

[271, 273]. We have checked in Propositions 3.66 and 4.21 that the approaches in [220]

and [273] are equivalent, whenever it makes sense to compare them.

Theorem 1.6. Let G be a Lie 2-group that has a model as a multiplicative gerbe G and

a model as a Lie crossed module (G̃,H, f, ▷). Then

1. A connection on G determines an adjustment on (G̃,H, f, ▷).

2. Choose a connection on G. The corresponding category of connections on G-

bundles defined as in [273] is equivalent to the category of connections on G-bundles

defined as in [220] in terms of the corresponding adjustment on (G̃,H, f, ▷).
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Theorem 1.6 suggests that, for a general Lie 2-group G, the notion of a Maurer-Cartan

form on G allows to define connections on G-bundles in a consistent, well-behaved way.

This remains an open problem which we discuss in Sections 8.1.1 and 8.2.1. We fur-

thermore conjecture that Maurer-Cartan forms can help solve open problems on the

theory of general Lie 2-groups that involve in some way the Lie 2-algebra: a canonical

construction of the L∞-structure, the definition of an exponential map, a good notion

of holonomy, etc. One problem that we have in fact solved using Maurer-Cartan forms

is the definition of moment maps for actions of general Lie 2-groups on symplectic man-

ifolds (see Proposition 6.11).

Theorem 1.7. Let G be a Lie 2-group equipped with a Maurer-Cartan form acting on

a symplectic manifold (M,ω) with a moment map µ. Then there is a simplicial derived

manifoldM//µG with a 0-shifted symplectic structure. The moduli spaces from Theorems

1.1 and 1.2 when n = 2 are examples of this construction.

To sum up, our results initiate the study of geometric structures on moduli spaces of

connections and other associated structures in principal 2-bundles, boosting the inter-

action between generalized complex geometry, higher gauge theory and supersymmetric

string theory. We believe that this area can be as fruitful as the interaction between

complex geometry and gauge theory in the work of Narasimhan-Seshadri, Atiyah-Bott,

Hitchin, Kobayashi, Donaldson, Uhlenbeck-Yau, Donaldson-Thomas, Witten and others

[15, 100, 102, 151, 168, 202, 267, 276], especially through the relation between our main

Theorems 1.1, 1.2 and their classical analogs discussed in Section 1.3.

1.5 Outline

The main results of this thesis can be summarized as follows.

1. On the theory of Lie 2-groups.

(a) Theorems 3.43 and 3.54 relate connections on a multiplicative gerbe G → G,

Ad-invariant bilinear forms on g and equivariant trivializations of exp∗G → g.

(b) Definition 3.23 of Maurer-Cartan forms on Lie 2-groups. Propositions 3.50

and 3.66 relate these with connections on multiplicative gerbes and with ad-

justments on crossed modules, respectively.

(c) Propositions 3.27 and 6.11 define symplectic reduction for actions of Lie 2-

groups with Maurer-Cartan forms.

(d) Theorem 5.8 provides the complexification of a family of Lie 2-groups.
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2. On the theory of connections on principal bundles for Lie 2-groups.

(a) Proposition 4.21 relates adjusted connections to trivializations of Chern-

Simons 2-gerbes.

(b) Theorems 4.23 and 4.26 associate a Courant-Dorfman algebroid E to a prin-

cipal 2-bundle P and prove that the gauge 2-group of P is a Lie 2-group

modelled on the space of sections of a sub-bundle of E.

(c) Definition 4.7 of enhanced connection on a principal 2-bundle. Theorem

5.26 uses these to relate holomorphic structures with holomorphic connec-

tive structures on principal 2-bundles to supersymmetric configurations in

string theory.

3. On the theory of moduli spaces in higher gauge theory.

(a) Examples 6.3, 6.4 and 6.5 present simplicial derived manifolds representing

the moduli spaces of flat connections, holomorphic structures and holomor-

phic structures with holomorphic connective structure on principal 2-bundles.

(b) Theorems 6.7 and 6.8 present shifted symplectic structures on these spaces.

The structure of this thesis is the following. Chapter 2 introduces the language of sim-

plicial derived manifolds. Chapter 3 develops the theory of Lie 2-groups, while Chapter

4 develops the theory of connections on principal 2-bundles. Chapter 5 treats aspects

of Lie 2-groups and principal 2-bundles which are special to the holomorphic context.

Chapter 6 presents constructions of moduli spaces in higher gauge theory as simplicial

derived manifolds. Chapter 7 contains a brief introduction to ∞-category theory and

the∞-category of higher derived differentiable stacks, as well as some original examples

of higher Lie groups that are relevant in physics. Chapter 8 summarizes our conclusions

and poses some open problems.

While Chapter 2 is necessary for understanding the moduli spaces from Chapter 6, the

reader that is only interested in the theory of Lie 2-groups, principal 2-bundles and

connections on them can skip it and read directly Chapters 3, 4 and 5. Section 7.2.2,

with examples of higher Lie groups, might also be of interest in this case. The reader

that is not concerned with complex geometry can omit Chapter 5. All the original

results can be understood independently of Chapter 7, while the formalism presented

there extends them to a better-behaved context.



Chapter 2

Simplicial derived manifolds

Simplicial manifolds are geometric objects that model topological spaces more general

than ordinary smooth manifolds, but still using suitable smooth data. For example,

given a Lie group G acting on a manifold M , then the topological space M/G might not

have any manifold structure such that M → M/G is smooth if the action is not free.

However, in order to have a model for M/G in terms of smooth objects, we can consider

for each n ∈ N the space (M//G)n of n-simplices ∆n such that

1. The vertices of ∆n are labelled by points of M .

2. Edges of ∆n from a vertex labelled by x ∈ M to a vertex labelled by y ∈ M are

labelled by elements g ∈ G such that x · g = y.

3. The edges of each triangle in ∆n form a commutative diagram of elements of G

acting on M .

It is clear that (M//G)n = M × Gn is a manifold, and the face maps dnj : (M//G)n →
(M//G)n−1, j = 0, ..., n given by taking the j-th face of an n-simplex are smooth.

Roughly, a general simplicial manifold X• is a sequence of manifolds Xn, n ∈ N with

smooth maps dnj : Xn → Xn−1, j = 0, ..., n satisfying the same identities as the face

maps of n-simplices. Each manifold Xn is to be thought of as the space of n-simplices

in some space, where arrows represent a notion of symmetry between points, 2-cells

represent a notion of symmetry between arrows, etc., while the maps dnj are to be

thought of as projecting an n-simplex to its j-th face. A simplicial manifold has an

‘underlying topological space’, called its fat geometric realization, and obtained precisely

by considering a geometric n-simplex for each point of Xn and gluing these along the

face maps.

17
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An important feature of simplicial manifolds is that they can be studied with tools

from differential geometry. For example, there is a notion of de Rham cohomology for

simplicial manifolds which computes the singular cohomology of their geometric real-

izations [49], and the de Rham cohomology of M//G coincides with the equivariant de

Rham cohomology of M as originally defined in [79]. This way of thinking about sim-

plicial manifolds is related to the fact that they can be used as models for differentiable

∞-stacks [213, 282], as we discuss in more detail in Chapter 7.

Derived manifolds are also geometric objects that model topological spaces more gen-

eral than manifolds, but the nature of such spaces is different. Namely, while sim-

plicial manifolds are well-suited for dealing with arbitrary smooth quotients, derived

manifolds are well-suited for dealing with fibered products of manifolds along possi-

bly non-transversal maps. While there are different approaches to derived manifolds

[32, 45, 46, 75, 158, 250, 252], all shown to be equivalent [76], we follow [32] here and

define a derived manifold to be a graded vector bundle E → M with a fiberwise struc-

ture of curved L∞-algebra. Such a structure, defined on a N≥1-graded vector space V , is

equivalent to a degree 2 element Φ ∈ V2 (called curvature) and a sequence of multilinear,

graded skew-symmetric brackets {·, ..., ·} : V ⊗ ... ⊗ V → V satisfying some identities

that generalize the axioms of a differential graded Lie algebra. It was first defined in

[251], based on the BRST complex from [283].

In order to understand how a curved L∞-algebra models a space in derived geometry,

we consider first a motivating example that yields a differential graded Lie algebra.

Let V1
f→ V2

g→ V3 be a sequence of vector spaces with polynomial functions f , g of

degree ≤ 2 with f(0) = 0, g(0) = 0 and g ◦ f = 0. Since f−1(0) ⊂ V1 might not be a

manifold around 0 if Df|0 is not surjective, to treat this space with geometric tools we

may proceed as in algebraic geometry and retain the information of the polynomial f

itself. Equivalently, we keep track of the first and second derivatives Df|0 : V1 → V2 and

D2f|0 : S
2V1 → V2. Now we may also wish to encode the information that f takes values

in g−1(0) ⊂ V2. If Dg|0 is surjective, we can do this using the implicit function theorem

by identifying a neighborhood of 0 inside g−1(0) with Ker (Dg|0) and proceed as before,

with f replaced by some f̃ : V1 → Ker (Dg|0). In the general case, we may just keep

track of Dg|0 : V2 → V3 and D2g|0(Df|0(·), ·) : V1 ⊗ V2 → V3, noting that 0 = g ◦ f is

equivalent to

0 = Dg|0(Df|0(v)),

0 = D2g|0(Df|0(v), Df|0(w)) +Dg|0(D
2f|0(v, w)),

0 = D2g|0(Df|0(u), Df
2
|0(v, w))

+D2g|0(Df|0(v), Df
2
|0(u,w)) +D2g|0(Df|0(w), Df

2
|0(u, v)),

(2.1)
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which we might recognize as the axioms of a differential graded Lie algebra structure on

V1 ⊕ V2 ⊕ V3.

A general curved L∞-algebra on a N≥1-graded vector space V models an infinitesimal

neighborhood of a point x in a space X with a possibly singular subspace Z ⊂ X, in

the following way. Firstly, Φ = 0 if and only if x ∈ Z. Then an element e ∈ V of degree

1 represents an infinitesimal deformation of x within X which can be lifted to an actual

curve with endpoint on Z if and only if it satisfies the Maurer-Cartan equation

Φ+ {e}+ 1

2
{e, e}+ 1

6
{e, e, e}+ ... = 0. (2.2)

Elements in degree 2 represent infinitesimal obstructions, in the sense that the left-

hand side of (2.2) lies in V2. Elements in degrees ≥ 3 represent higher infinitesimal

obstructions, in the sense that the left-hand side of (2.2) lies in a subset of V2 that is

itself described as the zero set of a polynomial function to V3, whose image is again

in the zero set of a polynomial function to V4, etc. This way of thinking about curved

L∞-algebras is related to the fact that they can be used as models for derived differential

geometry [32, 75], as we discuss in more detail in Chapter 7.

One can also combine both theories and define simplicial derived manifolds, which are

geometric objects modelling topological spaces such as those that can be obtained by

(iterated) quotients and fibered products of manifolds. Simplicial derived manifolds

turn out to be well-suited for modelling moduli spaces, as these can often be written

as {x ∈ A | Φ(x) = 0}/G for some manifold A, smooth map Φ and Lie group G. This

observation is related to the fact that simplicial derived manifolds can be used as models

for higher derived differential geometry, as we discuss in more detail in Chapter 7.

Simplicial derived manifolds can be equipped with a certain type of geometric structure,

called shifted symplectic structures, which generalize standard symplectic structures on

manifolds. They were introduced in [210] within the setting of higher derived algebraic

geometry (see [68, 232] for surveys). Although the quasi-symplectic Lie groupoids from

[275, 278] and the symplectic dg-manifolds from [224, 242] (based on [1]) are precursors,

a systematic treatment of shifted symplectic structures in differential geometry is only

available for now in the context of higher (not derived) differential geometry [92].

One of the most important features of this theory is that many moduli spaces of inter-

est carry canonical shifted symplectic structures. These generalize and unify classical

symplectic structures, such as the Atiyah-Bott [15] construction, or Mukai’s holomorphic

symplectic structure on the smooth locus of the moduli space of G-bundles on an abelian

or K3 surface [196]. Moreover, they are related to topological field theories through the
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AKSZ construction [1, 69, 242] and thus they provide invariants of manifolds. In partic-

ular, Donaldson-Thomas invariants have been studied and generalized using this point

of view in [34, 47, 159, 160, 164].

In this chapter we define and provide examples of simplicial derived manifolds and shifted

symplectic structures on them. In Section 2.1.1 we introduce simplicial manifolds. In

Section 2.1.2 we follow [96, 134] to provide a brief overview of sheaf cohomology on

simplicial manifolds, which is a useful tool for stating and proving classification results

for geometric structures. In Section 2.2.1 we define L∞-algebras, and in Section 2.2.2

we recall the approach from [32] to derived manifolds. Then we define simplicial derived

manifolds in Section 2.2.3. In Section 2.3.1 we present a notion of shifted symplectic

structures on simplicial derived manifolds, based on [92, 210, 224]. In Section 2.3.2 we

present some basic constructions of shifted symplectic structures, and in Section 2.3.3 we

discuss examples of shifted symplectic structures on moduli spaces. The constructions

and results in this chapter are adapted from the references and there is no claim of

originality except for minor presentation aspects.

2.1 Simplicial manifolds

2.1.1 Simplicial manifolds

We use the category of simplicial manifolds as an approximate model for the∞-category

of differentiable∞-stacks. While this∞-category is defined in Section 7.2.3, all the rele-

vant constructions in this thesis are described without losing rigor with the terminology

of this section. We establish first a notational convention for the whole thesis. Namely,

for a category C, we write C0 for the class of objects and C1 for the class of arrows. For

x, y ∈ C0, we write C(x, y) for the class of arrows from x to y.

Definition 2.1 ([282]). A simplicial manifold M• is the following data.

1. For n ∈ N, a manifold Mn.
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2. For n ∈ N and j = 0, ..., n, smooth maps dnj : Mn → Mn−1 (face maps) and

snj :Mn →Mn+1 (degeneracy maps) that satisfy

dn−1
i dnj = dn−1

j−1 d
n
i , i < j,

sn+1
i snj = sn+1

j+1 s
n
i , i ≤ j,

dn+1
i snj = sn−1

j−1 d
n
i , i < j,

dn+1
i snj = id, i = j, j + 1,

dn+1
i snj = sn−1

j dni−1, i > j + 1.

(2.3)

A semi-simplicial manifold M• is a sequence of manifolds Mn, n ∈ N, with face maps

dnj :Mn →Mn−1 satisfying the first equation in (2.3). A morphism of (semi)-simplicial

manifolds f• :M• → N• is a family of smooth maps fn :Mn → Nn commuting with all

face and degeneracy maps. We write sMan for the category of simplicial manifolds and

sinjMan for the category of semi-simplicial manifolds.

We will omit the superscripts in the face and degeneracy maps of a simplicial manifold

when these are clear from context. There is an alternative characterization of simplicial

manifolds which is sometimes useful to present examples. Define the sets

[n] := {0, ..., n}, n ∈ N. (2.4)

Definition 2.2 ([106]). The simplex category is the small category ∆ whose set of

objects is {[n]|n ∈ N} and such that ∆([n], [m]) for n, m ∈ N is the set of non-decreasing

functions [n] → [m]. The semi-simplex category is the subcategory ∆inj ⊂ ∆ with the

same objects, but with only strictly increasing functions as arrows.

Any arrow in ∆ can be written in a canonical way as a composition of certain canonical

arrows of the form δnj : [n − 1] → [n] and σnj : [n + 1] → [n], n ∈ N, j = 0, ..., n, called

coface and codegeneracy maps [106]. They are defined by

δnj (i) :=

i i < j

i+ 1 i ≥ j
, σnj (i) :=

i i ≤ j

i− 1 i > j
, (2.5)
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and satisfy the relations

δn+1
i δnj = δn+1

j+1 δ
n
i , i ≤ j,

σnj σ
n+1
i = σni σ

n+1
j+1 , i ≤ j,

σnj δ
n+1
i = δni σ

n−1
j−1 , i < j,

σnj δ
n+1
i = id, i = j, j + 1,

σnj δ
n+1
i = δni−1σ

n−1
j , i > j + 1.

(2.6)

This implies the following.

Proposition 2.3. The category sMan as in Definition 2.1 is equivalent to the category

whose objects are functors ∆op → Man and whose arrows are natural transformations.

The category sinjMan as in Definition 2.1 is equivalent to the category whose objects

are functors ∆op
inj → Man and whose arrows are natural transformations.

In particular, Proposition 2.3 is useful to define the Cartesian product of simplicial

manifoldsM•, N• : ∆
op → Man as the simplicial manifold (M×N)• : ∆

op → Man given

by

(M ×N)•([n]) :=M([n])×N([n]). (2.7)

For n ∈ N, write

|∆n| := {(x0, ..., xn) ∈ [0, 1]n+1 |
∑

i xi = 1} (2.8)

for the geometric n-simplex. For 0 ≤ j ≤ n, write d∆j : |∆n−1| → |∆n| and s∆j : |∆n+1| →
|∆n| for the continuous maps

d∆j (x0, ..., xn−1) = (x0, ..., xj−1, 0, xj , ..., xn−1), (2.9)

s∆j (x0, ..., xn+1) = (x0, ..., xj + xj+1, ..., xn+1). (2.10)

A simplicial manifold M• is a geometric model for the topological space

π0(M•) :=M0/ ∼, (2.11)

where p0 ∼ p1 if ∃f ∈ M1 with d0(f) = p0, d1(f) = p1. The simplicial manifold M•

contains additional information on how points in π0(M•) are identified. This information

is also encoded by another associated topological space, called the geometric realization

[215] and defined by

|M•| :=
⊔
n∈N

Mn × |∆n| / ∼, (2.12)
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where the equivalence relation is

(p, d∆j (x)) ∼ (dj(p), x), p ∈Mn, x ∈ |∆n−1|, j = 0, ..., n, (2.13)

(p, s∆j (x)) ∼ (sj(p), x), p ∈Mn, x ∈ |∆n+1|, j = 0, ..., n. (2.14)

The fat geometric realization ||M•|| of M• is similarly defined, but quotienting only by

relation (2.13). In particular, it can also be defined for semi-simplicial manifolds. Fat ge-

ometric realization is in general better behaved, as it commutes with Cartesian products,

but all the examples of simplicial manifolds in this thesis satisfy that degeneracies are

embeddings, which implies that their fat geometric realization is homotopy equivalent

to their geometric realization [264].

We say M• is a geometric model in the sense that it is described by smooth manifolds

and smooth maps between them. In particular, a simplicial manifold M• has a Moore

tangent complex, which is the Z≤0-graded chain complex of vector bundles over M0

...
δ→ s∗TMn

δ→ s∗TMn−1
δ→ ...→ s∗TM1

δ→ TM0. (2.15)

Here s : M0 → Mn is the map obtained by composing degeneracy maps (which does

not depend on which degeneracies are chosen, by the simplicial identities), and δ :=∑
j(−1)jdnj,∗. This complex is meant to be considered up to quasi-isomorphism. The

Dold-Kan correspondence [162] implies that the Moore tangent complex is quasi-isomorphic

in the derived category of vector bundles to the following complex, which we call the

normalized tangent complex.

...
∂→ A−n

∂→ A−n+1
∂→ ...→ A−1

∂→ A0 = TM0, (2.16)

where

A−n :=
s∗TMn

⊕n−1
j=0 s

n−1
j,∗ (s∗TMn−1)

= ∩n−1
j=0 ker(d

n
j,∗ : s

∗TMn → s∗TMn−1), (2.17)

∂ :=

n∑
j=0

(−1)jdnj,∗ = dnn,∗ (2.18)

A caveat is that the normalized tangent complex is not in general a complex of vector

bundles. For simplicial manifolds satisfying a property called Kan conditions, which is

treated more carefully in Chapter 7, this is not a problem. All the simplicial manifolds in

this thesis satisfy this condition and so we will only use the normalized tangent complex,

to which we will simply refer as the tangent complex. The cotangent complex ofM• is the

dual of the tangent complex; i.e., it is the Z≥0-graded chain complex of vector bundles
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over X0

T ∗M0 = A∗
0
∂∗→ A∗

−1 → ...
∂∗→ A∗

−n+1
∂∗→ A∗

−n
∂∗→ .... (2.19)

A morphism of simplicial manifolds f• :M• → N• induces a map f∗ between the tangent

complexes of M• and N•, as it follows simply from the fact that f• commutes with all

face and degeneracy maps.

Remark 2.4. The tangent bundle TM of an ordinary manifoldM is canonically equipped

with the Lie bracket [·, ·] : Γ(TM) ⊗ Γ(TM) → Γ(TM). While one would perhaps

expect that the tangent complex of a simplicial manifold is canonically equipped with

some analog structure, it turns out that this is not true in general. However, upon

choosing certain connection-like data, one can indeed define a structure of Z≥0-graded

L∞-algebroid on it (see [178] for details).

Example 2.5. IfM is a manifold, then we may see it as the simplicial manifoldM• with

Mn = M and all face and degeneracy maps equal to the identity. More interestingly,

if G is a Lie group acting smoothly on M , then the quotient groupoid (M//G)• is the

simplicial manifold with (M//G)n =M ×Gn and simplicial maps

d0(p, g1, ..., gn) = (pg1, g2, ..., gn),

dj(p, g1, ..., gn) = (p, g1, ..., gj−1, gjgj+1, gj+2, ..., gn), j = 1, ..., n− 1,

dn(p, g1, ..., gn) = (p, g1, ..., gn−1),

sj(p, g1, ..., gn) = (p, g1, ..., gj , 1, gj+1, ..., gn), j = 0, ..., n.

(2.20)

The use of the word groupoid will be justified in Chapter 7. The tangent complex of

(M//G)• is the chain complex of vector bundles over M

g
ρ∗→ TM, (2.21)

where g is the trivial bundle (placed in degree −1) with fiber g and ρ∗ denotes the

infinitesimal action map. This is often called the action Lie algebroid for the action of

G on M . An alternative description of (M//G)• is

(M//G)n = {({pi}i∈[n], {gij}i≤j∈[n]) ∈Mn+1 ×G(
n+1
2 )|

∀i, gii = 1,

∀i < j, pigij = pj ,

∀i < j < k, gijgjk = gik};

(2.22)

indeed, note that a point ({pi}i, {gij}i,j) ∈ (M//G)n is completely determined by the

point (p0, g01, g12, ..., gn−1,n) ∈ M × Gn. This description is more suitable for seeing

(M//G)• as a functor ∆
op → Man, because then for an arbitrary non-decreasing function
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f : [n1]→ [n2] we can define f∗ : (M//G)n2 → (M//G)n1 by

({pi}i∈[n2], {gij}i≤j∈[n2]) 7→ ({f∗pi}i∈[n1], {f
∗gij}i≤j∈[n1])

f∗pi := pf(i), f∗gij := gf(i)f(j).
(2.23)

The geometric realization of (M//G)• is the homotopy quotient

|(M//G)•| = (M × EG)/G, (2.24)

where EG → BG is the universal bundle of G. This has a canonical surjective map

|(M//G)•| → M/G to the standard topological quotient M/G = π0((M//G)•), and its

fiber over each [p] ∈ M/G is weakly homotopy equivalent to BIso(p), the classifying

space of the isotropy topological sub-group Iso(p) ⊂ G of p. In this sense, (M//G)• is a

geometric model for the quotient which exists even when the action is poorly behaved,

and which retains information about the isotropy of the action. In particular, when the

action is free, then |(M//G)•| is weakly homotopy equivalent to M/G.

Example 2.6. For G a Lie group and its trivial action on a point {∗}, the correspond-

ing quotient groupoid as in Example 2.5 is denoted BG• := ({∗}//G)• and called the

delooping of G. The quotient groupoid corresponding to the action of G on itself by

right multiplication is denoted EG• := (G//G)•. There are maps of simplicial manifolds

G→ EG• → BG• given at each level by G
id×1→ G×Gn π2→ {∗}×Gn, and the geometric

realization of this sequence is the universal bundle G→ EG→ BG of G as a topological

group [146]. Note the tangent complex of BG• is just the Lie algebra of G, seen as a

degree −1 vector bundle over a point, while the tangent complex of EG is the complex

of vector bundles over G, concentrated in degrees −1 and 0, with fiber g
id→ g.

Example 2.7. If M is a manifold and U = {Ua}a∈A is an open cover of M , then we

write Ua1...ap := ∩pi=1Uai for p-fold intersections. The Čech groupoid of M with respect

to U is the simplicial manifold Č(M,U)• defined by Č(M,U)n := ⊔a0,...,an∈An+1Ua0...an ,

with face and degeneracy maps given by

dj(a0, ..., an, x) = (a0, ..., aj−1, aj+1, ..., an, x), j = 0, ..., n,

sj(a0, ..., an, x) = (a0, ..., aj , aj , aj+1, ..., an, x), j = 0, ..., n.
(2.25)

The geometric realization of Č(M,U)• is weakly homotopy equivalent to M itself. For

G a Lie group, a morphism of simplicial manifolds g : Č(M,U)• → BG• is the same as

a collection of smooth functions gab : Uab → G satisfying gabgbc = gac on Uabc. Given



Simplicial derived manifolds 26

one such morphism g, then we define the simplicial manifold (g∗EG)• by

(g∗EG)n = {({(ai, gi)}i∈[n], x) ∈ (A×G)n+1 ×M |

x ∈ ∩ni=0Uai , ∀i < j, gigaiaj (x) = gj}.
(2.26)

There is an obvious map of simplicial manifolds (g∗EG)• → M , whose geometric re-

alization is weakly homotopy equivalent to the G-bundle P → M defined by P :=

⊔a∈AUa ×G/ ∼, with (a, x, gab(x)g) ∼ (b, x, g).

Example 2.8 ([178]). For T an abelian topological group, the homotopy type BT

admits a model as an abelian topological group, and so inductively one can define again

B2T := B(BT ), B3T := B(B2T ), etc. We present a ‘smooth’ analog of this construction.

Let T be an abelian Lie group and let l ≥ 1. We define a simplicial manifold (BlT )• by

(BlT )n := {{ti0,...,il}i0≤i1≤...≤il∈[n] | ∀j ∈ [l − 1], ti0,...,ij ,ij ,...,il−1
= 0,

∀i0 ≤ ... ≤ il+1 ∈ [n],
∑

j(−1)jti0,...,îj ,...,il+1
= 0},

(2.27)

where we are using additive notation on T . For the simplicial maps, given a non-

decreasing function f : [n1]→ [n2] we define the pull-back map

{ti0,...,il}i0≤i1≤...≤il∈[n2] 7→ {f
∗ti0,...,il}i0≤i1≤...≤il∈[n1]

f∗ti0,...,il := tf(i0),...,f(il),
(2.28)

Note that for l = 1 we recover the simplicial manifold BT from Example 2.6. For general

l, the inclusion-exclusion principle implies that (BlT )n = T c(n,l), where

c(n, l) =

(
n+ 1

l + 1

)
−
(
n+ 1

l + 2

)
+

(
n+ 1

l + 3

)
− ... =

(
n

l

)
, (2.29)

as
(
n+1
l+1

)
is the number of non-degenerate l-faces of ∆n. However, the simplicial maps are

harder to describe if we write BlT = T (
n
l). The presentation from (2.27) is more natural,

as it lets us picture each ti0,...,il as labelling the l-face of ∆n with vertices i0, ..., il. We

also define a simplicial manifold (EBl−1T )• by

(EBl−1T )n := {({ti0,...,il−1
}i0≤i1≤...≤il−1∈[n], {ti0,...,il}i0≤i1≤...≤il∈[n]) |

∀j ∈ [l − 1], ti0,...,ij ,ij ,...,il−2
= 0,

∀i0 ≤ ... ≤ il ∈ [n],
∑

j(−1)jti0,...,îj ,...,il = ti0...il}.

(2.30)

There is a sequence of simplicial manifolds Bl−1T• → EBl−1T• → BlT•, and its geomet-

ric realization is the universal bundle of Bl−1T . Now ifM is a manifold and U = {Ua}a∈A
is an open cover of M , then a map of simplicial manifolds t : Č(M,U)• → BlT• is the
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same as a T -valued Čech l-cocycle; i.e., a family of functions ta0...al : Ua0...al → T

with
∑l+1

j=0(−1)jti0,...,îj ,...,il+1
= 0. Associated to one such function t we can define

(t∗EBl−1T )• by

(t∗EBl−1T )n := {({ai}i∈[n], x, {ti0,...,il−1
}i0≤i1≤...≤il−1∈[n]) |

x ∈ ∩ni=0Uai ,

∀j ∈ [l − 1], ti0,...,ij ,ij ,...,il−2
= 0,

∀i0 ≤ ... ≤ il ∈ [n],
∑

j(−1)jti0,...,îj ,...,il = tai0 ...ail (x)}.

(2.31)

The geometric realization of (t∗EBl−1T )• is weakly homotopy equivalent to a Bl−1T -

bundle over M , but the advantage of working with t∗EBl−1T is that it is completely

described by smooth data, and so, as we will see, one can define differential geometric

notions such as connections, symplectic structures, etc. on it.

2.1.2 Sheaf cohomology on semi-simplicial manifolds

Definition 2.9 ([96, 134]). Let M• be a semi-simplicial manifold. A sheaf of abelian

groups S• on M• is a collection of sheaves of abelian groups Sn on Mn with maps

∂nj : (dnj )
∗Sn−1 → Sn satisfying the condition

∂nj ◦ (dnj )∗∂n−1
i = ∂ni ◦ (dni )∗∂n−1

j−1 (2.32)

for i < j. For a sheaf S we define the operators δn−1 : Sn−1(Mn−1)→ Sn(Mn) by

δn−1 :=

n−1∑
j=0

(−1)j∂n−1
j (dn−1

j )∗. (2.33)

A morphism of sheaves S•0 → S•1 is a collection of morphisms Sn0 → Sn1 commuting with

the maps (∂nj )0, (∂
n
j )1. The global sections functor Γ : AbSh(M•) → Ab is the functor

from the category of sheaves of abelian groups on M• to the category of abelian groups

acting as S• 7→ ker(δ0 : S0(M0)→ S1(M1)).

For M• a semi-simplicial manifold, the category AbSh(M•) is abelian. In fact, it can

be interpreted as the category of sheaves in a Grothendieck site and so it has enough

injectives [257, 2.1.2]. For p ∈ N, the sheaf cohomology group Hp(M•,S•) is then the

image of S• by the p-th derived functor of Γ. Sheaf hypercohomology H(M•,S•0 → ...→
S•l ) of a complex of sheaves is similarly defined as the derived functors of the functor

S•0
t→ ...

t→ S•l 7→ ker(δ0 ⊕ t : S00 (M0)→ S10 (M1)⊕ S01 (M0)). (2.34)
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The cohomology of a sheaf S• can be computed by taking a resolution in AbSh(M•)

S• ϵ→ I•,0
d→ I•,1

d→ ... such that the standard sheaf cohomology groups Hr(Mn, I
n,m)

vanish for r > 0 and n, m ≥ 0. This can be done, for example, by taking functorial

acyclic resolutions of each sheaf Sn over Mn. Then H
∗(M•,S•) is obtained as the total

cohomology of the double complex (In,m(Mn), δ, d). Similarly, the hypercohomology of

a complex of sheaves S•0
t→ ...

t→ S•l can be computed by taking acyclic resolutions

Sl → I•,•l of each Sl with maps I•,•0
t→ I•,•1

t→ ... commuting with the maps from

the complex. Then H(M•,S•0 → ... → S•l ) is the cohomology of the triple complex

(In,mk (Mn), δ, d, t).

All the examples of sheaves on a semi-simplicial manifold M• appearing in this thesis

arise from considering a sheaf S that is defined functorially over all manifolds and letting

Sn be the sheaf S on Mn, with ∂
n
j the maps obtained by functoriality. For example, for

a fixed finite-dimensional vector space V and for fixed q ∈ N, we define the sheaf ΩqV of

V -valued q-forms on a semi-simplicial manifold M• to be the sheaf on M• which at each

level Mn is the sheaf of V -valued q-forms on Mn, with the maps ∂nj = (dnj )
∗ between

them. In this case, the maps δ : Ωq(Mn−1)→ Ωq(Mn) are defined by

δ :=
n∑
j=0

(−1)j(dnj )∗. (2.35)

Remark 2.10. If S• is a sheaf over a semi-simplicial manifold M• such that each Sn is

an acyclic sheaf over Mn, then

Hp(M•,S•) =
ker(δ : Sp(Mp)→ Sp+1(Mp+1))

Im(δ : Sp−1(Mp−1)→ Sp(Mp))
, (2.36)

so it does not follow in general that S• is acyclic as a sheaf on M•. In particular, for

any semi-simplicial manifold M• and any p, q ∈ N we have

Hp(M•,Ω
q
V ) =

ker(δ : Ωq(Mp, V )→ Ωq(Mp+1, V ))

Im(δ : Ωq(Mp−1, V )→ Ωq(Mp, V ))
. (2.37)

We recall now two theorems that relate sheaf cohomology on semi-simplicial manifolds

with other cohomology theories, and which we will use to prove some classification results

in Chapters 3 and 4.

Theorem 2.11 ([49]). Let Z be an abelian Lie group, let M• be a semi-simplicial man-

ifold and let Z be the sheaf of locally constant Z-valued functions on M•. Then

H∗(M•, Z) = H∗(||M•||, Z), (2.38)
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where the right-hand side of (2.38) denotes singular cohomology of the fat geometric

realization (cf. Section 2.1.1) of M•.

Remark 2.12. In the situation of Theorem 2.11, and for Z = V a vector space, H∗(M•, V )

can be computed by taking de Rham resolutions Ω•
V on each Mn

V → C∞
V

d→ Ω1
V

d→ ... (2.39)

Recall that the maps δ : ΩmV (Mn−1) → ΩmV (Mn) are given by (2.35) . Then H∗(M•, V )

is the total cohomology of (ΩmV (Mn), δ, d), which provides a useful tool for computing

singular cohomology of topological spaces much more general than manifolds.

For the next result, we recall the notion of group cohomology [54]. For G a group,

a G-module is an abelian group M with an action by automorphisms of G. Given a

G-module M , write Cr(G,M) for the space of (set-theoretical) functions Gr → M and

define a differential d : Cr(G,M)→ Cr+1(G,M) by

dm(g0, ..., gr) =g0 ·m(g1, ..., gr) +
r∑
j=1

(−1)jm(g0, ..., gj−1gj , gj+1, ..., gr)

+ (−1)r+1m(g0, ..., gr−1).

(2.40)

Group cohomology with coefficients on M is defined by

Hr
gr(G,M) :=

{m ∈ Cr(G,M) | dm = 0}
dCr−1(G,M)

. (2.41)

If G is a topological group acting continuously by automorphisms on the topological

abelian group M , then we write Hr
gr,cont(G,M) for the space defined as in (2.41) but

replacing Cr(G,M) with the space of continuous maps Gr →M .

Theorem 2.13 ([48]). Let G be a Lie group with Lie algebra g and let V be a finite-

dimensional vector space. Then

Hp(BG•,Ω
q
V ) = Hp−q

gr,cont(G,S
qg∗ ⊗ V ), (2.42)

where the G-module structure on Sqg∗ ⊗ V is given by the coadjoint action. Moreover,

if G is compact, then for r > 0 one has

Hr
gr,cont(G,S

qg∗ ⊗ V ) = 0. (2.43)

We also need the following explicit formulas for the isomorphism (2.42) in low degrees.

In the sequel we will use the following notation: for manifolds X, Y and points x ∈ X,
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y ∈ Y we identify T(x,y)(X × Y ) = TxX ⊕ TyY and write vx + vy ∈ T(x,y)(X × Y ) for

vectors tangent to the product manifold.

Lemma 2.14. Let G be a Lie group and let V be a vector space. Then

1. The isomorphism H2(BG•,Ω
1
V ) = H1

gr,cont(G, g
∗ ⊗ V ) is induced by the map

ϕ :
{τ ∈ Ω1(G2, V ) | δτ = 0}
{δσ | σ ∈ Ω1(G,V )}

→ {κ : G× g→ V | κ(g1g2, v) = κ(g1, v) + κ(g2, g
−1
1 vg1)}

{κ(g, v) = χ(g−1vg)− χ(v) | χ : g→ V }

with

ϕ(τ)(g, v) = τ(g−1,1)(0 + v) + τ(g−1,g)(g
−1v + 0), (2.44)

ϕ−1(κ)(g1,g2)(vg1 + vg2) = κ(g2, g
−1
1 vg1). (2.45)

2. The isomorphism H2(BG•,Ω
2
V ) = H0

gr,cont(G,S
2g∗ ⊗ V ) is induced by the map:

ψ :
{ν ∈ Ω2(G2, V ) | δν = 0}
{δσ | σ ∈ Ω2(G,V )}

→ {⟨·, ·⟩ : S2g→ V |⟨Ad(g)u,Ad(g)v⟩ = ⟨u, v⟩}

with

ψ(ν)(u, v) =
1

2
ν(1,1)(0 + u, v + 0) +

1

2
ν(1,1)(0 + v, u+ 0), (2.46)

ψ−1(⟨·, ·⟩) = −⟨g∗1θL ∧ g∗2θR⟩, (2.47)

where θL, θR ∈ Ω1(G, g) are the left- and right-invariant Maurer-Cartan 1-forms

on G.

Proof. We show the proof of 2, as 1 follows from similar computations. First, let ν ∈
Ω1(G2, V ) satisfy δν = 0. It is easy to see that the expression (2.46) is invariant under

changing ν by δσ, for σ ∈ Ω2(G,V ). Moreover, we claim that

⟨u, v⟩ = 1

2
ν(g1,g2)(0 + ug2, g1v + 0) +

1

2
ν(g1,g2)(0 + vg2, g1u+ 0) (2.48)

is actually independent of g1, g2 ∈ G. This can be seen by symmetrizing u and v in the

following identities that follow from the cocycle condition for ν.

ν(g1,g2)(0 + ug2, g1v + 0) + ν(g−1
1 ,g1g2)

(0 + g1ug2, 0 + g1vg2) = ν(1,g2)(0 + ug2, v + 0),

(2.49)

ν(g1,g2)(0 + ug2, g1v + 0) + ν(g1g2,g−1
2 )(g1ug2 + 0, g1vg2 + 0) = ν(g1,1)(0 + u, g1v + 0).

(2.50)
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Then, Ad-invariance of ⟨·, ·⟩ follows from applying the cocycle condition on (1, g, g−1) ∈
G3 and 0 + 0 + ug−1, gvg−1 + 0 + 0 ∈ T(1,g,g−1)G

3, which yields

ν(1,1)(0 + gug−1, gvg−1 + 0) = ν(g,g−1)(0 + ug−1, gv + 0). (2.51)

This concludes that the map ψ is well-defined. To see that ψ−1 is well-defined, we note

simply that if ⟨·, ·⟩ : S2g→ V is Ad-invariant then

⟨(g1g2)∗θL ∧ g∗3θR⟩ − ⟨g∗1θL ∧ (g2g3)
∗θR⟩

= ⟨Ad(g−1
2 )g∗1θ

L + g∗2θ
L ∧ g∗3θR⟩ − ⟨g∗1θL ∧ g∗2θR +Ad(g2)g

∗
3θ
R⟩

= ⟨g∗2θL ∧ g∗3θR⟩ − ⟨g∗1θL ∧ g∗2θR⟩.
(2.52)

Checking that ψ ◦ ψ−1 = id is immediate, while ψ−1 ◦ ψ = id follows from noting that

for ν ∈ Ω2(G2, V ) with δν = 0 we have the following identities.

ν(g1,g2)(ug1 + ug2 , vg1 + vg2) + ν(g−1
2 g−1

1 ,g1g2)
(0 + ug1ug2 , v

−1
g2 v

−1
g1 + vg1vg2)

= ν(g−1
2 g−1

1 ,g1)
(0 + ug1 , v

−1
g2 v

−1
g1 + vg1) + ν(g−1

2 ,g2)
(g−1

2 g−1
1 ug1 + ug2 , v

−1
g2 + vg2),

(2.53)

ν(g−1
2 g−1

1 ,g1)
(0 + ug1 , v

−1
g2 v

−1
g1 + vg1)

= ν(g−1
1 ,g1)

(0 + ug1 , v
−1
g1 + vg1) + ν(g−1

2 ,1)(0 + g−1
1 ug1 , v

−1
g2 + 0),

(2.54)

ν(g−1
2 ,1)(0 + g−1

1 ug1 , v
−1
g2 + 0) + ν(g−1

2 ,g2)
(g−1

2 g−1
1 ug1 + 0, v−1

g2 + 0)

= ν(g−1
2 ,g2)

(0 + g−1
1 ug1g2, v

−1
g2 + 0).

(2.55)

Here we are writing, for ug ∈ TgG, u−1
g := dinvg(ug) ∈ Tg−1G, where inv : G→ G is the

map g 7→ g−1. Adding these identities and skew-symmetrizing ug1 + ug2 and vg1 + vg2

yields

ν = g∗1σ − (g1g2)
∗σ + g∗2σ − ⟨g∗1θL ∧ g∗2θR⟩, (2.56)

for ⟨·, ·⟩ defined by (2.46) and σ ∈ Ω2(G,V ) defined by

σg(ug, vg) :=
1

2
ν(g−1,g)(0 + ug, v

−1
g + vg) +

1

2
ν(g−1,g)(u

−1
g + ug, 0 + vg), (2.57)

which concludes the proof.
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2.2 Derived manifolds

2.2.1 Graded algebra and L∞-algebras

We fix the following notations and conventions throughout the whole thesis. First,

‘graded’ objects will always be Z-graded unless otherwise stated. For V = ⊕n∈ZVn a

graded vector space, we write |f | = d for the degree of an homogeneous element f ∈ Vd.
Sometimes we will also write (−1)f := (−1)|f |. All equations that depend on the degree

of vectors are stated for homogeneous elements and then extended to all vectors by

linearity. The dual V ∗ is regarded as a graded vector space with (V ∗)−n = (Vn)
∗. For

d ∈ Z, we write V [d] for the graded vector space with Vn in degree n − d. A graded

R-algebra A is commutative if the product satisfies f · g = (−1)|f ||g|g · f . A graded left

moduleM for A is a left A-module with a grading such that |f ·m| = |f |+ |m| for f ∈ A,
m ∈M . An A-multilinear map of degree l on M with values on the left A-module N is

a map ω :Mp → N such that

|ω(m1, ...,mp)| = |m1|+ ...+ |mp|+ l, (2.58)

ω(m1, ..., f ·mj , ...,mp) = (−1)f(l+m1+...+mj−1)f · ω(m1, ...,mp). (2.59)

It is graded symmetric when

ω(m1, ...,mi,mi+1, ...,mp) = (−1)|mi||mi+1|ω(m1, ...,mi+1,mi, ...,mp) (2.60)

and it is graded skew-symmetric when

ω(m1, ...,mi,mi+1, ...,mp) = −(−1)|mi||mi+1|ω(m1, ...,mi+1,mi, ...,mp). (2.61)

We write S•M∗ ⊗ N = ⊕pSpM∗ ⊗ N for the graded A-module of graded symmetric

multilinear maps and Λ•M∗ ⊗ N = ⊕pΛpM∗ ⊗ N for the graded A-module of graded

skew-symmetric multilinear maps (and we supress N when N = A). The space S•M∗

is a commutative graded algebra under the product

(ω1 ⊙ ω2)(m1, ...,mp1+p2) :=
∑

σ∈Sp1,p2

ω1(mσ(1), ...,mσ(p1))ω2(mσ(p1+1), ...,mσ(p1+p2))

× (−1)ω2(mσ(1)+...+mσ(p1)
)(−1)γ(σ).

(2.62)
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Here

Sp1,p2,...,pj := {σ ∈ Sp1+...+pj | σ(1) < ... < σ(p1),

σ(p1 + 1) < ... < σ(p1 + p2),

... ,

σ(p1 + ...+ pj−1 + 1) < ... < σ(p1 + ...+ pj−1 + pj)}
(2.63)

and (−1)γ(σ) is the Kozul sign; that is, it is the result of writing the permutation

(m1, ...,mp1+p2) 7→ (mσ(1), ...,mσ(p1+p2)) (2.64)

as a product of transpositions (mi0 ,mj0) · ... · (miN ,mjN ), and defining

(−1)γ(σ) :=
∏
s

(−1)mismjs . (2.65)

Note that, although this is not reflected in the notation, (−1)γ(σ) depends on the degrees

of the permuted elements mi. We will also write (−1)σ for the sign of a permutation σ.

The décalage isomorphism is the isomorphism of graded A-modules

Sp((M [1])∗)→ (ΛpM∗)[−p],

ω 7→ ωsk,
(2.66)

where

ωsk(m1, ...,mp) := (−1)pm1+(p−1)m2+pm3+...+mp−1ω(m1, ...,mp). (2.67)

We also write ω 7→ ωsy for its inverse. In particular, it induces structure of graded

commutative algebra on ⊕p(ΛpM∗)[−p], which as a vector space coincides with Λ•M∗.

A derivation of A of degree l is an R-linear map X : A→ A[l] satisfying

X(fg) = X(f) · g + (−1)l|f |fX(g). (2.68)

The space Der(A) of derivations of A is a graded A-module. We equip it with the graded

Lie bracket

[X,Y ](f) := X(Y (f))− (−1)|X||Y |Y (X(f)). (2.69)
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This satisfies

|[X,Y ]| = |X|+ |Y |, (2.70)

[X,Y ] = −(−1)|X||Y |[Y,X], (2.71)

[X, [Y, Z]] = [[X,Y ], Z] + (−1)|X||Y |[Y, [X,Z]], (2.72)

[X, fY ] = X(f)Y + (−1)|X||f |f [X,Y ]. (2.73)

When A = S•V ∗ for V a finite-dimensional graded vector space, then there is a canonical

isomorphism Der(A) = A⊗V , where each v ∈ V induces a derivation defined on V ∗ ⊂ A
by α 7→ α(v)1 and then extended to all of A imposing Leibniz’s rule.

Definition 2.15 ([175, 251]). A curved L∞-algebra (V,Q) is a graded vector space

V with a degree 1 derivation Q of S•(V [1])∗ (the homological vector field) such that

Q2 = 0. A morphism of curved L∞-algebras (W,QW ) → (V,QV ) is a morphism of

graded algebras φ : S•(V [1])∗ → S•(W [1])∗ such that φ(QV (f)) = QW (φ(f)).

Since Der(S•(V [1])∗) = S•(V [1])∗ ⊗ (V [1]), it follows from Definition 2.15 that the

homological vector field of a curved L∞-algebra determines a sequence indexed by p ∈ N
of degree 1 graded symmetric p-linear maps {·, ..., ·} : SpV [1] → V [1]. In particular,

the 0-bracket is an element Φ ∈ V2, which we call curvature. The condition Q2 = 0 is

equivalent to the higher Jacobi identities: for n ∈ N and v1, ..., vn ∈ V [1],

∑
p+q=n

∑
σ∈Sp,q

(−1)γ(σ){{vσ(1), ..., vσ(p)}, vσ(p+1), ..., vσ(n)} = 0, (2.74)

where the Kozul sign (−1)γ(σ) is computed with the degrees of vi as elements of V [1].

Alternatively, we can use the décalage isomorphism (2.66) to define for each p ∈ N the

map {·, ..., ·}sk, which is a graded skew-symmetric p-linear map on V with values on V

and of degree 2− p. The Jacobi identities for the skew-symmetric maps is

∑
p+q=n

∑
σ∈Sp,q

(−1)pq(−1)σ(−1)γ(σ){{vσ(1), ..., vσ(p)}sk, vσ(p+1), ..., vσ(n)}sk = 0, (2.75)

where the Koszul sign is now computed with the degrees of vi as elements of V . The

homological vector field Q can be recovered from the brackets by the formula

Q(ξ) := ξ

(
Φ+ {·}+ 1

2
{·, ·}+ 1

6
{·, ·, ·}+ ...

)
(2.76)

1One could also define it by α 7→ (−1)|v||α|α(v), but we keep the above notation, as it seems more
natural in examples.
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for ξ ∈ V [1]∗, which is then extended using Leibniz’s rule. When Φ = 0, one of the

Jacobi identities implies that the 1-bracket squares to 0 and so it induces a structure of

chain complex on V .

Given two curved L∞-algebras (W,QW ), (V,QV ), morphisms of graded algebras φ :

S•(V [1])∗ → S•(W [1])∗ are in bijection with degree-preserving linear maps g : V [1]∗ →
S•(W [1])∗. We can decompose these as g = g1+g2+ ..., with gp the projection of g onto

Sp(W [1])∗, and dualize to obtain degree-preserving linear maps fp : Sp(W [1]) → V [1].

One can then check that φ defines a morphism of curved L∞-algebras if and only if the

following identities are satisfied for n ∈ N and w1, ..., wn ∈W [1].

∑
j≥1

∑
p1+...+pj=n

∑
σ∈Sp1,...,pj

(−1)γ(σ){fp1(wσ(1), ..., wσ(p1)), ..., fpj (wσ(n−pj+1), ..., wσ(n))}V

=
∑
p+q=n

∑
σ∈Sp,q

(−1)γ(σ)fq+1({wσ(1), ..., wσ(p)}W , wσ(p+1), ..., wσ(p+q)).

(2.77)

In particular, when ΦV = 0 and ΦW = 0, then f1 : W [1] → V [1] commutes with the

1-brackets. In this case, we say φ is a quasi-isomorphism if f1 induces an isomorphism

on the cohomology of the corresponding chain complexes.

The description of curved L∞-algebras in terms of homological vector fields is very

convenient to prove abstract results, since it is more concise, but practical examples

appear naturally in the bracket description. We dedicate the rest of this section to spell

out in detail the axioms, in the skew-symmetric bracket formulation, of a certain family

of curved L∞-algebras and a certain family of morphisms between them which will cover

all the examples in this thesis.

Definition 2.16. A curved cubic L∞-algebra is a graded vector space V = ⊕nVn
equipped with the following data.

1. A degree 2 element Φ ∈ V , called curvature,

2. A degree 1 linear map d : V → V ,

3. A graded skew-symmetric degree 0 bilinear map [·, ·] : V ⊗ V → V ,

4. A graded skew-symmetric degree −1 trilinear map {·, ·, ·} : V ⊗ V ⊗ V → V ,
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subject to

dΦ = 0, (2.78)

d2(e) = −[Φ, e], (2.79)

d[e1, e2] = [de1, e2] + (−1)e1 [e1, de2]− {Φ, e1, e2}, (2.80)

d{e1, e2, e3}+ {de1, e2, e3}+ (−1)e1{e1, de2, e3}+ (−1)e1+e2{e1, e2, de3}

= [e1, [e2, e3]]− [[e1, e2], e3]− (−1)e1e2 [e2, [e1, e3]],
(2.81)

{[e1, e2], e3, e4}+ (−1)e2e3+1{[e1, e3], e2, e4}+ (−1)e4(e2+e3){[e1, e4], e2, e3}

+ (−1)e1(e2+e3){[e2, e3], e1, e4}+ (−1)e1(e2+e4)+e3e4+1{[e2, e4], e1, e3}

+ (−1)(e1+e2)(e3+e4){[e3, e4], e1, e2}

= [{e1, e2, e3}, e4] + (−1)e3e4+1[{e1, e2, e4}, e3]

+ (−1)e2(e3+e4)[{e1, e3, e4}, e2] + (−1)e1(e2+e3+e4)[{e2, e3, e4}, e1]
(2.82)

for e1, e2, e3, e4 ∈ V . In particular, a curved cubic L∞-algebra with Φ = 0, {·, ·, ·} = 0

is a differential graded Lie algebra (DGLA). For

(W,ΦW , dW , [·, ·]W , {·, ·, ·}W ), (V,ΦV , dV , [·, ·]V , {·, ·, ·}V )

curved cubic L∞-algebras, a quadratic morphism between them is a pair of linear maps

f1 :W → V , f2 :W ⊗W → V such that

1. f1 has degree 0 and f2 is graded skew-symmetric of degree −1.

2. The following identities are satisfied.

f1(Φ
W )− ΦV = 0, (2.83)

f1(d
W e)− dV (f1(e)) = f2(Φ

W , e), (2.84)

f1([e1, e2]
W )− [f1(e1), f1(e2)]

V = dV f2(e1, e2)

+ f2(d
W e1, e2) + (−1)e1f2(e1, dW e2),

(2.85)

f1({e1, e2, e3}W )− {f1(e1), f1(e2), f1(e3)}V =

= −[f2(e1, e2), f1(e3)]V + (−1)e2e3 [f2(e1, e3), f1(e2)]V

− (−1)e1(e2+e3)[f2(e2, e3), f1(e1)]V − f2([e1, e2]W , e3)

+ (−1)e2e3f2([e1, e3]W , e2)− (−1)e1(e2+e3)f2([e2, e3]W , e1)

(2.86)
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f2({e1, e2, e3}W , e4)− (−1)e3e4f2({e1, e2, e4}W , e3)

+ (−1)e2(e3+e4)f2({e1, e3, e4}W , e2)− (−1)e1(e2+e3+e4)f2({e2, e3, e4}W , e1)

= −{f2(e1, e2), f1(e3), f1(e4)}V + (−1)e2e3{f2(e1, e2), f1(e3), f1(e4)}V

− (−1)e4(e2+e3){f2(e1, e4), f1(e2), f1(e3)}V

− (−1)e1(e2+e3){f2(e2, e3), f1(e1), f1(e4)}V

+ (−1)e1(e2+e4)+e3e4{f2(e2, e4), f1(e1), f1(e3)}V

− (−1)(e1+e2)(e3+e4){f2(e3, e4), e1, e2}V

(2.87)

If ΦW = ΦV = 0, then we say that (f1, f2) is a quasi-isomorphism when f1 induces a

quasi-isomorphism between the chain complexes (W,dW ) and (V, dV ).

2.2.2 Derived manifolds

We give here a brief overview of the theory of derived manifolds following [32], see

[80, 107, 269, 270] for detailed expositions in the equivalent language of differential

graded manifolds. While the ∞-category of derived manifolds is defined in Section

7.2.3, all the relevant constructions in this thesis are described without losing rigor with

the terminology of this section.

We start with some conventions and notations. A graded vector bundle E →M is simply

a vector bundle equipped with a decomposition into sub-vector bundles E =
⊕

n∈ZEn.

For E → M a graded vector bundle and d ∈ Z we write E[d] for the graded vector

bundle whose fibers are shifted by −d. The graded bundles E∗, S•E∗ and Λ•E∗ are

defined similarly as in Section 2.2.1.

Definition 2.17 ([32]). A derived manifold M = (M,E,Q) is the folowing data.

1. A manifold M with a finite rank, N≥2-graded, vector bundle E →M .

2. A degree 1 derivation (the homological vector field) Q : Γ(S•E[1]∗)→ Γ(S•E[1]∗)

such that Q2 = 0.

A morphism of derived manifolds M1 → M2 is a pair (φ,ψ) consisting of a smooth

map φ : M1 → M2 and a homomorphism of graded algebras ψ : Γ(φ∗S•E2[1]∗) →
Γ(S•E1[1]∗) such that ψ(φ∗Q2(f))) = Q1(ψ(f)). The Cartesian product of derived

manifolds (M,E,QE), (N,F,QF ) is the derived manifold (M×N, p∗ME⊗p∗NF, p∗MQE⊗
p∗NQF ). We write dMan for the category of derived manifolds.

Remark 2.18. Definition 2.17 implies thatQ is tensorial, in the sense thatQ(fe) = fQ(e)

for e ∈ Γ(S•E[1]∗) and f ∈ C∞(M). This follows from the chain rule for derivations, and
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the fact that Q(f) = 0 for f ∈ C∞(M), since Q(f) must be of degree 1 but Γ(S•E[1]∗)

is concentrated in non-positive degrees.

A derived manifold M = (M,E,Q) such that M = {∗} is the same as a curved L∞-

algebra V concentrated in degrees ≥ 2 (cf. Definition 2.15). In general, a derived

manifold is a bundle of N≥2-graded curved L∞-algebras in that it determines (and is

determined by) through the same procedure as in Section 2.2.1 a section Φ ∈ Γ(E2),

a degree 1 map d : Γ(E[1]) → Γ(E[1]), and for p ≥ 2, degree 1 graded symmetric

p-linear maps {·, ..., ·} : Γ(SpE[1]) → Γ(E[1]) satisfying the higher Jacobi identities

(2.74). One can also consider Z≤0-graded dg-manifolds, which are objects that locally

look like bundles of N≥2-graded curved L∞-algebras, but which are glued along possibly

polynomial isomorphisms of L∞-algebras (hence, not defining a global vector bundle).

Despite seeming more general, the category of dg-manifolds is actually equivalent to the

category of derived manifolds. [32].

Remark 2.19. Given derived manifolds M1 = (M1, E1, Q1), M2 = (M2, E2, Q2), a

morphismM1 →M2 can be described in terms of the multilinear brackets as a smooth

map φ : M1 → M2, together with fiberwise morphisms of curved L∞-algebras E1
|x →

E2
φ(x) varying smoothly over x ∈M . In particular, a linear map E1 → φ∗E2 preserving

the degrees, Φ and all the brackets is an example of a morphism of derived manifolds,

but more general morphisms exist, such as those given by the quadratic morphisms from

Definition 2.16.

We regard a derived manifoldM = (M,E,Q) as a geometric model for the topological

space Z(M) := {x ∈M |Φ(x) = 0} ⊂M (the zero locus ofM), where Φ :M → E2 is the

section determined by Q. As for the case of L∞-algebras motivated in the introduction

to this chapter, M contains additional information about higher obstructions of the

equation Φ(x) = 0. The tangent complex of M is the Z≥0-graded chain complex of

vector bundles TM over Z(M) whose fiber at each point x ∈ Z(M) is

TxM
dΦx→ E2|x

d(x)→ E3|x
d(x)→ ...

d(x)→ Em|x → 0→ ... , (2.88)

for d the 1-bracket induced by Q. Here we are slightly abusing notation by writing

dΦx for the composition of dΦx : TxM → T(x,0)E2 with the projection T(x,0)E2 → E2|x,

v 7→ v− d0(dπ(v)), where 0 :M → E2 is the zero section. The fact that (2.88) is indeed

a complex follows from the axioms

dΦ(x) = 0,

d2(ex) = [Φ(x), ex],
(2.89)
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for x ∈M and e ∈ Ex, which we may evaluate at x ∈ Z(M). In (2.88), TxM is regarded

in degree 0 and the other vector spaces are graded accordingly. The cotangent complex is

the dual of the above complex; i.e, it is the Z≤0-graded chain complex of vector bundles

over Z(M) whose fiber at each point x ∈ Z(M) is

...→ 0→ E∗
m|x

d(x)∗→ E∗
m−1|x

d(x)∗→ ...
d(x)∗→ E∗

2|x
dΦ(x)∗→ T ∗

xM, (2.90)

where T ∗
xM has degree 0.

If (φ,ψ) : M1 → M2 is a morphism of derived manifolds, then ψ induces a linear

map Γ(φ∗E2[1]∗) → Γ(E1[1]∗) by restricting and projecting in the obvious way. This

determines a degree preserving map of vector bundles ψ1 : E1 → E2 covering the map

φ : M1 → M2. Since (φ,ψ) preserves the homological vector fields, one can check

that φ(Z(M1)) ⊂ Z(M2), and that ψ1
∗ induces a chain map ψ∗ between the tangent

complexes ofM1 andM2 covering φ; we call this the differential of (φ,ψ).

Example 2.20. Given a section Φ :M → E of a vector bundle π : E →M , we construct

the derived manifoldM = (M,E[−2], Q), with Q : Γ(S•E[−1]∗)→ Γ(S•E[−1]∗) defined
by contracting with Φ ∈ Γ(E). We regard M as a smooth model for the topological

space Φ−1(0), which we can construct without assuming that Φ is transversal to the zero

section 0 : M → E. The tangent complex of M is the complex of vector bundles over

Φ−1(0) ⊂M defined by

TM
dΦ→ E → 0→ ... . (2.91)

Asumme further that there is a map of vector bundles d : E → F such that dΦ = 0.

Then we may want to construct a derived manifold that keeps track of this ‘higher

obstruction’. For this we take the derived manifold defined by the graded vector bundle

E[−2]⊕F [−3]→M and the homological vector field Q on Γ(S•E[−1]∗⊗S•F [−2]∗) that
acts as ξ 7→ ξ(Φ) for ξ ∈ Γ(E[−1]∗) and as ξ 7→ ξ(d·) for ξ ∈ Γ(F [−2]∗). The tangent

complex of this derived manifold is the complex of vector bundles over Φ−1(0) ⊂ M

defined by

TM
dΦ→ E

d→ F → 0→ ... . (2.92)

Some of the derived manifolds in this thesis are actually constructed from vector bundles

E → M with infinite-dimensional fibers over infinite-dimensional manifolds M , and we

will omit treating the technical problems that this could produce. We will also refer to

complex derived manifolds when E →M is a holomorphic vector bundle over a complex

manifold and all the maps defining the curved L∞-algebra structure are holomorphic.

Example 2.21. Let G be a Lie group and let P → M be a principal G-bundle. Write

A(P ) for the space of connections on P . For each A ∈ A(P ), there is a structure of
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curved DGLA on Ω≥2(adP ) (cf. Definition 2.16) given by Φ = FA ∈ Ω2(adP ), the

exterior covariant derivative dA : Ωj(adP ) → Ωj+1(adP ) and the Lie bracket [· ∧ ·] :
Ωj1(adP )⊗Ωj2(adP )→ Ωj1+j2(adP ). The derived space of flat connections on P is the

derived manifold associated to this structure, seen as a bundle of curved DGLAs over

A(P ). Note that it is a model for the space {A ∈ A(P ) | FA = 0} of flat connections,

containing information about higher obstructions in a similar way to (but richer than)

Example 2.20. Its tangent complex is the following chain complex of vector bundles over

{A ∈ A(P ) | FA = 0}.

Ω1(adP )
dA→ Ω2(adP )

dA→ ...
dA→ Ωn(adP )→ 0→ ... . (2.93)

Similarly, if G is a complex Lie group and P → X is a smooth G-bundle over a complex

manifold, then we can consider the space D(P ) := A(P )/Ω1,0(adP ) of semiconnections

on P and define for each A ∈ D(P ) a curved DGLA on Ω(0,≥2)(adP ) with Φ = F 0,2
A ,

d = ∂
A
and the restriction of the Lie bracket from before. The result is a derived complex

manifold, which we call the derived space of holomorphic structures on P . Its tangent

complex is the following chain complex of vector bundles over {[A] ∈ D(P ) | F 0,2
A = 0}.

Ω0,1(adP )
∂
A

→ Ω0,2(adP )
∂
A

→ ...
∂
A

→ Ω0,n(adP )→ 0→ ... . (2.94)

2.2.3 Simplicial derived manifolds

We use the category of simplicial derived manifolds as an approximate model for the∞-

category of derived differentiable ∞-stacks. While this ∞-category is defined in Section

7.2.3, all the relevant constructions in this thesis are described without losing rigor with

the terminology of this section.

Definition 2.22. A simplicial derived manifold M• is the following data.

1. For n ∈ N, a derived manifoldMn.

2. For n ∈ N and j = 0, ..., n, morphisms of derived manifolds dnj : Mn → Mn−1

(face maps) and snj :Mn →Mn+1 (degeneracy maps) that satisfy (2.3).

A morphism of simplicial derived manifolds f• :M• → N• is a family of morphisms of

derived manifolds fn : Mn → Nn commuting with all the face and degeneracy maps.

We write sdMan for the category of simplicial derived manifolds.

As in the case of simplicial manifolds, a simplicial derived manifold can be seen as

a functor ∆op → dMan. Then we define the Cartesian product of simplicial derived
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manifoldsM•, N• : ∆
op → dMan as the simplicial derived manifold (M×N )• : ∆

op →
dMan defined by

(M×N )([n]) :=M([n])×N ([n]). (2.95)

We regard a simplicial derived manifold M• as a geometric model for the topological

space Z(M0)/ ∼, where p0 ∼ p1 if ∃f ∈ Z(M1) with d0(f) = p0 and d1(f) = p1.

In order to define the Moore and normalized tangent complexes of a simplicial derived

manifoldM•, we proceed in the following steps.

1. For each n ∈ N, writeMn = (Mn, En,•, Qn) and recall that its tangent complex is

the following complex of vector bundles over Z(Mn).

TMn|Z(Mn)
Φ∗→ En,2|Z(Mn)

d→ En,3|Z(Mn)
d→ ...

d→ En,m|Z(Mn) → ... . (2.96)

2. Use the unique map s : M0 → Mn obtained by composing degeneracies to

pull-back the tangent complex of Mn to Z(M0). Along with the maps δ :=∑
j(−1)jdnj,∗ given by the alternating sum of the differentials of the simplicial

maps dnj : Mn → Mn−1, this yields a double complex of vector bundles over

Z(M0). We call this the Moore tangent complex ofM• and denote it by

... TM3|Z(M0) TM2|Z(M0) TM1|Z(M0) TM0|Z(M0)

... E3,2|Z(M0) E2,2|Z(M0) E1,2|Z(M0) E0,2|Z(M0)

... E3,3|Z(M0) E2,3|Z(M0) E1,3|Z(M0) E0,3|Z(M0)

... ... ... ... ...,

∂

Φ∗

∂

Φ∗

∂

Φ∗

∂

Φ∗ Φ∗

∂

d

∂

d

∂

d

∂

d d

∂

d

∂

d

∂

d

∂

d d
∂ ∂ ∂ ∂

(2.97)

where the pull-backs to Z(M0) are omitted from the notation.

3. Let A0,0 := TM0|Z(M0) and define, for n, m ≥ 1,

A−n,0 :=
TMn|Z(M0)

⊕n−1
j=0 s

n−1
j,∗ (TMn−1|Z(M0))

,

A−n,m :=
En,m+1|Z(M0)

⊕n−1
j=0 s

n−1
j,∗ (En−1,m+1|Z(M0))

.

(2.98)
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Then ∂, Φ∗ and d∗ descend to give a double complex (A•,•, ∂,Q∗) (where Q∗

denotes either Φ∗ or d∗ depending on the degree) of vector bundles2 over Z(M0).

4. The (normalized) tangent complex ofM• is the Z-graded chain complex of vector

bundles over Z(M0) obtained by taking the total complex of (A•,•, ∂,Q∗).

A morphism f• : M• → N• of simplicial derived manifolds induces at each level a

morphism fn,∗ between the tangent complexes of Mn and Nn as in Section 2.2.2, and

these descend to give a morphism between the tangent complexes ofM• and N• since

f• commutes with the face and degeneracy maps.

Example 2.23. Let G be a Lie group acting smoothly on a derived manifold M =

(M,E,Q). That is, we have a morphism of derived manifolds ρ : M× G → M such

that

1. ρ◦ (ρ× id) = ρ◦ (id×m) as morphismsM×G×G→M, where m is the product

of G.

2. ρ ◦ (id× 1) = id as morphismsM→M, where 1 : {∗} → G is the inclusion of the

unit.

As it follows from Remark 2.19, one such action could be given, for example, by a smooth

action of G on M covered by a smooth, fiberwise linear, degree-preserving action of G

on the total space of E such that Φ(x · g) = Φ(x) · g and {e1g, ..., eng} = {e1, ..., en}g
for x ∈ M , g ∈ G, e1, ..., en ∈ E and Φ, {·, ..., ·} the structure of curved L∞ algebra

on E induced by Q. In particular, the action of G on M preserves Z(M). Then we

can construct a simplicial derived manifold (M//G)•, called the quotient groupoid, and

serving as a geometric model for Z(M)/G, exactly as in Example 2.5. Namely, we let

(M//G)n =M×Gn and define simplicial and degeneracy maps by the same formulas

as in Example 2.5, now understood as morphisms of graded manifolds in the obvious

way. It is easy to see that the tangent complex of this simplicial derived manifold is the

following chain complex of vector bundles over Z(M).

...→ 0→ g
ρ∗→ TM

dΦ→ E2
d→ E3

d→ ...
d→ Em → 0→ ..., (2.99)

with TM in degree 0, and where dΦ is defined as in Section 2.2.2.

2For an arbitrary simplicial derived manifold, it is not necessarily true that A−n,m are vector bundles,
as there is no condition on the rank of sj,∗. This technical issue will not appear in the simplicial derived
manifolds that we consider in this thesis, and will be treated more carefully in Chapter 7 by introducing
the Kan conditions
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Example 2.24. Let M be the derived manifold of flat connections on a G-bundle

P → X from Example 2.21. Then Gauge(P ), the gauge group of P , is an infinite-

dimensional Lie group with Lie algebra Ω0(adP ). It acts on the space A(P ) through its

natural action of connections and on the space Ω≥2(adP ) through the adjoint action.

This induces an action onM because dA and [·, ·] are equivariant with respect to these

actions. The derived quotient stack B♭,d(P ) := M//Gauge(P ) as in Example 2.23 is

called the derived moduli stack of flat connections on P 3. Its tangent complex is the

chain complex of vector bundles over {A ∈ A(P ) | FA = 0} whose fiber at each flat

connection A is the elliptic complex

Ω0(adP )
dA→ Ω1(adP )

dA→ ...
dA→ Ωn(adP )→ 0→ ... , (2.100)

with Ω1(adP ) in degre 0. Similarly, if G is a complex Lie group, X is a complex manifold

and P → X is a smooth G-bundle, then we may take X to be the (complex) derived

manifold of holomorphic structures P as in Example 2.21. There is again an action of

Gauge(P ) (which is now a complex Lie group) on X and the corresponding simplicial

derived complex manifold Hd(P ) := X//Gauge(P ) is called the derived moduli stack of

holomorphic structures on P . Its tangent complex is the chain complex of vector bundles

over {[A] ∈ D(P ) | F 0,2
A = 0} whose fiber at each holomorphic structure ∂

A
is

Ω0(adP )
∂
A

→ Ω0,1(adP )
∂
A

→ ...
∂
A

→ Ω0,n(adP )→ 0→ ... . (2.101)

2.3 Shifted symplectic structures

2.3.1 Shifted symplectic structures on simplicial derived manifolds

LetM = (M,E,Q) be a derived manifold. We write C∞(M) := Γ(S•E[1]∗), and refer

to this as the algebra of functions onM. A vector field onM is a derivation of C∞(M).

We write Γ(TM) for the space of vector fields, which is a C∞(M)-module. It is also a

differential graded Lie algebra under the graded commutator

[V,W ] := VW − (−1)|V ||W |WV (2.102)

and the differential [Q, ·]. A differential p-form of degree l on M is a graded skew-

symmetric C∞(M)-linear map Γ(TM)⊗p → C∞(M) of degree l. We write Ωp(M)l for

3The use of the word stack is justified in Chapter 7, where we discuss in which sense simplicial
manifolds are models for ∞-stacks.
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the space of p-forms of degree l. There are operators

d : Ωp(M)l → Ωp+1(M)l, (2.103)

ιV : Ωp(M)l → Ωp−1(M)l+|V |, V ∈ Γ(TM), (2.104)

LV : Ωp(M)d → Ωp(M)l+|V |, V ∈ Γ(TM), (2.105)

defined by

dα(X0, ..., Xp) :=
∑
j

(−1)Xj(α+X0+...+Xj−1)+jXj(α(X0, ..., X̂j , ..., Xp))

+
∑
i<j

(−1)Xi(X0+...+Xi−1)+Xj(X0+...+X̂i+...+Xj−1)+i+jα([Xi, Xj ], X0, ..., X̂i, ..., X̂j , ..., Xp),

(2.106)

ιV α(X1, ..., Xp−1) := (−1)αV α(V,X1, ..., Xp−1), (2.107)

LV := dιV + ιV d. (2.108)

They satisfy the Cartan relations

d2 = 0, (2.109)

dLV − LV d = 0, (2.110)

ιV ιW + (−1)VW ιW ιV = 0, (2.111)

LV ιW − (−1)VW ιWLV = ι[V,W ], (2.112)

LV LW − (−1)VWLWLV = L[V,W ]. (2.113)

In particular, note that LQ has degree 1 and satisfies L2
Q = 0. It can also be computed

by

LQα(X1, ..., Xp) =

Q(α(X1, ..., Xp))−
∑
j

(−1)α+X1+...+Xj−1α(X1, ..., Xj−1, [Q,Xj ], Xj+1, ..., Xp).

(2.114)

Differential forms can be pulled-back along morphisms φ : M1 → M2; this operation

commutes with d and it satisfies φ∗LQ2ω = LQ1φ
∗ω. In particular, given a simplicial

derived manifold M•, there are degree-preserving operators δ : Ω•(Mn−1) → Ω•(Mn)

with δ2 = 0, defined by δ :=
∑n

j=0(d
n
j )

∗. They commute with the exterior differentials

d and the Lie derivatives LQ of each derived manifoldMn.
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Definition 2.25 ([68, 92, 210]). Let M• be a simplicial derived manifold. The triple

complex of differential forms onM• is the triple complex

({Ω•(M•)•}, d, δ, LQ). (2.115)

A differential form α ∈ Ωr(Mp)q is normalized if s∗jα = 0, j = 0, ..., p. These form a

sub-complex Ω̂•(M•)•, called the normalized triple complex of differential forms. For

l ∈ Z, an l-shifted presymplectic form on M• is a closed element ω• of degree 2 + l in

the total complex associated to the triple complex

({Ω̂•≥2(M•)•}, d, δ, LQ); (2.116)

i.e. it is a family of normalized forms

ωrp,q ∈ Ω̂r(Mp)q, r ≥ 2, p ≥ 0, q ≤ 0, p+ r + q = 2 + l (2.117)

such that

dωr−1
p,q + δωrp−1,q + LQω

r
p,q−1 = 0. (2.118)

The leading term of an l-shifted presymplectic form ω• is its projection ω2
• to Ω̂2(M•)•.

Given a morphism of simplicial derived manifolds N•
f→ M• and an l-shifted presym-

plectic form ω• onM, then an isotropic structure on f (relative to ω•) is an element ωL•

of degree 1 + l in the total complex associated to the triple complex

({Ω̂•≥2(N•)•}, d, δ, LQ). (2.119)

whose total derivative is f∗ω•. That is, it is a family of normalized forms

ωr,Lp,q ∈ Ω̂r(Mp)q, r ≥ 2, p ≥ 0, q ≤ 0, p+ r + q = 1 + l (2.120)

such that

dωr−1,L
p,q + δωr,Lp−1,q + LQω

r,L
p,q−1 = f∗ωrp,q. (2.121)

Its leading term is its projection ω2,L
• to Ω̂2(N•)•.

LetM = (M,E,Q) be a derived manifold. Upon choosing a degree-preserving connec-

tion ∇ on E, we obtain an isomorphism

Γ(TM) = Γ(S•(E[1])∗ ⊗ (TM ⊕ E[1])), (2.122)
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where we identify V ∈ Γ(TM) and e ∈ Γ(E) with the derivations of Γ(S•E[1]∗) that act

on ξ ∈ Γ(E[1]∗) as

ξ 7→ V (ξ(·))− ξ(∇V ·), ξ 7→ ξ(e), (2.123)

respectively, and which are extended to all of Γ(S•E[1]∗) imposing Leibniz’s rule. Un-

der this isomorphism, the DGLA structure on Γ(TM) is completely described by the

following formulas.

[X + e1, Y + e2] = [X,Y ] +∇Xe2 −∇Y e1 − F∇(X,Y ), (2.124a)

[Q,X](ξ) = −ξ
(
∇XΦ+∇X({·})(·) +

1

2
∇X({·, ·})(·, ·) (2.124b)

+
1

6
∇X({·, ·, ·})(·, ·, ·) + ...

)
, (2.124c)

[Q, e] = (−1)e
(
{e}+ {e, ·}+ 1

2
{e, ·, ·}+ 1

6
{e, ·, ·, ·}+ ...

)
, (2.124d)

where we see F∇(X,Y ) ∈ Γ(E∗ ⊗ E) ⊂ Γ(S•E[1]∗ ⊗ (TM ⊕ E)) and we write ∇XΦ,
∇X({·}), ∇X({·, ·}), etc. for the covariant derivatives of the tensors Φ, {·}, {·, ·}, etc.
defining the fiberwise curved L∞-algebra structure (with the convention that the brack-

ets are graded symmetric in E[1]). In particular, differential p-forms onM can be identi-

fied with graded skew-symmetric C∞(M)-multilinear maps Γ(TM ⊕E)⊗p → Γ(S•E[1])

and d, LQ can be computed using (2.124).

Remark 2.26. Let M = (M,E,Q) be a derived manifold, and let ω ∈ Ωp(E) be an

ordinary differential form in the total space of E such that ω(X1, ..., Xp) ∈ Γ(E∗) ⊂
C∞(E) whenever X1, ..., Xp are linear vector fields on E. Then ω induces canonically a

differential form ωM onM. This can be seen by choosing a connection ∇ on E and using

the description above to define ωM(X1+ e1, ..., Xp+ ep) := ω(Xh
1 +Xe1 , ..., X

h
p +Xep) ∈

Γ(E∗) ⊂ Γ(S•E[1]∗), where Xh denotes horizontal lift of X ∈ Γ(TM) with respect to

∇ and Xe is the vertical vector field associated to e ∈ Γ(E). Changing the connection

does not change ωM, and so this is well-defined independently of ∇. It is also worth

noting that in this case (dω)M = d(ωM).

Now let M• be a simplicial derived manifold, write Mp = (Mp, Ep,•, Qp) and let ω ∈
Ω2(Mp)q be normalized. Recall the vector bundles Ai,j → Z(M0) defined in (2.98)

for (i, j) ∈ Z≤0 × Z≥0. We use ω to define a map ω̃ : Ai,j ⊗ Ap−i,q−j → R, where R
is the trivial vector bundle with fiber R. For x ∈ Z(M0) and [vx] ∈ Ai,j|x, we write

V ∈ Γ(TMp) for any vector field obtained as follows.

1. Choose a representative vx ∈ Ep,j+1|x (if j ≥ 1) or vx ∈ TMp|x (if j = 0).

2. Extend vx to either a local section of Ep,j+1 (if j ≥ 1) or a local vector field on

Mp (if j = 0).



Simplicial derived manifolds 47

3. Use any connection to identify vx with V ∈ Γ(TMp) via (2.122).

Of course, V depends on all these choices, but the following formula does not.

ω̃x(v
1
x, v

2
x) :=

∑
σ∈Si,p−i

(−1)σω(sσ(p)−1,∗◦...◦sσ(i+1)−1,∗(V
1), sσ(i)−1,∗◦...◦sσ(1)−1,∗(V

2))(s(x))

(2.125)

The degrees are chosen so that each term on the sum in (2.125) is an element of

Γ(S•Ep,•[1]
∗) of degree 0; i.e., a function on Mp, and so it makes sense to evaluate

it at s(x), for s :M0 →Mp the degeneracy map. To state the following lemma we recall

that the homotopy fiber of a map ψ : A• → B• of chain complexes is the chain complex

Hofib(ψ) defined by

Hofib(ψ)n = An ⊕Bn−1, d(a+ b) = dAa+ (dBb− ψ(a)). (2.126)

Lemma 2.27. Let M• be a simplicial derived manifold and let ω ∈ Ω2(Mp)q be nor-

malized. Then ω̃ : Ai,j⊗Ap−i,q−j → R is well defined independently of choices by (2.125)

and it satisfies

(−1)pδ̃ω(v1, v2) = ω̃(∂v1, v2) + (−1)iω̃(v1, ∂v2), (2.127)

(−1)qL̃Qω(v1, w2) = ω̃(Q∗v
1, w2) + (−1)jω̃(v1, Q∗w

2) (2.128)

for v1 ∈ Ai,j, v2 ∈ Ap+1−i,q−j, w
2 ∈ Ap−i,q+1−j. In particular, the leading term ω2

• of

an l-shifted presymplectic form onM• determines by (2.125) a map of chain complexes

of vector bundles over Z(M0)

TM→ T ∗[l]M, (2.129)

where T ∗[l]M denotes the cotangent complex of M• shifted by l, and the leading term

ω2,L
• of an isotropic structure on a morphism of simplicial derived manifolds N•

f→M•

determines by (2.125) a map of chain complexes of vector bundles over Z(N0)

TN f∗+ω̃L

→ Hofib(f∗TM f∗ω̃→ f∗T ∗[l]M f∗∗→ T ∗[l]N ). (2.130)

Proof. That ω̃ does not depend on the choice of vx ∈ Ep,j+1|x follows from the fact

that ω is normalized, which implies that the right-hand side of (2.125) vanishes for

V 1 ∈ Im (s∗i ) or V 2 ∈ Im (s∗i ) by a similar argument to the one in [92, Lemma E.1.].

Independence on the choice of extension of vx is clear since the right-hand side of (2.125)

is evaluated at s(x), while independence on the choice of connection follows from noting

that the terms that appear upon changing the connection vanish for degree reasons.

Then (2.127) also follows as in [92, Lemma E.1.], since the computations there are

purely algebraic, while (2.128) follows from formulas (2.114) and (2.124), noting that
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Q(ω(V1, V2)) = 0 when deg(V1) + deg(V2) = deg(ω). Finally, maps (2.129) and (2.130)

are defined in a straightforward way by formula (2.125); then equations (2.127), (2.128)

and the closedness conditions from Definition 2.25 imply that these maps preserve the

chain differentials.

Definition 2.28. Let (M•, ω•) be a simplicial derived manifold with an l-shifted presym-

plectic form. We say (M•, ω•) is l-shifted symplectic if the map (2.129) is a quasi-

isomorphism. Let N•
(f•,ωL

• )→ (M•, ω•) be a morphism of simplicial derived manifolds

with an isotropic structure and assume that (M•, ω•) is l-shifted symplectic. We say

(f•, ω
L
• ) is Lagrangian if the map (2.130) is a quasi-isomorphism.

The following result provides two methods for constructing shifted (pre)symplectic struc-

tures from previously known ones. At the time of writing of this thesis, it has only been

proven rigorously in the algebraic setting, but it will serve us for inspiration to construct

shifted (pre)symplectic structures on simplicial derived manifolds.

Theorem 2.29 ([210]). 1. Let (X, ω) be an l-shifted presymplectic derived Artin stack

and let Yi
fi→ X, i = 1, 2 be morphisms of derived Artin stacks equipped with

isotropic structures λi. Then λ2−λ1 defines an (l−1)-shifted presymplectic struc-

ture on Y1 ×hX Y2. If ω is symplectic and λ1, λ2 are Lagrangian, then λ2 − λ1 is

symplectic.

2. Let (X, ω) be an l-shifted presymplectic derived Artin stack and let Y be a com-

pact, d-oriented derived Artin stack in the sense of [210, Def. 2.1 and 2.4]. If the

internal hom dSt(Y,X) is a derived Artin stack, then
∫
Y ev

∗ω is an (l− d)-shifted
presymplectic structure on dSt(Y,X), where ev : dSt(Y,X)×Y→ X is the evalua-

tion map and
∫
Y is defined by the d-orientation on Y. If ω is symplectic, then so

is
∫
Y ev

∗ω.

In our examples, when X is a simplicial derived complex manifold, we will also consider

shifted holomorphic symplectic forms. By this we mean the analog of Definition 2.28, but

where the triple complex of R-valued differential forms is replaced by the triple complex

of C-valued, C-multilinear differential forms.

2.3.2 First examples

All the examples in this section can be found at least within the context of derived

algebraic geometry in [8, 36, 67, 68, 92, 210, 278].

Example 2.30 ([67, 88]). Let M be a manifold. For l ∈ Z<0 we define the shifted

cotangent T ∗[l]M to be the derived manifold given by the vector bundle T ∗M → M ,
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with T ∗M in degree 1 − l, and zero homological vector field. The convention for the

degree is chosen so that the tangent complex of T ∗[l]M is TX
0→ ...

0→ T ∗X, with TX

in degree 0 and T ∗X in degree −l. The canonical symplectic form ω on T ∗M can be

seen as an l-shifted symplectic form on T ∗[l]M by Remark 2.26. For l ∈ Z>0, the shifted

cotangent T ∗[l]M• is the simplicial manifold with

(T ∗[l]M)n = {(x, {αi0...il}i0<...<il∈[n]) ∈M × (T ∗M)(
n+1
l+1) | αi0...il ∈ T

∗
xM,

∀i0 < ... < il+1, (δα)i0...il+1
= 0},

(2.131)

where we are writing

(δα)i0...il+1
:=

l+1∑
j=0

(−1)jαi0...ij−1ij+1...il+1
, (2.132)

and, for non-decreasing f : [n1]→ [n2], the map f∗ : (T ∗[l]M)n2 → (T ∗[l]M)n1 is defined

as in (2.23). In particular, note that (T ∗[l]M)l = T ∗M . Then the canonical symplectic

form ω on T ∗M can be seen as an l-shifted symplectic form on T ∗[l]M because it is

linear on the fibers of T ∗M and this implies δω = 0. The tangent complex to T ∗[l]M

in the case l > 0 is T ∗M
0→ ...

0→ TM , with TM in degree 0 and T ∗M in degree −l.
It is then easy to see that, in both cases l < 0 and l > 0, the non-degeneracy condition

for ω follows simply from the fact that it induces isomorphisms (TM)∗ = T ∗M and

(T ∗M)∗ = TM . This construction is generalized in [67], which proves in the algebraic

setting that for any derived stack X and for l ∈ Z one can define a derived stack T ∗[l]X

with a canonical l-shifted symplectic structure.

Example 2.31 ([8, 36]). LetM be a manifold and let G be a Lie group acting smoothly

on M with infinitesimal action map ρ : g → TM . Then we define T ∗(M//G) to be

the following simplicial derived manifold. First, define the derived manifold M :=

(T ∗M, g∗[−2], Q), where Q is defined simply by the curvature map Φ : T ∗M → g∗[−2],
Φ = ρ∗. The action of G on M induces an action on M, where the action on T ∗M is

given by pull-back and the action on g∗ is the coadjoint action (this defines an action on

M since ρ∗ is G-equivariant). Then define T ∗(M//G) :=M//G in the sense of Example

2.23. Its tangent complex is the following chain complex of vector bundles over T ∗M .

g[1]
ρT

∗M
−−−→ TT ∗M

(ρ∗)∗−−−→ g∗[−1], (2.133)

where ρT
∗M is the infinitesimal action map for the action of G on T ∗M , while the

cotangent complex is its dual,

g[1]
((ρ∗)∗))∗−−−−−→ T ∗T ∗M

(ρT
∗M )∗−−−−−→ g∗[−1]. (2.134)
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The canonical isomorphism betwen these two complexes is induced by a 0-shifted sym-

plectic structure on T ∗(M//G) which we can describe as follows. It is given by the

canonical symplectic structure on T ∗M , which can be seen as a degree 0, d-exact, 2-

form ω0 = dλ0 ∈ Ω2(M)0, and the canonical symplectic structure on T ∗G = G × g∗,

which can be seen as a degree −1, d-exact, 2-form ω1 = dλ1 ∈ Ω2(M×G)−1 by Remark

2.26. Let us check the closedness condition (2.118).

1. LQω
0 = 0 for degree reasons.

2. LQω
1 = δω0 follows from

(LQλ
1)(αp,g,ξ)(α̇p + vg + ξ̇) = Q((αp, g, ξ) 7→ ξ(vgg

−1))(αp,g,ξ)

= (ρ∗αp)(vgg
−1) = αp(pvgg

−1),
(2.135)

(δλ0)(αp,g,ξ)(α̇p + vg + ξ̇) = αpg(vpg) + αpg(pvg)− αp(vp) = αp(pvgg
−1)

(2.136)

for p ∈M , αp ∈ T ∗
pM , g ∈ G, ξ ∈ g∗, α̇p ∈ TαpT

∗M , vg ∈ TgG, ξ̇ ∈ Tξg∗.

3. δω1 = 0 states the multiplicative property of the symplectic structure on T ∗G.

Hence, (ω0, ω1) is indeed a 0-shifted symplectic structure on T ∗(M//G).

Example 2.32. Let M be a manifold and let G be a Lie group acting smoothly on M .

Let S : M → R be a G-invariant function. Then dS : M → T ∗M satisfies ρ∗dS = 0.

This is precisely the condition for the map of vector bundlesM×{0} (dS,0)→ T ∗M×g∗[−2]
to define a morphism of derived manifolds M → (T ∗M, g∗[−2], ρ∗). Moreover, this map

is G-equivariant and so it determines a morphism of simplicial derived manifolds dS :

M//G → T ∗(M//G), where T ∗(M//G) is defined as in Example 2.31. Since α∗ω = dα

for ω the symplectic form on T ∗M and α : M → T ∗M any section, it follows that

(dS)∗(ω0, ω1) = 0 for (ω0, ω1) the 0-shifted symplectic structure on T ∗(M//G). That is,

dS carries a canonical isotropic structure given by 0. It is in fact Lagrangian, because the

map (2.130) is in this case the following quasi-isomorphism of (vertical) chain complexes

of vector bundles over M

g g

TM (dS)∗TT ∗M

0 g∗ ⊕ T ∗M

0 g∗

ρ∗

id

(dS)∗ρT
∗M

dS∗

(dS)∗(ρ∗)∗−(dS∗)∗ ◦ω

id−ρ∗

. (2.137)
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In particular, the function 0 : M → R also defines a canonical Lagrangian structure on

d0 : M//G → T ∗(M//G) and then Theorem 2.29 suggests the existence of a simplicial

derived manifold dCrit(S) with a (−1)-shifted symplectic structure modelling the space

{x ∈ M | dS = 0}/G. Note that, in physics terminology, this is the configuration space

of a system with G-symmetry defined by the action functional S. We present now a

model for dCrit(S), which is called the derived critical locus of S.

We proceed as in Example 2.20. Let N := (M,T ∗[−2]M ⊕ g∗[−3], Q), where Q is

defined by the fiberwise structure of curved L∞-algebra given by the curvature Φ :

M → T ∗[−2]M , Φ = dS and the differential d : T ∗[−2]M → g∗[−3], d = ρ∗. This gives

a derived manifold, since dΦ = 0 follows from S being G-invariant. The action of G on

M lifts to an action on N , where the action on T ∗[−2]M is given by pull-back and the

action on g∗[−3] is the coadjoint action (this defines an action on N since dS and ρ∗

are G-equivariant). Then define dCrit(S) := N//G in the sense of Example 2.23. Its

tangent complex is the following chain complex of vector bundles over M .

g[1]
ρ→ TM

dS→ T ∗[−1]M ρ∗→ g∗[−2], (2.138)

while the cotangent complex is its dual,

g[2]
ρ→ T [1]M

dS∗
→ T ∗M

ρ∗→ g∗[−1]. (2.139)

The canonical isomorphism T (dCrit(S)) ∼= T ∗(dCrit(S))[−1] is induced by a (−1)-
shifted symplectic structure on dCrit(S) which we can describe as follows. It is given by

the canonical symplectic structure on T ∗M , which can be seen as a degree −1, d-exact,
2-form ω0 = dλ0 ∈ Ω2(N )−1 by Remark 2.26, and the canonical symplectic structure

on T ∗G = G × g∗, which can be seen as a degree −2, d-exact, 2-form ω1 = dλ1 ∈
Ω2(M×G)−2 for the same reason. Let us check the closedness condition (2.118).

1. LQω
0 = 0 because LQλ

0 = dS:

(LQλ
0)α(α̇) = Q(α 7→ α(dπ(α̇))) = dS(dπ(α̇)). (2.140)

2. LQω
1 = δω0 as in Example 2.31.

3. δω1 = 0 as in Example 2.31.

Hence, (ω0, ω1) is indeed a (−1)-shifted symplectic structure on dCrit(S). Note the

construction also works if dS is replaced by any closed G-invariant 1-form α ∈ Ω1(M).

At least in the algebraic setting, this example can be generalized replacing M//G by

any derived stack X and dS by any closed 1-form α of degree l (for any l ∈ Z) on X [8].
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Then T ∗[l]X is l-shifted symplectic by Example 2.30, α : X → T ∗[l]X is Lagrangian by

closedness and so its homotopy fibered product with the zero section is (l − 1)-shifted

symplectic by Theorem 2.29.

Example 2.33 ([8, 210, 278]). Let G be a Lie group. Then we form the quotient

groupoid (cf. Example 2.5) g∗//G for the coadjoint action of G on g∗. Its tangent space

is the following complex of vector bundles over g∗

g[1]
ad∗→ g∗, (2.141)

where we write ad∗|ξ(v)(·) := ξ([v, ·]) for ξ ∈ g∗ and v ∈ g. Its cotangent is

g
(ad∗)∗→ g∗[−1], (2.142)

where

(ad∗)∗ξ(v)(·) = ad∗ξ(·)(v) = ξ([·, v]) = −ad∗ξ(v)(·). (2.143)

The canonical isomorphism T (g∗//G) ∼= T ∗(g∗//G)[1] is induced by a canonical 1-shifted

symplectic form on g∗//G. It is defined by the canonical symplectic form ωG on T ∗G =

G× g∗ = (g∗//G)1 (one must only check that dωG = 0, δωG = 0 as before). In fact, the

existence of this symplectic form follows from the fact that g∗//G can be thought of as

T ∗[1](BG) (cf. Examples 2.30 and 2.31).

Example 2.34. LetM be a manifold with a smooth action of a Lie group G. Then it is

easy to see from the definitions that a morphism of simplicial manifolds M//G→ g∗//G

is the same as a G-equivariant map µ : M → g∗. An isotropic structure on it, for the

1-shifted symplectic structure on g∗//G from Example 2.33, is the data of ω ∈ Ω2(M,R)
such that δω = µ∗ωG. This is equivalent to

g∗ω = 0, ∀g ∈ G, (2.144)

ιρ(v)ω = d(µ(·)(v)) ∀v ∈ g (2.145)

In conclusion, isotropic structures on µ : M//G → g∗//G are in bijection with presym-

plectic structures on M such that µ is a moment map for the G-action. The corre-

sponding map (2.130) is the following map of chain complexes of vector bundles over

M

g g

TM g∗ ⊕ T ∗M

0 g∗

id

ρ µ∗ad∗−dµ∗

dµ+ω

id−ρ∗

, (2.146)
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which is a quasi-isomorphism if and only if ω is symplectic. In particular, {∗} regarded as

a symplectic manifold with trivial G-action and trivial moment map defines a Lagrangian

structure on {∗}//G → g∗//G. Then Theorem 2.29 suggests that, for any symplectic

manifold with moment map (M,ω, µ), we may take M//µG := (M//G) µ×h0({∗}//G) to
obtain a simplicial derived manifold with a 0-shifted symplectic structure. Note that this

is a model for the classical Marsden-Weinstein quotient which exists as a geometric object

without regularity assumptions on the action. We proceed to present this explicitly.

As a simplicial derived manifold, the fibered product M//µG is simply the quotient

groupoid as in Example 2.23 for the G-action on the derived manifold (M, g∗[−2], Q)

where Q is just given by Φ = µ :M → g∗ (cf. the derived zero set from Example 2.20; G

acts here since µ is equivariant). The tangent complex of M//µG is the chain complex

of vector bundles over µ−1(0)

g[1]
ρ→ TM

dµ→ g∗[−1], (2.147)

while the cotangent complex is

g[1]
dµ∗→ T ∗M

dµ→ ρ∗∗[−1]. (2.148)

A 0-shifted symplectic structure inducing an isomorphism between these two complexes

is given by the symplectic form ω on M , seen as a d-closed 2-form ω0 ∈ Ω2((M//µG)0)0,

and the canonical symplectic form on T ∗G, seen as a d-closed degree −1 2-form ω1 ∈
Ω2((M//µG)1)−1. Then LQω

0 = 0 for degree reasons, δω0 = LQω
1 because of the

moment map condition and δω1 = 0 because of multiplicativity of ωG, which yields the

closedness condition (2.118). This example can be generalized replacing (M,ω) by any l-

shifted symplectic derived stack (i.e. simplicial derived manifold) (X, ω) with an action of

G; then the notion of moment map can be defined directly as a map µ : X//G→ g∗[l]//G

such that ω is a Lagrangian structure for µ∗ωG [8].

Example 2.35 ([68, 92, 210]). Let G be a Lie group. The tangent complex to BG (cf.

Example 2.6) is the chain complex of vector bundles over {∗} (i.e. the chain complex of

vector spaces)

g[1]. (2.149)

The cotangent complex is thus

g∗[−1]. (2.150)

Let ⟨·, ·⟩ : g ⊗ g → R be an Ad-invariant, symmetric bilinear form. This induces a

2-shifted presymplectic structure on BG. It is defined by

µ :=
1

6
⟨θL ∧ [θL ∧ θL]⟩ ∈ Ω3(G), ν := −⟨g∗1θL ∧ g∗2θR⟩ ∈ Ω2(G2), (2.151)
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where θL and θR are the left- and right- invariant Maurer-Cartan forms on G. This is

indeed a presymplectic structure because these differential forms satisfy

dµ = 0, dν = −δµ, δν = 0, (2.152)

as it follows from straightforward computations (this is originally due to [246]). Of

course, it induces the morphism g[1] → g∗[−1] given by ⟨·, ·⟩ and so this is a 2-shifted

symplectic structure precisely when ⟨·, ·⟩ is non-degenerate.

2.3.3 Shifted symplectic structures on derived moduli stacks

Example 2.35, along with Theorem 2.29, is used in [210] to prove the following.

Theorem 2.36 ([210]). 1. Let G be a reductive affine group scheme over SpecR with

an Ad-invariant, non-degenerate, symmetric form ⟨·, ·⟩ : g ⊗ g → R and let M be

a compact, connected, oriented manifold of dimRM = n. Then there is a derived

Deligne-Mumford stack with a (2− n)-shifted symplectic structure parameterizing

flat G-bundles on M .

2. Let G be a reductive affine group scheme over SpecC with an Ad-invariant, non-

degenerate, symmetric C-linear form ⟨·, ·⟩ : g ⊗ g → C and let X be a compact,

connected complex manifold with a holomorphic volume form of dimCX = n.

Then there is a derived Deligne-Mumford stack with a (2−n)-shifted holomorphic

symplectic structure parameterizing holomorphic G-bundles on X.

We proceed to present a gauge-theoretic description of the shifted symplectic structures

from Theorem 2.36 within the language of (infinite-dimensional) simplicial derived man-

ifolds. This presentation allows us to deal with an arbitrary Lie group G. The ideas that

we use are known to experts, although we are not aware of any prior explicit presentation

of such shifted symplectic structures in these terms.

Let G be a Lie group and let P →M be a G-bundle over a compact, oriented manifold

with dimRM = n. The derived moduli stack B♭,d(P ) of flat connections on P is defined

in Example 2.23. Its tangent complex is the following complex of vector bundles over

{A ∈ A(P ) | FA = 0}

Ω0(adP )[1]
dA→ Ω1(adP )

dA→ Ω2(adP )[−1] d
A

→ ...
dA→ Ωn(adP )[−n+ 1]. (2.153)

If ⟨·, ·⟩ : g⊗ g → R is a non-degenerate, Ad-invariant, symmetric bilinear form then we

define a (2−n)-shifted symplectic structure on B♭,d(P ) as follows. We describe differential

forms on B♭,d(P )0 and B♭,d(P )1 as explained in Section 2.3.1, using the trivial connection



Simplicial derived manifolds 55

on Ω≥2(adP )→ A(P ) and taking also into account that TA(P ) = A(P )×Ω1(adP ) and

TGauge(P ) = Gauge(P )×Ω0(adP ) (for this we identify Ω0(adP ) with right-invariant

vector fields). The symplectic structure is then given by

ω0 ∈ Ω2(B♭,d(P )0)2−n, ω1 ∈ Ω2(B♭,d(P )1)1−n (2.154)

defined by

ω0
|A(ȧ

1
1 + ȧ21 + ...+ ȧn1 , ȧ

1
2 + ȧ22 + ...+ ȧn2 ) =

∫
M
((⟨ȧ11 ∧ ȧn−1

2 ⟩ − ⟨ȧ12 ∧ ȧn−1
1 ⟩)

+ ((−1)n⟨ȧ21 ∧ ȧn−2
2 ⟩+ ⟨ȧ22 ∧ ȧn−2

1 ⟩) + (⟨ȧ31 ∧ ȧn−3
2 ⟩ − ⟨ȧ32 ∧ ȧn−3

1 ⟩)

+ ((−1)n⟨ȧ41 ∧ ȧn−4
2 ⟩+ ⟨ȧ42 ∧ ȧn−4

1 ⟩) + ...+ (−1)n(⟨ȧn−1
1 ∧ ȧ12⟩ − ⟨ȧn−1

2 ∧ ȧ11⟩))
(2.155)

ω1
|(A,g)(ȧ

0
1 + ...+ ȧn1 , ȧ

0
2 ++...+ ȧn2 ) = 2

∫
M
(⟨ȧ01, ȧn2 ⟩ − ⟨ȧ02, ȧn1 ⟩+ (−1)n⟨[ȧ01, ȧ02] ∧ an⟩),

(2.156)

with api , ȧ
p
i ∈ Ωp(adP ). Here, and similarly for the following examples, the right-hand

side of (2.156) is to be read as function on the derived manifold

B♭,d(P )1 = (A(P )×Gauge(P ),Ω≥2(adP ), (dA, [·, ·])),

defined through its action on an ∈ Γ(Ω≥2(adP )). It is clear that ω1 is normalized, as

it equals 0 when ȧ01 = ȧ02 = 0 (and this condition is vacuous for ω0). Let us check

the closedness condition (2.118). It is clear that dω0 = 0 and dω1 = 0, while δω1 = 0

expresses the multiplicativity of the canonical symplectic form on T ∗Gauge(P ). Then

LQω
0 = 0 follows from∫

M
(⟨dAȧj ∧ ȧn−j⟩+ (−1)j⟨ȧj ∧ dAȧn−j⟩) =

∫
M
d⟨ȧj ∧ ȧn−j⟩ = 0, (2.157)

⟨ȧi ∧ [ȧj ∧ an−i−j ]⟩+ (−1)ij⟨ȧj ∧ [ȧi ∧ an−i−j ]⟩ = 0. (2.158)
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Finally, δω0 = LQω
1 follows from the fact that all terms not containing ȧ11, ȧ

1
2 are

δ-closed by Ad-invariance of ⟨·, ·⟩, while∫
M
⟨Ad(g−1)dAȧ0 ∧Ad(g−1)ȧn−1⟩ =

∫
M
⟨dAȧ0 ∧ ȧn−1⟩ = −

∫
M
⟨ȧ0 ∧ dAȧn−1⟩,

(2.159)∫
M
(⟨Ad(g−1)dAȧ01 ∧Ad(g−1)[ȧ02, a

n−1]⟩ − ⟨Ad(g−1)dAȧ02 ∧Ad(g−1)[ȧ01, a
n−1]⟩)

=

∫
M
⟨dA[ȧ01, ȧ02] ∧ an−1⟩ = −

∫
M
⟨[ȧ01, ȧ02] ∧ dAan−1⟩,

(2.160)

⟨Ad(g−1)ȧ1 ∧Ad(g−1)[ȧ0, an−1]⟩ = −⟨ȧ0, [ȧ1 ∧ an−1]⟩. (2.161)

The case n = 2 is an extension of the Atiyah-Bott symplectic form on the smooth locus

of the moduli space of G-local systems on a Riemann surface [15] to the whole derived

moduli stack B♭,d(P ). It can also be constructed as the derived symplectic reduction (cf.

Example 2.34) for the action of Gauge(P ) on A(P ), with symplectic structure given by

ω0 as above and moment map µ : A(P ) → Ω0(adP )∗ ∼= Ω2(adP ) the curvature map;

i.e., µ(A)(s) =
∫
M ⟨FA, s⟩ for A ∈ A(P ) and s ∈ Ω0(adP ).

The case n = 3 can be constructed as the derived critical locus (cf. Example 2.32) of

the Chern-Simons functional on the groupoid A(P )//Gauge(P ) of connections modulo

gauge. More precisely, it is the derived critical locus of the Gauge(P )-invariant closed

1-form α ∈ Ω1(A(P )) defined by

αA(ȧ) =

∫
M
⟨ȧ ∧ FA⟩ A ∈ A(P ), ȧ ∈ Ω1(adP ) ∼= TAA(P ). (2.162)

Note that for n ≥ 2 we can write ω1 = (−1)n+1dλ1 and for n ≥ 3 we can write

ω0 = (−1)n+1dλ0, where

λ0(ȧ1 + ȧ2 + ...+ ȧn) =

∫
M
(2⟨an−1 ∧ ȧ1⟩+ ⟨an−2 ∧ ȧ2⟩+ ...+ ⟨a2 ∧ ȧn−2⟩),

(2.163)

λ1(ȧ0 + ȧ1 + ȧ2 + ...+ ȧn) =

∫
M

2⟨an, ȧ0⟩. (2.164)

These satisfy δλ0 = LQλ
1, δλ1 = 0 but LQλ

0 ̸= 0. In fact,

LQλ
0(ȧ1 + ...+ ȧn) =

∫
M
(⟨dAan−2 ∧ ȧ1⟩+ ⟨FA ∧ ȧn−2⟩)

+
(−1)n

2

∑
2≤i≤n−4

2≤j≤n−2−i

∫
M
⟨ai ∧ [ȧj ∧ an−i−j ]⟩. (2.165)
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Similarly, for G a complex Lie group with ⟨·, ·⟩ : g ⊗ g → C non-degenerate, symmet-

ric, Ad-invariant, C-linear, and P → X a smooth G-bundle over a compact, complex

manifold with dimCX = n and a holomorphic volume form Ω ∈ Ωn,0(X,C), the derived

moduli stack Hd(P )• of holomorphic structures on P defined in Example 2.23 carries

a (2 − n)-shifted holomorphic symplectic structure which we describe as follows. The

tangent complex of Hd(P ) is the following chain complex of vector bundles over the

space {A ∈ A(P )/Ω1,0(adP ) |F 0,2
A = 0}.

Ω0(adP )[1]
∂
A

→ Ω0,1(adP )
∂
A

→ Ω0,2(adP )[−1] ∂
A

→ ...
∂
A

→ Ω0,n(adP )[−n+ 1], (2.166)

The symplectic forms are defined exactly as in (2.155), (2.156), except that all the

integrals are performed now against the volume form Ω. Note that the condition dΩ = 0,

which allows to integrate by parts on such integrals, is necessary for the corresponding

2-forms ω0, ω1 to satisfy LQω0 = 0 and LQω1 = δω0 as before.

The case n = 2 extends Mukai’s holomorphic symplectic structure in the smooth locus

of the moduli space of G-bundles on a K3 surface [196], and it can also be constructed as

a holomorphic symplectic reduction with holomorphic symplectic form ω0 and moment

map µ : A(P )/Ω1,0(adP ) → Ω0(adP )∗ ∼= Ω0,2(adP ), A 7→ F 0,2
A . The case n = 3 can

be constructed as the derived critical locus of the holomorphic Chern-Simons functional

and has been extensively studied in [34, 159, 160, 164] for its relation with Donaldson-

Thomas invariants. The (−2)-shifted symplectic structure in the case n = 2 has also

been studied in search for invariants of Calabi-Yau fourfolds in [47, 208, 209].

Remark 2.37. Let (X,ω) be a compact, Hermitian manifold with dimCX = n and

d(ωn−1) = 0. Let K be a compact Lie group with complexification G, let Ph → X

be a K-bundle and write P := (Ph × G)/K for its complexification (where we identify

(pk, g) → (p, kg)). A positive-definite, symmetric, Ad-invariant bilinear form ⟨·, ·⟩ :

k⊗ k → R determines a Kähler structure on the space A(Ph) of connections on Ph. Its

complex structure IA is given by identifying

TAA(Ph) = Ω1(adPh) = Ω0,1(adP ); (2.167)

i.e.,

IAA (ȧ) = (iȧ0,1 − iȧ1,0). (2.168)

Its symplectic structure ωA is given by

ωA
A (ȧ1, ȧ2) =

∫
X
⟨ȧ1 ∧ ȧ2⟩ ∧

ωn−1

(n− 1)!
. (2.169)
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This can also be written as

ωA
A :=

∫
X
⟨FA ∧ FA⟩ ∧

ωn−1

(n− 1)!
, (2.170)

where FA ∈ Ω2(A(Ph)×X, adPh) is the curvature of the connection A on the G-bundle

A(Ph)× P → A(Ph)×X defined by

A(A,p)(ȧ+ vp) = Ap(vp). (2.171)

The space A1,1(Ph) ⊂ A(Ph) is formally a Kähler submanifold. The action of the gauge

group Gauge(Ph) on A(Ph) restricts to A1,1(Ph) and is Hamiltonian, with moment map

µ : A1,1(Ph)→ Γ(adPh)
∗ defined by

µ(A)(s) =

∫
X
⟨FA, s⟩ ∧

ωn−1

(n− 1)!
(2.172)

for s ∈ Γ(adPh). Thus, ignoring again smoothness problems,M := µ−1(0)/Gauge(Ph)

is a symplectic manifold. Note that there is a map M → Hd(P ), where Hd(P ) is as

in Example 2.21. The Donaldson-Uhlenbeck-Yau theorem [100, 267] states that the

restriction of this map to adequate (open) smooth locus of both moduli spaces is a

diffeomorphism, and that the smooth locus ofM is Kähler with respect to the complex

structure induced by Hd(P ). When X also admits a holomorphic volume form, then

one may wonder what the relation is between the (2−n)-shifted holomorphic symplectic

form on Hd(P ) from above and the Kähler form onM. We clarify this when n = 2.

Let (X, I, ω) be a Hermitian manifold with dimCX = 2 and dω = 0, and let Ω ∈
Ω2,0(X,C) be a nowhere-vanishing (2, 0)-form with dΩ = 0. The Calabi-Yau theorem

[279] implies that X is hyperkähler; that is, there are complex structures J , K such that

1. IJK = −Id,

2. g := ω(I·, ·) is also Kähler with respect to J , K

3. Ω = ωJ + iωK for ωJ := g(J ·, ·), ωK := g(K·, ·).

Then for Ph →M aK-bundle with complexification P , it follows that each of the Hermi-

tian structures (I, ω), (J, ωJ), (K,ωK) determines as before a Kähler structure (IA, ωA),

(JA, ωA
J ), (K

A, ωA
K) on A(Ph). These also satisfy the hyperkähler relations, and in par-

ticular ΩA := ωA
J +iω

A
K is the holomorphic symplectic form onA(P )/Ω1,0(adP ) = A(Ph)

from above.



Chapter 3

Lie 2-groups and Maurer-Cartan

forms

Lie groupoids are geometric objects that generalize differentiable manifolds to model

possibly singular spaces, such as poorly behaved quotients or foliations [105, 187]. While

manifolds and smooth maps between them form a category, Lie groupoids are more

naturally thought of as the objects of a bicategory in which arrows are called anafunctors

and 2-cells are called transformations. This bicategory is equivalent to the bicategory

of differentiable stacks [33].

Lie 2-groups are geometric objects that model symmetries of Lie groupoids, in the same

way that Lie groups model symmetries of manifolds. The study of ‘set-theoretical’ 2-

groups dates back to [55, 190, 249]. The original definition of Lie 2-groups from [16]

has been weakened since then in [19, 238] to capture important examples in geometry

and physics. Roughly, a Lie 2-group is a Lie groupoid G equipped with an anafunctor

m : G × G → G which may not be strictly associative, but which is equipped with a

transformation α : m◦(m× id)⇒ m◦(id×m) : G×G×G→ G, expressing a weak form

of associativity of m. The product m is also required to have a distinguished element

1 ∈ G0 playing the role of the unit, and to admit inverses in a weak sense.

Two important families of Lie 2-groups in the literature are central extensions of G by

BT (where G and T are Lie groups with T abelian) [238] and strict Lie 2-groups [19].

The former admit an alternative description as multiplicative gerbes, while the latter

can be modelled by Lie crossed modules.

Gerbes were first defined by Giraud [133] as certain sheaves of groupoids and they were

then studied in the work of Brylinski [56–58], who set up a working definition in terms of

Čech cocycle data which has been extensively used since then, as well as the essentially

59
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equivalent definitions of Hitchin-Chatterjee gerbes [82, 152] and bundle gerbes [198].

This language was used in [58, 78] to study certain special gerbes over Lie groups which

were called multiplicative, and Schommer-Pries proved in [238] that the classification of

these coincides with the classification of Lie 2-group central extensions of G by BT . The

notion of a connection on a multiplicative gerbe is introduced in [271] and used to prove

classification results for Chern-Simons theories over arbitrary Lie groups.

As for strict Lie 2-groups, the fact that they can be presented by Lie crossed modules

as in [16] is a straightforward generalization of the analogous result for set-theoretical

2-groups from [55]. Trying to axiomatize the observation from [235, 237] that the Lie

2-algebra of a Lie 2-group called String(n) has some additional structure that is useful

for defining String(n)-connections, [230] defined the notion of an adjustment on a Lie

crossed module as a deformation of its Weil algebra. This structure was then presented

in a finite way in [220].

Some aspects of Lie group theory can be generalized to Lie 2-groups, but this is not al-

ways done in a straightforward way. The main difference between (general) Lie 2-groups

and ordinary Lie groups is that, by virtue of how anafunctors between Lie groupoids

are defined, the product of two objects in a Lie 2-group G is only well-defined up to

isomorphism. This has many consequences, among which we highlight the following.

1. For an arbitrary g ∈ G0, there is no canonical map T1G0 → T1G0, v 7→ g · v · g−1

generalizing the adjoint action of a Lie group.

2. For an arbitrary g ∈ G0, there is no canonical map Tg(G0)→ T1(G0) generalizing

the map dLg−1 : TgG→ T1G of a Lie group. Thus, there is no canonical analog of

the Maurer-Cartan form.

3. Since there is no canonical analog of the Maurer-Cartan form, there is no canonical

way to extend some v ∈ T1(G0) to a ‘left-invariant’ vector field; hence no analog

of the Lie bracket on T1G for G a Lie group.

4. Since there is no notion of left-invariant vector fields on G, we cannot take the flow

of such vector fields to define an analog of the exponential map of a Lie group.

Problem 3 is related to the well-known problem in higher differential geometry that the

tangent complex of a simplicial manifold is not equipped in general with a canonical

structure generalizing the Lie bracket of vector fields on a manifold. It is shown in [178]

that this can be solved by choosing connections on appropriate vector bundles, while

[265] addresses problem 1 (in the more general context of Lie m-groups for m ∈ N) by
choosing other connection-like data.
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In this chapter we introduce Lie 2-groups and we present some original definitions and

results on this theory, relating them to previous constructions and studying the problems

above. In Sections 3.1.1 and 3.1.2 we recall the definitions of the bicategories of Lie

groupoids and Lie 2-groups, respectively, and we relate them to the simplicial manifolds

from Chapter 2. In section 3.1.3 we define actions of Lie 2-groups. In Section 3.1.4

we introduce the original notion of Maurer-Cartan forms on a Lie 2-group G, which

axiomatizes the structure from problems 1 and 2 as an additional datum on G, and we

show that it allows to generalize Example 2.33 to the setting of arbitrary Lie 2-groups.

In Section 3.2.1 we set some conventions on gerbes, and in Section 3.2.2 we recall the

definition of multiplicative gerbes, along with some classification results. In Section

3.2.3 we introduce the notion of connective structure on a multiplicative gerbe, closely

related to the connections from [271], and we show that any multiplicative T -gerbe over

G with a connective structure determines an Ad-invariant symmetric bilinear form ⟨·, ·⟩ :
g⊗ g→ t that classifies it under some topological assumptions, providing a converse for

a construction in [271]. In Section 3.2.4 we relate connective structures on multiplicative

gerbes over G to prequantizations of the 2-shifted presymplectic structure on BG from

Example 2.35, and to Maurer-Cartan forms on their corresponding Lie 2-groups. This

is used to construct in a natural way the brackets of their Lie 2-algebras. In Section

3.2.5 we prove that a connective structure on a multiplicative gerbe G → G determines

equivariant trivializations of exp∗G → g, and we interpret these as the exponential map

of the corresponding Lie 2-group.

In Section 3.3.1 we recall the relation between strict Lie 2-groups and Lie crossed mod-

ules, as well as the notion of adjustment from [220], and we provide a new interpretation

for these by relating them to Maurer-Cartan forms. In Section 3.3.2 we show how ad-

justments relate to connective structures for Lie 2-groups that admit models both as

a multiplicative gerbe and as a crossed module. Finally, in Section 3.3.3 we provide a

more explicit construction of the equivariant trivializations of exp∗G → g when the Lie

2-group associated to the multiplicative gerbe G also admits a model as a Lie crossed

module.

3.1 Lie 2-groups

3.1.1 Lie groupoids and anafunctors

Definition 3.1 ([238]). A Lie groupoid is a small category X such that

1. The space of objects X0 and the space of arrows X1 are manifolds.
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2. The source and target maps s, t : X1 → X0 are surjective submersions.

3. The identity id : X0 → X1 and composition ◦ : X1 s×tX1 → X1 maps are smooth.

An anafunctor (F, π0, ρ0, π1, ρ1) : X → Y between Lie groupoids is a manifold (total

space) F with smooth anchor and action maps

π0 : F → X0, ρ0 : X1 s×π0F → F,

π1 : F → Y0, ρ1 : F π1×tY1 → F,
(3.1)

satisfying the relations

π0(ρ0(γ, x)) = t(γ), ρ0(γ
′ ◦ γ, x) = ρ0(γ

′, ρ0(γ, x)), ρ0(idπ0(x), x) = x,

π1(ρ1(x, η)) = s(η), ρ1(x, η
′ ◦ η) = ρ1(ρ1(x, η

′), η), ρ1(x, idπ1(x)) = x,

π0(ρ1(x, η)) = π0(x), π1(ρ0(γ, x)) = π1(x), ρ1(ρ0(γ, x), η) = ρ0(γ, ρ1(x, η)),

(3.2)

for x ∈ F , γ, γ′ ∈ X1, η, η
′ ∈ Y1 and such that

1. π0 is a surjective submersion,

2. F π1×tY1 → F π0×π0F , (x, η) 7→ (x, ρ1(x, η)) is a diffeomorphism.

Given two anafunctors

(F, π0, ρ0, π1, ρ1), (F
′, π′0, ρ

′
0, π

′
1, ρ

′
1) : X→ Y,

a transformation α : F ⇒ F ′ between them is a smooth map α : F → F ′ with

π′0(α(x)) = π0(x), ρ′0(γ, α(x)) = α(ρ0(γ, x)),

π′1(α(x)) = π1(x), ρ′1(α(x), η) = α(ρ1(x, η)).
(3.3)

The composition of anafunctors X
F→ Y

G→ Z is the anafunctor G ◦F : X→ Z with total

space (F
πF
1
×
πG
0
G)/ ∼, where the equivalence relation is

(x, ρG0 (η, y)) ∼ (ρF1 (x, η), y), x ∈ F, y ∈ G, η ∈ Y1, (3.4)

and with

πG◦F
0 ([x, y]) = πF0 (x), ρG◦F

0 (γ, [x, y]) = [ρF0 (γ, x), y],

πG◦F
1 ([x, y]) = πG1 (y), ρG◦F

1 ([x, y], ζ) = [x, ρG1 (y, ζ)]
(3.5)

for γ ∈ X1, ζ ∈ Z1.
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Lie groupoids, anafunctors and transformations between them form a bicategory (in the

sense of [35]) LieGpd. As discussed in [33], this bicategory is equivalent to the bicategory

of differentiable 1-stacks that we define in Section 7.2.1.

Example 3.2. For a Lie groupG, define the Lie groupoidBG withBG0 = {∗}, (BG)1 =
G and composition defined by the group product. For Lie groups G1, G2, an anafunctor

F : BG1 → BG2 is the same as a right G2-torsor with a left G1-action commuting with

the G2-action. In particular, F is weakly invertible if and only if it is also a G1-torsor, in

which case an inverse F−1 is given simply by taking the same total space with inverted

actions.

Example 3.3. A smooth functor f : X→ Y between Lie groupoids gives an anafunctor

with total space F := X0 f0
×tY1 and

π0(x, η) = x, ρ0(γ, (x, η)) = (t(γ), f1(γ) ◦ η),

π1(x, η) = s(η), ρ1((x, η), η
′) = (x, η ◦ η′).

(3.6)

For a general anafunctor, the condition that π0 is a surjective submersion and that

F π1×tY1 → F π0×π0F is a diffeomorphism implies that there are local sections σ :

U ⊂ X0 → F of π0 inducing isomorphisms U π1◦σ×tY1 = π−1
0 (U) ⊂ F . In this sense, an

anafunctor is to be regarded as an object constructed from gluing ‘locally defined’ smooth

functors. The following proposition generalizes to our setting the classical result from

category theory stating that a functor has a weak inverse if and only if it is essentially

surjective and fully faithful.

Proposition 3.4 ([205]). An anafunctor (F, π0, ρ0, π1, ρ1) : X→ Y is weakly invertible

if and only if the following two conditions are satisfied.

1. π1 is a surjective submersion.

2. X1 s×π0F → F π1×π1F , (γ, x) 7→ (ρ0(γ, x), x) is a diffeomorphism.

A Lie groupoid X has an associated simplicial manifold (cf. Definition 2.1), called its

nerve and denoted N(X)•. It is defined by

N(X)n = {({xi}i∈[n], {fij}i≤j∈[n]) ∈ Xn+1
0 × X

(n+2
2 )

1 |

∀i, fii = idxi ,

∀i < j, xj
fij→ xi,

∀i < j < k, fij ◦ fjk = fik},

(3.7)
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with simplicial maps defined similarly as in (2.23). Each N(X)n is indeed a manifold,

as it can also be described as the n-fold fibered product N(X)n = X1 s×t... s×tX1, and

s, t are submersions.

Example 3.5. Let G be a Lie group acting on a manifoldM , then the quotient groupoid

M//G is the Lie groupoid (M//G)0 = M and (M//G)1 = M , where (x, g) ∈ M × G is

seen as an arrow x 7→ xg and composition is defined by (xg1, g2) ◦ (x, g1) := (x, g1g2).

In particular, when M = {∗} with trivial G-action we obtain {∗}//G = BG, for BG

defined as in Example 3.2. Note that the nerve of M//G is the simplicial manifold from

Example 2.5, hence the notation.

Example 3.6. Let M be a manifold with an open cover {Ma}a∈A, let T be an abelian

Lie group T and let λabc : Mabc → T be a T -valued Čech 2-cocycle. We construct with

this data a Lie groupoid L defined by L0 := ⊔a∈AMa and L1 := ⊔a,b∈AMab × T , where
(a, b, x, tab) ∈ L1 is seen as an arrow (a, x)→ (b, x) and composition is given by

(a, x) (b, x) (c, x)

(a,b,x,tab) (b,c,x,tbc)

= (a, x) (c, x)

(a,c,x,tabtbcλabc(x))

(3.8)

The cocycle condition on λabc ensures that this composition map is associative. The

nerve of L is the simplicial manifold λ∗EBT from Example 2.8.

Definition 3.7 ([188]). Let X be a Lie groupoid.

1. The tangent Lie groupoid of X is the Lie groupoid TX defined by (TX)0 := TX0 and

(TX)1 := TX1, with source, target and composition maps given by push-forward

along the source, target and composition maps of X.

2. A multiplicative vector field on X is a pair (X0, X1) ∈ Γ(TX0) ⊕ Γ(TX1) defining

a smooth functor X : X → TX. We write Γ(TX)X for the space of multiplicative

vector fields.

3. The Lie algebroid of X is the vector bundle AX → X0 defined by

AX := id∗(Ker(ds : TX1 → s∗TX0)). (3.9)

4. Given α ∈ Γ(AX), we define its right-invariant extension αR ∈ Γ(TX1) and its

left-invariant extension αL ∈ Γ(TX1) by

αR(γ) := dRγ(α(t(γ))),

αL(γ) := d(Lγ ◦ inv)(α(t(γ))),
(3.10)
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for γ ∈ X1. HereRγ and Lγ denote right- and left- composition with γ, respectively,

while inv : X1 → X1 is the inversion map.

Note that, given (X0, X1) ∈ Γ(TX)X, then X0 is determined by X0(x) = ds(X1(idx)).

Thus, we may see Γ(TX)X as a subspace of Γ(TX1).

Proposition 3.8 ([40]). Let X be a Lie groupoid.

1. The space Γ(TX)X is closed under the Lie bracket of vector fields on X1.

2. There is a Lie algebra action of Γ(TX)X on Γ(AX), defined by

[X,α](x) := [X,αL](idx) (3.11)

for X ∈ Γ(TX)X, α ∈ Γ(AX) and x ∈ X0.

3. The map ∂ : Γ(AX)→ Γ(TX1), α 7→ αL+αR takes values in Γ(TX)X and satisfies

∂[X,α] = [X, ∂α] (3.12)

for X ∈ Γ(TX)X and α ∈ Γ(AX).

In other words, [·, ·] and ∂ define a structure of L∞-algebra (cf. Definition 2.16) on

Γ(TX) := Γ(TX)X ⊕ Γ(AX)[1]. We call this the Lie 2-algebra of vector fields on X.

3.1.2 Lie 2-groups

Definition 3.9 ([238]). A Lie 2-group is a Lie groupoid G with

1. a functor 1 : {∗} → G (the unit) and an anafunctor m : G×G→ G (the product),

2. transformations r : m ◦ (id× 1)⇒ id : G→ G (the right unitor), l : m ◦ (1× id)⇒
id : G→ G (the left unitor) and α : m ◦ (m× id)⇒ m ◦ (id×m) : G×G×G→ G

(the associator)

satisfying
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1. The pentagon identity :

G×G×G×G G

((g1g2)g3)g4

(g1(g2g3))g4

g1((g2g3)g4)

g1(g2(g3g4))

α

α

α

=
G×G×G×G G

((g1g2)g3)g4

(g1g2)(g3g4)

g1(g2(g3g4))

α

α . (3.13)

2. The triangle identity :

G×G G×G

(g11)g2

g1(1g2)

g1g2

α

l

= G×G G×G

(g11)g2

g1g2

r
. (3.14)

3. Existence of inverses: The anafunctor p1×m : G×G→ G×G is weakly invertible,

where p1 denotes projection of the first factor.

A homomorphism of Lie 2-groups (F, αF ) : G → H is an anafunctor F : G → H with a

transformation αF : F ◦mG ⇒ mH ◦ F : G×G→ H such that

G×G×G H

F ((g1g2)g3)

F (g1g2)F (g3)

(F (g1)F (g2))F (g3)

F (g1)(F (g2)F (g3))

αF

αF

αH

=
G×G×G H

F ((g1g2)g3)

F (g1(g2g3))

F (g1)F (g2g3)

F (g1)(F (g2)F (g3))

αG

αF

αF

. (3.15)

Given homomorphisms (F1, α
F1), (F2, α

F2) : G → H, then a transformation between

them is a transformation of anafunctors ψ : F1 ⇒ F2 : G→ H such that

G×G H

F1(g1g2)

F1(g1)F1(g2)

F2(g1)F2(g2)

αF1

ψ =
G×G H

F1(g1g2)

F2(g1g2)

F2(g1)F2(g2)

ψ

αF2
. (3.16)

Lie 2-groups, their homomorphisms and transformations form the bicategory of Lie 2-

groups.
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Remark 3.10. The diagrams in Definition 3.9 are equalities between transformations of

anafunctors. For example, the pentagon identity is an equality between two transfor-

mations m ◦ (m × id) ◦ (m × id × id) ⇒ m ◦ (id ×m) ◦ (id × id ×m) : G4 → G that

are defined by composing α in the different ways that the diagram depicts: each black

arrow represents an anafunctor (for example, we write ((g1g2)g3)g4 for the anafunctor

m ◦ (m × id) ◦ (m × id × id)) and each 2-cell represents a smooth transformation that

is defined in terms of α in the only possible way. We will make frequent use of these

diagrams throughout the whole thesis.

Remark 3.11. We will also deal with (not necessarily Lie) 2-groups; i.e. groupoids with

the structure from Definition 3.9 but without the smoothness assumptions. For example,

if C is a bicategory and x ∈ C0 is an object, then the automorphism 2-group of x is

the groupoid Aut(x) with Aut(x)0 the set of invertible arrows f : x→ x in C and with

Aut(x)1(f, g) the set of invertible 2-cells α : f ⇒: x → y in C. Composition in Aut(x)

is given by vertical composition in C, while the product m : Aut(x)×Aut(x)→ Aut(x)

is given by horizontal composition in C.

Let (G, 1,m, r, l, α) be a Lie 2-group. We construct an associated simplicial manifold,

denoted BG• and called the delooping of G. LetM be the total space of m : G×G→ G.

We write d2 × d0 :M → G0 ×G0 and d1 :M → G0 for the corresponding anchor maps

π0, π1 defining the anafunctor. Note that the unit 1 is just a point {∗} → G0, while r, l

are completely described by smooth functions r, l : G0 →M with d2(r(g)) = d1(r(g)) =

d0(l(g)) = d1(l(g)) = g, d0(r(g)) = d2(l(g)) = 1. Then we let

BG0 := {∗}, BG1 := G0, BG2 :=M, (3.17)

with face maps M → G0 given precisely by d0, d1, d2, degeneracy s0 : {∗} → G0 given

by the unit of G and degeneracies s0, s1 : G0 →M given by l, r. To construct BG3 we

note first that α is a diffeomorphism between the manifolds

{(m1,2,m12,3) ∈M2 | d1(m1,2) = d2(m12,3)}/ ∼,

{(m2,3,m1,23) ∈M2 | d1(m2,3) = d0(m1,23)}/ ∼,
(3.18)

where the equivalence relations are

(ρ(m1,2, γ),m12,3) ∼ (m1,2, ρ((γ, id),m12,3)), (3.19)

(ρ(m2,3, γ),m1,23) ∼ (m2,3, ρ((id, γ),m1,23)) (3.20)
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for γ ∈ G1. We define then

BG3 := {(m2,3,m12,3,m1,23,m1,2) ∈M4 | d1(m1,2) = d2(m12,3), d1(m2,3) = d0(m1,23),

d0(m12,3) = d0(m2,3), α([m1,2,m12,3]) = [m2,3,m1,23]},
(3.21)

and let the face maps BG3 →M be d0 = m2,3, d1 = m12,3, d2 = m1,23, d3 = m1,2. The

pentagon and triangle identities ensure that BG3
→→→→ M →→→ G0

→→ {∗} can be extended

to a simplicial manifold by the coskeleton construction [281]. Explicitly, we can describe

all levels with the following formula.

BGn := {({gij}i<j∈[n], {mijk}i<j<k∈[n]) ∈ G
(n+1

2 )
0 ×M(n+1

3 ) |

∀i < j < k ∈ [n], d2(mijk) = gij , d1(mijk) = gik, d0(mijk) = gjk,

∀ i < j < k < l ∈ [n], α([mjkl,mijl]) = [mijk,mikl]}

(3.22)

Example 3.12. If G is a Lie group, then we see it as a Lie 2-group by associating to

it the Lie groupoid with G as set of objects, only identity arrows, and multiplication

functor given by the product of G.

Example 3.13. If T is an abelian Lie group, then we let BT be the groupoid with

set of objects {∗} and manifold of arrows T , with composition given by the product

of T . Then, since T is abelian, the product of T also defines an associative functor

m : BT ×BT → BT , endowing BT with structure of Lie 2-group. In this case we write

B2T := B(BT ) for its delooping.

A general Lie 2-group (G, 1,m, l, r, α) determines the following three invariants.

1. The topological group π0(G) of isomorphism classes of objects with group product

induced by m.

2. The Lie group π1(G) of automorphisms in G1 of 1 ∈ G0.

3. A continuous action ▷ of π0(G) on π1(G), defined by [g] ▷ f := idg · f · idg−1
1 for

[g] ∈ π0(G) and f ∈ π1(G).

Using that the group structure on π1(G) can be described by eitherm or the composition

of G, an Eckmann-Hilton argument shows that π1(G) is abelian. Moreover, there is an

exact sequence of topological 2-groups (defined in an analogous way as for groups)

1→ Bπ1(G)→ G→ π0(G)→ 1, (3.23)

1More precisely: let A be the total space of the anafunctor m ◦ (m × id) : G × G × G → G, then
for [g] ∈ π0(G) and f ∈ π1(G) choose a ∈ A with π1(a) = 1, π0(a) = (g, 1, g−1) for some g, g−1 ∈ G0

representing [g], [g]−1 and define [g] ▷ f ∈ G1 by ρ0((idg, f, idg−1), a) = ρ1(a, [g] ▷ f).
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where the functor Bπ1(G)→ Gmaps {∗} = (Bπ1(G))0 to 1 ∈ G0 and equals the identity

of π1(G) on arrows, while the functor G → π0(G) is just the projection of each object

of G to its isomorphism class.

Example 3.14 ([119]). Given vector spaces V0, V1 with lattices Λ0 ⊂ V0, Λ1 ⊂ V1 and a

bilinear form ⟨·, ·⟩ : Λ0⊗Λ0 → Λ1 (which we extend to V0⊗ V0 → V1 by linearity), [119]

constructs a Lie 2-group T which is an extension of V0/Λ0 by B(V1/Λ1). Define T by

T0 = V0, T1 = V0×Λ0×V1/Λ1, where (v
0, λ0, [v1]) ∈ T1 is seen as an arrow v0 → v0+λ0,

and composition is defined as

(v0 + λ001, λ
0
12, [v

1
12]) ◦ (v0, λ001, [v101]) := (v0, λ

0
01 + λ012, [v

1
01 + v112]). (3.24)

We equip it with the smooth functor m : T × T → T acting on arrows as

m((u0, λ0, [u1]), (v0, µ0, [v1])) := (u0 + v0, λ0 + µ0, [u1 + v1 + ⟨u0, µ0⟩]). (3.25)

The unit is simply 0 ∈ T0 and the associator, as well as the left and right unitors, are

identities. It is shown in [119] that two 2-groups T i, i = 1, 2 constructed in this way

from bilinear forms ⟨·, ·⟩i : Λ0 × Λ0 → Λ1, i = 1, 2 are isomorphic if and only if the

symmetric parts of ⟨·, ·⟩1 and ⟨·, ·⟩2 coincide. An isomorphism T 1 → T 2 is given by

choosing a bilinear form B : Λ0 ⊗ Λ0 → Λ1 such that

B(u0, v0)−B(v0, u0) = ⟨u0, v0⟩2 − ⟨u0, v0⟩1, (3.26)

from which we let F : T 1 → T 2 be the functor defined on arrows by

F (u0, λ0, [u1]) := (u0, λ0, [u1 +B(u0, λ0)]), (3.27)

and we let αF : F ◦m1 ⇒ m2 ◦ F : T1 × T1 → T2 be the natural transformation defined

by

αF (u0, v0) = (u0 + v0, 0, [B(v0, u0)]). (3.28)

Example 3.15. Let M be a smooth manifold and let T be an abelian Lie group. We

write BT (M) for the groupoid with objects the class of all T -bundles on M and with

isomorphisms of T -bundles as arrows. Similarly, we write BT∇(M) for the groupoid with

objects the class of all T -bundles with connection onM and with flat isomorphisms of T -

bundles as arrows. Given two T -bundles P1, P2 ∈ BT (M), we define their tensor product

by P1⊗P2 := (P1×M P2)/T , where (p1t, p2) ∼ (p1, p2t). This can easily be enhanced to

give functorsm : BT (M)×BT (M)→ BT (M) andm : BT∇(M)×BT∇(M)→ BT∇(M).

Then, the isomorphisms (P1⊗P2)⊗P3 → P1⊗ (P2⊗P3), [[p1, p2], p3] 7→ [p1, [p2, p3]] and

P ⊗ (M × T ) → P , [p, (x, t)] 7→ p define an associator and unitors, giving structure of

strict 2-group to BT (M) and BT∇(M). However, since the class of all T -bundles (resp.
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the class of all T -bundles with connection) over M is not a set, we wish to have smaller

descriptions of these 2-groups. We show how to obtain these in two different ways.

The first way is to choose a good open cover U = {Ui}i∈I of M , so that every T -bundle

over M can be trivialized over each open set Ui. Then we define the groupoid BT (M)U ,

where an object is a collection {tij}i,j∈I of functions tij : Uij → T such that tijtjk = tik

and tij = t−1
ji , and where an arrow {t1ij}i,j → {t2ij}i,j is a collection {ti}i∈I of functions

ti : Ui → T such that t1ijtj = tit
2
ij . We equip BT (M)U with the strictly associative

functor m : BT (M)U × BT (M)U → BT (M)U that acts as ({t1ij}, {t2ij}) 7→ {t1ijt2ij} on

objects, and similarly on arrows. Then BT (M)U is a small groupoid, with an obvious

functor BT (M)U → BT (M) which is an equivalence of categories and which can be

enhanced to a homomorphism of 2-groups. One can proceed similarly for the 2-group

BT∇(M).

The second way does not depend on the choice of a cover, but it yields a weak 2-

group. Let C = π0(BT (M)) be the discrete abelian group of isomorphism classes of

T -bundles over M . For each c ∈ C we choose a representative T -bundle Lc ∈ BT (M)0,

with L0 = T × M the trivial bundle, and for each pair (c1, c2) ∈ C2 we choose an

isomorphism ϕ(c1, c2) : Lc1+c2 → Lc1 ⊗ Lc2 , with ϕ(c, 0) the canonical isomorphism

Lc ⊗ (T ×M) → Lc, [p, t,m] 7→ p and similarly for ϕ(0, c). Then for (c1, c2, c3) ∈ C3

we let α(c1, c2, c3) ∈ C∞(M,T ) be the unique function such that the following diagram

commutes

Lc1+c2+c3 Lc1+c2 ⊗ Lc3

Lc1 ⊗ Lc2+c3 Lc1 ⊗ Lc2 ⊗ Lc3 .

ϕ(c1+c2,c3)

ϕ(c1,c2+c3) ϕ(c1,c2)α(c1,c2,c3)

ϕ(c2,c3)

(3.29)

In particular, note α(c1, c2, c3) ≡ 1 if ci = 0 for some i = 1, 2, 3. It is clear that the in-

clusion ⊔c∈CA(Lc)//C∞(M,T )→ BT∇(M) is an equivalence of groupoids, where A(Lc)
is the space of connections on Lc and C∞(M,T ) acts on it by the gauge action. Now we

equip the groupoid ⊔c∈CA(Lc)//C∞(M,T ) with 2-group structure. The multiplication

functor is defined on objects by

m : ⊔c∈CA(Lc)//C∞(M,T )× ⊔c∈CA(Lc)//C∞(M,T )→ ⊔c∈CA(Lc)//C∞(M,T )

((c1,∇1), (c2,∇2)) 7→ (c1 + c2, ϕ(c1, c2)
∗(∇1 ⊗∇2)),

(3.30)
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while acting as (f1, f2) 7→ f1f2 on arrows. The associator is the natural transformation

that sends the triple (c1,∇1), (c2,∇2), (c3,∇3) to the arrow

(c1 + c2 + c3,ϕ(c1 + c2, c3)
∗(ϕ(c1, c2)

∗(∇1 ⊗∇2)⊗∇3))

α(c1,c2,c3)→ (c1 + c2 + c3, ϕ(c1, c2 + c3)
∗(∇1 ⊗ ϕ(c2, c3)∗(∇2 ⊗∇3))).

(3.31)

The left and right unitors are identities. The inclusion ⊔c∈CA(Lc)//C∞(M,T ) →
BT∇(M), along with the isomorphisms ϕ(c1, c2), defines a homomorphism of 2-groups

which is an equivalence at the level of groupoids, hence we regard these as two equiva-

lent presentations of the 2-group BT∇(M). By forgetting the connections we obtain a

similar presentation of BT (M).

3.1.3 Actions of Lie 2-groups

Definition 3.16. For G a Lie 2-group and P a Lie groupoid, a smooth (right) action of

G on P is an anafunctor ρ : P×G→ P with smooth transformations rρ : ρ ◦ (id× 1)⇒
id : P→ P and αρ : ρ ◦ (ρ× id)⇒ ρ ◦ (id×m) : P×G×G→ P such that

P×G×G×G P

((pg1)g2)g3

(p(g1g2))g3

p((g1g2)g3)

p(g1(g2g3))

αρ

αρ

α

=
P×G×G×G P

((pg1)g2)g3

(pg1)(g2g3)

p(g1(g2g3))

αρ

αρ , (3.32)

P×G G×G

(p1)g

p(1g)

pg

αρ

l

= G×G G×G

(p1)g

pg

rρ

, (3.33)

P×G G×G

(pg)1

p(g1)

pg

αρ

r

= G×G G×G

(pg)1

pg

rρ

. (3.34)

Left actions are similarly defined. Given an anafunctor F : P1 → P2 and actions

(ρi, α
ρi) of a Lie 2-group G on Pi for i = 1, 2, an equivariant structure on F is a
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transformation αF : F ◦ ρ1 ⇒ ρ2 ◦ (F × id) : P1 ×G→ P2 such that

P1 ×G×G P2

F ((pg1)g2)

F (pg1)g2

(F (p)g1)g2

F (p)(g1g2)

αF

αF

αρ2

=
P1 ×G×G P2

F ((pg1)g2)

F (p(g1g2))

F (p)(g1g2)

αρ1

αF . (3.35)

A smooth action by a functor of G on P is a smooth action such that ρ is a smooth

functor. A strict smooth action is a smooth action by a functor such that rρ = id and

αρ = id.

Remark 3.17. Let G be a Lie 2-group and let P be a manifold, regarded as a Lie

groupoid with only identity arrows. Then, any smooth action of G on P factorizes by

a continuous action of the topological group π0(G) of isomorphism classes of objects of

G on P . However, since π0(G) is in general not a Lie group, the smoothness condition

cannot be stated in terms of this action. This remark follows from noting that, since

there are only trivial arrows on P , an anafunctor ρ : P ×G→ P is just a smooth map

ρ0 : P ×G0 → P , which we denote (x, g) 7→ xg, such that xg = xg′ whenever there exists

an arrow g → g′ in G1. Moreover, smooth transformations rρ, αρ as in Definition 3.16

exist if and only if x1 = x and for g1, g2, g12 ∈ G0 such that there exists m ∈ M (the

total space of the anafunctor m : G×G→ G) with d2(m) = g1, d0(m) = g2, d1(m) = g12

we have (xg1)g2 = xg12; in this case, rρ and αρ are unique.

LetG be a Lie 2-group acting through ρ, αρ on a Lie groupoidP in the sense of Definition

3.16. We define a simplicial manifold P//G, called the quotient 2-groupoid, as follows.

Let

P0 ×G0
d2×d0← R

d1→ P0 (3.36)

be the total space and anchors of the anafunctor ρ. Then αρ is a diffeomorphism between

the manifolds

{(r01, r12) ∈ R2 | d1(r01) = d2(r12)}/ ∼,

{(m012, r02) ∈ R×M | d1(m012) = d0(r02)}/ ∼,
(3.37)

where the equivalence relations are

(ρ(r01, f), r1,2) ∼ (r01, ρ((f, id), r12)), (3.38)

(ρ(m012, γ), r02) ∼ (m012, ρ((id, γ), r0,2)) (3.39)



Lie 2-groups and Maurer-Cartan forms 73

for f ∈ X1 and γ ∈ G1. We define P//G by

(P//G)n = {({pi}i∈[n], {rij}i<j∈[n], {mijk}i<j<k) ∈ P
(n+1

1 )
0 ×R(

n+1
2 ) ×M(n+1

3 ) |

∀i < j ∈ [n], d2(rij) = pi, d1(rij) = pj

∀i < j < k ∈ [n], d2(mijk) = d0(rij), d1(mijk) = d0(rik),

d0(mijk) = d0(rjk), α
ρ([rij , rjk]) = [rik,mijk],

∀ i < j < k < l ∈ [n], α([mjkl,mijl]) = [mijk,mikl]},

(3.40)

with simplicial maps defined similarly as in (2.23). In particular,

(P//G)0 = P0,

(P//G)1 = {(p0, p1, r01) ∈ P 2 ×R | d2(r01) = p0, d1(r01) = p1} ∼= R,

(P//G)2 = {(p0, p1, p2, r01, r12, r02,m012) ∈ P 3 ×R3 ×M | d2(r01) = d2(r02) = p0,

d1(r01) = d2(r12) = p1, d1(r02) = d1(r12) = p2,

αρ([r01, r12]) = [r02,m012]} ∼= (R d1×d2R) d0×d0×d0×d2M.

(3.41)

Remark 3.18. In the following we shall also need to perform the construction of the

quotient 2-groupoid P//G when P is a groupoid internal to the category of derived

manifolds (i.e., the analog of Definition 3.1 replacing manifolds by the derived manifolds

from Section 2.2.2). This is done in a completely analogous way, similarly as in Example

2.23.

For example, if P is just a derived manifold (M,E,Q) whose corresponding fiberwise

structure of curved L∞-algebra on E is denoted by Φ, {·, ..., ·}, then an action of G

on P could be given by a smooth action of G on the manifold M , (x, g) 7→ xg (cf.

Remark 3.17) and a smooth action of G on the total space of E, (e, g) 7→ eg, fitting in

a commutative diagram with the projection π : E →M , and such that for each g ∈ G0

we have that e 7→ eg is degree-preserving, fiberwise linear, and satisfies Φ(xg) = Φ(x)g,

{e1g, ..., eng} = {e1, ..., en}g for x ∈ M , e1, ..., en ∈ E. Although more general actions

exist, these will be sufficient for the purposes of this thesis. In this case, the quotient

2-groupoid P//G is given by (P//G)n = P×BGn, with simplicial maps defined similarly

as in Example 2.5, using Remark 2.19 to see the action map of G on E as a map of

derived manifolds P×G0 → P, with the arrows of G acting trivially.

Our next goal is to present the conjugation action of a Lie 2-group on itself. For this we

need to introduce first a new definition.

Definition 3.19 ([19]). Let (G, 1,m, r, l, α) be a Lie 2-group. A coherent inversor is

an anafunctor inv : G → G with transformations e : m ◦ (inv × id) :⇒ 1 : G → G and
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i : 1⇒ m ◦ (id× inv) : G→ G satisfying the zig-zag identities

G G

1·g

(g·g−1)·g

g·(g−1·g)

g·1

i

α

e

=
G G

1·g

g

g·1

l

r , (3.42)

G G

g−1·1

g−1·(g·g−1)

(g−1·g)·g−1

1·g−1

i

α

e

=
G G

g−1·1

g−1

1·g−1

r

l
. (3.43)

As proven in [19], any set-theoretical 2-group in the sense of Definition 3.9 can be

equipped with a coherent inversor, and any two choices of coherent inversor are essen-

tially equivalent. Thanks to the use of anafunctors, the proof can probably be adapted

to yield an equivalent result for Lie 2-groups, although we will not pursue this here. We

do note that, for G a Lie 2-group with a coherent inversor (inv, i, e), there are canonical

transformations

1inv :inv ◦ 1⇒ 1 : {∗} → G,

minv :m ◦ (inv × inv) ◦ Flip⇒ inv ◦m : G×G→ G,
(3.44)

where Flip : G ×G → G ×G is the functor that switches the order of the two factors.

They are defined by composing α, i, e, l, r as follows.

1−1 r→ 1−1 · 1 e→ 1, (3.45)

g−1
2 g−1

1
i→ (g−1

2 g−1
1 )((g1g2)(g1g2)

−1)
α→ ((g−1

2 g−1
1 )(g1g2))(g1g2)

−1

α→ (g−1
2 (g−1

1 (g1g2))(g1g2)
−1 α→ (g−1

2 ((g−1
1 g1)g2))(g1g2)

−1

e→ (g−1
2 (1g2))(g1g2)

−1 l→ (g−1
2 g2)(g1g2)

−1 e→ 1 · (g1g2)−1 l→ (g1g2)
−1.

(3.46)

Here each arrow is a natural transformation between anafunctors that are defined by

composing m, inv and 1 in a hopefully self-explanatory way.

Lemma 3.20. Let G be a Lie 2-group equipped with a coherent inversor (inv, e, i). Then

the anafunctor Ad−1 : G×G→ G defined by

Ad−1 := G×G
(inv ◦ p2)×m→ G×G

m→ G, (3.47)
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where p2 denotes projection of the second factor, together with the transformation rAd
−1

:

Ad−1 ◦ (id× 1)⇒ id : G→ G defined by

1−1(h · 1) r→ 1−1 · h 1inv

→ 1 · h l→ h (3.48)

and the transformation

αAd
−1

: Ad−1 ◦ (Ad−1 × id)⇒ Ad−1 ◦ (id×m) : G×G×G→ G (3.49)

defined by using α, minv in the following way

g−1
2 ((g−1

1 (hg1))g2)
α→ (g−1

2 (g−1
1 (hg1)))g2

α→ ((g−1
2 g−1

1 )(hg1))g2

α→ (g−1
2 g−1

1 )((hg1)g2)
α→ (g−1

2 g−1
1 )(h(g1g2))

minv

→ (g1g2)
−1(h(g1g2))

(3.50)

determine a right action of G on itself, called the conjugation action.

Proof. Checking that (3.32), (3.33) and (3.34) are satisfied directly would involve very

tedious computations. However, we can invoke the coherence theorem for bicategories

[212], which implies that any two natural transformations with the same source and

target obtained by composing α, r, l, i, e in any way coincide.

Example 3.21. Let M be a manifold, let T be an abelian Lie group and let BT∇(M)

be the 2-group of T -bundles with connection on M . To each T -bundle P → M we

associate the T -bundle P ∗ → M defined by P ∗ := {(x, ϕ) | x ∈ M, ϕ : Px → T, ϕ(pt) =

tϕ(p)}. This can easily be enhanced to give a functor inv : BT∇(M)→ BT∇(M), which

together with the isomorphisms eP : P ∗ ⊗ P → M × T , [(x, ϕ), p] 7→ (x, ϕ(p)) provides

a coherent inversor for BT∇(M). Its corresponding conjugation action is the functor

((P1,∇1), (P2,∇2)) 7→ (P ∗
2 ,∇∗

2)⊗((P1,∇1)⊗(P2,∇2)), equipped with the corresponding

transformations from Lemma 3.20.

As in Example 3.15, we can present BT∇(M) as a small 2-group by letting C be the

abelian group of isomorphism classes of T -bundles over M and choosing representatives

Lc for each c ∈ C with isomorphisms ϕ(c1, c2) : L
c1+c2 → Lc1⊗Lc2 . In this presentation,

there is a coherent inversor for BT∇(M) defined by (c,∇) 7→ (−c,−∇), where −∇
denotes the unique connection on L−c such that ϕ(−c, c) : M × T → L−c ⊗ Lc is flat

with respect to the trivial connection onM×T and the connection (−∇)⊗∇ on L−c⊗Lc.
The corresponding conjugation functor Ad−1 acts on objects as ((c1,∇1), (c2,∇2)) 7→
(c1,∇1 + χ(c1, c2)

∗θT ), where χ(c1, c2) : M → T is the unique function such that the
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following is a commutative diagram.

Lc1 L−c2 ⊗ Lc1+c2

L−c2 ⊗ Lc2 ⊗ Lc1 L−c2 ⊗ Lc1 ⊗ Lc2

ϕ(−c2,c1+c2)

ϕ(−c2,c2) ϕ(c1,c2)

χ(c1,c2)

(3.51)

In particular, note χ(0, c) ≡ 1. The natural transformations rAd
−1

and αAd
−1

can be

computed as in Lemma 3.20; it turns out that rAd
−1

is trivial, while αAd
−1

is the natural

transformation that sends ((c,∇), (c1,∇1), (c2,∇2)) to the isomorphism

(c,∇+ χ(c, c1)
∗θT + χ(c, c2)

∗θT )
αχ(c,c1,c2)→ (c,∇+ χ(c, c1 + c2)

∗θT ), (3.52)

for αχ(c, c1, c2) := χ(c, c1 + c2)
−1χ(c, c1)χ(c, c2). In particular, note αχ(0, c1, c2) ≡ 1.

3.1.4 Maurer-Cartan forms: relating Lie 2-groups and Lie 2-algebras

Definition 3.22 ([19]). Let G be a Lie 2-group. Its Lie 2-algebra is the 2-step complex

of vector spaces h
t∗→ g, where g := T1G0, h := Ker(s∗) ⊂ Tid(1)G1 and we write 1 ∈ G0

for the image of 1 : {∗} → G0.

Note we have not defined any brackets defining an L∞-algebra structure on h
t∗→ g.

This is because such brackets are not canonical in general, for the same reasons as in

Remark 2.4. Other familiar notions from the theory of Lie groups such as the adjoint

representation, the exponential map or the notion of connection on principal bundles

have not been defined in the literature for arbitrary Lie 2-groups without additional

structure. We will try to solve some of these problems by introducing a new notion of

Maurer-Cartan forms.

If G is a Lie 2-group with delooping BG•, then we note the following.

1. T1(BG1) = g

2. Since h = Ker(s∗) ⊂ Tid(1)G1, the map ρ1 : BG2 π1×tG1 → BG2 determines a

subspace ρ1∗ : h→ Ts0(1)BG2. There is a canonical projection

Ts0(1)(BG2)→ h

v 7→ v − s0∗d0∗(v)− s1∗d2∗v.
(3.53)

These maps induce an isomorphism between the Lie 2-algebra of G, as in Definition

3.22, and the (shifted by 1) tangent complex of the simplicial manifold BG, as defined

in Section 2.1.1.
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Definition 3.23. A (left) adjoint action of a Lie 2-group G with Lie 2-algebra h
t∗→ g is a

pair of smooth, linear, left actions by functors of G on g and on h, denoted as in Remark

3.17 by Ad : G0 × g→ g and Ad : G0 × h→ h such that t∗ : h→ g is equivariant for the

induced π0(G)-action. For such a left adjoint action, a (right-invariant) Maurer-Cartan

form on G is a pair

θ0 ∈ Ω1(BG1, g), θ1 ∈ Ω1(BG2, h) (3.54)

such that

t∗θ
1 = d∗2θ

0 − d∗1θ0 +Ad(d2(·))d∗0θ0 ∈ Ω1(BG2, g), (3.55)

0 = d∗3θ
1 − d∗2θ1 + d∗1θ

1 +Ad(d2 ◦ d3(·))d∗0θ1 ∈ Ω1(BG3, g). (3.56)

and such that θ01 is the identity and θ1s0(1) is (3.53). A right adjoint action Ad−1 is

defined similarly, but with G acting on the right, and for such a right adjoint action a

(left-invariant) Maurer-Cartan form is defined similarly, replacing (3.55) and (3.56) by

t∗θ
1 = Ad−1(d0(·))d∗2θ0 − d∗1θ0 + d∗0θ

0 ∈ Ω1(BG2, g), (3.57)

0 = Ad−1(d0 ◦ d0(·))d∗3θ1 − d∗2θ1 + d∗1θ
1 + d∗0θ

1 ∈ Ω1(BG3, g). (3.58)

Note that an adjoint action of a Lie 2-group G with Lie 2-algebra h
t∗→ g determines a

(strict) action of G on g//h in the sense of Definition 3.16, where g//h is the quotient

groupoid associated to the action of h on g given by t∗. This is the most natural way

of thinking about an adjoint action, and it is possible that Maurer-Cartan forms can

also be defined for weak actions. The standard adjoint action of a Lie group and its

Maurer-Cartan forms fit into Definition 3.23. In Sections 3.2.4 and 3.3.1 we will see

more examples of Maurer-Cartan forms, relating them to connections on multiplicative

gerbes [271, 273] and to adjustments on crossed modules [220]. These are structures

that have been used to define connections on principal bundles for certain families of

Lie 2-groups.

Definition 3.24. Let G be a Lie 2-group with Lie 2-algebra h
t∗→ g. Then

1. A differentiation of G is a structure of L∞-algebra on g ⊕ h[1] whose differential

is t∗, together with a morphism of L∞-algebras g⊕ h[1]→ Γ(TG). Here Γ(TG) is

the Lie 2-algebra of vector fields on G as in Proposition 3.8.

2. Assume G has a coherent inversor (Definition 3.19) and an adjoint action (Defini-

tion 3.23). An exponential map onG is an anafunctor (E, π0, ρ0, π1, ρ1) : g//h→ G,

equipped with an equivariant structure αexp for the adjoint action of G on g//h

and the conjugation action of G on itself (Lemma 3.20), and such that
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(a) There exist a neighborhood U ⊂ G0 of 1 and a neighborhood V ⊂ g of 0 such

that the map π1 : E → G0 restricts to a surjective submersion π−1
0 (V )→ U .

(b) There exists a neighborhood W ⊂ g⊕h = (g//h)1 of (0, 0) such that the map

(g//h)1 s×π0E → E π1×π1E, (γ, x) 7→ (ρ0(γ, x), x) restricts to a diffeomor-

phism from W s×π0π
−1(V ) onto its image.

In light of Proposition 3.4, conditions 2a and 2b are to be thought of as imposing that the

exponential map is a ‘local equivalence’ of Lie groupoids. In Sections 3.2.4 and 3.2.5 we

will show that a Maurer-Cartan form on a Lie 2-group G associated to a multiplicative

gerbe determines a differentiation of G and an exponential map on it. We conjecture

this is also the case for Maurer-Cartan forms on general Lie 2-groups (see Section 8.2.1

for some speculations on this). Proposition 3.27 below uses Maurer-Cartan forms to

generalize another construction for Lie groups (namely, Example 2.33) to the setting

of general Lie 2-groups. It will let us define Hamiltonian actions of Lie 2-groups in

Proposition 6.11. First we need two lemmas.

Lemma 3.25. Let G be a Lie 2-group with a left adjoint action Ad and a right-invariant

Maurer-Cartan form (θ0, θ1). Then

θ0g(d1,∗(v)− d0,∗(v))− θ01(d2,∗(v)) = −t∗θ1s0(g)(v), (3.59)

θ0g(d1,∗(w)− d2,∗(w))−Ad(g)θ01(d0,∗(w)) = −t∗θ1s1(g)(w), (3.60)

for g ∈ G0, v ∈ Ts0(g)BG2, w ∈ Ts1(g)BG2. Moreover, for v1, v2 ∈ T1BG1 we have

dθ01(v1, v2) + ad(v1)(v2) = −t∗dθ1s0(1)(s0,∗(v1), s1,∗(v2)), (3.61)

where ad(v1)(v2) denotes the differential of the map G→ g, g 7→ Ad(g)(v2) evaluated at

1 ∈ G, v1 ∈ T1G. In particular,

ad(v1)(v2) + ad(v2)(v1) = −t∗
(
dθ1s0(1)(s0,∗(v1), s1,∗(v2)) + dθ1s0(1)(s1,∗(v2), s0,∗(v1)

)
.

(3.62)

Proof. (3.59) and (3.60) follow from evaluating (3.55) at s0(g), s1(g) ∈ BG2 for g ∈ BG1

and s0, s1 : BG1 → BG2 the degeneracy maps. On the other hand, (3.61) follows

from taking the exterior derivative of (3.55) and evaluating at s0(1) ∈ BG2, s0,∗(v1) ∈
Ts0(1)BG2, s1,∗(v2) ∈ Ts0(1)BG2 for v1, v2 ∈ T1BG1.

Lemma 3.26. Let G be a Lie 2-group acting on a derived manifoldM = (M,E,Q) with

a smooth functor ρ :M×G→M. Then the tangent complex to the quotient 2-groupoid
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M//G (cf. Remark 3.18) is the following chain complex of vector bundles over Z(M)

h
t∗→ g

ρ∗→ TM, (3.63)

where ρ∗ is the partial differential at M × {1} of the underlying map ρ0 :M ×G0 →M

of ρ, and TM is the tangent complex ofM.

Proof. Recall from Remark 3.18 that (M//G)n = M× BGn. From here it is easy to

see that diagram (2.97) is in this case

... TM × TBG3 TM × TBG2 TM × TBG1 TM

... TE2 × TBG3 TE2 × TBG2 TE2 × TBG1 TE2

... TE3 × TBG3 TE2 × TBG2 TE2 × TBG1 TE3

... ... ... ... ...

∂

Φ∗

∂

Φ∗

∂

Φ∗

∂

Φ∗ Φ∗

∂

d∗

∂

d∗

∂

d∗

∂

d∗ d∗

∂

d∗

∂

d∗

∂

d∗

∂

d∗ d∗
∂ ∂ ∂ ∂

.

(3.64)

Then, after pulling-back to Z(M) and performing the quotients (2.98), we obtain

A0,0 = TM0|Z(M0), A0,m = Em+1|Z(M0), A−1,0 = g, A−2,0 = h (3.65)

and A−n,m = 0 otherwise, which yields the desired result after taking the associated

total complex.

Let G be a Lie 2-group with Lie 2-algebra h
t∗→ g. In the following proposition we regard

the dual g∗
t∗∗→ h∗ of this chain complex as the derived manifold (cf. Section 2.2.2)

(g∗, h∗[−2], Q), where Q is given simply by the ‘curvature’ g∗
t∗∗→ h∗.

Proposition 3.27. Let G be a Lie 2-group with Lie 2-algebra h
t∗→ g. Then, a left

(resp. right) adjoint action determines an action of G on the derived manifold g∗
t∗∗→ h∗

and a right (resp. left)-invariant Maurer-Cartan form for this action defines a 1-shifted

symplectic structure on the quotient 2-groupoid (g∗
t∗∗→ h∗)//G (cf. Remark 3.18).

Proof. The fact that an adjoint action determines an action of G on g∗
t∗∗→ h∗ follows

from Remark 3.18, as well as the fact that (g∗
t∗∗→ h∗)//G is described simply by

((g∗
t∗∗→ h∗)//G)n = (g∗

t∗∗→ h∗)×BGn, (3.66)

with simplicial maps defined analogously as in Example 2.5. Then define the forms

λ0 ∈ Ω1(g∗
t∗∗→ h∗ ×BG1,R), λ1 ∈ Ω1(g∗

t∗∗→ h∗ ×BG2,R) (3.67)
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by

λ0(ξ,η,g)(ξ̇ + η̇ + vg) = ξ(θ0g(vg)), (3.68)

λ1(ξ,η,γ)(ξ̇ + η̇ + vγ) = η(θ1γ(vγ)), (3.69)

where ξ ∈ g∗, η ∈ h∗, g ∈ BG1, γ ∈ BG2, ξ̇ ∈ Tξg∗, η̇ ∈ Tηh∗, vg ∈ TgBG1, vγ ∈ TγBG2.

Then LQλ
0 = 0 for degree reasons, while equations (3.55) and (3.56) are equivalent to

δλ0 = LQλ
1, δλ1 = 0. It follows that ω0 := dλ0, ω1 := dλ1 is a 1-shifted presymplectic

form. Explicitly,

ω0
(ξ,η,g)(ξ̇

1 + η̇1 + v1g , ξ̇
2 + η̇2 + v2g) = ξ̇1(θ0g(v

2
g))− ξ̇2(θ0g(v1g))− ξ(dθ0g(v1g , v2g)), (3.70)

ω1
(ξ,η,γ)(ξ̇

1 + η̇1 + v1γ , ξ̇
2 + η̇2 + v2γ) = η̇1(θ1γ(v

2
γ))− η̇2(θ1γ(v1γ))− η(dθ1γ(v1γ , v2γ)) (3.71)

In order to check the non-degeneracy condition, we note that the tangent complex of

(g∗
t∗∗→ h∗)//G is the chain complex of vector bundles over ξ ∈ Ker(t∗∗) ⊂ g∗

h[2]
t∗→ g[1]

ad∗→ g∗
t∗∗→ h∗[−1], (3.72)

where we write ad∗ξ(v1)(·) = ξ(ad(v1)(·)) for ad defined as in Lemma 3.25. The cotangent

complex is

h[1]
t∗→ g

(ad∗)∗→ g∗[−1] t
∗
∗→ h∗[−2], (3.73)

where ad∗ξ(v1)(·) = ξ(ad(·)(v1)). Using (3.70), (3.71) it is easy to see that the map

(2.129) induced by (ω0, ω1) is just the identity (with some signs) on each degree, hence

it is clearly an isomorphism. Note that this is indeed a chain map for ξ ∈ Ker(t∗∗) ⊂ g∗

by (3.62).

3.2 Multiplicative gerbes

3.2.1 Gerbes

We dedicate this section to fix some notation and conventions regarding gerbes that are

extensively used throughout the thesis. We start by fixing a manifold M and an abelian

Lie group T with Lie algebra t.

Definition 3.28 ([56, 82, 133]). A T -gerbe overM is the data of an open cover {Ui}i∈I of
M and a T -valued Čech 2-cocycle in this cover; i.e., functions λijk : Uijk → T satisfying

λ−1
jklλiklλ

−1
ijl λijk = 1. (3.74)
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A connective structure on it is the data of 1-forms Λij ∈ Ω1(Uij , t) such that

Λij − Λik + Λjk = λ∗ijkθ, (3.75)

for θ ∈ Ω1(T, t) the Maurer-Cartan form on T . A curving for it is a collection of 2-forms

Bi ∈ Ω2(Ui, t) such that

Bi −Bj = dΛij . (3.76)

An enhanced curving is a collection {Ben
i }i of Ben

i ∈ Γ(T ∗Ui ⊗ T ∗Ui ⊗ t) such that

Ben
i −Ben

j = dΛij ; (3.77)

equivalently, it is a pair ({Bi}i, h) of a curving {Bi}i and a h ∈ Γ(S2T ∗M ⊗ t). A

connection (Λ, B) := ({Λij}i,j , {Bi}i) for a gerbe is a connective structure with a curving

and an enhanced connection is a connective structure with an enhanced curving. In any

case, the curvature is H ∈ Ω3
cl(M, t) given locally by H|Ui

= dBi.

Given two gerbes ({U1
i }i∈I1 , {λ1ijk}i,j,k∈I1), ({U2

i }i∈I2 , {λ2ijk}i,j,k∈I2), an isomorphism be-

tween them is the data of {Va}a∈A a common refinement of {U1
i }i∈I1 and {U2

i }i∈I2 (with

refinement maps i1 : A→ I1 and i2 : A→ I2) and functions sab : Vab → T satisfying

sacλ
1
i1(a)i1(b)i1(c)

= λ2i2(a)i2(b)i2(c)sbcsab (3.78)

If the gerbes have connective structures Λ1
i1j1

, Λ2
i2j2

, then we define a connection on the

isomorphism to be a collection of 1-forms Λa ∈ Ω1(Va, t) satisfying

Λa − Λb = Λ1
i1(a)i1(b)

− Λ2
i2(a)i2(b)

− s∗abθT (3.79)

An isomorphism of gerbes with a connection is also called an isomorphism of gerbes with

connective structure, while a connection on the identity isomorphism is also called an

isomorphism of connective structures. If the gerbes also have (enhanced) curvings Ben,1
i1

,

Ben,2
i2

, then the curvature with respect to Ben,1
i1

, Ben,2
i2

is F ∈ Γ(T ∗M ⊗T ∗M ⊗ t) defined

by

F = dΛa −Ben,1
i1(a)

+Ben,2
i2(a)

= dΛa −B1
i1(a)

+B2
i2(a)
− h1 + h2 (3.80)

Its skew-symmetric part F sk satisfies dF sk = H2 − H1. A trivialization of a gerbe

({U1
i }i, {λijk}i,j,k) is an isomorphism 1→ ({U1

i }i, {λijk}i,j,k), where 1 denotes the trivial

gerbe, and a connection on it is a connection on the isomorphism, where 1 is regarded

with the trivial connective structure and curving.

Given two isomorphisms ({Va}, {sab}), ({V ′
a}, {s′ab}) between the same gerbes, a 2-

isomorphism between them is the data of a common refinement {Wr}r∈R of {Va}a∈A
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and {V ′
a}a∈A′ such that the refinement maps R → A → In, R → A′ → In coincide for

n = 1, 2 and functions tr :Wr → T such that

trsa(r)a(s) = s′a′(r)a′(s)ts (3.81)

If the gerbes have connective structures Λ1
ij , Λ

2
ij and the isomorphisms have connections

Λa, Λ
′
a then the covariant derivative of the 2-isomorphism is η ∈ Ω1(M, t) given locally

by η = Λ′
a′(r) − Λa(r) + t∗rθ

T . The 2-isomorphism is a 2-isomorphism of gerbes with

connective structure or a flat 2-isomorphism when η = 0.

For Φ := ({Va}a, {sab}a,b) an isomorphism of gerbes from L1 = ({Ui1}, {λ1i1j1k1}) to L2 =
({Ui2}, {λ2i2j2k2}) and ({Λ1

i1j1
}i1j1 , {B1

i1
}i1) a connection on L1, we write (Φ−1)∗(Λ1

ij , B
1
i ) =

(Λ2
ab, B

2
a) for the connection on L2 defined by

Λ2
ab := Λi1(a)i1(b) − s

∗
abθ, (3.82)

B2
a := Bi1(a). (3.83)

If ψ : ({Wr}r, {tr}r) is a 2-isomorphism Φ⇒ Φ′ and Λi1 is an isomorphism of connections

({Λ1
i1j1
}i1j1 , {B1

i1
}i1)→ ({Λ̃1

i1j1
, }i1j1 , {B̃1

i1
}i1), then we write

(ψ−1)∗Λi1 : (Φ−1)∗({Λ1
i1j1}i1j1 , {B

1
i1}i1)→ (Φ′)−1({Λ̃1

i1j1 , }i1j1 , {B̃
1
i1}i1) (3.84)

for the isomorphism of connections defined by the 1-forms Λi1(r) + t∗rθ. When λ1i1j1k1 =

λ2i2j2k2 , this is called the gauge action of the gerbe. For

Φ∇ = ({Va}a, {sab}a,b, {Λa}) : ({Ui1}, {λ1i1j1k1}, {Λ
1
i1j1})→ ({Ui2}, {λ2i2j2k2}, {Λ

2
i2j2})
(3.85)

an isomorphism of gerbes with connective structure and B1
i a curving on Λ1

i1j1
, we write

(Φ−1
∇ )∗B1

i for the curving on Λ2
i2j2

defined by the two-forms B1
i1(a)
−dΛ2. Note that when

two isomorphisms of gerbes with connective structure are related by a flat 2-isomorphism

then their action on curvings coincides. When λ1i1j1k1 = λ2i2j2k2 and Λi1j1 = Λi2j2 , this

is called the gauge action of the gerbe with connective structure.

The tensor product of two gerbes (with connective structure and curving)

L1 = ({Ui}i, {λ1ijk}i,j,k, {Λ1
ij}i,j , {B1

i }i), L2 = ({Ui}i, {λ2ijk}i,j,k, {Λ2
ij}i,j , {B2

i }i)

is the gerbe L1 ⊗ L2 (with connective structure and curving) described by the cocycle

data ({Ui}i, {λ1ijkλ2ijk}i,j,k, {Λ1
ij + Λ2

ij}i,j , {B1
i + B2

i }i). The dual of a gerbe (with con-

nective structure and curving) L = ({Ui}i, {λ1ijk}i,j,k, {Λ1
ij}i,j , {B1

i }i) is the gerbe (with

connective structure and curving) L−1 := ({Ui}i, {(λ1ijk)−1}i,j,k, {−Λ1
ij}i,j , {−B1

i }i).
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We also recall Murray’s notion of bundle gerbes [198], which is completely analogous to

Definition 3.28 but replacing the use of a cover of M by a general surjective submersion

π : Y → M . For such a surjective submersion, write Y [n] := Y ×M Y ×M ... ×M Y for

the nth fibered product overM and dj : Y
[n] → Y [n−1], j = 0, ..., n−1 for the map that

forgets the j-th point. Then a T -gerbe over M can be defined as a principal T -bundle

L → Y [2] with an isomorphism λ : d∗2L ⊗ d∗0L → d∗1L of T -bundles over Y [3] satisfying

d∗1λ ◦ d∗3λ = d∗2λ ◦ d∗0λ over Y [4]; a connective structure on it is a T -connection ∇ on

L → Y [2] such that λ is flat and a curving for it is a 2-form B ∈ Ω2(Y, t) such that

d∗1B − d∗0B = F∇, for F∇ the curvature of ∇.

For two gerbes described by (L1, λ1) and (L2, λ2), an isomorphism between them is

described by a T -bundle M → Y with an isomorphism s : d∗0M ⊗ L1 → L2 ⊗ d∗1M

of T -bundles over Y [2] inducing a commutative diagram with λ1 and λ2 over Y [3]. If

(L1, λ1) and (L2, λ2) have connective structures given by connections ∇1, ∇2, then a

connection on the isomorphism (M, s) is a connection on M such that s is flat. Given

two isomorphisms (M, s) and (M ′, s′), a 2-isomorphism between them is an isomorphism

M →M ′ inducing a commutative diagram with s and s′ over Y [2].

Both Definition 3.28 and the approach with bundle gerbes are working definitions. More

rigorously, T -gerbes are principal 2-bundles (cf. Definition 4.1) for the 2-group BT . The

relation between this and Definition 3.28 is given by the construction in Example 3.6,

which can be seen as the ‘total space’ of the gerbe that can be constructed with a

2-cocycle.

For the following proposition we let T be a connected abelian Lie group and we let Z ⊂ t

be the kernel of the exponential map exp : t→ T .

Proposition 3.29 ([82]). 1. Every T -gerbe admits a connection.

2. T -gerbes over M are classifed by H3(M,Z) and the class of a gerbe is represented

in de Rham cohomology by taking the curvature of any curving.

3. A gerbe admits a flat connection if and only if it admits locally constant cocycle

data. An isomorphism of flat gerbes admits a flat connection if and only if it admits

locally constant cocycle data in the same frame in which the gerbes are described

by locally constant cocycle data. A 2-isomorphism between isomorphisms with flat

connections is flat if and only if it is described by locally constant functions in

the same frame in which the gerbes and the isomorphisms are described by locally

constant cocycle data.

4. The automorphism 2-group of a gerbe L (cf. Remark 3.11) is equivalent to the

2-group BT (M) of T -bundles over M from Example 3.15. The gauge action is
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an action of BT (M) on the groupoid A(L) of connections (with isomorphisms of

connections as arrows), in the sense of Definition 3.16.

5. The automorphism 2-group of a gerbe with connective structure L∇ is equivalent

to the 2-group BT∇(M) of T -bundles with connection over M from Example 3.15.

The gauge action is an action of BT∇(M) on the set A(L∇) of curvings for the

given connective structure, in the sense of Definition 3.16.

Given a gerbe, we can regard the groupoid A(L) as a topological groupoid (defined sim-

ilarly as in Definition 3.1) taking the Fréchet topology on the spaces Ω1(Uij , t), Ω
2(Ui, t)

and Ω1(Ui, t). We also think of the 2-group BT (M) as a topological 2-group (defined

similarly as in Definition 3.9), describing T -bundles in terms of transitions functions as

in Example 3.15 and using Fréchet topologies on C∞(Uij , T ) and C
∞(Ui, T ). The gauge

action from Proposition 3.29 is an action by a continuous functor and so we can form

the simplicial topological space (defined similarly as in Definition 2.1) A(L)//BT (M) as

in Section 3.1.3.

Given a gerbe with connective structure L∇, we can regard the set A(L∇), which is a

torsor for Ω2(M, t), as a topological space with Fréchet topology. The 2-group BT∇(M)

can also be thought of as a topological 2-group by describing it in the second presentation

from Example 3.15 and taking Fréchet topologies on the spaces C∞(M,T ) and A(Lc) ∼=
Ω1(M, t). With this topology, the gauge action from Proposition 3.29 is continuous and

so we can form the simplicial topological space A(L∇)//BT∇(M).

Note A(L)//BT (M) is a model for the space of connections modulo gauge on L. On the

other hand, A(L∇)//BT∇(M) might seem a priori a less natural object, as it requires

fixing a connective structure on L. However, the following proposition states that both

simplicial topological spaces are essentially equivalent. As it will become more evident

in the non-abelian generalization from Section 4.2.2 and in the constructions of moduli

spaces from Section 6.1.2, we note this because it is easier to treat A(L∇)//BT∇(M) as a

geometric object, as the topology of each space (A(L∇)//BT∇(M))n, n ∈ N is modelled

on the space of global sections of some vector bundle overM independently of any choice

of cover on M .

Proposition 3.30. Let L∇ be a gerbe with connective structure. There is a canonical

morphism of simplicial topological spaces A(L∇)//BT∇(M)→ A(L)//BT (M) inducing

a weak homotopy equivalence on their geometric realizations.

Proof. This follows from noting the following.

1. An object in A(L)//BT (M) is a connection on L. Given a fixed connective

structure Λ on L and two curvings B, B′ for Λ, an arrow (Λ, B) → (Λ, B′) in



Lie 2-groups and Maurer-Cartan forms 85

A(L)//BT (M) is a pair (L, ϕ) where L ∈ BT (M)0 is an automorphism of L and

ϕ : (Λ, B) → (L∗Λ, B′) is an isomorphism of connections. A 2-cell between (L, ϕ)

and (L′, ϕ′) is an isomorphism of T -bundles ψ : L → L′ inducing a commutative

diagram with ϕ and ϕ′.

2. By looking at the cocycle data that defines each structure, one sees that a pair

(L, ϕ) as above is exactly the same as a T -bundle with connection L∇ ∈ BT∇(M)0

whose curvature F∇ satisfies B′−B = F∇, and that an isomorphism of T -bundles

ψ : L → L′ that are equipped with connections ∇, ∇′ induces a commutative

diagram with the corresponding ϕ, ϕ′ if and only if it preserves the connections.

This means that for any fixed Λ there is a map of simplicial topological spaces

A(L∇)//BT∇(M) → A(L)//BT (M) whose geometric realization induces an iso-

morphism on π1 and π2.

3. Any two connective structures are always isomorphic. This means that the map

A(L∇)//BT∇(M)→ A(L)//BT (M) from before induces an isomorphism on π0.

3.2.2 Multiplicative gerbes

Let G be a Lie group. Recall the simplicial manifold BG• from Example 2.6 with its

maps dnj : Gn → Gn−1. In order to simplify notation, we denote in what follows any

possible composition of these maps by its image; for example, g1g2g3 : G3 → G is the

map d21 ◦ d31, while (g1g2, g3g4) : G
4 → G2 is the map d32 ◦ d41.

Definition 3.31 ([58, 78, 195]). For T an abelian Lie group, a multiplicative T -gerbe

over a Lie group G is the following data:

1. A T -gerbe G → G,

2. An isomorphismm of T -gerbes over G×G (the product)m : g∗1G⊗g∗2G → (g1g2)
∗G,

3. A 2-isomorphism α of T -gerbes over G×G×G (the associator)

g∗1G ⊗ g∗2G ⊗ g∗3G (g1g2)
∗G ⊗ g∗3G

g∗1G ⊗ (g2g3)
∗G (g1g2g3)

∗G

(g1,g2)∗m

(g2,g3)∗m (g1g2,g3)∗mα

(g1,g2g3)∗m

(3.86)
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such that, over G×G×G×G,

g∗1G ⊗ g∗2G ⊗ g∗3G ⊗ g∗4G (g1g2g3g4)
∗G

m(((g1g2)g3)g4)

m((g1(g2g3))g4)

m(g1((g2g3)g4))

m(g1(g2(g3g4)))

α

α

α

=
g∗1G ⊗ g∗2G ⊗ g∗3G ⊗ g∗4G (g1g2g3g4)

∗G

m(((g1g2)g3)g4)

m((g1g2)(g3g4))

m(g1(g2(g3g4)))

α

α
.

(3.87)

Isomorphisms and 2-isomorphisms of multiplicative gerbes are defined similarly as in

Definition 3.9, replacing anafunctors by isomorphisms of gerbes and transformations by

2-isomorphisms of gerbes. This yields the bicategory of multiplicative T -gerbes over G.

Remark 3.32. The last diagram of Definition 3.31 is an equality between 2-isomorphisms

of gerbes: each black arrow represents an isomorphism (for example, we are writing

m(((g1g2)g3)g4) := (g1g2g3, g4)
∗m ◦ (g1g2, g3)∗m ⊗ id ◦ (g1, g2)∗m ⊗ id ⊗ id) and each

2-cell is a 2-isomorphism constructed from α.

Remark 3.33. The data of Definition 3.31 is sufficient to construct other canonical struc-

tures that might be useful. For example, we write 1G : 1 → 1∗G for the following trivi-

alization of the gerbe 1∗G → {∗}, where we write 1 : {∗} → G for the inclusion of the

unit element. First, there is an isomorphism

1∗G (1,1)∗m−1

→ 1∗G ⊗ 1∗G, (3.88)

and so we can define 1G as the following composition

1
e→ 1∗G ⊗ 1∗G−1

(1,1)∗m−1⊗id1∗G−1

→ 1∗G ⊗ 1∗G ⊗ 1∗G−1 id1∗G⊗e
−1

→ 1∗G, (3.89)

where e is the canonical trivialization of 1∗G ⊗ 1∗G−1. Similarly, we can define a 2-

isomorphism of gerbes over G, called the right unitor,

g∗G ⊗ 1∗G g∗G.

(g,1)∗m

idG⊗1−1
G

r (3.90)
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It is defined by considering the 2-isomorphism

g∗G ⊗ 1∗G ⊗ 1∗G g∗G ⊗ 1∗G

g∗G ⊗ 1∗G g∗G

(g,1)∗m

(1,1)∗m (g,1)∗m
(g,1,1)∗α

(g,1)∗m

; (3.91)

then note that (g, 1, 1)∗α ◦ id(g,1)∗m−1 is a 2-isomorphism of the form

g∗G ⊗ 1∗G ⊗ 1∗G g∗G ⊗ 1∗G,

(g,1)∗m

(1,1)∗m

(3.92)

and then construct r by tensoring everything with 1∗G−1. We will also use the notation

inv : 1→ g∗G ⊗ (g−1)∗G (3.93)

for the isomorphism (g, g−1)∗m−1 ◦ 1G . Since all these maps are defined canonically

from m, α, they satisfy good properties with respect to them (a precise statement in

this respect is the coherence theorem for bicategories [212]).

In order to describe multiplicative gerbes in terms of cocycle data one must take a good

semi-simplicial cover of BG•. This is a collection {Un}n≥1, where each Un = {Unin}in∈In
is a good cover of Gn indexed by a set In, together with maps d̃nj : In → In−1 such

that dnj (U
n
in
) ⊂ Un−1

d̃nj (in)
and that {In, d̃nj }n,j is a semi-simplicial set. In what follows we

abuse notation by writing simply d̃nj = dnj ; furthermore, we denote Un
i1ni

2
n...i

k
n
:=

⋂k
s=1 U

n
isn
.

There are constructions of good semi-simplicial covers of BG• in [58, 195].

Given a good semi-simplicial cover {Un}n of BG•, it follows directly from the definitions

that a multiplicative T -gerbe over G is given by

λi1j1k1 : U1
i1j1k1 → T, mi2j2 : U2

i2j2 → T, αi3 : U3
i3 → T (3.94)
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satisfying

λi1j1k1(g)λi1k1l1(g) = λi1j1l1(g)λj1k1l1(g),

mi2j2(g1, g2)mj2k2(g1, g2)λd1(i2)d1(j2)d1(k2)

= mi2k2(g1, g2)λd0(i2)d0(j2)d0(k2)(g2)(g1g2)λd2(i2)d2(j2)d2(k2)(g1),

αi3(g1, g2, g3)md3(i3)d3(j3)(g1, g2)md1(i3)d1(j3)(g1g2, g3)

= αj3(g1, g2, g3)md2(i3)d2(j3)(g1, g2g3)md0(i3)d0(j3)(g2, g3),

αd4(i4)(g1, g2, g3)αd2(i4)(g1, g2g3, g4)αd0(i4)(g2, g3, g4)

= αd3(i4)(g1, g2, g3g4)αd1(i4)(g1g2, g3, g4).

(3.95)

For G, T any Lie groups with T abelian, we let Ext(G,BT ) be the set of multiplicative

T -gerbes over G up to isomorphism. We also write for the rest of the thesis g and t for

the Lie algebras of G and T , respectively. The following is a classification result that

is well-known in the literature at least when G is compact (e.g. [238]). To state it we

recall the theory of sheaf cohomology on semi-simplicial manifolds from Section 2.1.2,

and group cohomology defined by (2.41).

Proposition 3.34. Let G, T be Lie groups with T abelian, and let C∞
T be the sheaf of

smooth T -valued functions. Then

1. Ext(G,BT ) = H3(BG•, C
∞
T )

2. If T is connected, then there is an exact sequence

H3
gr,cont(G, t)→ Ext(G,BT )→ H4(BG,Z)→ H4

gr,cont(G, t), (3.96)

where H∗(BG,Z) denotes singular cohomology of the classifying space of G and

Z := ker expT ⊂ t. In particular, Ext(G,BT ) = H4(BG,Z) when G is compact.

Proof. Consider over BG• the sheaf C∞
T of smooth T -valued functions. A good semi-

simplicial cover of BG• gives an injective resolution of this sheaf by taking the Čech

resolutions (Č•(C∞
T,Gn ,Un), δ̌) of C∞

T with respect to each cover Un, and using the

maps d̃nj : In → In−1 to define the sheaf morphisms ∂nj : (dnj )
∗Čp(C∞

T,Gn−1 ,Un−1) →
Čp(C∞

T,Gn ,Un). Thus the total cohomology of the double complex (Č•(C∞
T,G• ,Un), δ̌, δ)

computes H∗(BG•, C
∞
T ), and the cocycle data for multiplicative T -gerbes over G gives

precisely an element in H3(BG•, C
∞
T ) which classifies them completely. In other words,

H3(BG•, C
∞
T ) = Ext(G,BT ). This is valid for any Lie groups G, T but when T is
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connected then 1→ Z → t
exp→ T → 1 is exact and so there is an exact sequence

H3(BG•, C
∞
t )→ H3(BG•, C

∞
T )→ H4(BG•, Z)→ H4(BG•, C

∞
t ), (3.97)

where C∞
t is the sheaf of smooth t-valued functions on BG•. The result follows then

from Theorems 2.11 and 2.13.

Definition 3.35. Let G, T be Lie groups with T abelian and let (G,m, α) be a mul-

tiplicative T -gerbe over G. We say (G,m, α) is flat if its class in Ext(G,BT ) =

H3(BG•, C
∞
T ) lies in the image of H3(BG•, T ) → H3(BG•, C

∞
T ), for T the sheaf of

locally constant T -valued functions.

It follows from Proposition 3.34 that, for connected T , a multiplicative T -gerbe G over

G has a class c(G) ∈ H4(BG,Z). This has an image

ct(G) ∈ H4(BG, t), (3.98)

which we call the de Rham class of the multiplicative gerbe.

Lemma 3.36. The group H4(BG, t) is isomorphic to the following quotient.

{(τ3, τ2, τ1, τ0) | τi ∈ Ωi(G4−i, t), dτ3 = 0, dτ2 = −δτ3, dτ1 = δτ2, dτ0 = −δτ1, 0 = δτ0}
{(dβ2, δβ2 + dβ1,−δβ1 + dβ0, δβ0) | βi ∈ Ωi(G3−i, t)}

.

Moreover, if T is connected, then

1. The de Rham class ct(G) ∈ H4(BG, t) of a multiplicative T -gerbe G over G admits

a representative [(τ3, τ2, τ1, τ0)] as above with τ0 = 0.

2. The de Rham class ct(G) ∈ H4(BG, t) of a multiplicative T -gerbe G over G is 0 if

and only if G is flat.

Proof. The description of H4(BG, t) follows from Remark 2.12. Now note that the exact

sequence of sheaves 0→ Z → C∞
t → C∞

T → 0 induces the exact sequence

H3(BG•, C
∞
T )→ H4(BG•, Z)→ H4(BG•, C

∞
t ), (3.99)

which yields 1. Similarly, the exact sequence of sheaves Z → t → T gives the exact

sequence

H3(BG, T )→ H4(BG,Z)→ H4(BG, t), (3.100)

which implies 2.
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Given a multiplicative T -gerbe over G, one representative ct(G) = [(τ3, τ2, τ1, 0)] as in

part 1 of Lemma 3.36 can be obtained by choosing any connective structure and curving

on G and any connection on m. This yields the curvature 3-form τ3 of G on G, the

curvature 2-form −τ2 of m on G2 and the covariant derivative 1-form τ1 of α on G3,

which satisfy the equations from Lemma 3.36.

Example 3.37 ([58, 195]). For G a compact, simple, simply connected Lie group,

Proposition 3.34 and the fact that H4(BG,Z) = H3(G,Z) = Z in this case imply

that multiplicative U(1)-gerbes over G are classified by Z. The multiplicative gerbe

corresponding to a choice of generator of H4(BG,Z) is called String(G). The image of

such generator in H4(BG•,R) can be described in de Rham cohomology by the forms

τ3 :=
1

6
⟨θL, [θL ∧ θL]⟩ ∈ Ω3(G,R),

τ2 := ⟨g∗1θL ∧ g∗2θR⟩ ∈ Ω2(G×G,R),

τ1 := 0,

τ0 := 0,

(3.101)

(which satisfy dτ3 = 0, dτ2 = δτ3, δτ2 = 0), for θL, θR ∈ Ω1(G, g) the left- and right-

invariant Maurer-Cartan forms on G, respectively, and ⟨·, ·⟩ : g ⊗ g → R the Killing

form, normalized so that [τ3] ∈ H3(G,Z) = Z is a generator. It follows that a finite-

dimensional model for String(G) can be obtained by choosing potentials for the forms τ3,

τ2 in a semi-simplicial cover of G, which give a cocycle presentation of the multiplicative

gerbe to which Theorem 3.48 below can be applied to construct a Lie 2-group. However,

as this is not a canonical procedure, it does not yield an explicit description of the Lie

2-group String(G). The gerbe String(G) → G is described explicitly in a cover of G in

[195], where an equivariant structure on it is also given, but there is no known explicit

cocycle data for the product m and the associator α.

Example 3.38. Example 3.14 can also be presented as a multiplicative V1/Λ1-gerbe

over V0/Λ0. Take G → G to be the trivial gerbe. Then the product m is just a V1/Λ1-

bundle M over V0/Λ0 × V0/Λ0. It is defined by

M := (V0/Λ0 × V0 × V1/Λ1)/Λ0, (3.102)

where the action of Λ0 is

([u0], v0, [u1]) · µ0 := ([u0], v0 + λ0, [u1 + ⟨u0, µ0⟩]). (3.103)
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The associator α is the following canonical isomorphism of V1/Λ1-bundles over (V0/Λ0)
3.

α : d∗3M ⊗ d∗1M → d∗0M ⊗ d∗2M

[u0, v0, u1]⊗ [u0 + v0, w0, v1] 7→ [v0, w0, u1]⊗ [u0, v0 + w0, v1].
(3.104)

It is straightforward to check that α satisfies the pentagon identity. Note also that

M carries a canonical connection θ ∈ Ω1(M,V1) such that α is flat. It is defined by

θ = du1 − ⟨du0, v0⟩ and its curvature is ⟨du0 ∧ dv0⟩ ∈ Ω2(V0/Λ0 × V0/Λ0, V1).

Example 3.39 ([271]). Generalizing Examples 3.37 and 3.38, let G, T be Lie groups

with T abelian and connected and let ⟨·, ·⟩ : g ⊗ g → t be a symmetric, Ad-invariant

bilinear form. Then the three forms τ3, τ2 defined as in (3.101) satisfy dτ3 = 0, dτ2 = δτ3

and δτ2 = 0. By Lemma 3.36, they define a class in H4(BG•, t). If ⟨·, ·⟩ is such that

this class lies in the image of H4(BG•, Z), and H
3(BG, T ) = 0 (i.e., there are no non-

trivial flat multiplicative T -gerbes over G), then Proposition 3.34 implies that this data

determines uniquely a multiplicative T -gerbe over G.

3.2.3 Connective structures on multiplicative gerbes

Definition 3.40. Let (G,m, α) be a multiplicative T -gerbe over G. A connective struc-

ture on it is the following data:

1. A connective structure ∇ on the gerbe G → G,

2. A connection∇m on the isomorphism of gerbesm such that α is a flat 2-isomorphism.

We often write (G∇,m∇, α) or simply G∇ for a multiplicative gerbe equipped with a

connective structure. An isomorphism of connective structures on a multiplicative T -

gerbe (∇1,∇m1) → (∇2,∇m2) is an isomorphism of connective structures on gerbes

ϕ : ∇1 → ∇2 such that the following is a commutative diagram of isomorphisms of

gerbes with connective structures

g∗1G∇1 ⊗ g∗2G∇1 (g1g2)
∗G∇1

g∗1G∇2 ⊗ g∗2G∇2 (g1g2)
∗G∇2 .

(m,∇m1 )

(id,g∗1ϕ⊗g∗2ϕ) (id,(g1g2)∗ϕ)

(m,∇m2 )

(3.105)

Remark 3.41. In [271], a connection on a multiplicative gerbe is defined as the same piece

of structure as in Definition 3.40 but with an additional curving on G (not necessarily

preserved bym). However, as we will see in Theorem 3.43 below, the data of a connective

structure already determines a canonical curving.
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Given a cocycle description λi1j1k1 , mi2j2 , αi3 of the multiplicative gerbe in a good

semi-simplicial cover of BG• as in (3.94), a connective structure on it is then described

by

Ai1j1 ∈ Ω1(U1
i1j1 , t), Mi2 ∈ Ω1(U2

i2 , t) (3.106)

satisfying

Ai1j1 −Ai1k1 +Aj1k1 = λ∗i1j1k1θ
T ,

Mi2 + d∗1Ad1(i2)d1(j2) +m∗
i2j2θ

T = d∗0Ad0(i2)d0(j2) + d∗2Ad2(i2)d2(j2) +Mj2 ,

α∗
i3θ

T + d∗0Md0(i3) + d∗2Md2(i3) = d∗1Md1(i3) + d∗3Md3(i3),

(3.107)

where θT ∈ Ω1(T, t) is the Maurer-Cartan form on T .

The following is an existence/classification result for connective structures on multiplica-

tive gerbes (see [271] for similar results, with the difference that an additional curving

on the multiplicative gerbe is considered as part of the structure to classify). For fixed

T , G, let Ext(G,BT ) be the space of multiplicative T -gerbes over G up to isomorphism

and Ext(G,BT∇) the space of multiplicative T -gerbes with connective structure over G

up to isomorphism.

Proposition 3.42. A multiplicative gerbe G admits a connective structure if and only

if its de Rham class (3.98) admits a representative (τ3, τ2, τ1, τ0) with τ1 = 0, τ0 = 0.

Moreover, there is an exact sequence

H1
gr,cont(G, g

∗ ⊗ t)→ Ext(G,BT∇)→ Ext(G,BT )→ H2
gr,cont(G, g

∗ ⊗ t). (3.108)

In particular, Ext(G,BT∇) = Ext(G,BT ) for compact G.

Proof. Representatives (τ3, τ2, τ1, 0) of the de Rham class of G are obtained from taking

a connective structure and curving on G and a connection on m; since τ1 measures

the failure of the associator α to preserve the connective structure it is clear that the

multiplicative gerbe admits a connective structure if and only if the choices can be made

so that τ1 = 0. Now it follows from the cocycle data above, as in the proof of Proposition

3.34, that Ext(G,BT∇) = H3(BG•, C
∞
T → Ω1

t ), for C
∞
T → Ω1

t the complex of sheaves on

BG• of smooth T -valued functions and smooth t-valued 1-forms, respectively, with the

map f 7→ f∗θT between them. Then the above sequence follows from the exact sequence

of complexes 0→ (0→ Ω1
t )→ (C∞

T → Ω1
t )→ (C∞

T → 0)→ 0 and Theorem 2.13.

Recall from Example 3.39 the construction of a multiplicative T -gerbe over G from the

data of an Ad-invariant symmetric bilinear form ⟨·, ·⟩ : g⊗ g→ t. By Proposition 3.42,

it admits a connective structure, as it was first proven by Waldorf in [271]. We recap
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this in Theorem 3.43 below, along with a converse to this result which seems to be new.

From now on we write θL, θR ∈ Ω1(G, g) for the left- and right-invariant Maurer-Cartan

forms on G, respectively. We recall the notion of enhanced curving on a gerbe that was

defined in Section 3.2.1 and we write H4(BG•, t)
exp−→ H4(BG•, T ) for the map induced

by exp : t→ T .

Theorem 3.43. Let G, T be Lie groups with T abelian and connected. Given an Ad-

invariant symmetric bilinear form ⟨·, ·⟩ : g⊗ g→ t, the differential forms

µ :=
1

6
⟨θL ∧ [θL ∧ θL]⟩ ∈ Ω3(G, t), ν := −⟨g∗1θL ∧ g∗2θR⟩ ∈ Ω2(G2, t) (3.109)

define a class [µ,−ν, 0, 0] ∈ H4(BG, t). If exp([µ,−ν, 0, 0]) ∈ H4(BG•, T ) vanishes then

there is a multiplicative T -gerbe with connective structure (G∇,m∇, α) over G whose de

Rham class (3.98) is ct(G) = [µ,−ν, 0, 0]. Furthermore, such (G∇,m∇, α) is unique up

to tensor product with flat multiplicative gerbes.

Conversely, a multiplicative T -gerbe with connective structure (G∇,m∇, α) over G has a

unique enhanced curving ΘL,en = (ΘL, h) such that the curvature F ∈ Γ(T ∗G2⊗T ∗G2⊗t)
of ∇m with respect to ΘL,en is determined by h ∈ Γ(S2T ∗G⊗ t) as

F = 2h1(g
∗
1θ
L ⊗ g∗2θR), (3.110)

where h1 ∈ S2g∗ ⊗ t is h evaluated at 1 ∈ G. Its curvature is 1
6h1(θ

L ∧ [θL ∧ θL]⟩. In

other words, (G∇,m∇, α) determines the following data.

1. An Ad-invariant symmetric bilinear form h1 = ⟨·, ·⟩ : g⊗ g→ t such that, for µ, ν

defined as in (3.109), exp([µ,−ν, 0, 0]) ∈ H4(BG•, T ) vanishes.

2. A curving ΘL on G∇ with curvature µ and such that ∇m has curvature ν with

respect to it.

We call ΘL,en the Maurer-Cartan enhanced curving on G∇ and we call ΘL the Maurer-

Cartan curving on G∇. If T is connected, then both constructions are inverse to each

other up to tensor product with flat multiplicative gerbes.

Proof. The first part, which is due to Waldorf [271], follows from Example 3.39 and

Proposition 3.42. For the second part, we note first that the equivalence between both de-

scriptions of the data determined by (G∇,m∇, α) follow from taking the skew-symmetric
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and symmetric part of (3.110). Then we consider the following exact triangle in the de-

rived category of sheaves of abelian groups over BG•.

T C∞
T 0

0 Ω1
t Ω2

t,d−cl ,

[1]

d [1]

where Ω2
t,d−cl is the sheaf of closed t-valued two-forms. This yields the sequence

H1(BG•,Ω
2
t,d−cl)→ H3(BG, T )→ Ext(G,BT∇)→ H2(BG•,Ω

2
t,d−cl)→ H4(BG, T ).

Consider now the exact sequence 0→ Ω2
t,d−cl → Ω2

t
d→ Ω3

t → 0 and apply Theorem 2.13

to obtain H1(BG•,Ω
2
t,d−cl) = 0 and

H2(BG•,Ω
2
t,d−cl) = H2(BG•,Ω

2
t ) = H0

gr,cont(G,S
2g∗ ⊗ t); (3.111)

hence,

0→ H3(BG, T )→ Ext(G,BT∇)→ H0
gr,cont(G,S

2g∗ ⊗ t)→ H4(BG, T ). (3.112)

The theorem follows from chasing how the maps in this sequence are defined. From the

triangle above it is clear that the map Ext(G,BT∇)→ H2(BG•,Ω
2
t ) sends a multiplica-

tive gerbe with connective structure (G∇,m∇, α) to the class of the curvature 2-form

−τ2 ∈ Ω2(G2, t) of ∇m with respect to any choice of curving on G∇ (it satisfies δτ2 = 0

as α preserves the connection on m). By part (2) of Lemma 2.14 this determines an

Ad-invariant symmetric bilinear form ⟨·, ·⟩ : g ⊗ g → t, characterized by the condition

that the curving on G∇ can be chosen so that τ2 = ν. Let ΘL be one such curving.

The curvature of ΘL is some H ∈ Ω3(G, t) with δH = dν; since µ satisfies this, we

obtain H = µ + h with δh = 0, but we see from Theorem 2.13 and Remark 2.10 that

H1(BG•,Ω
3
t ) = ker(δ : Ω3(G, t) → Ω3(G2, t)) = 0 and so H = µ. Then take ΘL,en

to be given by ΘL and the symmetric tensor h = −1
2⟨θ

L ⊙ θL⟩; this enhanced curving

satisfies the condition above. It is moreover unique with such property, as any other

enhanced curving differs from this one by b ∈ Ω2(G, t) and h′ ∈ Γ(S2T ∗G ⊗ t) but

then the curvature condition imposes h′ = 1
2⟨θ

L ⊙ θL⟩′ for some Ad-invariant ⟨·, ·⟩′ and
δb = ⟨g∗1θL ∧ g∗2θR⟩′; hence, ⟨·, ·⟩′ = 0 and b = 0 by part (2) of Lemma 2.14 and by

Theorem 2.13, which yields H1(BG•,Ω
2
t ) = ker(δ : Ω2(G, t) → Ω2(G2, t)) = 0. This

concludes the proof of the theorem.

Remark 3.44. Given a multiplicative T -gerbe with connective structure over G described

by cocycle data (3.94), (3.106), one can use formula (2.46) from Lemma 2.14 to compute
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the pairing from Theorem 3.43 (1) as

⟨u, v⟩ = 1

2
dMi2|(g1,g2)(0 + ug2, g1v + 0) +

1

2
dMi2|(g1,g2)(0 + vg2, g1u+ 0), (3.113)

for any choice of (g1, g2) ∈ G2 and any choice of i2 ∈ I2 with (g1, g2) ∈ U2
i2
. Alternatively,

one can use the cocycle equations (3.107) to check directly that this formula gives a well-

defined Ad-invariant, symmetric pairing. Furthermore, one can prove that the Maurer-

Cartan curving is given by the two-forms ΘL
i1
∈ Ω2(U1

i1
, t) defined by

ΘL
i1|g(ug, vg) = dAi1d0(i2)|g(ug, vg) +

1

2
dMi2|(g−1,g)(0 + ug, v

−1
g + vg)

+
1

2
dMi2|(g−1,g)(u

−1
g + ug, 0 + vg),

(3.114)

as it follows from similar computations to those in the proof of Lemma 2.14 that they

satisfy the required properties. Here i2 ∈ I2 is any choice of index such that (g−1, g) ∈ U2
i2

and by u−1
g we mean dinvg(ug) for inv : G → G, g 7→ g−1. In particular, these explicit

computations yield another proof of the existence of ⟨·, ·⟩ and ΘL in Theorem 3.43 which

is also valid when T is not connected. Note also that we can add the two formulas to

obtain a formula for ΘL,en:

ΘL,en
i1|g (ug, vg) = dAi1d0(i2)|g(ug, vg) + dMi2|(g−1,g)(u

−1
g + ug, 0 + vg), (3.115)

Corollary 3.45. Let G, T be Lie groups with G compact and T abelian. Any multi-

plicative T -gerbe (G,m, α) over G determines an Ad-invariant symmetric bilinear form

⟨·, ·⟩ : g⊗ g→ t, a connective structure (∇,∇m) on (G,m, α) well-defined up to isomor-

phism and a curving ΘL on G∇ with curvature µ and such that ∇m has curvature ν,

where µ, ν are as in (3.109).

Proof. Straightforward from Proposition 3.42 and Theorem 3.43.

Example 3.46. Let T be the multiplicative V1/Λ1-gerbe over V0/Λ0 constructed from a

bilinear form ⟨·, ·⟩ : Λ0⊗Λ0 → Λ1 as in Example 3.38 and write ⟨·, ·⟩ = ⟨·, ·⟩sy+⟨·, ·⟩sk for
its decomposition in symmetric and skew-symmetric forms. The connection θ described

in Example 3.38 is a connective structure on T . Its corresponding pairing by Theorem

3.43 is ⟨·, ·⟩sy, while the Maurer-Cartan curving is Θ = 1
2⟨dv ∧ dv⟩sk ∈ Ω2(V0, V1); thus,

the Maurer-Cartan enhanced curving is Θen = 1
2⟨dv ⊗ dv⟩.

Example 3.47. For the multiplicative U(1)-gerbe String(G) over a compact simple Lie

group G from Example 3.37, it follows by construction and by Theorem 3.43 that there

is a connective structure on it inducing as pairing the multiple of the Killing form such

that the corresponding [µ] ∈ H3(G,Z) = Z is a generator of H3(G,Z). [195] provides
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an explicit description of cocycle data for a connective structure and a curving on the

gerbe String(G)→ G with curvature µ (without a connection onm, as there is no known

explicit description of m itself).

3.2.4 Connective structures as Maurer-Cartan forms and as prequan-

tizations of BG

The main result from [238] states that, for Lie groups G, T with T abelian, the clas-

sification of multiplicative T -gerbes over G coincides with the classification of central

extensions of G by BT . To state this result we recall from section 3.1.2 that a Lie

2-group G determines topological groups G, T with T abelian such that G fits in an

extension of topological 2-groups of the form

1→ BT → G→ G→ 1, (3.116)

as well as a continuous action ▷ of G on T . We say G is a central extension of G by T

if ▷ is trivial. We recall here the proof of the main result from [238].

Theorem 3.48 ([238]). Let G, T be Lie groups with T abelian. There is an equivalence

of bicategories between the bicategory of central extensions of G by BT as Lie 2-groups

and the bicategory of multiplicative T -gerbes over G.

Proof. Given a multiplicative T -gerbe over G, we describe it with cocycle data λi1j1k1 ,

mi2j2 , αi3 (3.94), assuming for simplicity that λi1j1k1 is normalized (i.e., it equals 1

whenever there are two coinciding indices). Then we construct the Lie groupoid G as in

Example 3.6; i.e. we let G0 := ⊔i1∈I1U1
i1
, G1 := ⊔i1j1∈I1U1

i1j1
×T , where (i1, j1, g, t) ∈ G1

is seen as an arrow (i1, g)→ (j1, g) and composition is defined as

(j1, k1, g, t2) ◦ (i1, j1, g, t1) := (i1, k1, g, t1t2λi1j1k1(g)); (3.117)

the cocycle condition for λi1j1k1 ensures that this is associative. Then the anafunctor

m : G×G→ G is defined by the total space

M := {(i11, i21, i121 , i2, g1, g2, t) ∈ I31 × I2 ×G2 × T |

g1 ∈ U1
i11
, g2 ∈ U1

i21
, g1g2 ∈ U1

i121
, (g1, g2) ∈ U1

i2}/ ∼,
(3.118)

where the equivalence relation is (i11, i
2
1, i

12
1 , i2, g1, g2, t) ∼ (i11, i

2
1, i

12
1 , j2, g1, g2, t

′) for

t′ := t · λ−1
i11d2(i2)d2(j2)

(g1) · λ−1
i21d0(i2)d0(j2)

(g2) · λi121 d1(i2)d1(j2)(g1g2) ·m
−1
i2j2

(g1, g2). (3.119)
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The cocycle condition for mi2j2 ensures that this is indeed an equivalence relation. The

anchor maps of the anafunctor are

π0([i
1
1, i

2
1, i

12
1 , i2, g1, g2, t]) = ((i11, g1), (i

2
1, g2)),

π1([i
1
1, i

2
1, i

12
1 , i2, g1, g2, t]) = (i121 , g1g2)

(3.120)

and the actions are

ρ0(((i
1
1, j

1
1 , g1, t1),(i

2
1, j

2
1 , g2, t2)), [i

1
1, i

2
1, i

12
1 , i2, g1, g2, t])

= [j11 , j
2
1 , i

12
1 , i2, g1, g2, t · t1t2 · λi11j11d2(i2)(g1) · λi21j21d0(i2)(g2)],

(3.121)

ρ1([i
1
1, i

2
1, i

12
1 , i2, g1, g2, t],(j

12
1 , i

12
1 , g1g2, t12))

= [i11, i
2
1, j

12
1 , i2, g1, g2, t · t12 · λ−1

i121 j121 d1(i2)
(g1g2)].

(3.122)

The cocycle condition for mi2j2 ensures that these are well-defined. The transformation

α is defined as follows. First, the total spaces of the anafunctors F := m ◦ (m× id) and
F ′ := m ◦ (id×m) are

F := {(i11, i21,i31, i121 , i1231 , i1,22 , i12,32 , g1, g2, g3, t) ∈ I51 × I22 ×G3 × T |

g1 ∈ U1
i11
, g2 ∈ U1

i21
, g3 ∈ U1

i31
, g1g2 ∈ U1

i121
,

g1g2g3 ∈ U1
i1231

, (g1, g2) ∈ U1
i1,22

, (g1g2, g3) ∈ U2
i12,32

}/ ∼,

(3.123)

F ′ := {(i11, i21,i31, i231 , i1231 , i2,32 , i1,232 , g1, g2, g3, t) ∈ I51 × I22 ×G3 × T |

g1 ∈ U1
i11
, g2 ∈ U1

i21
, g3 ∈ U1

i31
, g2g3 ∈ U1

i231
,

g1g2g3 ∈ U1
i1231

, (g2, g3) ∈ U1
i2,32

, (g1, g2g3) ∈ U2
i1,232

}/ ∼,

(3.124)

where the equivalence relations are

(i11, i
2
1, i

3
1, i

12
1 , i

123
1 , i1,22 , i12,32 , g1, g2, g3, t) ∼ (i11, i

2
1, i

3
1, j

12
1 , i

123
1 , j1,22 , j12,32 , g1, g2, g3, t

′)

t′ := t · λ−1

i11d2(i
1,2
2 )d2(j

1,2
2 )

(g1) · λ−1

i21d0(i
1,2
2 )d0(j

1,2
2 )

(g2) · λ−1

i31d0(i
12,3
2 )d0(j

12,3
2 )

(g3)

λ
i121 d1(i

1,2
2 )d1(j

1,2
2 )

(g1g2) · λ−1

i121 d2(i
12,3
2 )d2(j

12,3
2 )

(g1g2) · λi1231 d1(i
12,3
2 )d1(j

12,3
2 )

(g1g2g3)

λ
i121 j121 d1(i

1,2
2 )

(g1g2) · λ−1

i121 j121 d2(i
12,3
2 )

(g1g2) ·m−1

i1,22 j1,22

(g1, g2) ·m−1

i12,32 j12,32

(g1g2, g3).

(3.125)
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and

(i11, i
2
1, i

3
1, i

23
1 , i

123
1 , i2,32 , i1,232 , g1, g2, g3, t) ∼ (i11, i

2
1, i

3
1, j

23
1 , i

123
1 , j2,32 , j1,232 , g1, g2, g3, t

′)

t′ := t · λ−1

i11d2(i
1,23
2 )d2(j

1,23
2 )

(g1) · λ−1

i21d2(i
2,3
2 )d2(j

2,3
2 )

(g2) · λ−1

i31d0(i
2,3
2 )d0(j

2,3
2 )

(g3)

λ
i231 d1(i

2,3
2 )d1(j

2,3
2 )

(g2g3) · λ−1

i231 d0(i
1,23
2 )d0(j

1,23
2 )

(g2g3) · λi1231 d1(i
1,23
2 )d1(j

1,23
2 )

(g1g2g3)

λ
i231 j231 d1(i

2,3
2 )

(g2g3) · λ−1

i231 j231 d0(i
1,23
2 )

(g2g3) ·m−1

i2,32 j2,32

(g2, g3) ·m−1

i1,232 j1,232

(g1, g2g3).

(3.126)

The anchors and actions are defined similarly as in (3.121), (3.122). Then we define a

map α : F → F ′ by

[(i11, i
2
1, i

3
1, i

12
1 , i

123
1 ,d3(i3), d1(i3), g1, g2, g3, t)]

7→ [(i11, i
2
1, i

3
1, i

23
1 , i

123
1 , d0(i3), d2(i3), g1, g2, g3, tαi3(g1, g2, g3))],

(3.127)

where i3 ∈ I3 is any choice of index such that (g1, g2, g3) ∈ I3. The simplicial identities

for the index sets of the simplicial cover, together with the cocycle equations for αi3 ,

imply that α is a well-defined transformation of anafunctors satisfying the pentagon

identity. The unit and the unitors can be constructed similarly, from the canonical data

of Remark 3.33. This construction can be enhanced to an equivalence of bicategories.

Remark 3.49. In the proof of Theorem 3.48 we have presented all the explicit compu-

tations for completeness, but a more straightforward way to prove this is by noting the

following observations that we have used in the proof of Theorem 3.48.

1. A gerbe has an associated Lie groupoid as in Example 3.6.

2. An isomorphism of gerbes determines an anafunctor between the corresponding

Lie groupoids.

3. A 2-isomorphism of gerbes determines a transformation between the corresponding

anafunctors.

Then it is clear that multiplicative gerbes as in Definition 3.31 are equivalent to Lie

2-groups as in Definition 3.9.

Let G be the Lie 2-group corresponding to a multiplicative T -gerbe G → G by Theorem

3.48. From the description of G0 and G1 in the proof, it is easy to see that its Lie 2-

algebra is the 2-step complex of vector spaces t
0→ g. At least when G is compact, simple

and simply connected, and G is the String(G) group from Example 3.37, it is customary

to regard R 0→ g as equipped with the L∞-structure defined by the Lie bracket of g
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and the 3-bracket {v1, v2, v3} := ⟨v1, [v2, v3]⟩, where ⟨·, ·⟩ is the pairing associated to

String(G) by Corollary 3.45. We proceed to derive this structure in a natural way using

the notion of Maurer-Cartan forms from Section 3.1.4.

Proposition 3.50. Let G be the Lie 2-group corresponding to a multiplicative T -gerbe

G → G by Theorem 3.48. Then, a connective structure on G determines

θ0 ∈ Ω1(BG1, g), θ1 ∈ Ω1(BG2, t), Θ0 ∈ Ω2(BG1, t) (3.128)

such that

0 = d∗2θ
0 − d∗1θ0 +Ad(d2(·))d∗0θ0, (3.129)

0 = δθ1, (3.130)

dθ0 = −1

2
[θ0 ∧ θ0], (3.131)

dΘ0 =
1

6
⟨θ0 ∧ [θ0 ∧ θ0]⟩, (3.132)

dθ1 − δΘ0 = ⟨d∗2θ0 ∧Ad(d2(·))d∗0θ0⟩. (3.133)

In particular, (θ0, θ1) is a right-invariant Maurer-Cartan form on G for the action of G

on t
0→ g given by the adjoint action of G on g and the trivial action on t.

Proof. In this case π : BG1 → G is the surjective submersion on which the gerbe G is

described and BG2 is the total space of the isomorphism of gerbes m : g∗1G ⊗ g∗2G →
(g1g2)

∗G. Then taking θ0 := π∗θR, θ1 the connection 1-form of the connection on m and

Θ0 the Maurer-Cartan curving yields the equations above by Theorem 3.43.

Proposition 3.51. Let G be the Lie 2-group corresponding to a multiplicative T -gerbe

G → G by Theorem 3.48. Then, a connective structure on G determines a differentiation

of G in the sense of Definition 3.24, where t
0→ g is equipped with the cubic L∞-structure

defined by

[v1, v2] :=

[v1, v2]g v1, v2 ∈ g,

0 otherwise
,

{v1, v2, v3} :=

⟨v1, [v2, v3]⟩ v1, v2, v3 ∈ g,

0 otherwise
,

(3.134)

where [·, ·]g denotes the Lie bracket of g.

Proof. Choose cocycle data λi1j1k1 , mi2j2 , αi3 (3.94) for G and use the construction of G

in the proof of Theorem 3.48. Let Ai1j1 , Mi2 be cocycle data for a connective structure
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as in (3.106) and let Θi1 be the corresponding Maurer-Cartan curving defined by (3.114).

For v, v1, v2 ∈ g and u ∈ t we define Xv ∈ Γ(TG)G and αu, α(v1,v2) ∈ Γ(AG) by

Xv(i1, j1, g, t) := (i1, j1, v · g,Ai1j1|g(v · g) · t),

αu(i, g) := (i, i, 0g, u),

α(v1,v2)(i, g) := (i, i, 0g,Θi|g(v1 · g, v2 · g)).

(3.135)

From Definition 2.16 we see that this defines a morphism of L∞-algebras g⊕t[1]→ Γ(TG)

if and only if

∂αu = 0, (3.136)

[Xv1 , Xv2 ]−X [v1,v2] = ∂α(v1,v2), (3.137)

[Xv, αu] = 0, (3.138)

α⟨v1,[v2,v3]⟩ = Xv1(α(v2,v3))−Xv2(α(v1,v3)) +Xv3(α(v1,v2))

− α[v1,v2],v3 + α([v1,v3],v2) − α([v2,v3],v1).
(3.139)

for v, v1, v2, v3 ∈ g and u ∈ t. Now (3.136) and (3.138) follow easily from the definition

of ∂ and [·, ·], while (3.137) is equivalent to dAi1j1 = Θi1 −Θj1 and (3.139) is equivalent

to 1
6⟨θ

R ∧ [θR ∧ θR]⟩ = dΘi1 , which concludes the proof.

In Section 3.2.5 we will also show how to use connective structures on multiplicative

gerbes to define an exponential map on their associated Lie 2-groups. There is yet

another interesting construction associated to the choice of a connective structure on

a multiplicative gerbe. Namely, recall from Example 2.35 that, for any Lie group G,

the data of a symmetric, Ad-invariant (possibly not) non-degenerate bilinear form ⟨·, ·⟩ :
g⊗ g→ R induces a 2-shifted (pre)symplectic structure ω = (µ, ν) on BG• given by the

differential forms

µ =
1

6
⟨θL ∧ [θL ∧ θL]⟩ ∈ Ω3(BG1,R), ν = ⟨g∗1θL ∧ g∗2θR⟩ ∈ Ω2(BG2,R) (3.140)

When ⟨·, ·⟩ is the pairing associated to a multiplicative U(1)-gerbe with connective struc-

ture over G by Theorem 3.43, and G is the corresponding Lie 2-group from Theorem

3.48, then there is a sequence of simplicial manifolds

B2U(1)→ BG
π→ BG (3.141)

(where B2U(1) := B(BU(1))) and equations (3.132) and (3.133) from Proposition 3.50

imply that (θ0, θ1) is a 2-shifted 1-form on BG with total derivative π∗(µ, ν). In the

language of [231], (BG, θ1,Θ0) is a prequantization of (BG,µ, ν). We can also see (θ1,Θ0)

as an example of a 2-shifted (pre)contact structure on BG, in the sense of [39] (the author
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thanks Miquel Cueca and Chenchang Zhu for this observation). In particular, we can

associate to it the analog of the (pre)symplectic cone of a standard contact structure.

Proposition 3.52. Let G be the Lie 2-group corresponding to a multiplicative U(1)-

gerbe G → G by Theorem 3.48. Then, a connective structure on G determines a 2-shifted

presymplectic structure on BG× R∗ defined by

t

6
π∗⟨θL ∧ [θL ∧ θL]⟩+ dt ∧Θ0 ∈ Ω3(BG1 × R∗,R), (3.142)

tπ∗⟨g∗1θL ∧ g∗2θR⟩+ dt ∧ θ1 ∈ Ω2(BG2 × R∗,R), (3.143)

where t is the coordinate in R∗, π : BGn → BGn is the projection map and ⟨·, ·⟩ is the

pairing associated to the connective structure by Theorem 3.43. This is in fact 2-shifted

symplectic if and only if ⟨·, ·⟩ is non-degenerate.

Proof. That this is a 2-shifted presymplectic structure is straightforward by Proposition

3.50, since δ does not act on the t coordinate. The tangent complex of BG× R∗ is the

following chain complex of vector bundles over R∗

R[2] 0→ g[1]
0→ R; (3.144)

the cotangent complex is

R∗ 0→ g∗[−1] 0→ R∗[−2]. (3.145)

Then tπ∗⟨g∗1θL ∧ g∗2θR⟩ + dt ∧ θ1 induces the map g → g∗ given at each t ∈ R∗ by

v 7→ t⟨v, ·⟩ and the canonical isomorphisms R → R∗. Thus, this structure is 2-shifted

symplectic precisely when ⟨·, ·⟩ is non-degenerate.

3.2.5 The exponential map

Let G be a multiplicative T -gerbe over a Lie group G and let exp∗G → g be the pull-

back gerbe by the exponential map exp : g → G. The multiplicative structure on G,
and the fact that the exponential map is Ad-equivariant, implies that exp∗G → g is an

equivariant gerbe in the sense of [199]. Since g is contractible, it is clear that exp∗G → g

is trivial as a gerbe, but one might wonder whether it is trivial as an equivariant gerbe.

Definition 3.53. Let G be a multiplicative T -gerbe over G and let ϵ be a trivialization

of exp∗G → g as a gerbe, where exp : g → G is the exponential map. An equivariant
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structure on ϵ is a 2-isomorphism αϵ of gerbes over G× g

(Trivial) exp(v)∗G

(exp(Ad(g)v))∗G g∗G ⊗ exp(v)∗G ⊗ (g−1)∗G

v∗ϵ

(Ad(g)v)∗ϵ g∗inv

Ad

αϵ
, (3.146)

where Ad := (gexp(v), g−1)∗m ◦ (g, exp(v))∗m and inv is defined by (3.93), such that

over G×G× g we have

exp(Ad(g1g2)v)
∗G (Trivial) exp(v)∗G

(g1g2)
∗G ⊗ exp(v)∗G ⊗ (g−1

2 g−1
1 )∗G

v∗ϵ(Ad(g1g2)v)∗ϵ

(g1g2)∗inv(g1g2,v)∗Ad

(g1g2,v)∗αϵ
=

exp(Ad(g1g2)v)
∗G (Trivial) exp(v)∗G

g∗1G ⊗ exp(Ad(g2)v)
∗G ⊗ (g−1

1 )∗G exp(Ad(g2)v)
∗G g∗2G ⊗ exp(v)∗G ⊗ (g−1

2 )∗G

v∗ϵ

g∗2 inv

(g2,v)∗Adg∗1 inv

(g1,Ad(g2)v)∗Ad (Ad(g2)v)∗ϵ

(Ad(g1g2)v)∗ϵ

(g1g2,v)∗Ad ◦ (g1g2)∗inv

(g2,v)∗αϵ(g1,Ad(g2)v)∗αϵ

αAd

.

(3.147)

In (3.147) we write αAd for the following 2-isomorphism of gerbes obtained from the

associator of G.

(g1, g2, exp(v)g
−1
2 g−1

1 )∗α−1 ◦ (g2, exp(v)g−1
2 , g−1

1 )∗α ◦ (exp(v), g−1
2 , g−1

1 )∗α

◦ (g2, g−1
2 , g−1

1 )∗α−1 ◦ (g1, g2, g−1
2 g−1

1 )∗α.
(3.148)

The following is a new result that will allow us to define the exponential map of a

multiplicative gerbe with connective structure and to endow the gauge 2-group of a

principal 2-bundle with a smooth structure. The 1-form (3.149) is crucial for the latter

purpose, as it appears in the transition functions of heterotic Courant algebroids (4.73).

Theorem 3.54. Let G be a multiplicative T -gerbe over G. Then,

1. G admits a connective structure if and only if every trivialization ϵ of exp∗G → g

admits an equivariant structure.
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2. If ⟨·, ·⟩ : g⊗g→ t corresponds to a connective structure on G, then any trivialization

ϵ can be equipped with a connection such that there exists an equivariant structure

αϵ whose covariant derivative is ηϵ ∈ Ω1(G× g, t) defined by

ηϵ|(g,v)(vg + v̇) := 2⟨v, g−1vg⟩. (3.149)

Proof. Assume first that ϵ is a trivialization of exp∗G with equivariant structure αϵ.

Recall from Proposition 3.42 that by choosing any connections on G and m we obtain

τ ∈ Ω1(G3, t) such that δτ = 0, and that a connective structure on G exists if and only

if there is σ ∈ Ω1(G2, t) with δσ = τ . By Bott’s Theorem 2.13, we may assume without

loss of generality that

τ(g1,g2,g3)(vg1 + vg2 + vg3) = κ(g2, g3, g
−1
1 vg1) (3.150)

for κ : G×G× g→ t, linear on g, satisfying

κ(g1, g2, v)− κ(g1, g2g3, v) + κ(g1g2, g3, v)− κ(g2, g3, g−1
1 vg1) = 0. (3.151)

The existence of σ as above is then equivalent to the existence of χ : G× g→ t with

κ(g1, g2, v) = χ(g1, v)− χ(g1g2, v) + χ(g2, Ad(g
−1
1 )v). (3.152)

Now choose a connection on ϵ and let η ∈ Ω1(G× g, t) be the covariant derivative of αϵ.

Then cocycle condition (3.147) implies the following identity of 1-forms over G×G× g

(g1g2, v)
∗η − (g1, Ad(g2)v)

∗η − (g2, v)
∗η =

= −(g1, g2, exp(v)g−1
2 g−1

1 )∗τ + (g2, exp(v)g
−1
2 , g−1

1 )∗τ + (exp(v), g−1
2 , g−1

1 )∗τ

− (g2, g
−1
2 , g−1

1 )∗τ + (g1, g2, g
−1
2 g−1

1 )∗τ.

(3.153)

Evaluating at (g1, g2, 0) ∈ G×G× g, (0, 0, v) ∈ Tg1G1 × Tg2G× T0g and using formula

(3.150) for τ we see that χ(g, v) := −η(g−1,0)(0 + v) satisfies (3.152) and so G admits a

connective structure, as we wanted to show.

Conversely, assume that G has a connective structure and let ϵ be any trivialization of

exp∗G → g. The two corresponding trivializations of exp(Ad(g)v)∗G in diagram (3.146)

differ by a T -bundle P ϵ → G × g and a 2-isomorphism αϵ is equivalent to a section of

P ϵ. Since any two trivializations of exp∗G → g are isomorphic, we can assume without

loss of generality that 0∗ϵ = 1G . Then it is easy to see that there is a canonical 2-

isomorphism αϵ over G×{0}, given by the right unitor of G. This defines a section s of

P ϵ|G×{0}, which we proceed to extend to a global section on G × g. For this, choose an
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arbitrary connection ∇ϵ,0 on ϵ. Since inv and Ad are also equipped with connections,

this defines a connection ∇P,0 on P ϵ. We define then s(g, v) ∈ P(g,v) to be the parallel

transport at time 1 of s(g, 0) ∈ P(g,0) along the curve γg,v : R → G × g, t 7→ (g, tv).

For the corresponding 2-isomorphism αϵ, the cocycle condition (3.147) is equivalent to

α(s(g2, v) ⊗ s(g1, Ad(g2)v)) = s(g1g2, v), where α : P(g2,v) ⊗ P(g1,Ad(g2v) → P(g1g2,v) is

an isomorphism defined by the associator of G. Since the associator behaves well with

respect to the right unitor, it follows that α preserves the values at v = 0 of the sections.

Since the associator preserves the connective structure of G, it follows that α preserves

the connections on the T -bundles. Hence, it preserves the sections, as they are defined

by parallel transport.

To prove 2, we note first that the covariant derivative of the 2-isomorphism αϵ con-

structed from∇ϵ,0 but measured with respect to an arbitrary connection∇ϵ,σ := ∇ϵ,0+σ,
σ ∈ Ω1(g, t), is precisely

s∗∇P,0 + (gvg−1)∗σ − v∗σ ∈ Ω1(G× g, t). (3.154)

From the standard formula for parallel transport and Stokes theorem one can deduce

that

s∗∇P,0(g,v)(vg + v̇) =

∫ 1

0
FP,0(g,tv)(0 + v, vg + t · v)dt, (3.155)

where FP,0 ∈ Ω2(G× g, t) is the curvature of ∇P,0. If F ϵ,0 ∈ Ω2(g, t) is the curvature of

the trivialization ϵ with connection ∇ϵ,0, then

FP,0 = (gvg−1)∗F ϵ,0−v∗F ϵ,0−⟨g∗θL∧exp(v)∗θR⟩−⟨(gexp(v))∗θL∧(g−1)∗θR⟩. (3.156)

One can then check that the following choice of σ yields the desired covariant derivative.

σv(v̇) = −
∫ 1

0
tF ϵ,0tv (v, v̇)dt. (3.157)

Now let G be the Lie 2-group corresponding to a multiplicative T -gerbe G → G by

Theorem 3.48. Then it follows from Remarks 3.33 and 3.49 that G has a coherent

inversor (Definition 3.19). We also consider the adjoint action of G on t
0→ g given by

the adjoint action of G on g and the trivial action on t.

Corollary 3.55. Let G be the Lie 2-group corresponding to a multiplicative T -gerbe

G → G by Theorem 3.48. Then, a connective structure on G determines an exponential

map, in the sense of Definition 3.24, for G equipped with the coherent inversor and the

adjoint action above.
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Proof. Choose a trivialization ϵ of exp∗G → g. If G is given by cocycle data λi1j1k1 ,

mi2j2 , αi3 (3.94), then ϵ is given by functions ϵi1j1 : exp∗Ui1j1 → T , where

exp∗Ui1j1 := {v ∈ g | exp(v) ∈ Ui1j1}, (3.158)

such that ϵi1j1ϵj1k1 = ϵi1k1λi1j1k1(exp(v)). This determines an anafunctor exp : g//t→ G

with total space

E := {(i1, j1, v, t) ∈ I1 × I1 × g× T | exp(v) ∈ Ui1j1}/ ∼

(i1, j1, v, t) ∼ (i′1, j1, v, t · λi′1i1j1(exp(v))ϵi′1i1(v)
−1).

(3.159)

The anchor maps are π0([i1, j1, v, t]) = v and π1([i1, j1, v, t]) = (j1, exp(v)), while the

action maps are

ρ0(u, [i1, j1, v, t]) = [i1, j1, v, texp(u)],

ρ1([i1, j1, v, t], (j1, k1, exp(v), t
′)) = [i1, k1, v, t · t′ · λi1j1k1(exp(v)].

(3.160)

Since the exponential maps of G and T are local diffeomorphisms, it follows that condi-

tions 2a and 2b from Definition 3.24 are satisfied for the anafunctor exp. Then Remark

3.49 implies that an equivariant structure on ϵ in the sense of Definition 3.53 determines

an equivariant structure on exp in the sense of Definition 3.24. Hence, the result follows

from Theorem 3.54.

3.3 Strict Lie 2-groups

3.3.1 Lie crossed modules and adjustments

Definition 3.56 ([19, 55]). A Lie 2-group (G,m, α) is strict if m : G × G → G is a

smooth functor, the quasi-inverse of p1 × m is also a smooth functor and α = id. A

strict homomorphism of Lie 2-groups is a strict smooth functor preserving the product

functors. A Lie crossed module is a quadruple (G̃,H, f, ▷), where G̃, H are Lie groups,

f : H → G̃ is a smooth homomorphism and g ▷ h denotes a smooth left action of G̃ on

H by automorphisms that satisfies

f(g ▷ h) = gf(h)g−1, (3.161)

f(h1) ▷ h2 = h1h2h
−1
1 , (3.162)

for g ∈ G̃, h, h1, h2 ∈ H. A strict homomorphism of Lie crossed modules (G̃1, H1, f1, ▷1)→
(G̃2, H2, f2, ▷2) is a pair of group homomorphisms G̃1 → G̃2, H1 → H2 preserving f, ▷.
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Proposition 3.57 ([19, 55]). The category of strict Lie 2-groups and strict homomor-

phisms is equivalent to the category of Lie crossed modules and strict homomorphisms.

Proof. Given a Lie crossed module (G̃,H, f, ▷), construct a strict Lie 2-group (G,m) as

follows. As a groupoid, G := H\\G̃ (cf. Example 3.5), with H acting on G̃ on the left

as h · g = f(h)g. The product m : G × G → G is defined on arrows as the semi-direct

product

m((g1, h1), (g2, h2)) = (g1g2, h1 · g1 ▷ h2). (3.163)

The axioms imply that this is a well-defined associative functor. Conversely, given a

strict Lie 2-group (G,m), the since m is strictly associative it follows that it induces Lie

group structures on G0 and G1, with s, t : G1 → G0 smooth group homomorphisms.

Let G̃ := G0, H := Ker(s : G1 → G0) and f : H → G̃ be the restriction of t : G1 → G0.

Then G̃ acts on H as g ▷h := m(m(idg, h), idg−1) making (G̃,G, f, ▷). This construction

can be enhanced to an equivalence of categories, see [19].

Let (G̃,H, f, ▷) be a Lie crossed module and let G be its corresponding Lie 2-group by

Proposition 3.57. We can present its delooping BG• (cf. Section 3.1.2) in terms of the

Lie crossed module structure. It is the simplicial manifold with

BGn := {({gij}i<j∈[n],{hijk}i<j<k∈[n]) ∈ G̃(
n
2) ×H(n3) |

∀ i < j < k ∈ [n], gik = f(hijk)gijgjk,

∀ i < j < k < l ∈ [n], hiklhijk = hijl · gij ▷ hjkl}

(3.164)

and simplicial maps given by sending a non-decreasing function f : [n1] → [n2] to the

function

f∗ : BGn2 → BGn1

({gij}i<j∈[n2], {hijk}i<j<k∈[n2]) 7→ ({f∗gij}i<j∈[n1], {f
∗hijk}i<j<k∈[n1]),

(3.165)

where

f∗gij :=

gf(i)f(j) if f(i) < f(j)

1 if f(i) = f(j)
, f∗hijk :=

hf(i)f(j)f(k) if f(i) < f(j) < f(k)

1 otherwise
.

(3.166)



Lie 2-groups and Maurer-Cartan forms 107

The first levels can also be identified with BG1 = G̃, BG2 = G̃2 ×H, BG3 = G̃3 ×H3

with face maps

d0(g1, g2, h) = g2,

d1(g1, g2, h) = f(h)g1g2,

d2(g1, g2, h) = g1,

d0(g1, g2, g3, h1,2, h12,3, h2,3) = (g2, g3, h2,3),

d1(g1, g2, g3, h1,2, h12,3, h2,3) = (f(h1,2)g1g2, g3, h12,3),

d2(g1, g2, g3, h1,2, h12,3, h2,3) = (g1, f(h2,3)g2g3, h12,3 · h1,2 · g1 ▷ h−1
2,3),

d3(g1, g2, g3, h1,2, h12,3, h2,3) = (g1, g2, h1,2).

(3.167)

For a Lie crossed module (G̃,H, f, ▷), we will write g̃, h for the Lie algebras of G̃ and

H, respectively. It is clear that the Lie 2-algebra of the Lie 2-group G associated

to (G̃,H, f, ▷) is the complex h
f→ g̃, where we abuse notation by writing f for the

linearization of f : H → G̃.

Definition 3.58 ([220]). Let (G̃,H, f, ▷) be a crossed module. An adjustment on it is

a map κ̃ : G̃× g̃→ h, linear in g̃, such that

κ̃(g1g2, v) = g1 ▷ κ̃(g2, v)− κ̃(g1, f(κ(g2, v))) + κ̃(g1, Ad(g2)v), (3.168)

κ̃(f(h), v) = h · v ▷ h−1. (3.169)

Proposition 3.59. Let G be the Lie 2-group corresponding to a Lie crossed module

(G̃,H, f, ▷). Then, an adjustment κ̃ : G̃× g̃→ h defines a left adjoint action of G in the

sense of Definition 3.23 by

g̃ · v := Ad(g̃)v − fκ̃(g̃, v), g̃ ∈ G̃, v ∈ g̃, (3.170)

g̃ · u := g̃ ▷ u− κ̃(g̃, fu), g̃ ∈ G̃, u ∈ h, (3.171)

and a right-invariant Maurer-Cartan form, where

θ0 ∈ Ω1(G̃, g̃), θ1 ∈ Ω1(G̃2 ×H, h)

are defined by

θ0g(vg) := vgg
−1, (3.172)

θ1(g1,g2,h)(vg1 + vg2 + vh) := vh · (vg1vg2g−1
2 g−1

1 ) ▷ h−1 + κ̃(g1, vg2g
−1
2 ). (3.173)
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Proof. It follows from a straightforward computation using axioms (3.168), (3.169) and

the description in (3.167) of the face maps of BG•.

Remark 3.60. In the setting of Proposition 3.59, we can also define a right adjoint action

by v · g̃ = g̃−1 ·v. In this case, the following 1-forms define a left-invariant Maurer-Cartan

form.

θ0g(vg) := g−1vg, (3.174)

θ1(g1,g2,h)(vg1 + vg2 + vh) := g−1
2 g−1

1 ▷ h−1vh + κ̃(g−1
2 , g−1

1 vg1). (3.175)

Example 3.61. The categorical tori from Example 3.14 can be described as Lie crossed

modules by letting G̃ := V0, H := Λ0 × V1/Λ1 and

f(λ0, [v1]) := λ0, (3.176)

u0 ▷ (λ0, [u1]) := (λ0, [u1 + ⟨u0, λ0⟩]). (3.177)

A canonical adjustment is given by κ(u0, v0) := −⟨u0, v0⟩.

Example 3.62. For G a compact, simple, simply connected Lie group, the Lie 2-group

associated to the multiplicative gerbe String(G) from Example 3.37 admits models as an

infinite-dimensional Lie crossed module. The first such model was constructed in [18],

and is equipped with an adjustment in [220]. A simplified model is presented in [180].

3.3.2 Central Lie crossed modules

Definition 3.63 ([206]). A central Lie crossed module is a Lie crossed module (G̃,H, f, ▷)

such that the induced action of G := G̃/Im(f) on T := Ker(f) by ▷ is trivial.

If G is the Lie 2-group associated to a central Lie crossed module (G̃,H, f, ▷), then G is

a central extension of G by BT in the sense of Section 3.2.4. Thus, if G is a Lie group,

then Theorem 3.48 implies that there is also a model for G as a multiplicative T -gerbe

over G. As discussed in [206], such model can be explicitly presented (with the language

of bundle gerbes, see Section 3.2.1) in terms of the crossed module structure as follows.

First, in order to give a T -gerbe over G we use the surjective submersion G̃→ G and we

define a T -bundle L→ G̃×G G̃ by L := G̃×H, with projection (g, h) 7→ (g, f(h)g) and

T acting on H through the group multiplication; then there is a canonical isomorphism

p∗12L⊗ p∗23L→ p∗13L over G̃×G G̃×G G̃ because

p∗13L = {(g, g′, g′′, h0,′′) ∈ G̃3 ×H | g′′ = f(h0,
′′
)g}

p∗12L⊗ p∗23L = {(g, g′, g′′, h0,′ , h′,′′) ∈ G̃3 ×H2 | g′ = f(h
′,′′)g, g′′ = f(h0,

′
)g}/ ∼
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with (h0,
′
, h

′,′′) ∼ (th0,
′
, t−1h

′,′′) for t ∈ T and so we may define [h0,
′
, h

′,′′ ] 7→ h
′,′′h0,

′
.

This completes the construction of the bundle gerbe G → G. Now, in order to give an

isomorphism g∗1G ⊗ g∗2G → (g1g2)
∗G, we cover G×G by G̃× G̃ and give an isomorphism

between the T -bundles over (G̃× G̃)×G×G (G̃× G̃) that describe the gerbes g∗1G ⊗ g∗2G
and (g1g2)

∗G; these are

{(g1, g2, g′1, g′2, h1, h2) ∈ G̃4 ×H2 | g′1 = f(h1)g1, g
′
2 = f(h2)g2}/ ∼,

{(g1, g2, g′1, g′2, h12) ∈ G̃4 ×H | g′1g′2 = f(h12)g1g2},

respectively, with the equivalence relation (h1, h2) ∼ (th1, t
−1h2) for t ∈ T . The iso-

morphism is then (g1, g2, g
′
1, g

′
2, [h1, h2]) 7→ (g1, g2, g

′
1, g

′
2, h1 · g1 ▷ h2). For this to be

well-defined we use that g ▷ t = t and for it to be an isomorphism of gerbes we have to

check that it is compatible over (G̃ × G̃) ×G×G (G̃ × G̃) ×G×G (G̃ × G̃) with the gerbe

product; this reduces to proving

h
′,′′

1 h0,
′

1 g1 ▷ (h
′,′′

2 , h0,
′

2 ) = h
′,′′

1 g′1 ▷ h
′,′′

2 · h
0,′

1 · g1 ▷ h
0,′

2 (3.178)

when g′1 = f(h0,
′

1 )g1, which follows from the axioms. To conclude the construction of a

multiplicative T -gerbe over G, it only remains to give the 2-isomorphism α but in this

case we can simply take the identity, which follows essentially from

h1 · g1 ▷ h2 · (g1g2) ▷ h3 = h1 · g1 ▷ (h2 · g2 ▷ h3). (3.179)

We proceed to characterize the category of connective structures on this multiplicative

gerbe in terms of the adjustments from Section 3.3.1.

Definition 3.64. Let (G̃,H, f, ▷) be a central Lie crossed module and letG := G̃/Im(f),

T := Ker(f). A strong adjustment on (G̃,H, f, ▷) is a pair (s, κ), where

1. s : h→ t is a linear splitting of the inclusion map t→ h.

2. κ : G̃× g̃→ t is linear on g̃ and satisfies

κ(g1g2, v) = κ(g2, Ad(g
−1
1 )v) + κ(g1, v), (3.180)

κ(f(h), v) = s(h−1 · v ▷ h), (3.181)

κ(g, f(u)) = s(g−1 ▷ u− u). (3.182)

Given two strong adjustments (s1, κ1), (s2, κ2), an isomorphism between them is a linear

map ϕ : g̃→ t such that s2(u)−s1(u) = ϕf(u) and κ2(g, v)−κ1(g, v) = ϕ(Ad(g−1)v−v).
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Remark 3.65. Given a strong adjustment (s, κ) in a central Lie crossed module (G̃,H, f, ▷),

then we may obtain an adjustment κ̃ in the sense of Definition 3.58 as follows. Consider

the exact sequence of Lie algebras

0→ t→ h
f→ g̃

π→ g→ 0 (3.183)

and the induced short exact sequences

0→ t→ h
f→ Im(f)→ 0, (3.184)

0→ Im(f)→ g̃
π→ g→ 0. (3.185)

Choose a linear splitting l : g→ g̃ of (3.185) and note that there is a unique linear map

r : g̃→ h such that

0← t
s← h

r← g̃
l← g← 0. (3.186)

is exact. Then one can easily check that κ̃(g, v) := κ(g−1, v) + r(Ad(g−1)v − v) is an

adjustment. In fact, any adjustment κ̃ such that κ̃(g, f(u)) = g−1 ▷ u− u and such that

there exist splittings s, l of (3.184), (3.185) with rfκ̃(g, v) = r(Ad(g−1)v − v) arises

from a strong adjustment. All the explicit adjustments in [166] and [220] satisfy these

conditions.

Proposition 3.66. Let (G̃,H, f, ▷) be a central Lie crossed module such that G :=

G̃/Im(f) is a Lie group, and let G be the corresponding multiplicative T -gerbe over G.

Then the category of connective structures on G is equivalent to the category of strong

adjustments on (G̃,H, f, ▷).

Proof. By unwinding the definitions in this case we see that a connective structure on

G is precisely the data of ∇ ∈ Ω1(G̃×H, t) and τ ∈ Ω1(G̃× G̃, t) satisfying the following

relations (here θT ∈ Ω1(T, t) is the Maurer-Cartan form on T ):

(g, ht)∗∇− (g, h)∗∇ = t∗θT ,

(g, h)∗∇+ (f(h)g, h′)∗∇ = (g, h′h)∗∇,

(f(h1)g1, f(h2)g2)
∗τ − (g1, g2)

∗τ = (g1g2, h1g1 ▷ h2)
∗∇− (g1, h1)

∗∇− (g2, h2)
∗∇,

(g1, g2)
∗τ + (g1g2, g3)

∗τ = (g1, g2g3)
∗τ + (g2, g3)

∗τ

(3.187)
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Moreover, two such connective structures (∇, τ) and (∇′, τ ′) are isomorphic whenever

there exists σ ∈ Ω1(G̃, t) such that

∇′ −∇ = (f(h)g)∗σ − g∗σ,

τ ′ − τ = (g1g2)
∗σ − g∗1σ − g∗2σ.

(3.188)

Then let (s, κ) be a strong adjustment. We claim that ∇s(g,h)(vg+ vh) := s(g−1 ▷h−1vh),

τ s,κ(g1,g2)
(vg1 + vg2) := κ(g2, g

−1
1 vg1) defines a connective structure on the multiplicative

gerbe, which boils down to straightforward computations. Similarly, one checks that

if ϕ is an isomorphism (s1, κ1) → (s2, κ2) then σϕg (vg) := ϕ(g−1vg) is an isomorphism

(∇s1 , τ s1,κ1) → (∇s2 , τ s2,κ2). In fact, if σ : (∇s1 , τ s1,κ1) → (∇s2 , τ s2,κ2) is an arbitrary

isomorphism, then ϕσ(v) := σ1(v) is an isomorphism (s1, κ1) → (s2, κ2) and σ = σϕ
σ
,

so we have defined a fully faithful functor from the category of strong adjustments to

the category of connective structures. It is also essentially surjective: since any two

connective structures on a gerbe are always isomorphic, we may restrict our attention to

those (∇, τ) such that ∇ = ∇s for a given splitting s : h→ t. Then one can check that

for κ(g, v) := τ(g−1,1)(0+v)+τ(g−1,g)(g
−1v+0) we have that (s, κ) is a strong adjustment

with (∇s, τκ) isomorphic to (∇s, τ).

Remark 3.67. Proposition 3.66 restricted to the case of the crossed module (G,T, f, ▷)

with trivial f and trivial ▷ coincides precisely with the isomorphism H2(BG•,Ω
1
t ) →

H1
gr,cont(G, g

∗ ⊗ t) from Lemma 2.14.

In particular, Proposition 3.66 and Theorem 3.43 imply that a strong adjustment (s, κ)

on a central Lie crossed module (G̃,H, f, α) gives an Ad-invariant pairing ⟨·, ·⟩ : g⊗g→ t

and a Maurer-Cartan curving ΘL ∈ Ω2(G̃, t), which we can compute using the formulas

in Remark 3.44. For this we write first ∂gκ : TgG̃× g̃→ t for the partial derivative of κ

at g ∈ G̃, whose main properties are

∂gκ(vg, v) = ∂1κ(g
−1vg, Ad(g

−1)v),

∂1κ(Ad(g
−1)u,Ad(g−1)v) = ∂1κ(u, v)− κ(g, [u, v]),

∂1κ(f(u), v) = s(v ▷ u) = −∂1κ(v, f(u)).

(3.189)

Here we are writing v ▷ u := d
dt |t=0

exp(tv) ▷ u, v ∈ g̃, u ∈ h for the Lie algebra action of

g̃ on h, which satisfies f(v ▷ u) = [v, f(u)] and f(u1) ▷ u2 = [u1, u2]. Then,

⟨u, v⟩ = 1

2
(∂1κ(u, v) + ∂1κ(v, u)) (3.190)

ΘL
g (ug, vg) = −

1

2
(∂1κ(g

−1ug, g
−1vg)− ∂1κ(g−1vg, g

−1ug)). (3.191)
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Although ∂1κ is in principle defined over g̃ ⊗ g̃, (3.190) is well-defined over g ⊗ g by

(3.189). Note that ⟨·, ·⟩ and −ΘL
1 are the symmetric and skew-symmetric parts of the

tensor ∂1κ. In terms of the Maurer-Cartan enhanced curving we obtain the simple

formula

ΘL,en
g (ug, vg) = −∂1κ(g−1ug, g

−1vg) = −∂gκ(ug, vgg−1). (3.192)

3.3.3 The exponential map of a central Lie crossed module

The proof of Theorem 3.54 can be made more explicit for a multiplicative gerbe arising

from a central Lie crossed module.

Theorem 3.68. Let (G̃,H, f, ▷) be a central Lie crossed module such that G := G̃/Im(f)

is a Lie group, let (s, κ) be a strong adjustment on it, and let l : g → g̃ be a section of

π : g̃→ g. Then there exists a function χ : G̃× g→ H satisfying

χ(g1g2, v) = g−1
2 ▷ χ(g1, v) · χ(g2, Ad(g−1

1 )v), (3.193)

χ(f(h), v) = h−1 · exp(l(v)) ▷ h, (3.194)

fχ(g, v) = exp(Ad(g−1)l(v))exp(lAd(g−1)v))−1, (3.195)

for g, g1, g2 ∈ G̃, h ∈ H, v ∈ g. There also exists σ ∈ Ω1(g, t) such that

κ
(
g, exp∗θLl(v)(l(v̇))

)
− κ

(
g−1exp(l(v))g, l(g−1vg)

)
+ 2⟨vgg−1, v⟩

= s

(
(g−1exp(−l(v))g) ▷ d

dt t=0
χ(exp(tl(vgg

−1))g, v + tv̇)χ(g, v)−1

)
+ σAd(g−1)v

(
Ad(g−1)v̇ − [g−1vg, Ad(g

−1)v])
)
− σv(v̇)

(3.196)

for g ∈ G̃, vg ∈ TgG̃, v, v̇ ∈ g, and where ⟨·, ·⟩ is defined by (3.190).

Proof. For g ∈ G̃ and v ∈ g define the curve

γg,v : [0,∞)→ G̃×G G̃

t 7→
(
exp(tl(g−1vg)), exp(tg−1l(v)g)

)
.

(3.197)

Then let γsg,v : [0,∞) → H be defined by parallel transport of γg,v with respect to the

connection ∇s from the proof of Proposition 3.66 on the T -bundle G̃ ×H → G̃ ×G G̃.



Lie 2-groups and Maurer-Cartan forms 113

That is, γsg,v is the unique solution to the following ODE.

s

(
g−1exp(−tl(v))g ▷ d

dϵ ϵ=0
γsg,v(t+ ϵ)γsg,v(t)

−1

)
= 0, (3.198)

exp(tg−1l(v)g)exp(tl(g−1vg))−1 = fγsg,v(t), (3.199)

1 = γsg,v(0). (3.200)

Then we claim that χ(g, v) := γsg,v(1) · exp(κ(g, l(v))) satisfies the desired properties.

This is because

γsg1g2,v(t) = g−1
2 ▷ χ(g1, tv) · χ(g2, Ad(g−1

1 )tv) · exp(−tκ(g1g2, l(v))), (3.201)

γsf(h),v(t) = h−1 · exp(tl(v)) ▷ h · exp(−tκ(f(h), l(v))), (3.202)

as it can be shown by checking that the right-hand sides of (3.201) and (3.202) satisfy

their corresponding ODEs. We proceed to construct σ. Using (3.190) and our expression

for χ, we see that (3.196) at g = 1, vg = u is equivalent to

σv([u, v]) = κ(exp(l(v)), l(u))− ∂1κ(l(v), l(u))

+ s

(
exp(−l(v)) ▷ d

dϵ |ϵ=0
γsexp(ϵu),v(1)

)
.

(3.203)

Define, for u ∈ g̃ and v ∈ g,

hu,v(t) := κ(exp(tl(v)), l(u)),

ρu,v(t) :=
d

dϵ ϵ=0
γsexp(ϵl(u)),v(t).

(3.204)

Using (3.189) we obtain

ḣu,v(t) = ∂1κ(l(v), Ad
−1(exp(tl(v)))l(u)), (3.205)

while differentiating the ODE for γsg,v yields the following ODE for ρu,v.

s (exp(−tl(v)) ▷ ρ̇u,v) = 0, (3.206)

Ad(exp(tl(v)))l(u)− l(u) + exp∗θRtl(v)(tl[u, v]) = fρu,v(t), (3.207)

0 = ρu,v(0). (3.208)
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Using the fundamental theorem of calculus we rewrite (3.203) as

σv([u, v]) =

∫ 1

0
ḣu,v(t)dt− ∂1κ(l(v), l(u))

+ s

(∫ 1

0
(exp(−tl(v)) ▷ ρ̇u,v(t)− l(v) ▷ exp(−tl(v)) ▷ ρu,v(t))

)
=

∫ 1

0
∂1κ(l(v), Ad

−1(exp(tl(v)))l(u)− l(u))

+

∫ 1

0
∂1κ(l(v), l(u)−Ad−1(exp(tl(v)))l(u) + exp∗θLtl(v)(tl[u, v])),

(3.209)

where in the last step we have used (3.205), (3.206) and (3.189). Thus, if we define σ

σv(v̇) :=

∫ 1

0
∂1κ

(
l(v), exp∗θLξl(v)(ξl(v̇))

)
dξ, (3.210)

then (3.196) is satisfied at g = 1. Using the properties of κ, ⟨·, ·⟩ and χ one can show

that it is now sufficient to prove that (3.196) is also satisified for arbitrary g and vg = 0

to conclude the proof. That is, we only need to show that σ defined by (3.210) satisfies

σAd(g−1)v(Ad(g
−1)v̇)− σv(v̇) = κ

(
g, exp∗θLl(v)(l(v̇))− l(v̇)

)
− s

(
g−1exp(−l(v))g ▷ ν(1)

)
,

(3.211)

where ν is defined by

ν(t) :=
d

dϵ ϵ=0
γsg,v+ϵv̇(t)γ

s
g,v(t)

−1. (3.212)

Differentiating the ODE for γg,v, and using (3.189) and dθL = −1
2 [θ

L ∧ θL], we obtain

s
(
g−1exp(−tl(v))g ▷ ν̇(t)

)
= s[(γsg,·(·))∗(v̇), (γsg,·(·))∗(∂t)](t,v)

−∂1κ
(
Ad(g−1)exp∗θLtl(v)(tl(v̇)), Ad(g

−1)l(v)− l(Ad(g−1)v)
) (3.213)

fν(t) =

Ad(g−1)exp∗θRtl(v)(tl(v̇))−Ad(g
−1exp(tl(v))g)exp∗θLtl(Ad(g−1)v)(tl(Ad(g

−1)v̇)),

(3.214)

where (γsg,·(·))∗(v̇) and (γsg,·(·))∗(∂t) stand for the vector fields on H obtained through

push-forward by γsg,·(·) : g × [0,∞) → H of v̇ ∈ Γ(Tg) and ∂t ∈ Γ(T [0,∞)). We can

rewrite this ODE by noting that, for u1, u2 ∈ h, we have s[u1, u2] = s[rf(u1), rf(u2)] =

∂1κ(f(u1), f(u2)) and so

s
(
g−1exp(−tl(v))g ▷ ν̇(t)

)
=

−∂1κ
(
exp∗θLtl(Ad(g−1v)(tl(Ad(g

−1v̇)), Ad(g−1)l(v)− l(Ad(g−1)v)
)
.

(3.215)
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Then we use the fundamental theorem of calculus to write

s

(
g−1exp(−l(v))g ▷ ν(1)

)
=

∫ 1

0
s
(
g−1exp(−tl(v))g ▷ ν̇(t)− g−1l(v)g ▷ g−1exp(tl(v))−1g ▷ ν(t)

)
dt

=

∫ 1

0
−∂1κ

(
exp∗θLtl(Ad(g−1)v)(tl(Ad(g

−1)v̇)), Ad(g−1)l(v)− l(Ad(g−1)v)
)
dt

+

∫ 1

0
∂1κ(Ad(g

−1)l(v), Ad(g−1)exp∗θLtl(v)(tl(v̇))− exp
∗θLtlAd(g−1)v(tlAd(g

−1)v̇))dt

=

∫ 1

0
∂1κ(l(Ad(g

−1)v),−exp∗θLtlAd(g−1)v(tlAd(g
−1)v̇))dt

+

∫ 1

0
∂1κ(l(v), exp

∗θLtl(v)(tl(v̇)))dt−
∫ 1

0
κ(g, [l(v), exp∗θLtl(v)(tl(v̇))])dt.

(3.216)

Finally, we use the standard formula

exp∗θLv (v̇) =

∫ 1

0
Ad(exp(−ξv))v̇dξ (3.217)

to show that

−
∫ 1

0
[l(v), exp∗θLtl(v)(tl(v̇))]dt =

∫ 1

0

∫ 1

0
[−tl(v), Ad(exp(−tξl(v)))l(v̇)]dξdt

=

∫ 1

0
[Ad(exp(−tξl(v)))l(v̇)]ξ=1

ξ=0 dt

=

∫ 1

0
Ad(exp(−tl(v)))l(v̇)− l(v̇)

= exp∗θLl(v)(l(v̇))− l(v̇),

(3.218)

which concludes the proof.

Let (G̃,H, f, ▷) be a central Lie crossed module such that G := G̃/Im(f) is a Lie

group, let (s, κ) be a strong adjustment on it and let G∇ → G be the corresponding

multiplicative gerbe with connective structure by Proposition 3.66. We use the data of

Theorem 3.68 to construct a trivialization ϵ of exp∗G∇ → g with an equivariant structure

αϵ whose covariant derivative is as in Theorem 3.54.

The gerbe exp∗G∇ → g is described by covering g with

exp∗G̃ := {(gv, v) ∈ G̃× g | π(gv) = exp(v)} (3.219)
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and taking the T -bundle

exp∗L := {(gv, h, v) ∈ G̃×G× g |π(gv) = exp(v)} → exp∗G̃×g exp
∗G̃

(gv, h, v) 7→ ((gv, v), (f(h)gv, v)),
(3.220)

with the obvious isomorphisms p∗12L⊗ p∗23L→ p∗13L defined as in Section 3.3.2, and the

connection exp∗∇s(gv ,h,v)(vg + vh + v̇) := s(g−1
v ▷ h−1vh) from the proof of Proposition

3.66. We trivialize this by defining the following T -bundle with connection over exp∗G̃

E := H × g→ exp∗G̃, (h, v) 7→ (f(h)exp(l(v)), v),

∇(h,v)(vh + v̇) := s(exp(l(v))−1 ▷ h−1vh) + σv(v̇),
(3.221)

where σ is the 1-form in Theorem 3.68, and the following isomorphism of T -bundles

with connection over exp∗G̃×g exp
∗G̃.

p∗1E ⊗ L
ϵ→ p∗2E

(hE , v)⊗ (gv, hL, v) 7→ (hLhE , v).
(3.222)

It is easy to check that this behaves well with respect to p∗12L⊗p∗23L→ p∗13L. Then over

G× g we have two trivializations of exp∗G∇:

1. One is given simply by pulling-back (E, ϵ) through the projection G× g→ g.

2. The other one is given by the T -bundle EAd → G̃× exp∗G̃

EAd := {(gv, h, g, v) ∈G̃×H × G̃× g |

π(gv) = exp(v), f(h)exp(l(Ad(g)v)) = Ad(g)gv}
(3.223)

with projection map (gv, h, g, v) 7→ (g, gv, v), equipped with the connection

∇(gv ,h,g,v) = (exp(l(Ad(g)v)), h)∗∇s − (g, gv)
∗τ s,κ − (ggv, g

−1)∗τ s,κ

+ (g, g−1)∗τ s,κ + (Ad(g)v)∗σ
(3.224)

for τ s,κ as in the proof of Proposition 3.66, and the following isomorphism of

T -bundles with connection over G̃×G G̃× exp∗G̃×g exp
∗G̃.

p∗1E
Ad ⊗ L ϵAd

→ p∗2E
Ad

(gv, hEAd , g, g′, v)⊗ (gv, hL, v) 7→ (f(hL)gv, h
′, g, g′, v),

h′ := h0 · g ▷ hL · hEAd · exp(l(Ad(g)v)) ▷ h−1
0 ,

(3.225)

where h0 ∈ H is any element with g′ = f(h0)g.
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Then we define an equivariant structure αϵ on the trivialization ϵ by the following

isomorphism of T -bundles over G̃× exp∗G̃.

E → EAd

(g, hE , gv, v) 7→ (gv, g ▷ hE · χ(g−1, v), g, v).
(3.226)

The properties of χ in Theorem 3.68 ensure that this is indeed an isomorphism of

trivializations of exp∗G, and the property of σ means that its covariant derivative is

η ∈ Ω1(G× g, t), η(g,v)(vg + v̇) = −2⟨vgg−1, v⟩.



Chapter 4

Principal 2-bundles and Courant

algebroids

Some fields in string theory and supergravity [38, 81], or more generally in two-dimensional

sigma-models, are described by local potential 2-forms with values in the Lie algebra of

an abelian Lie group T , their symmetries are given by 1-forms, and these have them-

selves ‘higher’ symmetries given by functions to T . Moreover, these fields may interact

non-trivially with classical gauge fields for a non abelian Lie group G. Based on obser-

vations from [243], it was proposed in [52] that splittings of certain transitive Courant

algeboids could provide a mathematical model for these fields. This approach, later

expanded in [24, 120, 121], has been very fruitful, yielding models for T -Duality and for

the construction of moduli spaces of solutions to string-theoretic equations both in the

mathematical [84, 125, 127] and the physical [13, 14] literature.

However, using Courant algebroids for modelling these fields yields a problem: the

natural symmetries of these fields that are dictated by physics form a 2-group, and

there is no way to construct such 2-group just from the data of the Courant algebroid.

This is similar to how the gauge group of a G-bundle P cannot be recovered from just

the data of its Atiyah algebroid TP/G. In this sense, splittings of Courant algebroids

are only a shadow of the actual physical fields, which physics suggests should be seen as

some kind of ‘connections’ on bundles whose fibers are isomorphic to some Lie 2-group

G of the form 1→ BT → G→ G→ 1. There are now many models for the type of Lie

2-groups that appear in physics, among which we can mention [18, 62, 149, 180, 238, 272].

When G = {∗}, mathematical formalizations of this idea can be traced back to [131],

which uses Deligne cohomology as a model, and its reinterpretation in terms of gerbes

from [77, 118, 132]. The next step was to develop an analogous theory for strict Lie

2-groups. For these, the original notion of connection that was proposed in [12, 16, 20]

118
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turned out to be problematic, as it needs to impose a condition called fake flatness

for consistency of higher gauge transformations, and this condition renders the theory

essentially abelian [129].

Based on the original physics literature, it was noticed in [235, 237] that this problem

can be solved for the String(G) 2-groups, as in this case the notion of connection can be

modified by using the existence of an additional structure in their Lie 2-algebras, which

they call Chern-Simons terms. At around the same time, [273] developed an equivalent

notion of connection on String(G)-bundles, also based on the relevance of Chern-Simons

forms in the physics literature and in the work of Stolz-Teichner [253], but using the

notion of multiplicative gerbes from [78] as its mathematical formalism. Some years later,

[245] related these approaches to the one based on Courant algebroids, generalizing a

well-known relation between gerbes and exact Courant algebroids [152, 243].

It is also clear in [273] that its approach can be extended to define connections on

G-bundles, whenever G is the Lie 2-group corresponding to the multiplicative gerbe

constructed from an Ad-invariant, symmetric bilinear form ⟨·, ·⟩ : g⊗g→ t as in Example

3.39. Our Theorem 3.43 characterizes such multiplicative gerbes as precisely those that

admit a connective structure. Similarly, but for a different family of Lie 2-groups, the

notion of an adjustment from [167, 220, 230] (cf. Section 3.3.1) abstracts the work of

[235, 237] to characterize the data that a strict Lie 2-group G must have to yield a

good notion of connection on G-bundles. Recall that in Section 3.3.2 we proved that

connective structures and adjustments are essentially equivalent for central Lie crossed

modules.

In this chapter we present principal 2-bundles and we unify all the above approaches

to the modelling of these fields. In Section 4.1.1 we define principal 2-bundles for mul-

tiplicative gerbes and provide cocycle data for them which is equivalent to but a bit

simpler than others in the literature [98, 235, 245]. In Section 4.1.2 we extend the work

of [273] to define connections on bundles for multiplicative gerbes with connective struc-

ture, and we enrich the definition by allowing for enhanced connections. In Section 4.1.3

we provide cocycle data for gauge transformations and their action on connections, and

in Section 4.1.4 we compare this notion of connection with the one based on adjustments.

In Section 4.2.1 we generalize the work of [245] to construct a Courant algebroid out of

a principal 2-bundle with with structure 2-group determined by a multiplicative gerbe

with connective structure. In Section 4.2.2, we prove an original theorem that lets us

model the gauge 2-group of a principal 2-bundle as an infinite-dimensional Lie 2-group

modelled on the space of sections of its associated Courant algebroid. Finally, we use

this in Section 4.2.3 to prove a slice theorem for the space of connections modulo gauge

on a principal 2-bundle.
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4.1 Principal 2-bundles

4.1.1 Definition and cocycle data

For G a Lie 2-group and P a Lie groupoid, recall from Definition 3.16 the notion of an

action of G on P.

Definition 4.1 ([205]). Let G be a Lie 2-group. A principal 2-bundle with structure

2-group G over a manifold M is a Lie groupoid P with a smooth functor π : P → M

that is a surjective submersion on objects and an action (ρ, αρ) of G on P such that

1. π ◦ ρ = π ◦ p1 : P×G→M ,

2. The anafunctor p1 × ρ : P×G→ P×M P is weakly invertible, where p1 denotes

projection of the first factor.

Isomorphisms and 2-isomorphisms of principal 2-bundles are defined similarly as in

Definition 3.9, yielding a bicategory.

If G is the Lie 2-group arising from a multiplicative gerbe as in Theorem 3.48, then the

bicategory of G-bundles admits an equivalent description which has been studied for the

2-groups of the form String(G) (cf. Example 3.37) in [64, 78, 273].

Definition 4.2 ([64, 78, 273]). Let (G,m, α) be a multiplicative T -gerbe over G. A

principal G-bundle (P,P, ρ, αρ) over a manifold M is the following data.

1. A principal G-bundle P →M .

2. A T -gerbe P → P .

3. An isomorphism of T -gerbes ρ : p∗P ⊗ g∗G → (pg)∗P over P ×G.

4. A 2-isomorphism of T -gerbes over P ×G×G

p∗P ⊗ g∗1G ⊗ g∗2G (pg1)
∗P ⊗ g∗2G

p∗P ⊗ (g1g2)
∗G (pg1g2)

∗P

(p,g1)∗ρ

(g1,g2)∗m (pg1,g2)∗ρ
αρ

(p,g1g2)∗ρ

(4.1)



Principal 2-bundles and Courant algebroids 121

such that, over P ×G×G×G, we have

p∗P ⊗ g∗1G ⊗ g∗2G ⊗ g∗3G (pg1g2g3)
∗P

ρ(((pg1)g2)g3)

ρ((p(g1g2))g3)

ρ(p((g1g2)g3))

ρ(p(g1(g2g3)))

αρ

αρ

α

=
p∗P ⊗ g∗1G ⊗ g∗2G ⊗ g∗3G (pg1g2g3)

∗P

ρ(((pg1)g2)g3)

ρ((pg1)(g2g3))

ρ(p(g1(g2g3)))

αρ

αρ

.

(4.2)

Given (P i,P i, ρi, αρi), i = 1, 2, then an isomorphism of G-bundles is the following data.

1. An equivariant map u : P 1 → P 2 covering the identity on M .

2. An isomorphism of T -gerbes φ : P1 → u∗P2 over P1.

3. A 2-isomorphism of T -gerbes over P 1 ×G

(p1)∗P1 ⊗ g∗G (p1g)∗P1

u∗P2 ⊗ g∗G (u(p1)g)∗P2

(p1,g)∗ρ1

(p1)∗φ (p1g)∗φ
αφ

(u,g)∗ρ2

(4.3)

such that, over P 1 ×G×G,

p∗1P1 ⊗ g∗1G ⊗ g∗2G (u(p1)g1g2)
∗P2

φ((p1g1)g2)

φ(p1g1)g2

(φ(p1)g1)g2

φ(p1)(g1g2)

αφ

αφ

αρ2

=
p∗1P1 ⊗ g∗1G ⊗ g∗2G (u(p1)g1g2)

∗P2

φ((p1g1)g2)

φ(p1(g1g2))

φ(p1)(g1g2)

αρ1

αφ

.

(4.4)

Given (u, φ, αφ), (u′, φ′, αφ
′
) : (P 1,P1, ρ1, αρ

1
)→ (P 2,P2, ρ2, αρ

2
), then a 2-isomorphism

between them can only exist if u = u′ and is then given by a 2-isomorphism ψ : φ⇒ φ′

such that, over P1 ×G,

p∗1P1 ⊗ g∗G (u(p1)g)
∗P2

φ(p1g)

φ(p1)g

φ′(p1)g

αφ

ψ

=
p∗1P1 ⊗ g∗G (u(p1)g1g2)

∗P2

φ(p1g)

φ′(p1g)

φ′(p1)g

ψ

αφ′

.

(4.5)
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We often abbreviate all the data (P,P, ρ, αρ) of a G-bundle by (P,P) or P.

Proposition 4.3. Let G be a multiplicative T -gerbe over G with associated Lie 2-group

G. There is a canonical equivalence of bicategories between G-bundles in the sense of

Definition 4.2 and G-bundles in the sense of Definition 4.1.

Proof. Analogous to Theorem 3.48.

Proposition 4.4. Let {Ma}a∈Λ be a good open cover of M . Then G-bundles on M are

described by the following cocycle data.

1. gab :Mab → G with gabgbc = gac.

2. σab trivializations of g∗abG.

3. τabc : m ◦ (σab ⊗ σbc)→ σac isomorphisms of trivializations of g∗acG∇ such that

1 (gad)
∗G

(σabσbc)σcd

σab(σbcσcd)

σabσbd

σad

α

τbcd

τabd

=
1 (gad)

∗G

(σabσbc)σcd

σacσcd

σad

τabc

τacd (4.6)

Proof. Given a G-bundle (P,P, ρ, αρ), one can obtain this data by taking local sections

sa : Ma → P and trivializations ηa of s∗aP → Ma. Then gab are defined as the unique

functions such that sagab = sb, while σ
ab are defined as the composition

1
ηb→ s∗bP

(sa,gab)
∗ρ−1

−→ s∗aP ⊗ g∗abG
η−1
a→ g∗abG

and similarly τabc = (sa, gab, gbc)
∗(αρ)−1. Conversely, given such data one constructs

P := ⊔aMa ×G/ ∼

with (a, x, gab(x)g) ∼ (b, x, g) and defines ra : π−1(Ma) ⊂ P → G to be [a, x, g] 7→ g;

these satisfy gabrb = ra. Then P → P is constructed by gluing the gerbes r∗aG →
π−1(Ma) with the isomorphisms

r∗aG
(gab,rb)

∗m−1

→ g∗abG ⊗ r∗bG
σ−1
ab→ r∗bG

and the 2-isomorphisms (gab, gbc, rc)
∗α−1 ⊗ τabc.
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Proposition 4.5 ([239, 253]). Let G be a Lie group and let P → M be a G-bundle.

For T a connected abelian Lie group, a multiplicative T -gerbe G → G determines a

characteristic class in c(P ) ∈ H4(M,Z) such that c(P ) = 0 if and only if P can be lifted

to a G-bundle, where Z := ker(exp) ⊂ t. We call this the Pontryagin class of P with

respect to G.

Proof. Let c ∈ H4(BG,Z) be the class corresponding to G by Proposition 3.34. Letting

f : M → BG be any map such that f∗EG ∼= P we define c(P ) := f∗c and the result

follows by abstract non-sense since BG is the homotopy fiber of the map BG→ K(4, Z)

determined by c. Alternatively, we can define c from cocycle data gab : Mab → G for

P as follows. Let σab be any trivializations of g∗abG and let τabc be any isomorphisms of

trivializations m ◦ σab ⊗ σbc → σac. For these τabc, the failure of equality 4.6 to hold is

measured by functions labcd : Mabcd → T which define a Čech cocycle by the pentagon

identity for α. This yields an element inH3(BG, T ) = H4(BG,Z) which clearly vanishes

precisely when P lifts to a G-bundle.

4.1.2 Connections

For G a Lie group and P → M a G-bundle, recall that a connection P → M is a

A ∈ Ω1(P, g) such that, over P ×G,

(pg)∗A = Ad(g(·)−1)p∗A+ g∗θL. (4.7)

By taking vectors tangent to either P or G in this equation, we see that this is equivalent

to the two conditions

Apg(vpg) = g−1Ap(vp)g, Ap·1(pu) = u, for p ∈ P, vp ∈ TpP, g ∈ G, u ∈ T1G.

For the following lemma, recall the simplicial manifold P//G• (cf. Example 2.5) and its

corresponding simplicial differential δ : Ω∗(P ×Gr)→ Ω∗(P ×Gr+1) defined by (2.35).

In low simplicial degrees, we can write this explicitly as follows. For α ∈ Ω∗(P ) and

β ∈ Ω∗(P ×G),

δα := (pg)∗α− p∗α ∈ Ω∗(P ×G),

δβ := −(p, g1)∗β + (p, g1g2)
∗β − (pg1, g2)

∗β ∈ Ω∗(P ×G2).
(4.8)
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Lemma 4.6 ([246]). Let P be a G-bundle, let A ∈ Ω1(P, g) be a connection on it and

let ⟨·, ·⟩ : g⊗ g→ t be Ad-invariant and symmetric. Then the forms

CS(A) := ⟨dA∧A⟩+ 1

3
⟨A∧ [A∧A]⟩ ∈ Ω3(P, t), R(A) := ⟨p∗A∧ g∗θR⟩ ∈ Ω2(P ×G, t)

satisfy

dCS(A) = ⟨FA ∧ FA⟩, dR(A)− δCS(A) = g∗µ, δR(A) = g∗ν, (4.9)

where µ, ν are defined by (3.109), FA := dA+ 1
2 [A∧A] and δ is the simplicial differential

of the simplicial manifold P//G•.

In particular, when T is connected and ⟨·, ·⟩ is the pairing associated to a multiplicative T -

gerbe over G, then the image of the Pontryagin class c(P ) ∈ H4(M,Z) from Proposition

4.5 in H4(M, t) is represented in de Rham cohomology by ⟨FA ∧ FA⟩ ∈ Ω4(M, t).

Proof. Equation (4.9) follows from straightforward computations. First,

dCS(A) = ⟨dA ∧ dA⟩+ ⟨dA ∧ [A ∧A]⟩

= ⟨dA ∧ dA⟩+ 1

2
⟨dA ∧ [A ∧A]⟩+ 1

2
⟨[A ∧A] ∧ dA⟩+ 1

4
⟨[A ∧A] ∧ [A ∧A]⟩

= ⟨FA ∧ FA⟩.
(4.10)

Then, use (pg)∗FA = Ad(g(·)−1)p∗FA, dθ
R − 1

2 [θ
R ∧ θR] = 0 and (4.7) to see

− p∗CS(A) + (pg)∗CS(A) + g∗µ =

= −⟨p∗FA ∧ p∗A⟩+
1

6
⟨p∗A ∧ [p∗A ∧ p∗A]⟩+ ⟨(pg)∗FA ∧ (pg)∗A⟩

− 1

6
⟨(pg)∗A ∧ [(pg)∗A ∧ (pg)∗A]⟩+ 1

6
⟨g∗θL ∧ [g∗θL ∧ g∗θL]⟩

= ⟨p∗FA ∧ (−p∗A+Ad(g(·))(pg)∗A)⟩+ 1

6
⟨p∗A ∧ [p∗A ∧ p∗A]⟩

− 1

6
⟨(p∗A+ g∗θR) ∧ [(p∗A+ g∗θR) ∧ (p∗A+ g∗θR)]⟩+ 1

6
⟨g∗θL ∧ [g∗θL ∧ g∗θL]⟩

= ⟨p∗FA ∧ g∗θR⟩ −
1

2
⟨g∗θR ∧ [p∗A ∧ p∗A]⟩ − 1

2
⟨p∗A ∧ [g∗θR, g∗θR]⟩

= ⟨p∗dA ∧ g∗θR⟩ − 1

2
⟨p∗A ∧ [g∗θR ∧ g∗θR]⟩ = dR(A).

(4.11)
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Finally,

(p, g1)
∗R(A)− (p, g1g2)

∗R(A) + (pg1, g2)
∗R(A) + (g1, g2)

∗ν =

= ⟨p∗A, g∗1θR⟩ − ⟨p∗A, (g1g2)∗θR⟩+ ⟨(pg1)∗A, g∗2θR⟩ − ⟨g∗1θL, g∗2θR⟩

= ⟨p∗A,−Ad(g1(·))g∗2θR⟩+ ⟨Ad((g1(·)−1)p∗A, g∗2θ
R⟩ = 0.

(4.12)

For the second part, recall from Theorem 3.43 that the image of the class c ∈ H4(BG,Z)

in H4(BG, t) classifying the multiplicative gerbe is represented in simplicial de Rham

cohomology of BG• (cf. Theorem 2.12) by the differential forms (µ, ν, 0, 0). Now note

that the simplicial manifold P//G• has a canonical map g : P//G• → BG• whose

geometric realization is a classifying map M → BG for P , which implies by the above

that the image of c(P ) ∈ H4(M, t) = H4(|P//G•|, t) is represented in simplicial de

Rham cohomology by (g∗µ, g∗ν, 0, 0). Finally, (4.9) states precisely that (g∗µ, g∗ν, 0, 0)

and ⟨FA ∧ FA⟩ define the same class in simplicial de Rham cohomology, as they differ

by the total derivative of (CS(A), R(A)).

Connections on String(G)-principal bundles are defined in [273] as trivializations of

an associated Chern-Simons 2-gerbe with connection. The existence of this 2-gerbe

with connection relies essentially on the fact that String(G) has a canonical enhanced

curving. Hence, Theorem 3.43 allows us to generalize loc. cit. to define connections for

G-bundles, where G is any multiplicative gerbe equipped with a connective structure.

We also expand the definition by introducing enhanced connections. From now on we fix

G∇ a multiplicative T -gerbe over G with connective structure and write ⟨·, ·⟩ : g⊗g→ t,

ΘL for the associated pairing and curving from Theorem 3.43.

Definition 4.7. Let (P,P, ρ, αρ) be a principal G-bundle. A connective structure on it

is the following data.

1. A connective structure ∇ on the gerbe P → P .

2. A connection ∇ρ on the isomorphism of gerbes ρ : p∗P∇ ⊗ g∗G∇ → (pg)∗P∇ such

that αρ is a flat 2-isomorphism of gerbes.

We write (P,P∇, ρ∇, αρ) or simply P∇ for a principal G-bundle with connective structure,

also called a principal G∇-bundle. An isomorphism of connective structures on a G-
bundle (∇1,∇ρ1) → (∇2,∇ρ2) is an isomorphism of connective structures on gerbes

ϕ : ∇1 → ∇2 such that the following is a commutative diagram of isomorphisms of
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gerbes with connective structures

p∗P∇1 ⊗ g∗G∇ (pg)∗P∇1

p∗P∇2 ⊗ g∗G∇ (pg)∗P∇2 .

(ρ,∇ρ1 )

(id,p∗ϕ⊗id) (id,(pg)∗ϕ)

(ρ,∇ρ2 )

(4.13)

A connection (resp. enhanced connection) on (P,P, ρ, αρ) is

1. A connective structure (∇,∇ρ) on (P,P, ρ, αρ).

2. A G-connection A ∈ Ω1(P, g) on P .

3. A curving (resp. enhanced curving) B on P∇ → P such that ∇ρ has curvature

−⟨p∗A ∧ g∗θR⟩ ∈ Ω2(P ×G, t) (4.14)

(resp. −⟨p∗A⊗g∗θR⟩ ∈ Γ(T ∗(P ×G)⊗T ∗(P ×G)⊗ t)) with respect to p∗B⊗g∗ΘL

(resp. p∗B ⊗ g∗ΘL,en) and (pg)∗B.

An isomorphism of (enhanced) connections (∇1,∇ρ1 , A1, B1) → (∇2,∇ρ2 , A2, B2) can

only exist if A1 = A2 and is then given by an isomorphism ϕ : (∇1,∇ρ1)→ (∇2,∇ρ2), flat
with respect to B1, B2. We write A(P) for the groupoid of connections on P and Aen(P)
for the groupoid of enhanced connections on P. Whenever a connective structure (∇,∇ρ)
on P is fixed, we write A(P∇) for the set of connections with such connective structure

and Aen(P∇) for the set of enhanced connections with such connective structure.

Remark 4.8. An enhanced connection can also be defined as a pair ((∇,∇ρ, A,B), h) of

a connection (∇,∇ρ, A,B) and a symmetric tensor h ∈ Γ(S2T ∗M ⊗ t). This is because

condition 3 in Definition 4.7 states that an hP ∈ Γ(S2T ∗P⊗t) is the symmetric part of an

enhanced connection with underlying G-connection A if and only if h := hP+ 1
2⟨A⊙A⟩ ∈

Γ(S2T ∗P ⊗ t) is basic, which can thus be identified with a symmetric tensor onM . Note

the relation with the Kaluza-Klein mechanism [166].

Lemma 4.9. Let (P,P∇, ρ∇, αρ, A,B) be a principal G-bundle with connection. Then

the curvature Ĥ ∈ Ω3(P, t) of B as a curving on P∇ → P is of the form Ĥ := π∗H −
CS(A) for some H ∈ Ω3(M, t), where CS(A) is as in Lemma 4.6.

Proof. It follows from Theorem 3.43 and the general properties of curvings on gerbes

that the curvature of B is some Ĥ ∈ Ω3(P, t) with δĤ − g∗µ = −d⟨p∗A ∧ g∗θR⟩, so
H := Ĥ +CS(A) satisfies δH = 0 by Lemma 4.6, which means that it is a basic 3-form

on P , as we wanted to show.



Principal 2-bundles and Courant algebroids 127

Definition 4.10. The curvature of a connection (∇,∇ρ, A,B) on a G-bundle (P,P, ρ, αρ)
is the pair (FA, H) ∈ Ω2(M,adP )⊕ Ω3(M, t), where FA = dA+ 1

2 [A ∧A] and H is the

three-form in Lemma 4.9. A G-bundle with connection is flat if FA = 0 and H = 0.

The following proposition shows that the curvature of a connection on a G-bundle satis-
fies the Green-Schwartz anomally cancellation equation [137] which is expected in string

theory from the field strength of a Kalb-Ramond field coupled to an ordinary gauge

field.

Proposition 4.11 (Bianchi Identity [273]). Let (P,P∇, ρ∇, αρ, A,B) be a principal G-
bundle with connection. Then its curvature (FA, H) ∈ Ω2(M,adP )⊕ Ω3(M, t) satisfies

dAFA = 0, (4.15)

dH − ⟨FA ∧ FA⟩ = 0. (4.16)

Proof. The equation dAFA = 0 is the classical Bianchi identity for connections on G-

bundles. On the other hand, the curvature Ĥ ∈ Ω3(P, t) of B as a curving on the gerbe

P∇ → P satisfies dĤ = 0 and so Lemma 4.6 implies dH − ⟨FA ∧ FA⟩ = 0.

We can give cocycle data for connections that generalizes and simplifies the descriptions

of connections on String(n)-bundles in [98, 237, 245].

Proposition 4.12. Let P → M be a G-bundle described in a good open cover {Ma}a
of M by cocycle data gab, σab, τabc as in Proposition 4.4. Then a connection on P is

described by the following cocycle data.

1. Connections ∇ab on σab such that τabc are flat.

2. Aa ∈ Ω1(Ma, g) such that

Ab −Ad(g−1
ab )Aa = g∗abθ

L (4.17)

3. Ba ∈ Ω2(Ma, t) such that

Bb −Ba = Fab − ⟨Aa ∧ g∗abθR⟩, (4.18)

where Fab is the curvature of ∇ab with respect to g∗abΘ
L.

Its curvature (F,H) is described locally by

F = dAa +
1

2
[Aa ∧Aa], (4.19)

H = dBa + ⟨dAa ∧Aa⟩+
1

3
⟨Aa ∧ [Aa ∧Aa]⟩. (4.20)



Principal 2-bundles and Courant algebroids 128

An isomorphism of connections (∇1
ab, Aa, Ba) → (∇2

ab, Aa, B
2
a) is described by Λa ∈

Ω1(Ma, t) such that

∇2
ab + Λa = ∇1

ab + Λb, (4.21)

B2
a −B1

a = dΛa. (4.22)

Proof. Assume first that P carries a connection. If sa : Ma → P , ηa : 1 → s∗aP define

the cocycle data for P as in Proposition 4.4, then equipping ηa with any connection

defines a connection on σab = η−1
a ◦ (sa, gab)∗ρ−1 ◦ ηb such that τabc is flat. Then we let

Aa := s∗aA and we let Ba be the curvature of ηa; it is easy to see that the definition of

connection implies (4.17), (4.18). Conversely, from this data recall that P is constructed

as P := ⊔aMa×G/ ∼ with (a, x, gab(x)g) ∼ (b, x, g), and that we define ra : π
−1(Ma) ⊂

P → G to be [a, x, g] 7→ g. Then the connection A is constructed as A|π−1(Ma) := r∗aθ
L+

Ad(r−1
a )Aa, while (P∇, B) is obtained by gluing the gerbes with connective structure

and curving

(r∗aG∇, r∗aΘ+Ba − ⟨Aa ∧ r∗aθR⟩)→ π−1(Ma)

with the isomorphisms

r∗aG∇
(gab,rb)

∗m−1

→ g∗abG ⊗ r∗bG
σ−1
ab→ r∗bG

and the 2-isomorphisms (gab, gbc, rc)
∗α−1⊗ τabc. The result for isomorphisms of connec-

tions follows similarly.

Definition 4.13. A G-bundle P →M admits locally constant cocycle data if it admits a

connective structure such that there is a cocycle description as in Proposition 4.12 with

gab locally constant and σab flat.

We introduce some notation for the following proposition. For P →M a G-bundle and

adP → M its associated g-bundle we write Ω1(adP ) ×⟨·,·⟩ Ω
2(M, t) for the group with

underlying set Ω1(adP )× Ω2(M, t) but with product

(a1, b1) · (a2, b2) = (a1 + a2, b1 + b2 + ⟨a1 ∧ a2⟩) (4.23)

i.e., it is a non-trivial central extension of Ω1(adP ) by Ω2(M, t). Recall also the

groupoids A(P), Aen(P) and sets A(P∇), Aen(P∇) introduced in Definition 4.7.

Proposition 4.14. Let (P,P, ρ, αρ)→M be a G-bundle.

1. Connective structures on P always exist and any two are isomorphic; the set of

isomorphisms between them is a torsor for Ω1(M, t).
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2. For any fixed connective structure (∇,∇ρ) on P, the set A(P∇) is a right torsor

for Ω1(adP )×⟨·,·⟩ Ω
2(M, t). In particular, it is an affine bundle over the space of

G-connections on P with fiber Ω2(M, t).

3. For any fixed connective structure (∇,∇ρ) on P, the set Aen(P∇) is a right torsor

for Ω1(adP ) ×⟨·,·⟩ Ω
2(M, t) × Γ(S2T ∗M ⊗ t). In particular, it is an affine bundle

over the space of G-connections on P with fiber Γ(T ∗M ⊗ T ∗M ⊗ t).

4. P admits locally constant cocycle data (cf. Definition 4.13) if and only if it admits

a flat connection.

Proof. Let gab, σab, τabc be cocycle data for P. Choose any connections ∇̃ab on σab and
let ηabc ∈ Ω1(Mabc, t) be the covariant derivative of τabc. The cocycle condition for τabc

implies that ηabc is a Čech cocycle of 1-forms, so we may write ηabc = ηab − ηac + ηbc

and then ∇ab := ∇̃ab − ηab is a connective structure on P. Note any two connections

∇1
ab, ∇2

ab on σab differ by a γab ∈ Ω1(Mab, t); if ∇1
ab, ∇2

ab define connective structures

on P then γab is a Čech cocycle and the set of its trivializations, which is a torsor for

Ω1(M, t), is the set of isomorphisms ∇1
ab → ∇2

ab, proving 1.

Once a connective structure ∇ab is chosen, the existence of the 1-forms Aa is simply

the classical existence of connections on G-bundles and then the existence of Ba follows

from the fact that Theorem 3.43 and the existence of τabc implies

Fab − Fac + Fbc = ⟨g∗abθL ∧ g∗bcθR⟩, (4.24)

so −⟨Aa ∧ g∗abθR⟩+ Fab is a cocycle of 2-forms in M for any choice of A. The action of

(a, b) ∈ Ω1(M,adP )×⟨·,·⟩ Ω
2(M, t) on A(P∇) is defined by

(Aa, Ba) · (aa, b) := (Aa + aa, B + ⟨Aa ∧ aa⟩+ b), (4.25)

where aa ∈ Ω1(Ma, g) satisfies ab = Ad(g−1
ab )aa and b ∈ Ω2(M, t); it is easy to see that

A(P∇) is a right torsor for this action, proving 2. Then 3 follows directly from Remark

4.8.

If P admits locally constant cocycle data gab, σab, τ
abc then letting ∇ab be a flat connec-

tion on σab such that τabc is flat we see that Aa = 0, Ba = 0 is clearly a flat connection.

Conversely, if P has a flat connection then a classical result states that there are lo-

cal sections sa : Ma → P such that s∗aA = 0 with corresponding transition functions

gab : Mab → G locally constant. We obtain the rest of the cocycle data σab, τabc, ∇ab,
Ba by the method above and we see that 0 = H = dBa implies Ba = dΛa for some Λa;

thus, ∇ab+Λa−Λb is a flat connection on σab such that τabc is flat, which concludes the

proof.
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Remark 4.15. Parts 1 and 2 from Proposition 4.14 can be summarized in a single, more

abstract statement by saying that the groupoidA(P) is a torsor (i.e., a principal 2-bundle
over a point) for the Lie 2-group associated to the crossed module

(Ω1(adP )×⟨·,·⟩ Ω
2(M, t),Ω1(M, t), f, ▷)

with ▷ trivial and f : Ω1(M, t)→ Ω1(adP )×⟨·,·⟩Ω
2(M, t), η 7→ (0, dη). Similarly, Aen(P)

is a torsor for (Ω1(adP )×⟨·,·⟩Ω
2(M, t)×Γ(S2T ∗M ⊗ t),Ω1(M, t), f, ▷). These results are

analogous to the classical fact that the space of connections on a G-bundle is a torsor

for Ω1(M, adP ). This analogy will become even more clear in Section 4.2.1, when we

introduce the Courant algebroid associated to a G-bundle.

4.1.3 The gauge 2-group

Recall from Definition 3.28 that isomorphisms and 2-isomorphisms of gerbes act on con-

nections and their isomorphisms. Similarly, there is an obvious way to define the action

of isomorphisms and 2-isomorphisms of G-bundles on connections and isomorphisms of

connections using Definitions 4.2, 4.7. Our next goal is to generalize Proposition 3.30

to the case of G-bundles, for which we need the following definition.

Definition 4.16. Let P1
∇, P2

∇ be G-bundles with connective structure (i.e., G∇-bundles)
and let (u, φ, αφ) be an isomorphism P1 → P2. A connection on it is a connection on

φ such that αφ is flat. An isomorphism of G-bundles with a connection is also called

an isomorphism of G∇-bundles. Given two isomorphisms with connection (u, φ∇, α
φ),

(u, φ′
∇, α

φ,′) and a 2-isomorphism ψ : (u, φ, αφ)→ (u, φ′, αφ,
′
), then we say ψ is flat if it

is flat as a 2-isomorphism of gerbes. We write Gauge(P) for the automorphism 2-group

(cf. Remark 3.11) of a given G-bundle, and Gauge(P∇) for the automorphism 2-group

of a given G∇-bundle, with only flat 2-isomorphisms as arrows.

While the 2-group Gauge(P) acts on the groupoid of all connections A(P), the 2-group

Gauge(P∇) acts on the set A(P∇) of connections whose connective structure is pre-

scribed. In particular, the arrows of Gauge(P∇) act trivially on A(P∇), as this is a

set (cf. Remark 3.17). As in Section 3.2.1, we regard Gauge(P), Gauge(P∇), A(P)
and A(P∇) endowed with Fréchet topologies and we construct the simplicial topologi-

cal spaces A(P∇)//Gauge(P∇), A(P)//Gauge(P) by the quotient 2-groupoid construc-

tion from Section 3.1.2. We do this because Theorem 4.26 below will let us treat

A(P∇)//Gauge(P∇) as a simplicial manifold modelled in spaces of global sections of

familiar vector bundles, which is crucial for our constructions in Chapter 6 and does not

seem to be so easily done for A(P)//Gauge(P), and because the following proposition
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shows that A(P)//Gauge(P) and A(P∇)//Gauge(P∇) are essentially equivalent. It also

provides a description of Gauge(P) and Gauge(P∇) closely related to the description of

automorphisms of string Courant algebroids in [126].

Proposition 4.17. Let P be a G-bundle. Then there is an exact sequence of 2-groups

1→ BT (M)→ Gauge(P)→ Gauge(P )
r→ H3(X,Z)→ 1, (4.26)

where BT (M) is the 2-group whose objects are T -bundles on M (cf. Section 3.2.1) and

the image of r in H3(X, t) can be represented by choosing a connection A ∈ Ω1(P, g) as

u 7→ [CS(u∗A)− CS(A)− d⟨u∗A ∧A⟩] ∈ H3(X, t). (4.27)

Let P∇ be a G-bundle with connective structure. Then there is an exact sequence of

2-groups

1→ BT∇(M)→ Gauge(P∇)→ Gauge(P )
r→ H3(X,Z)→ 1, (4.28)

where BT∇(M) is the 2-group of T -bundles with connection on M and the map r is the

same as in (4.26). Moreover, there is a canonical morphism of simplicial topological

spaces A(P∇)//Gauge(P∇) → A(P)//Gauge(P) inducing weak homotopy equivalence

on geometric realizations.

Proof. The existence of an exact sequence

1→ BT (M)→ Gauge(P)→ Gauge(P ) (4.29)

follows directly from Definition 4.2. Now the condition for u ∈ Gauge(P ) to lift to

a gauge transformation of P can be described as follows. First, note that the gerbe

u∗P ⊗P−1 → P is equipped with an equivariant structure [199] given by u∗ρ⊗ ρ−1 and

u∗αρ⊗αρ,−1. Thus it defines a gerbe over P/G =M , which is trivial precisely when u lifts

to Gauge(P). The map r assigns to each u the class in H3(M,Z) of the corresponding

gerbe. It can be represented as in (4.27) because a connection on the G-bundle P
(with A the underlying connection on P ) determines a curving on u∗P ⊗ P−1 → P

that descends to the quotient and has curvature CS(u∗A)− CS(A)− d⟨u∗A ∧A⟩. The
exact sequence 4.28 is obtained similarly. Then the equivalence A(P)//Gauge(P) ∼=
A(P∇)//Gauge(P∇) follows from the exact sequences (4.26), (4.28), Proposition 3.30

and the fact that any two connective structures on P are isomorphic (cf. Proposition

4.14).

Remark 4.18. The equivalence of quotient 2-groupoids from Proposition 4.17 is useful

because the action of Gauge(P∇) on A(P∇) is easier to describe than that of Gauge(P)
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on A(P). In fact, using the presentation A(P∇)//Gauge(P∇) will let us define geometric

structures on moduli spaces of connections on principal 2-bundles in Chapter 6.

Proposition 4.19. Let P1
∇, P2

∇ be G∇-bundles over M described on a good open cover

{Ma}a by cocycle data (giab, σ
i
ab,∇, τ

i
abc), i = 1, 2. Then an isomorphism with connection

P1
∇ → P2

∇ is given by the following data.

1. Functions φa :Ma → G with φag
1
ab = g2abφb.

2. Trivializations with connections Φa,∇ of φ∗
aG∇.

3. Flat isomorphisms of trivializations ψab : m◦(Φa⊗σ1ab)→ m◦(σ2ab⊗Φb) satisfying

1 (g2acφc)
∗G

m((Φaσ1
ab)σ

1
bc)

m(Φa(σ1
abσ

1
bc))

m(Φaσ1
ac)

m(σ2
acΦc)

m((σ2
abσ

2
bc)Φc)

α

τabc1

ψac

(τabc2 )−1

= 1 (g2acφc)
∗G.

m((Φaσ1
ab)σ

1
bc)

m((σ2
abΦb)σ

1
bc)

m(σ2
ab(Φbσ

1
bc))

m(σ2
ab(σ

2
bcΦc))

m((σ2
abσ

2
bc)Φc)

ψab

α

ψbc

α

(4.30)

If (φa,Φa,∇, ψab), (φ
′
a,Φ

′
a,∇, ψ

′
ab) are two isomorphisms P1

∇ → P2
∇, then a flat 2-isomorphism

between them can only exist if φa = φ′
a and in that case it is given by flat 2-isomorphisms

χa : Φa ⇒ Φ′
a such that

1 (g2abφb)
∗G

m(Φaσ1
ab)

m(Φ′
aσ

1
ab)

m(σ2
abΦ

′
b)

χa

ψ′
ab

=
1 (g2abφb)

∗G

m(Φaσ1
ab)

m(σ2
abΦb)

m(σ2
abΦ

′
b)

ψab

χb
. (4.31)

Composition of isomorphisms of G∇-bundles is defined by

(φ13
a ,Φ

13
a,∇, ψ

13
ab) = P1

∇
(φ12

a ,Φ12
a,∇,ψ

12
ab)→ P2

∇
(φ23

a ,Φ23
a,∇,ψ

23
ab)→ P3

∇,
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where φ13
a := φ23

a φ
12
a , Φ13

a,∇ := m ◦ (Φ23
a,∇ ⊗ Φ12

a,∇) and ψ
13
ab is

(φ23
a φ

12
a )∗G ⊗ (g1ab)

∗G

(φ23
a )∗G ⊗ (φ12

a )∗G ⊗ (g1ab)
∗G (φ23

a )∗G ⊗ (φ12
a g

1
ab)

∗G (φ23
a φ

12
a g

1
ab)

∗G

(φ23
a )∗G ⊗ (g2ab)

∗G ⊗ (φ12
b )∗G (g3abφ

23
b )∗G ⊗ (φ12

b )∗G (g3ab)
∗G ⊗ (φ23

b φ
12
b )∗G

1 (g3ab)
∗G ⊗ (φ23

b )∗G ⊗ (φ12
b )∗G.

ψ12
ab

α

α−1

α

ψ23
ab

(4.32)

The associator of this composition is given by (φ34
a , φ

23
a , φ

12
a )∗α for a sequence of iso-

morphisms of the form

P1
∇

(φ12
a ,Φ12

a,∇,ψ
12
ab)→ P2

∇
(φ23

a ,Φ23
a,∇,ψ

23
ab)→ P3

∇
(φ34

a ,Φ34
a,∇,ψ

34
ab)→ P4

∇. (4.33)

Proof. Let sia : Ma → P i, ηia,∇ : 1 → s∗aP i∇ define the cocycle data by the procedure

in Proposition 4.12. Then for an isomorphism (u, φ, αφ) we define φa : Ma → G by

u(s1a) = s2aφa and Φa,∇ as the composition

1
η1a,∇→ s∗aP1 s

∗
aφ→ u(s1a)

∗P1 (s2a,φa)∗ρ
−1
2→ s∗aP2 ⊗ φ∗

aG
(η2a,∇)−1

→ φ∗
aG. (4.34)

Then letting ψab := (s1a, g
1
ab)

∗αρ ⊗ (s2a, φa, g
1
ab)

∗αρ2 ⊗ (s2a, g
2
ab, φb)

∗(αρ2)−1 yields the de-

sired cocycle condition. The rest follows similarly.

Remark 4.20. Since isomorphisms of G-bundles and isomorphisms and 2-isomorphisms

of gerbes can be inverted in a canonical, functorial way, it follows that Gauge(P∇) has
a canonical coherent inversor in the sense of Definition 3.19. In terms of the cocycle

description from Proposition 4.19, the inverse of a gauge transformation described by

(φa,Φa,∇, ψab) is the gauge transformation described by (φ−1
a , Φ̃a,∇, ψ̃ab), where Φ̃a,∇ is

the trivialization with connection of (φ−1
a )∗G∇ constructed as

1
φ∗
ainv→ φ∗

aG∇ ⊗ (φ−1
a )∗G∇

(Φa,∇)−1

→ (φ−1
a )∗G∇ (4.35)

(for inv defined as in Remark 3.33) and ψ̃ab is constructed in a similar way.

If (giab, σ
i
ab,∇, ψ

i
ab), i = 1, 2, is cocycle data for P i∇, while (φa,Φa,∇, ψab) is cocycle data

for an isomorphism with connection Φ∇ : P1
∇ → P2

∇ and (A1
a, B

1
a) ∈ A(P1

∇), then we
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define the connection (Φ−1
∇ )∗(A,B) ∈ A(P2

∇) by

A2
a := Ad(φa)A

1
a − φ∗

aθ
R, (4.36)

B2
a := Ba − ⟨φ∗

aθ
L ∧A1

a⟩ − Fa, (4.37)

where Fa ∈ Ω2(Ma, t) is the curvature of Φa,∇ with respect to the Maurer-Cartan curv-

ing. One can check that this is well-defined by noting that

dFa =
1

6
⟨φ∗

aθ
L ∧ [φ∗

aθ
L ∧ φ∗

aθ
L]⟩, (4.38)

Fa − Fb = F 2
ab − ⟨(g2ab)∗θL ∧ φ∗

bθ
R⟩ − F 1

ab + ⟨φ∗
aθ
L ∧ (g1ab)

∗θR⟩, (4.39)

as it follows from the existence of ψab. In particular, note that isomorphisms with

connection that are related by a flat 2-isomorphism act in the same way.

4.1.4 Comparison with adjusted connections

Let (G̃,H, f, ▷) be a Lie crossed module and let G be its corresponding Lie 2-group. As

proven in [205], a G-bundle over a manifold M is described in a cover {Ma}a of M by

maps g̃ab :Mab → G̃, habc :Mabc → H such that

t(habc)g̃abg̃bc = g̃ac,

hacdhabc = habdg̃ab ▷ hbcd.
(4.40)

Now let κ̃ be an adjustment on (G̃,H, f, ▷) (cf. Definition 3.58). Then [220] provides

the following cocycle data for adjusted connections on it. They are given by Λab ∈
Ω1(Mab, h), Ãa ∈ Ω1(Ma, g̃) and B̃a ∈ Ω2(Ma, h) satisfying

Λbc + g−1
bc ▷ Λab = Λac − g̃−1

ac ▷ (h
∗
abcθ

R + Ãa ▷ habc · h−1
abc),

Ãb −Ad(g̃−1
ab )Aa = g̃∗abθ

L − f(Λab),

g̃−1
ab ▷ B̃a − B̃b = −dΛab −

1

2
[Λab ∧ Λab]− Ãb ▷ Λab

+ κ̃

(
g̃−1
ab , dÃa +

1

2
[Ãa ∧ Ãa] + f(B̃a)

)
.

(4.41)

An isomorphism of adjusted connections (Λab, Ãa, B̃a)→ (Λ′
ab, Ã

′
a, B̃

′
a) is a collection of

1-forms λa ∈ Ω1(Ma, h) such that

Λ′
ab − Λab = λb − g̃−1

ab ▷ λa,

Ã′
a − Ãa = −f(λa),

B̃′
a − B̃a = dλa +

1

2
[λa ∧ λa] + Ã′

a ▷ λa.

(4.42)
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An important property of adjusted connections that can be derived directly from the

above cocycle data is the following equivariance relation:

dÃb +
1

2
[Ãb ∧ Ãb] = Ad(g̃−1

ab )

(
dÃa +

1

2
[Ãa ∧ Ãa]

)
− f

(
dΛab +

1

2
[Λab ∧ Λab] + Ãb ▷ Λab

)
(4.43)

If r : g̃→ h is the map corresponding to splittings (s, l) as in (3.186), then an adjusted

connection (Λab, Ãa, B̃a) is said to be fake-flat with respect to r if

r

(
dÃa +

1

2
[Ãa ∧ Ãa] + fB̃a

)
= 0. (4.44)

Proposition 4.21. Let (G̃,H, f, ▷, κ̃) be a central Lie crossed module with an adjustment

κ̃ obtained from a strong adjustment (s, κ) and l : g → g̃ as in Remark 3.65. Let G be

the corresponding Lie 2-group and let G∇ be the corresponding multiplicative gerbe with

connection by Proposition 3.66. There is an equivalence of bicategories between the

bicategory of G-bundles with connection in the sense of Definition 4.7 and the bicategory

of G-bundles with adjusted connections that are fake-flat with respect to r.

Proof. The equivalence between the bicategory of G-bundles and the bicategory of G-

bundles is Proposition 4.3, so we only need to prove that the categories of connections

on a fixed bundle are equivalent in both approaches. For this we use first Proposition

4.12 adapted to the multiplicative gerbe with connective structure from Proposition

3.66. Unwinding the definitions and using the formulas for ⟨·, ·⟩ and ΘL, this is: σab ∈
Ω1(Mab, t), Aa ∈ Ω1(Ma, g), Ba ∈ Ω2(Ma, t) such that

σab − σac + σbc = −κ(g̃bc, g̃∗abθL)− s(g̃−1
ac ▷ h

∗
abcθ

R), (4.45a)

Ab = Ad(g−1
ab )Aa + g∗abθ

L, (4.45b)

Bb −Ba = dσab −
1

2
(∂1κ(g̃

∗
abθ

L ∧ g̃∗abθL) + ∂1κ(Aa ∧ g̃∗abθR)− ∂1κ(g̃∗abθR ∧Aa)),

(4.45c)

where gab := π(g̃ab) : Mab → G. An isomorphism of connections (σab, Aa, Ba) →
(σ′ab, A

′
a, B

′
a) can only exist if Aa = A′

a and is then given by λa ∈ Ω1(Ma, t) such that

σ′ab − σab = λb − λa, (4.46)

B′
a −Ba = dλa. (4.47)
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Now letting ξab := (κ(g̃ab, l(Aa))+r(Ad(g̃
−1
ab )l(Aa)+g̃

∗
abθ

L)), a quick computation reveals

that

κ(g̃bc, g̃
∗
abθ

L) = g̃−1
bc ▷ ξab − ξac + ξbc + g̃−1

ac ▷ (l(Aa) ▷ habc · h−1
abc) + rf(g̃−1

ac ▷ h
∗
abcθ

R),

(4.48)

s(dξab) = ∂1κ(g̃
∗
abθ

L ∧Ad(g̃−1
ab )l(Aa)) + κ(g̃ab, dl(Aa)), (4.49)

which can be used to see that

Λab := ξab + σab, (4.50)

Ãa := l(Aa), (4.51)

B̃a := Ba +
1

2
∂1κ(l(Aa) ∧ l(Aa))−

1

2
r[l(Aa) ∧ l(Aa)] (4.52)

is an adjusted connection which is fake-flat with respect to r. It is then clear that this

map can be extended to a fully faithful functor. It is also essentially surjective, since for

(Λab, Ãa, B̃a) a r-fake-flat adjusted connection, one has that σab := s(Λab − κ(g̃ab, Ãa)),
Aa := π(Ãa), Ba := s(B̃a− 1

2∂1κ(Ãa∧ Ãa)) is a G-connection that maps under the above

functor to an adjusted connection isomorphic to the original one. An isomorphism is

given by the one-forms λa := r(Ãa) (here the fake-flatness condition is used to prove

that this is indeed an isomorphism).

Proposition 4.21 leads us to the following two observations. Firstly, we recall that the

models for the String(G) 2-groups that are currently known are either explicit models

as infinite-dimensional (adjusted, central) Lie crossed module, or non-explicit models as

finite-dimensional multiplicative gerbe. Our cocycle equations (4.41) combine advan-

tages from both approaches, since they can be defined over a fixed String(G)-principal

bundle defined by transition functions with values in an explicit crossed module, but

model connections in terms of differential forms taking values in the finite dimensional

vector spaces g, t, allowing for a good theory of moduli spaces.

Secondly, we note that in [220] there is no definition of a connective structure on a

bundle for an adjusted crossed module. In fact, in the cocycle equations (4.41), Λab and

Ãa are coupled, so in principle it is unclear how one could write such definition. Our

Proposition 4.21 decouples the cocycle data, so in particular it gives the first notion of

connective structure on a bundle for an adjusted, central Lie crossed module. This is

particularly important in the holomorphic category, since Theorem 5.26 below states

that supersymmetric equations in heterotic string theory are related to the existence of

holomorphic connective structures, which cannot be defined with the approach in [220].
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4.2 Courant algebroids

4.2.1 The Atiyah algebroid of a principal 2-bundle

The following definition is a mild generalization of the notion of Courant algebroid based

on [52, 140, 227].

Definition 4.22. Let M be a manifold and let V be a vector space. A V -Courant-

Dorfman algebroid over M is a quadruple (E, ⟨·, ·⟩, [·, ·], dE), where

1. E →M is a smooth real vector bundle,

2. ⟨·, ·⟩ : Γ(E)⊗C∞(M) Γ(E)→ C∞(M,V ) is a symmetric C∞(M,R)-bilinear map,

3. [·, ·] : Γ(E)⊗R Γ(E)→ Γ(E) is a R-bilinear map,

4. dE : C∞(M,V )→ Γ(E) is a R-linear map

such that, for e1, e2, e3 ∈ Γ(E), s, t ∈ C∞(M,V ) and f ∈ C∞(M),

⟨e1, dE⟨e2, e3⟩⟩ = ⟨[e1, e2], e3⟩+ ⟨e2, [e1, e3]⟩, (4.53)

[e1, e2] + [e2, e1] = dE⟨e1, e2⟩, (4.54)

[e1, [e2, e3]] = [[e1, e2], e3] + [e2, [e1, e3]], (4.55)

[e1, fe2] = f [e1, e2] + π(e1)(f)e2, (4.56)

[dEs, e] = 0, (4.57)

⟨dEs, dEt⟩ = 0, (4.58)

dE(fs)(p) = dE(f · s(p))(p) + f(p) · (dEs)(p), (4.59)

where π : Γ(E) → Γ(TM) is the anchor map defined as π(e)(f)v = ⟨e, dE(fv)⟩ for
any v ∈ V . The coanchor map is the unique vector bundle map π∗ : T ∗M ⊗ V → E

determined by dE : C∞(M,V ) → Γ(E) as π∗(ds) = dEs for s ∈ C∞(M,V ) and d the

exterior derivative. A V -Courant-Dorfman algebroid E → M is called transitive if π is

surjective and it is called exact if the sequence

0→ T ∗M ⊗ V π∗
→ E

π→ TM → 0

is exact. We say E is in fact a V -Courant algebroid if the pairing ⟨·, ·⟩ is non-degenerate.

Let T be an abelian Lie group and let L∇ →M be a T -gerbe with connective structure

over M described on a cover {Ma}a of M by λabc :Mabc → T and σab ∈ Ω1(Mab, t). As
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described in [243], one may construct an exact t-Courant algebroid EL∇ from L∇. As a
vector bundle, EL∇ = ⊔a∈ATMa ⊕ (T ∗Ma ⊗ V )/ ∼ with the equivalence relation

(a, ux + ξx) ∼ (b, ux + ξx + ιuxdσab|x) (4.60)

for a, b ∈ A, (x, ux+ξx) ∈ TMab⊕T ∗Mab⊗V . Thus a section of EL∇ is an object of the

form X + {ξa}a with X ∈ Γ(TM) and ξa ∈ Γ(T ∗Ma ⊗ V ) satisfying ξb = ξa + ιXdσab.

The t-Courant structure is given by

⟨X + {ξa}a, Y + {ηa}a⟩ :=
1

2
(ξa(Y ) + ηa(X)), (4.61)

[X + {ξa}a, Y + {ηa}a] := [X,Y ] + {LXηa − ιY dξa}a, (4.62)

dE(f) := 0 + {df}a∈A. (4.63)

An enhanced curving on L∇ described by (Ba, g) with Ba ∈ Ω2(Ma, t) such that Ba −
Bb = dσab and g ∈ Γ(S2T ∗M ⊗ t) induces a splitting of π : EL∇ → TM , defined by

sending X ∈ Γ(TM) to the section X + {ιXBa + g(X, ·)}a. This yields an isomorphism

E = TM ⊕ T ∗M ⊗ t and the t-Courant structure is given in this form by

⟨X + ξ, Y + η⟩ := 1

2
(ξ(Y ) + η(X)) + g(X,Y ), (4.64)

[X + ξ, Y + η] := [X,Y ] + LXη − ιY dξ + 2∇∗,g,HX(Y, ·), (4.65)

dE(f) := 0 + df, (4.66)

where ∇∗,g,HX ∈ Γ(T ∗M ⊗ T ∗M ⊗ t) is defined as

2∇∗,g,HX(Y,Z) :=H(X,Y, Z) +X(g(Y, Z))− Y (g(X,Z))

+ Z(g(X,Y ))− g([X,Y ], Z)− g(Y, [X,Z]) + g(X, [Y,Z]),
(4.67)

for H := dBa ∈ Ω3(M, t) the curvature of the curving. Formula (4.65) can be obtained

by using first the isotropic splitting induced by just {Ba}, which induces an isomorphism

with the standard H-twisted exact Courant algebroid, and then computing the bracket

[X+g(X, ·), Y +g(Y, ·)]. The notation is chosen because, when g is non-degenerate, then

∇∗,g,HX(Y,Z) = g(∇g,HZ X,Y ) for ∇g,H the unique g-metric connection with torsion

g(∇g,HX Y −∇g,HY X − [X,Y ], Z) = H(X,Y, Z). (4.68)

That is,

g(∇g,HZ X,Y ) = g(∇gZX,Y ) +
1

2
H(X,Y, Z), (4.69)

for ∇g the Levi-Civita connection of g.
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The following result generalizes this construction for an arbitrary G∇-bundle P∇. One

way to prove it is to show that the exact Courant algebroid Ê → P associated to the

gerbe with connective structure P∇ → P has the necessary structure to descend to a

t-Courant-Dorfman algebroid E → M by the procedure in [66], and this follows from

Lemma 4.9 as in [120]. However, for the purposes of this thesis it is better to have a

cocycle description of E, which we proceed to present. This generalizes a construction

for String(n)-bundles in [245].

Theorem 4.23. Let G∇ be a multiplicative T -gerbe with connective structure over G

and let M be a manifold. There is a functor P∇ 7→ EP∇ from the bicategory of G∇-
bundles over M to the category of transitive t-Courant-Dorfman algebroids over M with

the following properties.

1. For each P∇ there is a canonical exact sequence of vector bundles

0→ T ∗M ⊗ t→ EP∇ → TP/G→ 0,

where the map EP∇ → TP/G preserves the anchor and the bracket.

2. There is a canonical bijection between the set of enhanced connections on P∇ and

the set of splittings of π : EP∇ → TM .

3. Any enhanced connection (A,B, g) ∈ Aen(P∇) with curvature (FA, H) ∈ Ω2(M,adP )⊕
Ω3(M, t) induces an isomorphism EP∇

∼= TM ⊕ adP ⊕ T ∗M ⊗ t on which the t-

Courant-Dorfman structure is given by

⟨X + u+ ξ, Y + v + η⟩ = 1

2
(η(X) + ξ(Y )) + ⟨u, v⟩+ g(X,Y ), (4.70)

[X + u+ ξ, Y + v + η] = [X,Y ] + (−[u, v] +∇AXv −∇AY u− FA(X,Y ))

+(LXη − ιY dξ + 2∇∗,g,HX(Y, ·) + 2⟨∇Au, v⟩+ 2⟨ιXFA, v⟩ − 2⟨ιY FA, u⟩),
(4.71)

d(f) = 0 + 0 + df. (4.72)

4. EP∇ is a t-Courant algebroid if and only if the pairing ⟨·, ·⟩ : g ⊗ g → t is non-

degenerate.

We call EP∇ the Atiyah algebroid of P∇.

Proof. If P∇ is described by ({gab}, {σab,∇}, {τabc}) in a cover {Ma}a∈A ofM , write Fab ∈
Ω2(Mab, t) for the curvature of σab,∇. Then define EP∇ := ⊔aTMa ⊕ g⊕ T ∗Ma ⊗ t/ ∼,
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where the equivalence relation is

(a, x, vx, e, ξx) ∼ (b, x, vx, Ad(g
−1
ab )e− ιvxg

∗
abθ

L, ξx + ιvxFab − ⟨ιvxg∗abθR − 2e, g∗abθ
R⟩),
(4.73)

for a, b ∈ A, x ∈Mab, vx ∈ TxM , e ∈ g, ξx ∈ T ∗
xM⊗ t. This is a well-defined equivalence

relation by (4.24). In other words, sections of E can be described as X + {fa + ξa}a
with X ∈ Γ(TX), fa ∈ C∞(Ma, g), ξa ∈ Ω1(Ma, t) satisfying

fb = Ad(g−1
ab )fa − ιXg

∗
abθ

L, (4.74)

ξb = ξa + ιXFab − ⟨ιXg∗abθR − 2fa, g
∗
abθ

R⟩. (4.75)

The t-Courant-Dorfman structure is given by

⟨X + {fa + ξa}, Y + {ga + ηa}⟩ =
1

2
(ηa(X) + ξa(Y )) + ⟨fa, ga⟩, (4.76)

[X + {fa + ξa}, Y + {ga + ηa}] = [X,Y ] + (−[fa, ga] +X(ga)− Y (fa))

+ (LXηa − ιY dξa + 2⟨dfa, ga⟩),
(4.77)

d(f) = 0 + (0 + df). (4.78)

(4.24) and the fact that dFab =
1
6⟨g

∗
abθ

L ∧ [g∗abθ
L ∧ g∗abθL]⟩ imply that these operations

are well-defined, and then it is straightforward to check that they satisfy all the required

axioms. An enhanced connection on the G-bundle given by Aa ∈ Ω1(Ma, t), Ba ∈
Ω2(Ma, t), g ∈ Γ(S2T ∗M ⊗ t) gives a splitting of E defined by

X 7→ X + {−Aa(X) + ιXBa − ⟨Aa(X), Aa(·)⟩+ g(X, ·)}. (4.79)

Such an enhanced connection gives an isomorphism TM ⊕ adP ⊕ T ∗M ⊗ t→ E by

X + u+ ξ 7→ X + {−Aa(X) + ua + ιXBa − ⟨Aa(X)− 2ua, Aa(·)⟩+ ξ + g(X, ·)}. (4.80)

A straightforward computation shows that the t-Courant-Dorfman structure is pulled-

back under this isomorphism to the one in part 3 of the theorem. Part 2 is then immedi-

ate, since both spaces are torsors for the same group and we have defined an equivariant

map between them.

At the level of morphisms, the functor is defined as follows. Let E1, E2 be the t-Courant-

Dorfman algebroids corresponding to two G∇-bundles described by ({g1ab}a,b, {F 1
ab}a,b),

({g2ab}a,b, {F 2
ab}a,b). Then an isomorphism between the bundles given by cocycle data

(φa,Φa,∇, ψab) yields in particular the two-forms Fa ∈ Ω2(Ma, t) satisfying (4.38), (4.38).
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This can be used to check that

Γ(E1)→ Γ(E2) (4.81)

X + {f1a + ξ1a}a 7→ X + {f2a + ξ2a}a, (4.82)

where

f2a := Ad(φa)f
1
a + ιXφ

∗
aθ
R, (4.83)

ξ2a := ξ1a − ιXFa − ⟨ιXφ∗
aθ
L + 2f1a , φ

∗
aθ
L⟩ (4.84)

is well-defined and preserves all the structure maps. Note also that 2-isomorphic isomor-

phisms of G∇-bundles give the same morphism of t-Courant-Dorfman algebroids.

In particular, Theorem 4.23 implies that for a fixed G∇-bundle P∇ → M with Atiyah

algebroid E →M , there is a map Gauge(P∇)→ Aut(E). Write AutP(E) ⊂ Aut(E) for

the image of this map. Motivated by the observation in [245] that AutP(E) ̸= Aut(E)

for the case of String(n)-bundles, [127] defines two classes Ham(E) ⊂ Autstring(E) ⊂
Aut(E) of restricted automorphisms of string algebroids. We claim that Ham(E) ⊂
AutP(E) ⊂ Autstring(E), but none of these is in general an equality, as we proceed to

show.

In terms of the cocycle data above, Autstring(E) amounts to taking functions φa :

Ma → G for an isomorphism u : P 1 → P 2 of the underlying G-bundles and two-

forms Fa ∈ Ω2(Ma, t) satisfying (4.38, 4.39). In particular, AutP(E) ⊂ Autstring(E)

is not an equality, as the 2-forms Fa of the automorphisms in AutP(E) must arise as

the curvature of a trivialization of φ∗
aG∇ (so they form a torsor for dΛ1(X, t) instead

of Λ2
cl(X, t)). On the other hand, Ham(E) is defined by integrating formally inside

Aut(E) the Lie algebra of AutP(E), so Ham(E) ⊂ AutP(E) but this integration fails to

capture automorphisms in AutP(E) not connected to the identity, such as those given

by topologically non-trivial line bundles with connection.

4.2.2 The gauge 2-group as a Lie 2-group

If P is a G-bundle with Atiyah algebroid EP = TP/G, then adP = Ker π ⊂ EP is a

sub-Lie algebroid and there is an exponential map Γ(adP )
exp→ Gauge(P ) which can be

used to model Gauge(P ) as an infinite-dimensional Lie group with Lie algebra Γ(adP );

in particular, Gauge(P ) acts through the adjoint action on Γ(adP ). In this section we

perform a similar construction for a G∇-bundle P∇.
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Recall from Section 3.2.1 and Example 3.15 that already in the case of a T -gerbe L
it is a good idea to fix a connective structure ∇, so that we can model the space

of curvings A(L∇) as a torsor for the space Ω2(M, t) and the 2-group BT∇(M) as

⊔c∈CA(Lc)//C∞(M,T ), where C is the discrete abelian group of isomorphism classes of

T -bundles on M , each class c represented by the T -bundle Lc, and A(Lc) ∼= Ω1(M, t) is

the space of connections on Lc. In this description, A(L∇) can be considered as a Frćhet

manifold and BT∇(M) can be considered as a Fréchet Lie 2-group acting smoothly on

A(L∇) and with Lie 2-algebra C∞(M, t)
d→ Γ(T ∗M ⊗ t).

The Lie 2-group BT∇(M) was also equipped with a coherent inversor in Example 3.21.

As explained there, the corresponding conjugation action from Lemma 3.20 is trivial

when restricted to the groupoid of connections on the trivial T -bundle. Thus, if we

equip BT∇(M) with the trivial adjoint action on its Lie 2-algebra, then the following

functor, equipped with the trivial equivariant structure, is an exponential map in the

sense of Definition 3.24.

exp : Γ(T ∗M ⊗ t)//C∞(M, t)→ BT∇(M)

ξ 7→ (M × T, θT + ξ),

(f : ξ → ξ + df) 7→
(
exp(f) : (M × T, θT + ξ)→ (M × T, θT + ξ + df)

)
,

(4.85)

Indeed, conditions 2a and 2b from Definition 3.24 follow from the fact that a connection

on the trivial T -bundle is just a t-valued 1-form and from the fact that C∞(M, t)
exp→

C∞(M,T ) is a local diffeomorphism.

Now let P∇ be a G∇-bundle with Atiyah algebroid E. We write from now on adP∇ :=

Ker π ⊂ E. This is a sub-Courant-Dorfman algebroid of E fitting in exact sequences

0→ T ∗M ⊗ t→adP∇ → adP → 0, (4.86)

0→ adP∇ →E → TM → 0. (4.87)

Recall from Theorem 4.23 that isomorphisms of G∇-bundles induce isomorphisms of their

corresponding Atiyah algebroids. In particular, Gauge(P∇) acts on the space of sections

of the Atiyah algebroid of P∇. One can check that this action preserves Γ(adP∇) and
is trivial on all of Γ(T ∗M ⊗ t). We call this the adjoint action of Gauge(P∇) because,
as it will follow from Theorem 4.26, there is a structure of Lie 2-group on Gauge(P∇)
such that this is an adjoint action in the sense of Definition 3.23.

Remark 4.24. It follows from the proof of Theorem 4.23 that the adjoint action of

Gauge(P∇) can be described as follows. Given s + ξ ∈ Γ(adP ) ⊕ Γ(T ∗M ⊗ t), write

(s+ ξ)(A,B) ∈ Γ(adP∇) for the section corresponding to s+ ξ through the isomorphism
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Γ(adP∇) = Γ(T ∗M ⊗ t)⊕ Γ(adP ) induced by a connection (A,B) ∈ A(P∇). Then the

action can be written as

u ·(s+ξ)(A,B) = (Ad(gu)s+ξ+2⟨u∗A−A,Ad(gu)s⟩)(A,B) = (Ad(gu)s+ξ)u·(A,B) (4.88)

for u ∈ Gauge(P∇)0, where gu : M → AdP denotes the corresponding gauge transfor-

mation of P and u · (A,B) denotes the action of u on the connection (A,B).

Write Γ(adP∇)//C∞(M, t) for the quotient groupoid associated to the 2-step complex

of vector spaces C∞(M, t)
dE→ Γ(adP∇). Instead of defining a smooth structure on

Gauge(P∇) and then trying to define an exponential map in the sense of Definition 3.24,

we will construct first a continuous functor exp : Γ(adP∇)//C∞(M, t) → Gauge(P∇)
and then use it to define a smooth structure on Gauge(P∇). This is analogous to how a

topological group G can be given a smooth structure by giving a local homeomorphism

from a neighborhood of 0 on a vector space to a neighborhood of 1 ∈ G, and then

translating this chart with the group product of G.

Proposition 4.25. Let P∇ be a G∇-bundle with Atiyah algebroid E. Then there is a

continuous functor exp : Γ(adP∇)//C∞(M, t)→ Gauge(P∇) fitting in a sequence

0 Γ(T ∗M ⊗ t)//C∞(M, t) Γ(adP∇)//C∞(M, t) Γ(adP ) 0

1 BT∇(M) Gauge(P∇) GaugeP(P ) 1,

exp exp exp

(4.89)

where GaugeP(P ) ⊂ Gauge(P ) is the subgroup of gauge transformations of P lifting to

P. Moreover, for u ∈ Gauge(P∇)0 and e ∈ Γ(adP∇), there are canonical isomorphisms

(u · exp(e)) · u−1 α
Ad(u,e)→ exp(Ad(u)e) (4.90)

such that the diagram

((u1 · u2) · exp(v))(u−1
2 · u

−1
1 ) (u1 · ((u2 · exp(v)) · u−1

2 )) · u−1
1

exp(u1u2vu
−1
2 u−1

1 ) (u1 · exp(u2vu−1
2 )) · u−1

1

α

αAd(u1u2,v) (idu1 ·α
Ad(g2,v))·idu−1

1

αAd(u1,u2vu
−1
2 )

(4.91)

commutes, for α the associator of Gauge(P∇).

Proof. Let ϵ be a trivialization of exp∗G∇, let αϵ be an equivariant structure on it and

equip ϵ with a connection as in Theorem 3.54. We use this to define the functor exp as

follows. Let (gab, σab,∇, τabc) be cocycle data for P∇. A section of adP∇ is given by fa :

Ma → g and ξa ∈ Ω1(Ma, t) such that fb = Ad(g−1
ab )fa and ξb = ξa+2⟨fa, g∗abθR⟩. Define
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then φa : Ma → G by φa = exp(fa) and trivializations Φa,∇ of φ∗
aG∇ as Φa,∇ := f∗a ϵ∇.

There are 2-isomorphisms

(Trivial) φ∗
aG

φ∗
bG (g−1

ab )
∗G ⊗ φ∗

aG ⊗ g∗abG

Φa,∇

Φb,∇ (g−1
ab )∗inv

Ad

(g−1
ab ,fa)

∗αϵ

(4.92)

with covariant derivative (g−1
ab , fa)

∗ηϵ = −2⟨fa, g∗abθR⟩. Thus these 2-isomorphisms are

flat if we change the connection on Φa,∇ by adding the 1-form ξa. Then equation (3.147)

implies the necessary cocycle condition for (φa,Φa,∇ + ξa, (g
−1
ab , fa)

∗ηϵ) to give a well-

defined gauge transformation of P∇. At the level of arrows, the map exp is defined

similarly as in the abelian case. Finally, a gauge transformation u = (φ̃a, Φ̃a,∇, ψ̃ab) acts

on e = fa + ξa sending it to u · e = Ad(φ̃a)fa + ξa − 2⟨fa, φ̃∗
aθ
L⟩ and it follows from the

formula in Proposition 4.19 for the product in Gauge(P∇) and from cocycle condition

(3.147) that αAd(u, e) := (φa, fa)
∗αϵ defines the desired isomorphisms (u◦exp(e))◦u−1 →

exp(Ad(u)e).

Theorem 4.26. Let P∇ be a G∇-bundle. The 2-group Gauge(P∇) admits a model as a

Fréchet Lie 2-group with Lie 2-algebra C∞(X, t)
dE→ Γ(adP∇). There is a right-invariant

Maurer-Cartan form on Gauge(P∇) for the adjoint action on Γ(adP∇) and the trivial

action on C∞(X, t). The functor exp from Proposition 4.25 is an exponential map in

the sense of Definition 3.24 for the coherent inversor from Remark 4.20.

Proof. We proceed to construct a smooth structure for the 2-group Gauge(P∇). First,

choose a neighborhood U of 0 ∈ Γ(adP∇) such that exp : U → Gauge(P∇)0 is injective,

which exists because it exists for the left and right vertical arrrows of (4.89), and define

for each u ∈ Gauge(P∇)0 the set Uu := {exp(e) · u | e ∈ U}. Then choose a set

Λ ⊂ Gauge(P∇)0 such that every object of Gauge(P∇) is isomorphic to some element

of Uu, for some u ∈ Λ. It follows that Gauge(P∇) is equivalent to a groupoid X with

X0 =
⊔
u∈Λ
Uu, (4.93)

X1 =
⊔

u0,u1∈Λ
(Uu0 × Uu1) id×id×s×tGauge(P∇)1. (4.94)

Since Uu ∼= U ⊂ Γ(adP∇), it is clear that X0 is a Fréchet manifold. As for X1, we model

a neighborhood of any point (exp(e0)u0, exp(e1)u1, ϕ01) ∈ X1 on a neighborhood V ×W
of (0, 0) inside Γ(adP∇) ⊕ C∞(X, t) as follows. First, choose V ⊂ U ⊂ Γ(adP∇) such

that

(exp(e)(exp(e0)u0), exp(e)(exp(e1)u1), idexp(e) · ϕ01) ∈ X1 (4.95)
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for e ∈ V. Then choose W ⊂ C∞(X, t) such that exp : W → C∞(X,T ) is injective. It

follows that

{(exp(e)(exp(e0)u0)− df, exp(e)(exp(e1)u1), exp(f) · (idexp(e) · ϕ01)) | (e, f) ∈ V ×W}
(4.96)

is a neighborhood of (exp(e0)u0, exp(e1)u1, ϕ01) ∈ X1 which is isomorphic to V ×W ⊂
Γ(adP∇)⊕ C∞(X, t). Here we write u+ a when u ∈ Gauge(P∇)0, a ∈ Ω1(X, t) for the

gauge transformation of P∇ which coincides with u with connection shifted by a. It is

easy to check that this gives a smooth atlas on X1. Next we construct a manifold M

which can serve as the total space of the product anafunctor m : X× X→ X. We let

M := {(u1, u2, u12, e1, e2, e12, ϕ) ∈Λ3 × U3 ×Gauge(P∇)1

| ϕ : exp(e12)u12 → (exp(e1)u1)(exp(e2)u2)}.
(4.97)

Provided that M is a manifold, there is an obvious structure making it into the total

space of the desired anafunctor. To show that it is indeed a manifold, we construct local

sections of π0 : M → X0 × X0. Given (u1, u2) ∈ Λ2, choose u12 ∈ Λ, e12 ∈ U and an

isomorphism ϕ12 : exp(e12)u12 → u1u2 in Gauge(P∇). Then for e1, e2 ∈ Γ(adP∇) we

note that there is an isomorphism

(exp(e1)exp(g1e2g
−1
1 ))(exp(e12)u12)

id
exp(e1)exp(g1e2g

−1
1 )

·ϕ12
→ (exp(e1)exp(g1e2g

−1
1 ))(u1u2)

idexp(e1)·α
Ad−1

(g1,e2)·idu2→ (exp(e1)((u1exp(e2))u
−1
1 ))(u1u2)

α→ (exp(e1)u1)(exp(e2)u2),

(4.98)

where g1 ∈ Γ(AdP ) is the gauge transformation of P underlying u1 and α is a shorthand

for

α−1(exp(e1), u1, exp(e2)u2) ◦ (idexp(e1) · α(u1, exp(e2), u2)))

◦(idexp(e1) · α(u1exp(e2), u
−1
1 , u1u2)) ◦ α(exp(e1), (u1exp(e1))u−1

1 , u1u2).
(4.99)

Then for small e1, e2 the source of (4.98) remains in Uu12 , which lets us give a local section

σ : Uϕ12,e12u1,u2 ⊂ X0×X0 →M . Then we can write π−1
0 (Uϕ12,e12u1,u2 ) = Uϕ12,e12u1,u2 π12×tX1, where

π12 := π1 ◦ σ, which is a smooth manifold. For the same u1, u2, changing the choice of

(u12, e12, ϕ12) to (u′12, e
′
12, ϕ

′
12) induces the diffeomorphism

Uϕ12,e12u1,u2 π12×tX1 → U
ϕ′12,e

′
12

u1,u2 π′
12
×tX1

(u1, e1, u2, e2, ϕ) 7→ (u1, e1, u2, e2, (idexp(e1)exp(g1e2g−1
1 ) · (ϕ

′−1
12 ◦ ϕ12)) ◦ ϕ)

(4.100)

and so this is indeed an atlas for M . One can check that the associator α and the
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adjoint action are smooth, for the unique way of defining them in this atlas. The

functor exp from Proposition 4.25 is an exponential map in the sense of Definition 3.24

by construction of the smooth structure.

To show that Gauge(P∇) has a Maurer-Cartan form we have to construct 1-forms

θ0 ∈ Ω1(BGauge(P∇)1,Γ(adP∇)), θ1 ∈ Ω1(BGauge(P∇)2, C∞(X, t)) (4.101)

satisfying

δθ1 = 0, (4.102)

dE(θ
1) = d∗2θ

0 +Ad(d2(·))d∗0θ0 − d∗1θ0, (4.103)

where dE : C∞(X, t)→ Γ(adP∇) and we write Ad(·) for the adjoint action ofGauge(P∇)
on Γ(adP∇). First, θ0 is defined simply by the inverse of the isomorphism Γ(adP∇)→
T(u,exp(e)u)Uu, ė 7→ d

dt |t=0
(u, exp(tė)(exp(e)u)). Then θ1 is constructed by defining 1-

forms θu1,u2,ϕ12,e12 ∈ Ω1(Uϕ12,e12u1,u2 π12×tX1, C
∞(X, t) that are preserved by the diffeomor-

phisms (4.100). These are given by

θu1,u2,ϕ12,e12 : TUϕ12,e12u1,u2 π12×tX1 → C∞(X, t)

(u1, u2, e1, e2, ė1, ė2, ϕ̇) 7→ f,
(4.104)

where we are using θ0 to see ėi ∈ T(ui,exp(ei)ui)Uui = Γ(adP∇) and f is defined as follows.

Recall that ϕ, ϕ̇ are of the form

ϕ : s(ϕ)→ (exp(e1)exp(g1e2g
−1
1 ))(exp(e12)u12),

ϕ̇ : s(ϕ̇)→ d

dt t=0
((exp(tė1)exp(e1))exp(g1log(exp(tė2)exp(e2))g

−1
1 ))(exp(e12)u12),

(4.105)

where log : U ⊂ Gauge(P∇)0 → Γ(adP∇) is the local inverse for exp. Write

v̇ :=
d

dt t=0
((exp(tė1)exp(e1))exp(g1log(exp(tė2)exp(e2))g

−1
1 ))(exp(g1e2g

−1
1 )−1exp(e1)

−1)

=
d

dt t=0
((exp(tė1)exp(e1))exp(g1e2g

−1
1 ))(exp(g1e2g

−1
1 )−1exp(e1)

−1)

+
d

dt t=0
(exp(e1)exp(g1log(exp(tė2)exp(e2))g

−1
1 ))(exp(g1e2g

−1
1 )−1exp(e1)

−1)

(4.106)
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and note that there are canonical vectors in the space of arrows

v̇
ψ̇→ ė1 +Ad(exp(e1)u1)ė2, (4.107)

v̇ · s(ϕ) χ̇→ t(ϕ̇), (4.108)

where ψ̇ is constructed from α and αAd, while χ̇ is constructed from α and ϕ. Then

it follows from how the smooth structure of X1 is defined that there exists a unique

f ∈ C∞(X, t) such that ϕ̇ coincides with the arrow

(ė1 +Ad(exp(e1)u1)ė2) · s(ϕ)−
d

dt t=0
tdEf

ψ̇· d
dt t=0

exp(tf)
→ v̇ · s(ϕ) χ̇→ t(ϕ̇), (4.109)

and this is the f in (4.104). A direct computation shows that the 1-forms defined by

(4.104) are preserved by (4.100). Now (4.103) follows directly from the definition of f ,

while (4.102) is obtained by a direct computation, using the cocycle property of αAd.

The additional conditions in Definition 3.23 for θ0, θ1 to be a Maurer-Cartan form are

also straightforward to check.

Theorem 4.26 suggests that there is a differentiation of Gauge(P∇) in the sense of Def-

inition 3.24, relating the brackets from the Lie 2-algebra of vector fields on Gauge(P∇)
with the brackets from the Lie 2-algebra associated to the Courant-Dorfman algebroid

adP∇ by the procedure in [224], as in the finite-dimensional case from Proposition 3.51.

We leave this for future work, as our main results from Chapter 6 do not require such

construction.

4.2.3 Slice theorem

Let G, T be Lie groups with T abelian. Let G∇ be a multiplicative T -gerbe with

connective structure over G and let P∇ → M be a G∇-bundle over a manifold M with

Atiyah algebroid E →M (cf. Theorem 4.23). We write adP∇ := Ker(π) ⊂ E.

Recall from Proposition 4.14 that A(P∇) is a right torsor for Ω1(adP ) ×⟨·,·⟩ Ω
2(M, t).

This means that we can regard it as an infinite-dimensional manifold in which vector

fields are described by functions f : A(P∇) → Ω1(adP ) ⊕ Ω2(M, t). For each such

function f , write Xf for the corresponding vector field and f = (fa, f b) for its decom-

position in terms of the projections onto Ω1(adP ) and Ω2(M, t). In this description, the

Lie bracket of vector fields corresponds to

[f, g] = LXf
g − LXgf − (0, 2⟨fa ∧ ga⟩), (4.110)
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which follows from computing the Lie bracket of Ω1(adP ) ×⟨·,·⟩ Ω
2(M, t). The gauge

2-group Gauge(P∇) acts on A(P∇) and using Proposition 4.25 we can define an in-

finitesimal action of Γ(adP∇) on A(P∇) by

e · (A,B) =
d

dt |t=0
exp(−te)∗(A,B) (4.111)

for e ∈ Γ(adP∇), (A,B) ∈ A(P∇).

Proposition 4.27. The infinitesimal action (4.111) is given by the homomorphism of

Lie algebras ρ : Γ(adP∇)/dC∞(M)→ Γ(TA(P∇)), ρ = (ρa, ρb) defined by

ρ(e)a(A,B)(X) := −πadP [e, s(A,B)(X)], (4.112)

ρ(e)b(A,B)(X,Y ) := −2⟨[e, s(A,B)(X)], s(A,B)(Y )⟩, (4.113)

where X, Y ∈ Γ(TM), πadP : adP∇ → adP denotes the canonical projection and

s(A,B) : TM → E is the splitting corresponding to the connection (A,B). Equivalently,

using (A,B) to identify adP∇ = adP ⊕ T ∗M ⊗ t, e 7→ v + ξ, then

ρ(e)a(A,B) = dAv, (4.114)

ρ(e)b(A,B) = dξ + 2⟨FA, v⟩. (4.115)

Proof. Let (gab, σab,∇, τabc) be cocycle data for P∇ as in Proposition 4.4 so that (A,B) ∈
P∇ is given by Aa ∈ Ω1(Ma, g), Ba ∈ Ω2(Ma, t) as in Proposition 4.12 and e ∈ Γ(adP∇)
is given by fa : Ma → g, ξa ∈ Ω1(Ma, t) satisfying (4.74), (4.75) (with X = 0). Then

using formulas (4.36), (4.37) for the gauge action we can see that the infinitesimal gauge

action is given upon identifying T(A,B)A(P∇) = Ω1(adP )⊕ Ω2(M, t) as above by

e · (A,B) = (dfa + [Aa, fa], dξa + ⟨fa, [Aa ∧Aa]⟩ − 2⟨dfa ∧Aa⟩). (4.116)

Use then (4.77) and (4.80) to show that this is equivalent to the formulas above.

Proposition 4.27 lets us prove a slice theorem for the topological space

B(P∇) := A(P∇)/Gauge(P∇) (4.117)

of equivalence classes of connections on a G∇-bundle P∇, where we identify two connec-

tions if there exists some (u, φ, αφ) ∈ Gauge(P∇)0 relating them. Given a connection

(A,B) ∈ A(P∇), consider the following elliptic operator

d(A,B) : Ω0(adP )⊕ Ω1(M, t)→ Ω1(adP )⊕ Ω2(M, t)

v + ξ 7→ dAv + dξ + 2⟨FA, v⟩.
(4.118)
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We choose a Riemmanian metric onM and a positive-definite, Ad-invariant pairing on g

(not necessarily related to the bilinear form arising from the 2-group), and we let d(A,B)∗

be the adjoint of the above operator with respect to these metrics.

Theorem 4.28. Let G, T be Lie groups with T abelian. Let G∇ be a multiplicative

T -gerbe with connective structure over G and let P∇ → M be a G∇-bundle. Then, for

each (A,B) ∈ A(P∇), the map

{a+ b ∈ Ω1(adP )⊕ Ω2(M, t) | d(A,B)∗(a+ b) = 0}/ΓA → B(P∇)

[(a, b)] 7→ [(A,B) + (a, b)]
(4.119)

is a local homeomorphism around 0, where ΓA ⊂ Gauge(P ) is the isotropy subgroup of

A, acting on Ω1(adP ) through the adjoint action.

Proof. Fix (A,B) ∈ A(P∇) and consider the map

Im(d(A,B)∗)× Ω1(adP )⊕ Ω2(X, t)→ Im(d(A,B)∗)

(s+ ξ, (a, b)) 7→ d(A,B)∗((exp(s+ ξ) · ((A,B) + (a, b)))− (A,B)).

(4.120)

Its partial differential at 0 is

d(A,B)∗d(A,B) : Im(d(A,B)∗)→ Im(d(A,B)∗), (4.121)

which is an isomorphism, and so by the implicit function theorem there exist neighbor-

hoods of zero U ⊂ Ω1(adP )⊕Ω2(X, t), V ⊂ Im(d(A,B)∗) and a map h : U → V inducing

a homeomorphism

U → {(s+ξ, (a, b)) ∈ V ×U |d(A,B)∗(exp(s+ξ) ·((A,B)+(a, b))−(A,B)) = 0}. (4.122)

This means that (4.119) is locally surjective around 0, and that in a neighborhood of

[(A,B)] the conditions

[(A,B) + (a1, b1)] = [(A,B) + (a2, b2)], (4.123)

d(A,B)∗(a1, b1) = d(A,B)∗(a2, b2) = 0 (4.124)

imply that the gauge transformation relating the two connections either is the identity

or it does not lie in V . Thus, to prove local injectivity of (4.119), it suffices to show

that, under the conditions above, and if (ai, bi) are sufficiently close to 0, then one can
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find gauge transformations (ui, φi, α
φi) ∈ Gauge(P∇), i = 1, 2, such that

(u1, φ1, α
φ1) ∈ V, (4.125)

(u2, φ2, α
φ2) · (A,B) = (A,B), (4.126)

(u1, φ1, α
φ1) · ((A,B) + (a1, b1)) = (u2, φ2, α

φ2) · ((A,B) + (a2, b2))

= (A,B) + (Ad(u2)
−1a2, b2).

(4.127)

This can be shown by applying standard estimates for the Green operator (see [169, Th

3.17] for details) of the Laplacian

d(A,B)∗d(A,B) + d(A,B)d(A,B)∗ : Ω1(adP )⊕ Ω2(M, t)→ Ω1(adP )⊕ Ω2(M, t), (4.128)

where

d(A,B) : Ω1(adP )⊕ Ω2(M, t)→ Ω2(adP )⊕ Ω3(M, t),

a+ b 7→ dAa+ db− 2⟨FA ∧ a⟩.
(4.129)

We conclude by noting that results similar to Theorem 4.28 have been proved in related

contexts with tools from generalized geometry [84, 125, 127, 229]. The main difference is

that in those papers the symmetries are given by a group whose Lie algebra is a quotient

of Γ(adP∇), while in our approach the symmetries are given by a 2-group with Lie 2-

algebra C∞(X, t)
d→ Γ(adP∇). Since these are spaces of sections of vector bundles, while

Γ(adP∇)/ ∼ is not, elliptic operator theory applies in a much more straightforward way

in our approach.



Chapter 5

Complex Lie 2-groups and

holomorphic principal 2-bundles

A complex Lie 2-group G is a Lie 2-group as in Definition 3.9 such that G0, G1 are

complex manifolds and such that all structure maps are holomorphic. By a straight-

forward generalization of Theorem 3.48, a family of complex Lie 2-groups is given by

holomorphic multiplicative gerbes, which have been studied in [59, 268] based on previ-

ous work on holomorphic gerbes [57, 82, 193]. In particular, the main result in [268] can

be thought of as the construction of a complexification for the Lie 2-group String(n). It

is also noted there that equipping holomorphic multiplicative gerbes with holomorphic

connective structures is interesting for applications to complex geometry.

Given a complex Lie 2-group G and a complex manifold X, one can define holomorphic

principal G-bundles over X similarly as in Section 4.1. A special feature of higher gauge

theory is that, at least for complex Lie 2-groups G that arise from holomorphic multi-

plicative gerbes with holomorphic connective structure, one can also define holomorphic

G-bundles with holomorphic connective structure overX. These are intermediate objects

between holomorphic G-bundles and holomorphic G-bundles with holomorphic connec-

tion. The abelian case (i.e. holomorphic gerbes with holomorphic connective structure)

is studied in all the literature on holomorphic gerbes [57, 82, 193], as well as in general-

ized complex geometry [142].

A natural problem in this context is the construction of well-behaved moduli spaces of

holomorphic G-bundles (or holomorphic G-bundles with holomorphic connective struc-

ture) over X, and geometric structures on them. The analog of this problem in classical

gauge theory can be approached through gauge-theoretic methods thanks to two funda-

mental results. Firstly, for G a complex Lie group and P a smooth G-bundle, holomor-

phic structures on P are in bijection with integrable semiconnections on P . Secondly,

151
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when G is the complexification of a compact Lie group K and P is the complexification

of a K-bundle Ph, then integrable semiconnections on P are in bijection with connec-

tions on Ph whose curvature is of type (1, 1) [233]. This theorem is called the Chern

correspondence. There are analogs of these results for holomorphic gerbes [2, 82, 142],

while a similar result in the context of Courant algebroids of string type is presented

in [127], relating holomorphic Courant algebroids to supersymmetric configurations in

heterotic string theory.

In this chapter we study complex Lie 2-groups, and we generalize the description of

holomorphic structures on principal bundles in gauge-theoretic terms to this setting. In

Section 5.1.1 we review fundamental aspects of holomorphic gerbes. In Section 5.1.2 we

discuss the subtleties associated to connective structures on holomorphic multiplicative

gerbes, and we prove an original theorem that generalizes the construction in [268] to

complexify multiplicative gerbes over arbitrary compact groups. In Section 5.1.3 we

discuss how Maurer-Cartan forms interact with the complex structure of a complex Lie

2-group, and the shifted holomorphic symplectic structures that they give rise to. In

Section 5.2.1 we provide a gauge-theoretic description of holomorphic structures, and

holomorphic structures with holomorphic connective structure, on G-bundles. In Section

5.2.2 we generalize the Chern correspondence to this context, using the complexification

construction and our notion of enhanced connections from Section 4.1.2. Finally, in

Section 5.2.3 we relate holomorphic G-bundles to holomorphic Courant algebroids, which

lets us establish a link between our work and [127], as well as define structure of complex

Lie 2-group on the gauge 2-group of a G-bundle, for G a complex Lie 2-group.

5.1 Complex Lie 2-groups

5.1.1 Holomorphic gerbes and holomorphic connective structures

We establish first a notational convention that will be used for the rest of the thesis.

For real vector spaces V , W with complex structures JV , JW , a skew-symmetric R-
multilinear map ϕ : ΛkV → W is of type (p, k − p) if the map ϕC : Λk(V ⊗ C) → W

defined by ϕ(iv, ·) = JWϕ(v, ·) is zero outside Λp(V 1,0)⊗Λk−p(V 0,1) ⊂ Λk(V ⊗C), where
V 1,0 and V 0,1 are the i and −i eigenspaces of JC

V : V ⊗ C → V ⊗ C, respectively. The

type of a symmetric map is similarly defined.

Let X be a complex manifold, let T be a complex abelian Lie group with Lie algebra t.

Recall the definition of smooth gerbes from Section 3.2.1.

Definition 5.1 ([57, 82]). A holomorphic T -gerbe over X is a T -gerbe ({Ui}, {λijk})
over X such that λijk are holomorphic functions. In this case, a connective structure
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{Λij} is compatible with the holomorphic structure if Λij ∈ Ω1,0(Uij , t). A curving {Bi}
for a compatible connective structure is itself compatible with the holomorphic struc-

ture if Bi ∈ Ω2,0+1,1(Ui, t). A holomorphic isomorphism ({Va}, {sab}) between holo-

morphic T -gerbes is an isomorphism of T -gerbes such that sab are holomorphic. If,

moreover, the holomorphic gerbes have compatible connective structures, then a con-

nection Λa on a holomorphic isomorphism is compatible with the holomorphic structure

if Λa ∈ Ω1,0(Va, t). A holomorphic 2-isomorphism ({Wr}, {tr}) between holomorphic

isomorphisms is a 2-isomorphism such that the functions tr are holomorphic.

A holomorphic T -gerbe with holomorphic connective structure is a holomorphic T -gerbe

({Ui}, {λijk}) with a connective structure {Λij} such that Λij ∈ Ω1,0(Uij , t) and ∂̄Aij =

0. In this case, a curving {Bi} is compatible with the holomorphic connective structure if

Bi ∈ Ω2,0(Ui, t). It is a holomorphic curving if, moreover, ∂Bi = 0. Given a holomorphic

isomorphism ({Va}, {sab}) between holomorphic T -gerbes with holomorphic connective

structures, a holomorphic connection on it is a connection {Λa} such that Λa ∈ Ω1,0(Va, t)

and ∂̄Λa = 0.

Let L = ({Ui}, {λijk}) be a smooth T -gerbe. A 1-semiconnection on L is the data of

Dij ∈ Ω0,1(Uij , t), Di ∈ Ω0,2(Ui, t) such that

Dij −Dik +Djk = λ∗ijkθ
0,1, (5.1)

Di −Dj = (dDij)
0,2. (5.2)

A 1-semiconnection ({Dij}, {Di}) is integrable if

(dDi)
0,3 = 0. (5.3)

Let ϕ = ({Ui}, {sij}) : L1 → L2 be an isomorphism of smooth T -gerbes. If L1, L2 have

1-semiconnections D1, D2, then a 1-semiconnection on ϕ is the data of Dϕ
i ∈ Ω0,1(Ui, t)

with

Dϕ
i −D

ϕ
j = D1

ij −D2
ij − s∗ijθ0,1 (5.4)

and it is integrable if

(dDϕ
i )

0,2 = D1
i −D2

i . (5.5)

Let ψ = ({Ui}, {ti}) : ϕ⇒ ϕ′ : L1 → L2 be a 2-isomorphism of smooth T -gerbes. If L1,
L2, ϕ, ϕ′ have 1-semiconnections, then we say that ψ preserves the 1-semiconnections if

Dϕ′

i −D
ϕ
i + t∗i θ

0,1 = 0. (5.6)
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Let L = ({Ui}, {λijk}) be a smooth T -gerbe. A 2-semiconnection on L is the data of

Dij ∈ Ω1(Uij , t), Di ∈ Ω1,1+0,2(Ui, t) such that

Dij −Dik +Djk = λ∗ijkθ, (5.7)

Di −Dj = (dDij)
1,1+0,2. (5.8)

A 2-semiconnection ({Dij}, {Di}) is integrable if

(dDi)
1,2+0,3 = 0. (5.9)

Let ϕ = ({Ui}, {sij}) : L1 → L2 be an isomorphism of smooth T -gerbes. If L1, L2 have

2-semiconnections D1, D2, then a 2-semiconnection on ϕ is the data of Dϕ
i ∈ Ω1(Ui, t)

such that

Dϕ
i −D

ϕ
j = D1

ij −D2
ij − s∗ijθ (5.10)

and it is integrable if

(dDϕ
i )

1,1+0,2 = D1
i −D2

i . (5.11)

Let ψ = ({Ui}, {ti}) : ϕ⇒ ϕ′ : L1 → L2 be a 2-isomorphism of smooth T -gerbes. If L1,
L2, ϕ, ϕ′ have 2-semiconnections, then we say that ψ preserves the 2-semiconnections if

Dϕ′

i −D
ϕ
i + t∗i θ = 0. (5.12)

Let TR be a compact abelian Lie group with Lie algebra tR and let jT : TR → T be its

complexification (inducing an inclusion djT : tR → t). For a TR-gerbe with connection

(L,Λ, B) = ({Ui}, {λijk}, {Λij}, {Bi}), its fibrewise complexification is the smooth T -

gerbe with connection (LC,∇C, BC) given by ({Ui}, {jT (λijk)}, {djT ◦ Λij}, {djT ◦Bi}).

Write OT for the sheaf of holomorphic T -valued functions and Ω1
∂−cl,t for the sheaf of

holomorphic t-valued 1-forms.

Proposition 5.2 ([2, 57, 82, 268]). 1. Holomorphic T -gerbes over X are classified

by H2(X,OT ), their automorphisms are classified by H1(X,OT ) and there are

H0(X,OT ) 2-automorphisms of a given isomorphism.

2. A smooth gerbe is isomorphic to a holomorphic gerbe if and only if it admits a

connection with curvature H satisfying H0,3 = 0. A smooth isomorphism be-

tween holomorphic gerbes with compatible connective structures is 2-isomorphic to

a holomorphic isomorphism if and only if it admits a connection with curvature F

satisfying F 0,2 = 0. A smooth 2-isomorphism between holomorphic isomorphisms

with compatible connections is holomorphic if and only if its covariant derivative

η satisfies η0,1 = 0.
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3. The bicategory of holomorphic T -gerbes, holomorphic isomorphisms and holomor-

phic 2-isomorphisms is equivalent to the bicategory of smooth T -gerbes with inte-

grable 1-semiconnections, smooth isomorphisms with integrable 1-semiconnections

and smooth 2-isomorphisms preserving the 1-semiconnections.

4. Holomorphic gerbes with holomorphic connective structure over X are classified

by H2(X,OX,T
d→ Ω1

∂−cl,t), their automorphisms with holomorphic connection by

H1(X,OX,T
d→ Ω1

∂−cl,t) and there are H0(X,OX,T
d→ Ω1

∂−cl,t) flat 2-automorphisms

of a given automorphism .

5. A smooth gerbe is isomorphic to a holomorphic gerbe with holomorphic connec-

tive structure if and only if it admits a connection with curvature H satisfying

H1,2+0,3 = 0. A smooth isomorphism between holomorphic gerbes with compatible

connective structures is 2-isomorphic to a holomorphic isomorphism if and only if

it admits a connection with curvature F satisfying F 1,1+0,2 = 0.

6. The bicategory of holomorphic T -gerbes with holomorphic connective structure,

holomorphic isomorphisms with holomorphic connection and flat 2-isomorphisms is

equivalent to the bicategory of smooth T -gerbes with integrable 2-semiconnections,

smooth isomorphisms with integrable 2-semiconnections and smooth 2-isomorphisms

preserving the 2-semiconnections.

Proof. We give a brief sketch of the proof of 3. If L is given by holomorphic data λijk,

then we define a 1-semiconnection by Dij = 0, Di = 0. Conversely, if (L, D) is a smooth

gerbe with 1-semiconnection given by λijk, Dij , Di then we choose ci ∈ Ω0,1(Ui, t), fij ∈
C∞(Uij , t) with ∂̄ci = Di and ∂̄fij = ci − cj −Dij ; then λijkexp(fij)exp(fik)

−1exp(fjk)

is data for a holomorphic gerbe. Different choices of ci, fij yield canonically isomorphic

holomorphic gerbes. These maps can be extended to an equivalence of bicategories in a

similar way.

For a fixed smooth gerbe L we note that we can form a groupoid Dint(L) (resp. D′
int(L))

with objects integrable 1-semiconnections (resp. 2-semiconnections) on L and with ar-

rows integrable 1-semiconnections (resp. 2-semiconnections) on the identity automor-

phism of L. The 2-group BT (M) acts on these in a similar way to the gauge action

from Definition 3.28. Then we define the quotient 2-groupoids (cf. Section 3.1.2)

1. H(L) := Dint(L)//BT (M).

2. H′(L) := D′
int(L)//BT (M).
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Proposition 5.20 implies that H(L) is the space of holomorphic structures on L and that

H′(L) is the space of holomorphic structures with holomorphic connective structure on

L. For a fixed smooth gerbe with connective structure L∇ we recall that A(L∇) is the
set of curvings on L∇ and we write the following.

1. D(L∇) = A(L∇)/Ω2,0+1,1(X, t).

2. D′(L∇) = A(L∇)/Ω2,0(X, t).

Finally, we write BT∇0,1(X) for the groupoid whose objects are T -bundles over X

equipped with an equivalence class of connections, up to addition of 1-forms in Ω1,0(X, t),

and whose arrows are isomorphisms of T -bundles whose covariant derivative with respect

to any choice of representing connection is of type (1, 0). This is a 2-group, with product

given by tensor product of T -bundles with connection. All these objects are considered

with Fréchet topology.

Proposition 5.3. Let L∇ be a smooth gerbe with connective structure. Then

1. BT∇0,1(X) acts on D(L∇) and there is a canonical map of simplicial topological

spaces {[B] ∈ D(L∇) | H0,3 = 0}//BT∇0,1(X) → H(L) inducing weak homotopy

equivalence on geometric realizations.

2. BT∇(X) acts on D′(L∇) and there is a canonical map of simplicial topological

spaces {[B] ∈ D′(L∇) |H(1,2)+(0,3) = 0}//BT∇(X) → H′(L) inducing weak homo-

topy equivalence on geometric realizations.

Proof. Analogous to the proof of Proposition 3.30.

5.1.2 Holomorphic multiplicative gerbes

Definition 5.4. Let G, T be complex Lie groups with T abelian. A holomorphic

multiplicative T -gerbe over G is a multiplicative T -gerbe (G,m, α) over G as in Definition

3.31 such that G,m and α are holomorphic. A compatible (resp. holomorphic) connective

structure on it is a compatible (resp. holomorphic) connective structure on the gerbe G
with a compatible (resp. holomorphic) connection on the isomorphism of gerbes m such

that α is a flat 2-isomorphism of gerbes.

In terms of cocycle data (3.94) in a good semi-simplicial cover of BG•, a holomorphic

multiplicative T -gerbe over G is a multiplicative T -gerbe for which λi1j1k1 , mi2j2 , αi3 can

be chosen to be holomorphic. In terms of cocycle data (3.106), a compatible connective
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structure is one for which Ai1j1 ,Mi2 can be chosen to be of type (1, 0) and a holomorphic

connective structure is one for which they can be chosen to be of type (1, 0) and to satisfy

∂̄Ai1j1 = 0, ∂̄Mi2 = 0.

For a smooth multiplicative gerbe G, we say that it admits a holomorphic structure

(with compatible or holomorphic connective structure) if it is isomorphic as a smooth

multiplicative gerbe to the underlying smooth multiplicative gerbe of a holomorphic

multiplicative gerbe (with compatible or holomorphic connective structure).

Proposition 5.5 ([268]). Let G, T be complex Lie groups with T abelian and let G be

a smooth multiplicative T -gerbe over G. Then

1. G admits a holomorphic structure if and only if its de Rham class (3.98) admits a

representative (τ3, τ2, τ1, 0) with τ
0,3
3 = 0, τ0,22 = 0, τ0,11 = 0.

2. G admits a holomorphic structure with compatible connective structure if and only

if its de Rham class (3.98) admits a representative (τ3, τ2, τ1, 0) with τ0,33 = 0,

τ0,22 = 0, τ1 = 0.

3. G admits a holomorphic structure with holomorphic connective structure if and only

if its de Rham class (3.98) admits a representative (τ3, τ2, τ1, 0) with τ1,2+0,3
3 = 0,

τ1,1+0,2
2 = 0, τ1 = 0.

Proof. Straightforward by Proposition 5.2.

For a smooth multiplicative gerbe with connective structure G∇, we say that it admits a

holomorphic structure with compatible (resp. holomorphic) connective structure if it is

isomorphic as a smooth multiplicative gerbe with connective structure to the underlying

smooth multiplicative gerbe with connective structure of a holomorphic multiplicative

gerbe with compatible (resp. holomorphic) connective structure.

Proposition 5.6. Let G, T be complex Lie groups with T abelian and let G∇ be a smooth

multiplicative T -gerbe with connective structure over G. Then

1. G∇ admits a holomorphic structure with compatible connective structure if and

only if the pairing ⟨·, ·⟩ : g ⊗ g → t from Theorem 3.43 satisfies ⟨·, ·⟩0,2 = 0. In

this case, there is a unique such holomorphic structure with compatible connec-

tive structure up to holomorphic isomorphism with compatible connection, and the

Maurer-Cartan curving is compatible with it.

2. G∇ admits a holomorphic structure with holomorphic connective structure if and

only if the pairing ⟨·, ·⟩ : g⊗ g→ t from Theorem 3.43 satisfies ⟨·, ·⟩1,1+0,2 = 0. In
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this case, there is a unique such holomorphic structure with holomorphic connective

structure up to holomorphic isomorphism with holomorphic connection and the

Maurer-Cartan curving is holomorphic.

Proof. We only prove 1, as 2 follows similarly. If G∇ is holomorphic with compatible

connective structure, then take cocycle data (3.106) such that Ai1j1 , Mi2 are of type

(1, 0) and compute ΘL, ⟨·, ·⟩ as in Remark 3.44. Since dA0,2
i1j1

= 0, dM0,2
i2

= 0, it follows

that ⟨·, ·⟩0,2 = 0, as we wanted to show. But we also see that (ΘL
i1
)0,2 = 0, which means

that the (0, 2)-part of the Maurer-Cartan curving is an integrable 1-semiconnection for

G∇, and that the (0, 1)-part of the connection on m is an integrable 1-semiconnection

on m. Since the (0, 2)-part of the Maurer-Cartan curving and the (0, 1)-part of the

connection on m are preserved by isomorphisms of smooth G∇-bundles, this means that

a smooth G∇-bundle admits at most 1 structure of holomorphic multiplicative gerbe

with compatible connective structure, and it does so whenever the (0, 2)-part of the

Maurer-Cartan curving and the (0, 1)-part of the connection on m are integrable as 1-

semiconnections. That is, when the corresponding µ, ν from (3.109) satisfy µ0,3 = 0 and

ν0,2 = 0, which happens precisely when ⟨·, ·⟩0,2 = 0.

For G a smooth multiplicative T -gerbe over G, recall from Definition 3.53 the notion of

an equivariant structure on a trivialization of exp∗G → g. We can analogously define a

holomorphic equivariant structure on a holomorphic trivialization of exp∗G → g. Then

the proof of Theorem 3.54 can be adapted to yield the following result.

Corollary 5.7. Let G, T be complex Lie groups with T abelian and let G be a holomor-

phic multiplicative T -gerbe over G. Then,

1. G admits a holomorphic connective structure if and only if every holomorphic triv-

ialization ϵ of exp∗G → g admits a holomorphic equivariant structure.

2. If ⟨·, ·⟩ : g ⊗ g → t corresponds to a holomorphic connective structure on G, then
any holomorphic trivialization ϵ can be equipped with a holomorphic connection

such that the covariant derivative of a holomorphic equivariant structure αϵ is

ηϵ ∈ Ω1,0(G× g, t) defined by

ηϵ|(g,v)(vg + v̇) := 2⟨v, g−1vg⟩. (5.13)

Recall the fibrewise complexification LC of a gerbe L from Definition 5.1. Upmeier

[268] used the theory of Stein manifolds to construct a holomorphic C∗-gerbe with holo-

morphic connective structure over GL(n,C) that restricts over U(n) to the fibrewise
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complexification of the U(1)-gerbe String(U(n)). The following theorem generalizes

that construction.

Theorem 5.8. Let K, TR be compact, connected Lie groups with TR abelian and let

jTR : TR → T , jK : K → G be their complexifications. For K any TR-multiplicative gerbe

over K there is a unique holomorphic multiplicative T -gerbe with holomorphic connective

structure G∇ over G such that j∗KG = KC as smooth multiplicative T -gerbes over K. We

call G∇ the complexification of K.

Proof. Let ⟨·, ·⟩ : k ⊗ k → tR be the pairing associated to K via Corollary 3.45, and

let ⟨·, ·⟩C : g ⊗ g → t be its complexification. If G∇ as in the theorem exists, then by

Proposition 5.6 its pairing g⊗g→ t must be ⟨·, ·⟩C, as it must be C-linear and restrict to

⟨·, ·⟩ on k, so let us show that there exists a G∇ with pairing ⟨·, ·⟩C. By Theorem 3.43, this

happens if and only if the forms µC := 1
6⟨θ

L∧[θL∧θL]⟩C, νC := −⟨g∗1θL∧g∗2θR⟩C determine

[µC,−νC, 0, 0] ∈ H4(BG, t) such that exp([µC,−νC, 0, 0]) = 0 ∈ H4(BG, T ). Now the

inclusion jK : K → G is a homotopy equivalence, therefore there is a commutative

diagram

H4(BG, t) H4(BG, T )

H4(BK, t) H4(BK,T )

exp

j∗K j∗K

exp

where the vertical arrows are isomorphisms, and it is clear that j∗K [µC,−νC, 0, 0] =

[µ,−ν, 0, 0] for µ, ν given by (3.109). Now we have exp([µ,−ν, 0, 0]) = 0 because of

the existence of K, and so exp([µC, νC, 0, 0]) = 0, implying that there is a smooth multi-

plicative T -gerbe with connective structure G∇ over G whose associated pairing is ⟨·, ·⟩C.
Moreover, it follows from Proposition 5.6 that G∇ has one and only one holomorphic

structure with holomorphic connective structure. In principle, Theorem 3.43 implies

that G∇ as a smooth gerbe is only determined by ⟨·, ·⟩C up to flat gerbes, i.e., classes

in H3(BG, T ), but again since j∗K : H3(BG, T ) → H3(BK,T ) is an isomorphism, this

dependence is fixed by imposing j∗G = KC.

Remark 5.9. Theorem 5.8 is also true for K non compact and not connected and T non

compact, as long as K and TR are Lie groups admitting complexifications G and T with

jK : K → G a homotopy equivalence and K is a multiplicative TR-gerbe with connective

structure over K.

Example 5.10. Let Λ0 ⊂ V0, Λ1 ⊂ V1 be real lattices inside complex vector spaces,

let ⟨·, ·⟩ : Λ0 ⊗ Λ0 → Λ1 be a bilinear form and write ⟨·, ·⟩ = ⟨·, ·⟩sy + ⟨·, ·⟩sk for its

decomposition in symmetric and skew-symmetric forms. Let T be the corresponding

multiplicative V1/Λ1-gerbe with connective structure over V0/Λ0 from examples 3.38,

3.46. Then we note the following.
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1. We see by construction that T is a holomorphic multiplicative gerbe ⇔ ⟨·, ·⟩ is
C-linear in the first entry. In this case, the connection θ is compatible with the

holomorphic structure.

2. The connection θ is holomorphic ⇔ ⟨·, ·⟩ is C-linear in both entries.

Moreover, recall from Example 3.14 that these multiplicative gerbes are actually classi-

fied by ⟨·, ·⟩sy. We obtain the following.

1. T is isomorphic to a holomorphic multiplicative gerbe ⇔ ⟨·, ·⟩0,2sy = 0. In this case,

it carries a compatible connective structure.

2. T is isomorphic to a holomorphic multiplicative gerbe with holomorphic connective

structure ⇔ ⟨·, ·⟩1,1+0,2
sy = 0.

This gives a direct proof of Proposition 5.6 for this family of multiplicative gerbes with

connective structure.

Example 5.11. For G a complex reductive Lie group with compact form K, Brylinski

[59] constructs a holomorphic C∗-gerbe G over G that restricts over K to the fibrewise

complexification of the gerbe String(K) from Example 3.37 (see also an alternative con-

struction when G = GL(n,C) in [268], based on [195, 200]). It follows from Theorem 5.8

that G admits a unique holomorphic multiplicative structure with holomorphic connec-

tive structure, which defines the complexification of String(K) as a multiplicative gerbe.

As in the smooth case (cf. Example 3.37), there is no known explicit cocycle description

of the multiplicative structure on G but there is an explicit equivariant structure in the

original work of Brylinski [59].

5.1.3 Maurer-Cartan forms and shifted holomorphic symplectic struc-

tures

Definition 5.12. A complex Lie groupoid X is a Lie groupoid as in Definition 3.1

such that X0, X1 are complex manifolds and such that all structure maps are holo-

morphic. A holomorphic anafunctor between complex Lie groupoids is an anafunctor

of Lie groupoids whose total space is a complex manifold, and such that all structure

maps are holomorphic. A holomorphic transformation between holomorphic anafunc-

tors is a transformation of anafunctors which is holomorphic as a map between complex

manifolds.

A complex Lie 2-group G is a Lie 2-group (G, 1,m, α, r, l) as in Definition 3.9 such that

G is a complex Lie groupoid and 1, m, α, r, l are holomorphic. A holomorphic action
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of a complex Lie 2-group (G, 1,m, α, r, l) on a complex Lie groupoid P is an action as

in Definition 3.16 such that ρ, rρ, αρ are holomorphic.

A (left) adjoint action (cf. Definition 3.23) of a complex Lie 2-group G with Lie 2-algebra

h
t∗→ g is compatible with the holomorphic structure if, for every g ∈ G0, Ad(g) : g → g

and Ad(g) : h → h are C-linear. For such a left adjoint action, a (right-invariant)

Maurer-Cartan form (θ0, θ1) on G is compatible with the holomorphic structure if θ0, θ1

are of type (1, 0). A (left) adjoint action is holomorphic if the actions of G on both g

and h are holomorphic, and in this case a (right-invariant) Maurer-Cartan form (θ0, θ1)

on G is holomorphic if θ0, θ1 are of type (1, 0) and satisfy ∂θ0 = 0, ∂θ1 = 0.

Example 5.13. Let (G̃,H, f, ▷, κ̃) be a Lie crossed module with κ̃ : G̃ × g̃ → h an

adjustment, as in Definitions 3.56, 3.58. By Propositions 3.57 and 3.59, this determines

a Lie 2-group G with an adjoint action Ad and a Maurer-Cartan form (θ0, θ1).

1. G is a complex Lie 2-group if and only if G̃, H are complex Lie groups and f , ▷

are holomorphic.

2. In that case, Ad and (θ0, θ1) are compatible with the holomorphic structure if and

only if κ̃ is C-linear on g̃.

3. In that case, Ad and (θ0, θ1) are holomorphic if and only if κ̃ is a holomorphic

function.

Let G be a complex Lie 2-group with Lie 2-algebra h
t∗→ g. In the following proposition

we regard the dual g∗
t∗∗→ h∗ of this chain complex as the complex derived manifold (cf.

Section 2.2.2) (g∗, h∗[−2], Q), where Q is given simply by the ‘curvature’ g∗
t∗∗→ h∗.

Proposition 5.14. Let G be a complex Lie 2-group with Lie 2-algebra h
t∗→ g. Then,

a holomorphic left adjoint action determines a holomorphic action of G on the derived

manifold g∗
t∗∗→ h∗ and a holomorphic right-invariant Maurer-Cartan form for this action

defines a 1-shifted holomorphic symplectic structure on the derived quotient 2-groupoid

(g∗
t∗∗→ h∗)//G (cf. Remark 3.18).

Proof. Analogous to Proposition 3.27. We just emphasize that the 1-forms λ0, λ1 defined

as in (3.68), (3.69) are of type (1, 0) as long as the Maurer-Cartan form is compatible

with the holomorphic structure, while the 2-forms ω0 = dλ0, ω1 = dλ1 are of type (2, 0)

as long as the Maurer-Cartan form is holomorphic.

We proceed to summarize the holomorphic analogs of the results in Section 3.2.4 that re-

late multiplicative gerbes and connective structures on them to Lie 2-groups and Maurer-

Cartan forms on them, and to shifted symplectic structures on associated derived stacks.

The proofs of these results are completely analogous to their smooth counterparts.
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Corollary 5.15. Let G, T be complex Lie groups with T abelian. There is an equivalence

of bicategories between the bicategory of central extensions of G by BT as complex Lie

2-groups and the bicategory of holomorphic multiplicative T -gerbes over G.

Proposition 5.16. Let G be the complex Lie 2-group corresponding to a holomorphic

multiplicative T -gerbe G → G by Corollary 5.15.

1. There is a holomorphic adjoint action of G on t
0→ g given by the adjoint action

of G on g and the trivial action on t.

2. A compatible connective structure on G determines a compatible right-invariant

Maurer-Cartan form on G for this adjoint action.

3. A holomorphic connective structure on G determines a holomorphic right-invariant

Maurer-Cartan form on G for this adjoint action. In particular, it induces a 1-

shifted holomorphic symplectic structure on (g∗
0→ t∗)//G.

Proposition 5.17. Let G be the complex Lie 2-group corresponding to a holomorphic

multiplicative C∗-gerbe G → G by Corollary 5.15. Then, a holomorphic connective

structure on G determines a 2-shifted holomorphic presymplectic structure on BG× C∗

defined by

t

6
π∗⟨θL ∧ [θL ∧ θL]⟩+ dt ∧Θ0 ∈ Ω3,0(BG1 × C∗,C), (5.14)

tπ∗⟨g∗1θL ∧ g∗2θR⟩+ dt ∧ θ1 ∈ Ω2,0(BG2 × C∗,C), (5.15)

where t is the coordinate in C∗, π : BGn → BGn is the projection map and ⟨·, ·⟩ is the

pairing associated to the connective structure by Theorem 3.43. This is in fact 2-shifted

holomorphic symplectic if and only if ⟨·, ·⟩ is non-degenerate.

5.2 Holomorphic principal 2-bundles

5.2.1 Semiconnections on principal 2-bundles

Fix X a complex manifold, G, T complex Lie groups with T abelian and (G∇,m∇, α) a

holomorphic multiplicative T -gerbe over G with holomorphic connective structure as in

Definition 5.4.

Definition 5.18. A holomorphic principal G-bundle over X is a principal G-bundle
(P,P, ρ, αρ) over X (cf. Definition 4.2) such that P is a holomorphic manifold with

the action of G on P holomorphic, P → P is a holomorphic gerbe and ρ, αρ are an

isomorphism and a 2-isomorphism of holomorphic gerbes. A connection (∇,∇ρ, A,B)
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(cf. Definition 4.7) on it is compatible with the holomorphic structure if (∇, B) is com-

patible with the holomorphic structure of the gerbe P → P , ∇ρ is compatible with the

holomorphic isomorphism ρ and A ∈ Ω1(P, g) is of type (1, 0). Note F 0,2
A = 0, H0,3 = 0

in this case.

A holomorphic principal G∇-bundle over X is a holomorphic G-bundle (P,P, ρ, αρ) over
X with a connective structure (∇,∇ρ) as in Definition 4.7 such that ∇ is a holomorphic

connective structure on P → P and ∇ρ is a holomorphic connection on ρ. A connection

(A,B) for this connective structure is compatible with the holomorphic connective struc-

ture if B is compatible with the holomorphic connective structure ∇ and A ∈ Ω1(P, g)

is of type (1, 0). Note F 0,2
A = 0, H1,2+0,3 = 0 in this case.

In terms of the cocycle data from Propositions 4.4 and 4.12, a holomorphic G-bundle
is one for which gab, σab and τabc can be chosen to be holomorphic. In that case, a

compatible connection is one for which ∇ab can be chosen to be compatible with the

holomorphic structure on σab, Aa can be chosen to be of type (1, 0) and Ba can be

chosen to be of type (2, 0) + (1, 1). On the other hand, a holomorphic G∇-bundle is

one for which gab, σab, τabc, ∇ab can be chosen to be holomorphic and in that case a

compatible connection is one for which Aa can be chosen to be of type (1, 0) and Ba

can be chosen to be of type (2, 0). It can be proven similarly as in Proposition 4.14

that compatible connections on holomorphic G-bundles and on holomorphic G∇-bundles
always exist.

Recall that, for any complex Lie group G, the category of holomorphic G-bundles is

equivalent to the category of smooth G-bundles with integrable semiconnections [101].

Here a semiconnection on a smooth G-bundle P is defined as an equivalence class

of smooth G-connections A ∈ Ω1(P, g), where we identify A1 ∼ A2 if A1 − A2 ∈
Ω1,0(X, adP ), and we say that it is integrable if F 0,2

A = 0 for any choice of representing

connection. Recall also that we proved the equivalent result for gerbes in Proposition

5.2, based on Definition 5.1.

Definition 5.19. The bicategory of smooth G-bundles with integrable 1-semiconnections

is defined in the following way.

1. A smooth G-bundle with integrable 1-semiconnection (P,P, ρ, αρ, DA, DB, D
ρ) is a

smooth G-bundle (P,P, ρ, αρ) with:

• An integrable semiconnection DA on the G-bundle P → X.

• An integrable 1-semiconnection DB on the gerbe P → P , where we see P as

a complex manifold with the complex structure induced by DA.
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• An integrable 1-semiconnection Dρ on the isomorphism of gerbes with 1-

semiconnection

ρ : (p∗P ⊗ g∗G, p∗DB ⊗ g∗(ΘL))→ ((pg)∗P, (pg)∗DB)

that is preserved by αρ. Here we see ΘL as a 1-semiconnection by Proposition

5.6.

2. An isomorphism of smooth G-bundles with integrable 1-semiconnections

(u, ϕ, αϕ, Dϕ) : (P 1,P1, ρ1, αρ,1, D1
A, D

1
B, D

ρ1)→ (P 2,P2, ρ2, αρ,2, D2
A, D

2
B, D

ρ2)

is an isomorphism of smooth G-bundles (u, ϕ, αϕ) such that u∗D2
A = D1

A with an in-

tegrable 1-semiconnectionDϕ on the isomorphism of gerbes with 1-semiconnections

ϕ : (P1, D1)→ (u∗P2, u∗D2) that is preserved by αϕ.

3. A 2-isomorphism of smooth G-bundles with 1-semiconnections ψ : (u, ϕ, αϕ, Dϕ)⇒
(u′, ϕ′, αϕ

′
, Dϕ′) is a 2-isomorphism ψ of smooth G-bundles such that ψ : ϕ ⇒ ϕ′

preserves the 1-semiconnections Dϕ, Dϕ′ .

We define in an analogous way the bicategory of smooth G-bundles with integrable

2-semiconnections.

The following proposition follows directly from Definition 5.19 and Proposition 5.2.

Proposition 5.20. The bicategory of holomorphic G-bundles is equivalent to the bicat-

egory of smooth G-bundles with integrable 1-semiconnections. The bicategory of holo-

morphic G∇-bundles is equivalent to the bicategory of smooth G-bundles with integrable

2-semiconnections.

For a fixed smooth gerbe L Proposition 5.20 implies that H(L) is the space of holo-

morphic structures on L and that H′(L) is the space of holomorphic structures with

holomorphic connective structure on L. For a fixed smooth gerbe with connective struc-

ture L∇ we recall that A(L∇) is the set of curvings on L∇ and we write the following.

1. D(L∇) = A(L∇)/Ω2,0+1,1(X, t).

2. D′(L∇) = A(L∇)/Ω2,0(X, t).

Finally, we write BT∇0,1(X) for the groupoid whose objects are T -bundles over X

equipped with an equivalence class of connections, up to addition of 1-forms in Ω1,0(X, t),

and whose arrows are isomorphisms of T -bundles whose covariant derivative with respect
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to any choice of representing connection is of type (1, 0). This is a 2-group, with product

given by tensor product of T -bundles with connection. All these objects are considered

with Fréchet topology.

For a fixed smooth G-bundle P we note that we can form a groupoid Dint(P) (resp.

D′
int(L)) with objects integrable 1-semiconnections (resp. 2-semiconnections) on P and

with arrows integrable 1-semiconnections (resp. 2-semiconnections) on the identity au-

tomorphism of P. The 2-group Gauge(P) acts on these in a similar way to the gauge

action on connections. Then we define the quotient 2-groupoids (cf. Section 3.1.2)

1. H(P) := Dint(P)//Gauge(P).

2. H′(P) := D′
int(P)//Gauge(P).

Proposition 5.20 implies that H(P) is the space of holomorphic structures on P and that

H′(P) is the space of holomorphic structures with holomorphic connective structure on

P.

For a smooth G∇-bundle P∇, write Dint(P∇) for the set of integrable 1-semiconnections

(DA, DB, D
ρ) on P such that {(DB)ij , D

ρ
i } is the (0, 1)-part of the given connective

structure. We write D′
int(P∇) for the set of integrable 2-semiconnections whose under-

lying connective structure is the given one.

It is convenient to describe 1-semiconnections and 2-semiconnections on G-bundles in

a more straightforward way than the one in Definition 5.19. For this, we recall from

Proposition 4.14 that the space A(P∇) of connections on a G∇-bundle over X is a torsor

for the group Ω1(adP )×⟨·,·⟩ Ω
2(X, t) with product given by (4.23) and define similarly

subgroups Ω1,0(adP )×⟨·,·⟩ Ω
2,0+1,1(X, t) and Ω1,0(adP )×⟨·,·⟩ Ω

2,0(X, t).

Proposition 5.21. Let P∇ be a smooth G∇-bundle. There are canonical bijections

Dint(P∇)→ {(A,B) ∈ A(P∇) | F 0,2
A = 0, H0,3 = 0}/Ω1,0(adP )×⟨·,·⟩ Ω

2,0+1,1(M, t),

D′
int(P∇)→ {(A,B) ∈ A(P∇) | F 0,2

A = 0, H1,2+0,3 = 0}/Ω1,0(adP )×⟨·,·⟩ Ω
2,0(M, t).

These maps send an integrable 1-semiconnection (resp. an integrable 2-semiconnection)

(DA, DB, D
ρ) to the set of all connections on P∇ that are compatible with the holo-

morphic structure (resp. holomorphic structure with holomorphic connective structure)

induced by (DA, DB, D
ρ).

Proof. We prove the case of integrable 2-semiconnections, as the other one is similar.

It follows from Definition 5.19 and Proposition 5.2 that an element of Dint(P∇) is a
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pair ([A], [B]) of an equivalence class of connections A on the G-bundle P such that

F 0,2
A = 0 up to addition of Ω1,0(adP ) (yielding a holomorphic structure on P such

that A ∈ Ω1,0(P, g) and which we use in the following), and an equivalence class of

curvings B on the gerbe with connective structure P∇ → P whose curvature Ĥ is of

type (3, 0) + (2, 1) and such that the curvature of ρ∇ : p∗P∇ ⊗ g∗G∇ → (pg)∗P∇ with

respect to p∗B⊗g∗ΘL, (pg)∗B is some τB ∈ Ω2(P ×G, t) of type (2, 0), up to addition of

Ω2,0(P, t). For such pair ([A], [B]) choose a representing connection A ∈ [A]. We claim

that we may always choose a representing curving B ∈ [B] such that τB = −R(A),
for R(A) as in Lemma 4.6. This is because for any representing B ∈ [B] we have that

τB +R(A) ∈ Ω2,0(P ×G, t) satisfies δ(τB +R(A)) = 0 for δ the simplicial differential of

P//G•, hence there is b ∈ Ω2,0(P, t) with δb = τB + R(A). Then for such a choice of B

we have (A,B) ∈ A(P∇) with F 0,2
A = 0 and H1,2+0,3 = Ĥ1,2+0,3 + CS(A)1,2+0,3 = 0; it

is easy to check that this gives a bijection as above.

In light of Proposition 5.21, we define

D(P∇) := A(P∇)/Ω1,0(adP )×⟨·,·⟩ Ω
2,0+1,1(M, t),

D′(P∇) := A(P∇)/Ω1,0(adP )×⟨·,·⟩ Ω
2,0(M, t),

(5.16)

and refer to these as the spaces of 1-semiconnections and 2-semiconnections, respectively.

Finally, for P∇ a smooth G∇-bundle we define the 2-group Gauge(P∇0,1) whose objects

are equivalence classes of (u, φ∇, ψ) ∈ Gauge(P∇), where we identify (u, φ∇, ψ) →
(u, φ∇ + Λ, ψ) for Λ ∈ Ω1,0(X, t), and whose arrows [(u, φ∇, ψ)] → [(u, φ′

∇, ψ
′)] are 2-

isomorphisms ψ : (u, φ, ψ) → (u, φ′, ψ′) whose covariant derivative with respect to any

choice of representing connection on φ, φ′ is of type (1, 0).

Proposition 5.22. Let P∇ be a smooth G-bundle with connective structure. Then

1. Gauge(P∇0,1) acts on D(P∇) preserving Dint(P∇) and there is a canonical map

of simplicial topological spaces Dint(P∇)//Gauge(P∇0,1) → H(P) inducing weak

homotopy equivalence on geometric realizations.

2. Gauge(P∇) acts on D(P∇) preserving D′
int(P∇) and there is a canonical map of

simplicial topological spaces D′
int(P∇)//Gauge(P∇)→ H′(P) inducing weak homo-

topy equivalence on geometric realizations.

Proof. It follows directly from Propositions 4.17, 5.3 and 5.21.

Proposition 5.23. Let P∇ be a smooth G-bundle with connective structure over X

described in a cover {Xa}a∈A by cocycle data gab, σab, τabc, ∇ab as in Propositions 4.4,
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4.12. Then an integrable 1-semiconnection on P∇ is given by

Aa ∈ Ω0,1(Xa, g), Da ∈ Ω0,2(Xa, t) (5.17)

such that

Ab −Ad(g−1
ab )Aa = (g∗abθ

L)0,1,

Db −Da = F 0,2
ab − ⟨Aa ∧ (g∗abθ

R)0,1⟩,

∂̄Aa = −
1

2
[Aa ∧Aa],

∂̄Da = −⟨∂̄Aa ∧Aa⟩ −
1

3
⟨Aa ∧ [Aa ∧Aa]⟩,

(5.18)

where Fab is the curvature of ∇ab. An integrable 2-semiconnection on P∇ is given by

Aa ∈ Ω0,1(Xa, g), Da ∈ Ω1,1+0,2(Xa, t) (5.19)

such that

Ab −Ad(g−1
ab )Aa = (g∗abθ

L)0,1,

Db −Da = F 1,1+0,2
ab − ⟨Aa ∧ g∗abθR⟩+ ⟨(g∗abθL)1,0 ∧Ab⟩,

∂̄Aa = −
1

2
[Aa ∧Aa],

(dDa)
1,2+0,3 = −⟨dAa ∧Aa⟩ −

1

3
⟨Aa ∧ [Aa ∧Aa]⟩ = 0.

(5.20)

An isomorphism P∇ → P2
∇ described by (φa,Φa,∇, ψab) as in Proposition 4.19 acts on

a 1-semiconnection (Aa, Da) for P∇ by sending it to the 1-semiconnection (A2
a, D

2
a) for

P2
∇ with

A2
a = Ad(φa)Aa − (φ∗

aθ
R)0,1, (5.21)

D2
a = Da − ⟨(φ∗

aθ
L)0,1 ∧Aa⟩ − F 0,2

a , (5.22)

where Fa is the curvature of Φa,∇, and it acts on a 2-semiconnection (Aa, Da) for P∇
by sending it to the 2-semiconnection (A2

a, D
2
a) for P2

∇ with

A2
a = Ad(φa)A

1
a − (φ∗

aθ
R)0,1, (5.23)

D2
a = D1

a − ⟨(φ∗
aθ
L)0,1 ∧A1

a⟩+ ⟨A2
a ∧ (φ∗

aθ
R)1,0⟩ − ⟨(φ∗

aθ
L)1,0 ∧A1

a⟩ − F 1,1+0,2
a . (5.24)

Proof. We prove the result for 2-semiconnections, as the other follows similarly. Straight-

forward computations show the following.
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1. If {Aa}, {Ba} is a connection with F 0,2
A = 0, H1,2+0,3 = 0 , then {A0,1

a },
{Da := B1,1+0,2

a + ⟨A1,0
a ∧A0,1

a ⟩} satisfies (5.20)

2. Given Aa ∈ Ω0,1(Xa, g), Da ∈ Ω1,1+0,2(Xa, t) satisfying (5.20), one can always

find a connection (Aa, Ba) such that Da = B1,1+0,2
a + ⟨A1,0

a ∧A0,1
a ⟩.

3. Two connections differ by a ∈ Ω1,0(adP ), b ∈ Ω2,0(X, t) if and only if the corre-

sponding data (A0,1
a , B1,1+0,2

a + ⟨A1,0
a ∧A0,1

a ⟩) coincides.

4. Under the map (Aa, Ba) 7→ (A0,1
a , B1,1+0,2

a + ⟨A1,0
a ∧A0,1

a ⟩), equations (4.36), (4.37)
become (5.23), (5.24).

Hence, the result follows from Proposition 5.21.

5.2.2 The Chern correspondence

We fix compact connected Lie groupsK, TR with TR abelian, a multiplicative TR-gerbe K
overK and a complex manifoldX. We write G, T and G∇ for the complexifications ofK,

TR, K, respectively, as in Theorem 5.8, and we write j : K → G for the complexification

map.

If Ph → X is a K-bundle, then its fibrewise complexification is the smooth G-bundle

PC
h := (Ph×G)/K, where k ∈ K acts as (p, g) ·k = (pk, k−1g). Note there is a canonical

K-equivariant map l : Ph → PC
h . This defines a functor from K-bundles to G-bundles.

It can also be promoted to a functor from K-bundles with connection to G-bundles

with connection which we denote by (Ph, Ah) 7→ (PC
h , A

C
h ). Recall also the fibrewise

complexification of gerbes from definition 5.1.

Proposition 5.24. Let (Ph,Ph, ρh, αρh) → X be a K-bundle. Then, there is a unique

smooth G-bundle (P,P, ρ, αρ)→ X such that P = PC
h and

1. There is an isomorphism of T -gerbes ϕ : PC
h → l∗P over Ph.

2. There is a 2-isomorphism of T -gerbes over Ph ×K

p∗PC
h ⊗ k∗KC (pk)∗PC

h

l(p)∗P ⊗ j(k)∗G (l(p)j(k))∗P

ρCh

p∗ϕ⊗id (pk)∗ϕ
ψ

(l(p),j(k))∗ρ

commuting with αρh and αρ.

We call (P,P) the fibrewise complexification of (Ph,Ph) and denote it by (PC
h ,PC

h ).
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Proof. If such G-bundle exists then it is unique up to isomorphism because if P1, P2 → P

are any two such bundles then ρ1⊗ ρ−1
2 , αρ1 ⊗αρ

−1
2 equips the T -gerbe P1⊗ (P2)∗ → P

with the necessary descent data to give a T -gerbe over X which is trivial precisely

when P1 is isomorphic to P2 as G-bundles [199]. But since K → G is injective this T -

gerbe can also be obtained by descending l∗P1 ⊗ l∗P∗
2 and the maps ϕ, ψ give precisely

a trivialization of the descent of this T -gerbe. In order to construct the G-bundle,
choose cocycle data {gab,h, σab,h, τabc,h} for (Ph,P∇,h) over a cover {Xa}a∈A of X as

in Proposition 4.4. Then define gab := j ◦ ghab : Xab → G and we note that g∗abG =

(ghab)
∗j∗G = (ghab)

∗KC; hence (gab, σ
C
ab,h, τ

C
abc,h) is cocycle data for a G-bundle with ϕ, ψ

as above.

Remark 5.25. Fibrewise complexification can also be promoted to a functor of bicat-

egories C : ⟨Smooth K − bundles⟩ → ⟨Smooth G − bundles⟩. Similarly, there are

complexification functors between the bicategories of bundles with connective struc-

tures and between the bicategories of bundles with connections which we denote by

(Ph,Ph,∇h
, Ah, Bh) 7→ (PC

h ,PC
h,∇h

, AC
h , B

C
h ).

The Chern correspondence from ordinary gauge theory relates connections onK-bundles

with holomorphic structures on their complexifications [233]. Analogous results for

gerbes appear in [82, 142]. Our next theorem generalizes all these. Recall enhanced

connections from Definition 4.7 and use Remark 4.8 to write ((A,B), g) ∈ Aen(P∇) for
an enhanced connection thought of as a pair of a connection (A,B) ∈ A(P∇) and a

g ∈ Γ(S2T ∗X ⊗ t). Write dc : Ωp(X, t) → Ωp+1(X, t) for the operator dc := Jt(∂ − ∂)
and note that it preserves tR-valued forms.

Theorem 5.26. Let Ph,∇h
be a K-bundle with connective structure over X and let P∇

be its fibrewise complexification. Then

1. There is a canonical bijection

Dint(P∇)→ {(Ah, Bh) ∈ A(Ph,∇h
) | F 0,2

Ah
= 0, H0,3

h = 0}/Ω1,1(X, tR).

This map sends a 1-semiconnection (DA, DB, D
ρ) to the set of connections on

Ph,∇h
whose complexification is compatible with the holomorphic structure on P∇

determined by (DA, DB, D
ρ).

2. There is a canonical bijection

D′
int(P∇)→ {((Ah, Bh), g) ∈ Aen(Ph,∇h

) | g0,2 = 0, F 0,2
Ah

= 0, Hh = dc(g(J ·, ·))}.

This map sends a 2-semiconnection (DA, DB, D
ρ) to the unique enhanced con-

nection ((Ah, Bh), g) ∈ Aen(Ph,∇h
) such that g0,2 = 0 and that the connection
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(AC
h , B

C
h −Jtg(J ·, ·)) on P∇ is compatible with the holomorphic structure with holo-

morphic connective structure determined by (DA, DB, D
ρ).

Proof. We only show the proof of part 2, as the other one is similar. Recall (5.16). We

shall prove that the map

ϕ : {((Ah, Bh), g) ∈ Aen(Ph,∇h
) | g0,2 = 0} → D′(P∇)

((Ah, Bh), g) 7→ [AC
h , B

C
h − Jtg(J ·, ·)]

is a bijection. The theorem will follow then from Proposition 5.21 and the fact that

the curvature (FAh
, Hh) of (Ah, Bh) satisfies F

0,2
Ah

= 0, Hh = dcg(J ·, ·) if and only if the

curvature (FA, H) of (AC
h , B

C
h − Jtg(J ·, ·)) satisfies F

0,2
A = 0, H1,2+0,3 = 0. To see that

ϕ is a bijection, recall from part 3 of Proposition 4.14 that the space

{((Ah, Bh), g) ∈ Aen(Ph,∇h
) | g0,2 = 0}

is a Ω2(X, tR)× Γ(S1,1T ∗X ⊗ tR)-bundle over A(Ph). Here Γ(S1,1T ∗X ⊗ tR) stands for

the intersection of the symmetric t-valued tensors of type (1, 1) on X with the tR-valued

tensors. On the other hand, the space

D′(P∇) = A(P∇)/Ω1,0(adP )×⟨·,·⟩ Ω
2,0(X, t)

is a Ω2(X, t)/Ω2,0(X, t)-bundle over A(P )/Ω1,0(adP ). Now the map

A(Ph)→ A(P )/Ω1,0(adP )

Ah 7→ [AC
h ]

is a bijection, while the map

Ω2(X, tR)× Γ(S1,1T ∗X ⊗ tR)→ Ω2(X, t)/Ω2,0(X, t)

(b, g) 7→ [b− Jtg(J ·, ·)]

is an isomorphism of groups. Thus ϕ may be regarded as an equivariant map between

affine bundles with the same fiber over the same space and so it is a bijection.

We obtain the following corollary, which can be interpreted as saying that holomorphic

G∇-bundles with a reduction to a K∇-bundle are the geometric objects prequantizing

the Hermitian metrics proposed by Yau [280] as a generalization of Kähler metrics with

the potential to fulfill Reid’s fantasy [217].
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Corollary 5.27. Let (Ph,∇h) be a K-bundle with connective structure over X. A

holomorphic structure with holomorphic connective structure on its complexification de-

termines an ω ∈ Ω1,1(X, tR) such that

ddcω − ⟨Fh ∧ Fh⟩ = 0, (5.25)

where Fh ∈ Ω2(adPh) is the curvature of the Chern connection on Ph.

Definition 5.28. For (Ph,∇h) a K-bundle with connective structure and a choice

of holomorphic structure with holomorphic connective structure on its complexifica-

tion (P,∇), the corresponding enhanced connection ((Ah, Bh), g)) ∈ Aen(Ph,∇h
) from

Theorem 5.26 is called the unitary Chern enhanced connection, while the connection

(AC
h , B

C
h − Jtω) ∈ A(P∇) is called the complex Chern connection, for ω = g(J ·, ·).

We write now · : g→ g, · : t→ t for the C-antilinear involutions that leave Jgk and JttR
invariant, repectively, and we write Im : t → tR, Re : t → JttR for the two projections,

by analogy with the case tR = iR, t = C.

Proposition 5.29. Let ({ghab}, {σ
ab,h
∇ }, {τabc,h∇ }) be cocycle data in a cover {Xa}a of X

for a K∇-bundle (Ph,P∇,h), as in Proposition 4.4. Let ({gab}, {σab∇ }, {τabc∇ }) be holo-

morphic cocycle data for a holomorphic G∇-bundle (P,P∇) and let ({φa}, {Φa,∇}, {ψab})
be cocyle data for an isomorphism (P,P∇) → (PC

h ,PC
∇,h) as in Proposition 4.19. Then

the unitary Chern enhanced connection on (Ph,P∇,h) is given by

Aha = −(φ∗
aθ
R)0,1 + (φ∗

aθ
R)0,1,

Bh
a = −JtIm

(
F 1,1
a + 2F 0,2

a − ⟨(φ∗
aθ
L)1,0 ∧ (φ∗

aθ
L)0,1⟩ − ⟨(φ∗

aθ
L)1,0 ∧ (φ∗

aθ
L)0,1⟩

)
,

ω = −JtRe
(
F 1,1
a − ⟨(φ∗

aθ
L)1,0 ∧ (φ∗

aθ
L)0,1⟩

)
,

(5.26)

while the complex Chern connection on (P,P∇) is given by

Aa = (φ∗
aθ
L)1,0 + (φ∗

aθ
L)0,1,

Ba = F 2,0
a + F 0,2

a + ⟨(φ∗
aθ
L)1,0 ∧ (φ∗

aθ
L)0,1⟩,

(5.27)

where Fa is the curvature of Φa,∇.

Proof. Let F hab be the curvature of σ
ab,h
∇ and let Fab be the curvature of σ

ab
∇ . Recall from

(4.39) that

Fab−⟨Aa ∧ g∗abθR⟩)− (F hab−⟨Aha ∧ (ghab)∗θR⟩) = (Fb+ ⟨φ∗
bθ
L ∧Ab⟩)− (Fa+ ⟨φ∗

aθ
L ∧Aa⟩).

(5.28)
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Then take −JtIm((·)1,1+2(·)0,2), (·)2,0+(·)0,2 and −JtRe((·)1,1) on both sides to see that

(5.26) and (5.27) are well-defined connections on (Ph,P∇,h), (P,P∇), respectively. Use

(4.36), (4.37) to prove that ({φa}, {Φa,∇}, {ψab}) sends (Aa, Ba) to (Aha, B
h
a − Jtω).

The classical Chern correspondence also states that, if P 1
h , P

2
h are K-bundles with holo-

morphic structures on their complexifications determining Chern connections A1
h, A

2
h,

then an isomorphism of K-bundles P 1
h → P 2

h is flat with respect to A1
h, A

2
h precisely

when its complexification is holomorphic with respect to the corresponding holomorphic

structures. Similarly, our Chern correspondence can be improved to an equivalence of

bicategories of which Theorem 5.26 is the result at the level of objects. To state this

equivalence, consider the forgetful functors of bicategories

F : ⟨Holomorphic G-bundles⟩ → ⟨Smooth G-bundles⟩,

F∇ : ⟨Holomorphic G∇-bundles⟩ → ⟨Smooth G∇-bundles⟩

and the complexification functors of bicategories

C : ⟨Smooth K-bundles⟩ → ⟨Smooth G-bundles⟩,

C∇ : ⟨Smooth K∇-bundles⟩ → ⟨Smooth G∇-bundles⟩.

We define the following bicategories as categorical fibered products.

⟨Holomorphic K-bundles⟩ := ⟨Holomorphic G-bundles⟩ F×C⟨Smooth K-bundles⟩,

⟨Holomorphic K∇-bundles⟩ := ⟨Holomorphic G∇-bundles⟩ F∇×C∇⟨Smooth K∇-bundles⟩.

Corollary 5.30. 1. The bicategory of holomorphic K-bundles is equivalent to the

bicategory D with:

• An object in D is an equivalence class of K-bundles with connection (Ph,∇h, Ah, Bh)
whose curvature satisfies F 0,2

Ah
= 0, H0,3

h = 0 and we identify (Ph,∇h, Ah, Bh) ∼
(Ph,∇h, Ah, Bh + b) for any b ∈ Ω1,1(X, tR).

• Isomorphisms (Ph,∇h, Ah, [Bh])→ (Ph,2,∇h,2, Ah,2, [Bh,2]) in D are isomor-

phisms of K-bundles with connection (Ph,∇h, Ah, Bh)→ (Ph,2,∇h,2, Ah,2, Bh,2)
that are flat up to forms in Ω1,1(X, tR).

• 2-isomorphisms in D are flat 2-isomorphisms between the corresponding iso-

morphisms of K-bundles with connection.

2. The bicategory of holomorphic K∇-bundles is equivalent to the full sub-bicategory

D′ of the bicategory of smooth K-bundles with enhanced connections ((Ah, Bh), g))

spanned by objects such that g0,2 = 0, F 0,2
Ah

= 0, Hh = dcg(J ·, ·).
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Proof. We show the proof of part 2, as the other one follows similarly. First, it fol-

lows from Proposition 5.20 that the bicategory of holomorphic K∇-bundles is equivalent

to the bicategory whose objects are K∇-bundles with 2-semiconnections in their com-

plexifications, whose isomorphisms are isomorphisms of K∇-bundles that complexify to

isomorphisms of 2-semiconnections, and whose 2-isomorphisms are 2-isomorphisms of

K-bundles preserving the 2-semiconnections.

Theorem 5.26 implies then that every object in ⟨Holomorphic K∇-bundles⟩ can be de-

scribed by an object inD′, and conversely. An isomorphism in ⟨Holomorphic K∇-bundles⟩
between theK∇-bundles corresponding to (Ph,∇h, Ah, Bh, g) and (Ph,2,∇h,2, Ah,2, Bh,2, g2)
is then an isomorphism of K∇-bundles (u, φu∇, α

u) : (Ph,∇h) → (P2
h,∇2

h) such that u

is flat (by the classical Chern correspondence) and that (φu∇)
C has curvature of type

(2, 0) with respect to the curvings Bh,1 − Jtg1(J ·, ·) and u∗(Bh,2 − Jtg2(J ·, ·)) (by The-

orem 5.26 and Proposition 5.2). But its curvature with respect to these curvings

equals its curvature with respect to Bh,1, u
∗Bh,2 (which is tR-valued because so are

Bh,1, Bh,2 and φu∇) plus the JttR-valued form Jt(g1(J ·, ·) − g2(J ·, ·)); such a sum can

only be of type (2, 0) when both terms are zero. This means that all isomorphisms in

⟨Holomorphic K∇-bundles⟩ are described by isomorphisms in D′, and conversely. The

same holds trivially for 2-isomorphisms, which concludes the proof.

5.2.3 Holomorphic Atiyah algebroids

Definition 5.31 ([126]). Let X be a complex manifold and let V be a complex vector

space. A complex V -Courant-Dorfman algebroid over X is a quadruple (E′, ⟨·, ·⟩, [·, ·], d),
where

1. E′ → X is a smooth complex vector bundle,

2. ⟨·, ·⟩ : Γ(E′)⊗C∞(M,C) Γ(E
′)→ C∞(X,V ) is a symmetric C∞(X,C)-bilinear map,

3. [·, ·] : Γ(E′)⊗C Γ(E′)→ Γ(E′) is a C-bilinear map

4. d : C∞(X,V )→ Γ(E′) is a C-linear map

satisfying the same axioms as in Definition 4.22. In particular, for V a real vector space

and E a V -Courant-Dorfman algebroid, the complexification of E is the complex V ⊗RC-
Courant-Dorfman algebroid E ⊗R C with its obvious bracket, pairing and differential.

A holomorphic V -Courant-Dorfman algebroid over X is a quadruple (Q, ⟨·, ·⟩, [·, ·], d),
where

1. Q→ X is a holomorphic vector bundle with sheaf of sections also denoted by Q,
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2. ⟨·, ·⟩ : Q⊗OX
Q→ OX,V is a symmetric morphism of sheaves,

3. [·, ·] : Q⊗C Q→ Q is a morphism of sheaves,

4. d : OX,V → Q is a morphisms of sheaves

such that the same axioms as in Definition 4.22 are satisfied.

If E′ is a complex V -Courant-Dorfman algebroid, then there is a C-linear anchor map

π : E′ → TCX with π([e1, e2]) = [π(e1), π(e2)] as in Definition 4.22. We note that

π−1(T 0,1X) ⊂ E′ is always a V -Courant-Dorfman subalgebroid. We say E′ is transitive

if π is surjective. In this case, or more generally if π : E′ → T 0,1X is surjective, we

define an (involutive) lifting of T 0,1X to E′ to be an isotropic (involutive) splitting

s : T 0,1X → E′ of π : π−1(T 0,1X) ⊂ E′ → T 0,1X. An involutive lifting of T 0,1X to

E′ determines a holomorphic V -Courant-Dorfman algebroid QE′,s as in [127]. Namely,

write L := s(T 0,1X) ⊂ E′ and define QE′,s := L⊥/L, with holomorphic structure given

by

∂Xe = [s(X), ẽ] mod L,

for X ∈ Γ(T 0,1X), e ∈ Γ(L⊥/L) and ẽ ∈ Γ(L⊥) any representative of e. Then ⟨·, ·⟩, [·, ·]
and dE are well-defined on holomorphic sections of QE′,s by restricting them from L⊥.

This construction is related to the description of holomorphic G-bundles and holomorphic

G∇-bundles in terms of semiconnections from Theorem 5.26.

Proposition 5.32. Let X be a complex manifold and let G∇ be a holomorphic multi-

plicative T -gerbe with holomorphic connective structure.

1. A smooth G∇-bundle (P,P∇) over a complex manifold X gives rise to a complex

t-Courant-Dorfman algebroid E′
P∇

fitting in a sequence

0→ T ∗X ⊗ t→ E′
P∇ → AtCP → 0, (5.29)

where AtCP := (TP/G ⊗ C)/(adP )0,1 is the complex Atiyah algebroid of P . The

quotient π−1(T 0,1X)/(T ∗X⊗ t)1,0 is also a complex t-Courant-Dorfman algebroid.

2. If G∇ is the complexification of K∇ and P∇ = PC
h,∇h

, then E′
P∇

= EC
Ph,∇h

.

3. (Integrable) 1-semiconnections on P∇ are in bijection with (involutive) liftings of

T 0,1X to π−1(T 0,1X)/(T ∗X ⊗ t)1,0. (Integrable) 2-semiconnections on P∇ are in

bijection with (involutive) liftings of T 0,1X to E′
P∇

.
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4. A holomorphic G∇-bundle (P,P∇) over X gives rise to a holomorphic t-Courant-

Dorfman algebroid QP∇ fitting in a sequence

0→ (T ∗X ⊗ t)1,0 → QP∇ → AtholP → 0, (5.30)

where AtholP := T 1,0P/G is the holomorphic Atiyah algebroid of P . Compatible

connections on (P,P∇) are in bijection with isotropic splittings of QP∇ → T 1,0X.

5. Given an integrable 2-semiconnection on a smooth G∇-bundle P∇, the holomor-

phic Courant algebroid constructed from E′
P∇

and the involutive lifting of T 0,1X

of 3 coincides with the holomorphic Courant algebroid constructed in 4 from the

corresponding holomorphic G∇-bundle.

Proof. For 1, let ({gab}, {σab,∇}, {τabc}}) be cocycle data for (P,P∇) in a cover {Xa}a∈A
of X and construct E′

P∇
by gluing TXa ⊗C⊕ g⊕ T ∗Xa ⊗ t as in the proof of Theorem

4.23. Equivalently, E′ = EP∇ ⊗ C/(Ker π)0,1. With this description, 2 is clear and

the formula for the bracket and pairing in Theorem 4.23 implies that (T ∗X ⊗ t)1,0

is an isotropic ideal inside π−1(T 0,1X), so that the bracket and pairing descend to

π−1(T 0,1X)/(T ∗X ⊗ t)1,0. For 3, note that connections on P∇ induce complex linear

splittings of E′
P∇
→ TX ⊗C as in Theorem 4.23, and check how these splittings behave

when moving the connection by a ∈ Ω1,0(adP ), b ∈ Ω(2,0)+(1,1)(X, t). The relation

between being integrable and involutive follows from the formula for the bracket in

Theorem 4.23. For 4, let ({gab}, {σab,∇}, {τabc})) be holomorphic cocycle data for (P,P∇)
(so in particular g∗abθ ∈ Ω1,0(X, g) and Fab ∈ Ω2,0(X, t)) and construct QP∇ by gluing

T 1,0Xa ⊕ g⊕ (T ∗X ⊗ t)1,0 as in Theorem 4.23. Then 5 follows directly by construction,

as we can also use this cocycle data to construct E′
P∇

as before and then the lifting of

T 0,1X is obtained in this gauge by gluing T 0,1Xa ⊕ {0} ⊕ {0}.

Remark 5.33. Given an integrable 1-semiconnection on a smooth G∇-bundle, the holo-

morphic t-Courant-Dorfman algebroid constructed from the involutive splitting of T 0,1X

to π−1(T 0,1X)/(T ∗X ⊗ t)1,0 of part 3 of Proposition 5.32 is simply T 1,0P/G, the holo-

morphic Atiyah algebroid of P .

Let G∇ be a holomorphic multiplicative T -gerbe with holomorphic connective structure.

As in Theorem 4.23, Proposition 5.32 can be enhanced to give a functor from the bicat-

egory of smooth G∇-bundles to the category of complex t-Courant-Dorfman algebroids.

In particular, for a fixed G∇-bundle P∇ with complex Atiyah algebroid E′ we obtain an

action of Gauge(P∇) on E′, which we call the adjoint action. This can be described

as in the proof of Theorem 4.23; in particular, it preserves adP ′
∇ := Ker(π) ⊂ E′.

Recall also the 2-group Gauge(P0,1
∇ ) from Section 5.2.1 and note that it acts similarly
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on adP ′
∇/(T

∗X ⊗ t)1,0. The proof of Theorem 4.26 can be adapted in a straightforward

way to yield the following.

Corollary 5.34. Let G∇ be a holomorphic multiplicative T -gerbe with holomorphic con-

nective structure and let P∇ be a smooth G∇-bundle. Then

1. The 2-group Gauge(P∇0,1) admits a model as a complex Lie 2-group with Lie 2-

algebra C∞(X, t)
dE→ Γ(adP ′

∇/(T
∗X ⊗ t)1,0).

2. The 2-group Gauge(P∇) admits a model as a complex Lie 2-group with Lie 2-

algebra C∞(X, t)
dE→ Γ(adP ′

∇).

In both cases, the adjoint action is holomorphic and it admits a holomorphic right-

invariant Maurer-Cartan form in the sense of Definition 5.12.

Remark 5.35. Let P∇ be a holomorphic G∇-bundle and take a compatible connection

(A,B) ∈ A(P∇) to split adP ′
∇ = T ∗X ⊗ t⊕ adP . Define the operator

∂ : Γ(adP )⊕ Ω1(X, t)→ Ω0,1(adP )⊕ Ω1,1+0,2(X, t)

v + ξ 7→ ∂
A
s+ (dξ)1,1+0,2 + 2⟨F 1,1

A , s⟩.
(5.31)

As it follows from Proposition 4.27, the Lie 2-algebra of the 2-group of holomorphic

automorphisms of P∇ can be described as H0(X, t)
d→ Ker(∂). In particular, the Lie 2-

algebra H0(X, t)
d→ Ker(π : H0(Q)→ H0(T 1,0X)) embeds there but in a non-surjective

way, as one might have expected a priori from Corollary 5.34.



Chapter 6

Geometry of moduli spaces

In Section 2.3.3 we presented the derived moduli stack of flat connections on a G-bundle

P → M , for G a Lie group and M a smooth manifold, and the derived moduli stack

of holomorphic structures on a G-bundle P → X, for G a complex Lie group and X a

complex manifold, and we constructed shifted symplectic structures on them. In this

chapter we show that similar constructions can be performed in the context of higher

gauge theory.

Recall that the ‘derived’ structure of the moduli spaces from Section 2.3.3 arises from

the curved DGLA (Ω≥2(adP ), dA, [·, ·]) associated to a connection A on a G-bundle P .

This curved DGLA is obtained from a general procedure which takes a Lie algebroid

E → M with a sub-bundle D ⊂ E and an ideal L ⊂ E such that D′ ⊕ L = E, and

produces a curved DGLA structure on Γ(Λ•D∗⊗L) whose Maurer-Cartan elements are

in bijection with involutive sub-bundles D′ ⊂ E such that D⊕L = E [156, Section 6.2].

Indeed, applying this construction to E = TP/G, D = sA(TM) for sA : TM → E the

splitting induced by A and L = adP yields the desired curved DGLA.

In light of Theorem 4.23, we can mimic this construction within the context of higher

gauge theory as follows. Given a multiplicative gerbe with connective structure G∇
and a G∇-bundle P∇ → M with Atiyah algebroid E → M , each enhanced connection

((A,B), g) on P∇ induces a splitting s : TM → E. Deforming ((A,B), g) to a flat

connection is equivalent to deforming s to an isotropic, involutive splitting, and so we

can recast the problem of finding the ‘derived’ structure on the moduli space of flat con-

nections on P∇ as the problem of finding a curved L∞-algebra controlling deformations

of a sub-bundle of a Courant-Dorfman algebroid.

177
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The deformation theory of Dirac structures on Courant algebroids was one of the first

problems to be addressed in generalized geometry [179]. Since then, many generaliza-

tions and alternative constructions have appeared [91, 115, 143, 163, 228]. They all use

techniques from generalized and graded geometry to define curved L∞-algebras control-

ling the problem of deforming a given Lagrangian subbundle inside a Courant algebroid

D ⊂ E to an involutive Lagrangian subbundle. The L∞-algebra is presented upon choos-

ing a Lagrangian complement to L. Note that, for the applications we have in mind, D

and L are coisotropic and isotropic, respectively, but not Lagrangian, so the results in

these papers cannot be applied directly. We propose a more general construction that

yields the previously studied L∞-algebras when D and L are Lagrangian, and which is

also related to L∞-algebras in the literature on mathematical physics [13].

Once these L∞-algebras are constructed, defining simplicial derived manifolds repre-

senting our moduli spaces of interest is immediate from Theorem 4.26, which states

that the gauge 2-group of a principal 2-bundle is smooth. In order to construct shifted

symplectic structures associated to these, we recall that the shifted symplectic struc-

tures from Section 2.3.3 were motivated by Theorem 2.29 and the 2-shifted symplectic

structure from Example 2.35. The analog of this in higher gauge theory is the 2-shifted

symplectic structure on BG × R>0 from Proposition 3.52, suggesting the existence of

shifted symplectic structures on the moduli spaces of pairs ((A,B), ϕ), where (A,B)

is a flat connection on a principal 2-bundle over an oriented manifold M and ϕ is a

non-vanishing constant function on M . As we will see, we can indeed construct such a

shifted symplectic structure if we interpret ϕ as a rescaling of the volume form on M ,

relating it with the dilaton from string theory as suggested by [174].

An interesting observation from Section 2.3.3 is that some of the moduli spaces studied

there can be constructed as symplectic reductions or derived critical loci. Recall also

from Examples 2.34 and 2.32 that the shifted symplectic structures on these spaces

are related to the shifted symplectic structure on g∗//G from Example 2.33, while in

Proposition 3.27 we constructed an analogous structure for Lie 2-groups with a Maurer-

Cartan form. We can use this result to define Hamiltonian actions of Lie 2-groups and

their corresponding symplectic reductions, as well as derived critical loci for Lie 2-group-

invariant functions, illustrating the constructions with some of our moduli spaces.

In Section 6.1.1 we present our approach to the deformation theory of isotropic, invo-

lutive sub-bundles on a Courant-Dorfman algebroid. In Section 6.1.2 we apply this to

construct derived moduli stacks of flat connections, holomorphic stuctures and holo-

morphic structures with holomorphic connective structures on principal 2-bundles. In

Section 6.2.1 we construct shifted symplectic structures on these moduli spaces, and in

Section 6.2.2 we provide a theory of Hamiltonian reduction for actions of 2-groups which
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we can apply to some of our examples of moduli spaces. Finally, in Section 6.2.3 we

relate these constructions to the study of the Hull-Strominger system from [127].

6.1 Derived moduli stacks

6.1.1 Deformations of isotropic, involutive sub-bundles of a Courant-

Dorfman algebroid

Let E →M be a V -Courant-Dorfman algebroid, let D ⊂ E be an arbitrary sub-bundle

and let L ⊂ E be an ideal with D ∩ L = {0} and D ⊕ L = E. We write ΠL : E → L

and ΠD : E → D for the corresponding projections. Then

Γ(D∗ ⊗ L)→ {D′ ⊂ E | D′ ∩ L = 0}

α 7→ {v + α(v) | v ∈ D}
(6.1)

induces a bijection between isotropic, involutive sub-bundles D′ ⊂ E with D′∩L = {0},
D′ ⊕ L = E and α ∈ Γ(D∗ ⊗ L) satisfying

ΠL([X,Y ]) + [X,α(Y )] + [α(X), Y ]− α(ΠD[X,Y ]) + [α(X), α(Y )] = 0, (6.2)

⟨X,Y ⟩+ ⟨α(X), Y ⟩+ ⟨X,α(Y )⟩+ ⟨α(X), α(Y )⟩ = 0. (6.3)

Conditions (6.2) and (6.3) can be modelled as the Maurer-Cartan equation of a curved

DGLA as follows. First, define for p ≥ 2 the vector space Kp(D,L) consisting on pairs

(ω, τ), where

1. τ ∈ Γ(Λp−2D∗ ⊗ S2D∗ ⊗ V ) satisfying

τ(X1, ..., Xp−3, Xp−2, Xp−1, Xp) + τ(X1, ..., Xp−3, Xp−1, Xp, Xp−2)

+ τ(X1, ..., Xp−3, Xp, Xp−2, Xp−1) = 0,
(6.4)

2. ω : Γ(D)⊗
p
⌣· · · ⊗Γ(D)→ Γ(L) R-linear satisfying

ω(X1, ..., fXp)− fω(X1, ..., Xp) = 0, f ∈ C∞(X,R),
(6.5)

ω(X1, ..., Xi, Xi+1, ..., Xp) + ω(X1, ..., Xi+1, Xi, ..., Xp) = 0, 1 ≤ i ≤ p− 2,

(6.6)

ω(X1, ..., Xp−1, Xp) + ω(X1, ..., Xp, Xp−1) = dE(τ(X1, ..., Xp)).

(6.7)
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We also define

K1(D,L) := Γ(D∗ ⊗ L), K0(D,L) := Γ(L), K−1(D,L) := C∞(X,V ), (6.8)

and Ki = 0 for i ≤ −2.

The bracket [·, ·] : Kp1(D,L)⊗Kp2(D,L)→ Kp1+p2(D,L) is defined as

[(ω1, τ1), (ω2, τ2)] = ([ω1, ω2], τ[ω1,ω2]), (6.9)

where

[ω1, ω2](X1,..., Xp1+p2) :=∑
σ∈Sp1,p2−1

(−1)σ[ω1(Xσ(1), ..., Xσ(p1)), ω2(Xσ(p1+1), ..., Xσ(p1+p2−1), Xp1+p2)]

+(−1)p2+1
∑

σ∈Sp1−1,p2

(−1)σ[ω2(Xσ(p1), ..., Xσ(p1+p2−1)), ω2(Xσ(1), ..., Xσ(p1−1), Xp1+p2)],

(6.10)

τ[ω1,ω2](X1, ..., Xp1+p2) :=

(−1)p2+1
∑

σ∈Sp1−1,p2−1

(−1)σ⟨ω1(Xσ(1), ..., Xσ(p1−1), Xp1+p2−1), ω2(Xσ(p1), ..., Xσ(p1+p2−2), Xp1+p2)⟩

+⟨ω1(Xσ(1),..., Xσ(p1−1), Xp1+p2), ω2(Xσ(p1), ..., Xσ(p1+p2−2), Xp1+p2−1)⟩
(6.11)

The differential d : Kp(D,L)→ Kp+1(D,L) is

d(ω, τ) = (dω, dτ + (−1)p−1ωs), (6.12)

where

dω(X1, ..., Xp+1) :=
∑

σ∈S1,p−1

(−1)σ[Xσ(1), ω(Xσ(2), ..., Xσ(p), Xp+1)]

− (−1)p[ω(X1, ..., Xp), Xp+1]

+
∑

σ∈S2,p−2

(−1)σω(πM [Xσ(1), Xσ(2)], Xσ(3), ..., Xσ(p), Xp+1)

−
∑

σ∈S1,p−1

(−1)σω(Xσ(2), ..., Xσ(p), πM [Xσ(1), Xp+1]),

(6.13)
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dτ(X1, ..., Xp+1) :=
∑

σ∈S1,p−2

(−1)σπ(Xσ(1))(τ(Xσ(2), ..., Xσ(p−1), Xp, Xp+1))

+
∑

σ∈S2,p−3

(−1)στ(πM [Xσ(1), Xσ(2)], Xσ(3), ..., Xσ(p−1), Xp, Xp+1)

−
∑

σ∈S1,p−2

(−1)στ(Xσ(2), Xσ(3), ..., Xσ(p−1),ΠD[Xσ(1), Xp], Xp+1)

−
∑

σ∈S1,p−2

(−1)στ(Xσ(2), Xσ(3), ..., Xσ(p−1), Xp,ΠD[Xσ(1), Xp+1]),

(6.14)

ωs(X1, ..., Xp+1) := ⟨ω(X1, ...Xp−1, Xp), Xp+1⟩+ ⟨ω(X1, ..., Xp−1, Xp+1), Xp⟩ (6.15)

The curvature is Φ ∈ K2(D,L), Φ = (ωΦ, τΦ), where

ωΦ(X1, X2) = −ΠL[X1, X2], (6.16)

τΦ(X1, X2) = −⟨X1, X2⟩. (6.17)

Note that all these formulas are analogous to the invariant formulas for the DGLA

controlling deformations of an involutive sub-bundle of a Lie algebroid [156, Cor. 6.2.17].

Proposition 6.1. (K•(D,L),Φ, d, [·, ·]) is a curved differential graded Lie algebra whose

Maurer-Cartan elements are in bijection with isotropic, involutive subbundles D′ ⊂ E

such that D′ ∩ L = 0 and D′ ⊕ L = E.

Proof. It follows from tedious but straightforward computations analogous to the cor-

responding statement for Lie algebroids [156, Section 6.2.], using the axioms from Defi-

nition 4.22 and the fact that the bijections of shuffle permutations (see (2.63))

Sp1,p2 × Sp1+p2,p3 → Sp1,p2,p3

(σ1,2, σ12,3) 7→ σ1,2,3,

Sp1,p2+p3 × Sp2,p3 → Sp1,p2,p3

(σ1,23, σ2,3) 7→ σ′1,2,3,

Sp1,p2 → Sp2,p1

σ1,2 7→ σ2,1
(6.18)

defined by

σ1,2,3 :=

σ12,3(σ1,2(i)) 1 ≤ i ≤ p1 + p2

σ12,3(i) p1 + p2 < i ≤ p1 + p2 + p3,
(6.19)

σ′1,2,3 :=

σ1,23(i) 1 ≤ i ≤ p1

σ1,23(p1 + σ2,3(i− p1)) p1 < i ≤ p2 + p3,
(6.20)

σ2,1 :=

σ1,2(p1 + i) 1 ≤ i ≤ p2

σ1,2(p2 − i) p2 < i ≤ p1 + p2,
(6.21)
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satisfy

(−1)σ1,2,3 = (−1)σ1,2(−1)σ12,3 ,

(−1)σ
′
1,2,3 = (−1)σ1,23(−1)σ2,3 ,

(−1)σ2,1 = (−1)p1p2(−1)σ1,2 .

(6.22)

It is often desirable to present the DGLA structure on K•(D,L) by a smaller — albeit

algebraically more complicated —, quasi-isomorphic L∞-algebra. For this, define

W p(D,L) := {(ω, τ) ∈ Kp(D,L) | τ = 0, ωs = 0} ⊂ Γ(ΛpD∗ ⊗ L) p ≥ 2,

W p(D,L) := Kp(D,L) p ≤ 1.
(6.23)

Lemma 6.2. Assume that τΦ = 0 and that there exists a map l : D∗⊗V → L such that

α(X) = ⟨l(α), X⟩, (6.24)

⟨l(α), l′⟩ = 0, (6.25)

[l(α), l′] = 0 (6.26)

for α ∈ D∗ ⊗ V , X ∈ D, l′ ∈ L. Then there is a structure of curved cubic L∞-algebra

on
⊕

pW
p(D,L) and a quadratic morphism W •(D,L) → K•(D,L) which is a quasi-

isomorphism when Φ = 0.

Proof. Note first that we can use l to define for each τ ∈ Λp−2D∗⊗S2D∗⊗V satisfying

(6.4) an ατ ∈ Λp−1D∗ ⊗ L ⊂ Kp−1(D,L) with αsτ = (−1)p−1τ ; namely,

ατ (X1, ..., Xp−1) =
(−1)p−1

p

(
l(τ(X1, ..., Xp−2, Xp−1, ·)− l(τ(X1, ..., Xp−1, Xp−2, ·))− ...

−l(τ(X1, Xp−1, ..., Xp−2, X2, ·))− l(τ(Xp−1, X2, ..., Xp−2, X1, ·))
)
.

(6.27)

Then define f1 :W
•(D,L)→ K•(D,L) as the inclusion and

f2 :W
•(D,L)⊗W •(D,L)→ K•(D,L)

by f2(ω1, ω2) := −ατ[ω1,ω2]
. Note that [f2(ω1, ω2), ·] = 0. We will show that this gives

a quasi-isomorphism between a curved cubic L∞-algebra structure on W •(D,L) and

K•(D,L) by applying the axioms of the DGLA structure of K•(D,L) to elements of

W •(D,L).
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1. For ω ∈W p(D,L) ⊂ Kp(D,L),

−([Φ, ω], τ[Φ,ω]) = d2(ω, 0) = (d2ω, (−1)p(dω)s) ⇒ (dω)s = −f2(Φ, ω)s;
(6.28)

thus we may define

dWω := dω + f2(Φ, ω) (6.29)

2. For ωi ∈W pi(D,L) ⊂ Kpi(D,L), i = 1, 2, note first that

0 = −([Φ, f2(ω1, ω2)], τ[Φ,f2(ω1,ω2)])

= (d2f2(ω1, ω2), dτ[ω1,ω2] + (−1)p1+p2+1(df2(ω1, ω2))
s)

⇒ (df2(ω1, ω2))
s = (−1)p1+p2dτ[ω1,ω2].

(6.30)

Then we see

([dω1, ω2]+(−1)p1 [ω1, dω2], τ[dω1,ω2] + (−1)p1τ[ω1,dω2])

= (d[ω1, ω2], dτ[ω1,ω2] + (−1)p1+p2−1[ω1, ω2]
s)

⇒ [ω1, ω2]
s + df2(ω1, ω2)

s + f2(dω1, ω2)
s + (−1)p1f2(ω1, dω2)

s = 0,

(6.31)

and so we may define

[ω1, ω2]
W := [ω1, ω2] + df2(ω1, ω2) + f2(dω1, ω2) + (−1)p1f2(ω1, dω2). (6.32)

3. For ωi ∈W pi(D,L) ⊂ Kpi(D,L), i = 1, 2, 3, we note

f2([ω1, ω2]
W , ω3)

s − (−1)e2e3f2([ω1, ω3]
W , ω2)

s + (−1)e1(e2+e3)f2([ω2, ω3]
W , ω1)

s

= (−1)p1+p2+p3
(
τ[[ω1,ω2]V ,ω3] − (−1)e2e3τ[[ω1,ω3]V ,ω2] + (−1)e1(e2+e3)τ[[ω2,ω3]V ,ω1]

)
= 0,

(6.33)

and so we can define

{ω1, ω2, ω3}W :=− f2([ω1, ω2]
W , ω3) + (−1)e2e3f2([ω1, ω3]

W , ω2)

− (−1)e1(e2+e3)f2([ω2, ω3]
W , ω1).

(6.34)

By construction, this defines a structure of curved cubic L∞-algebra on W •(D,L) with

f1, f2 defining a quadratic morphism to K•(D,L). To see that this is in fact a quasi-

isomorphism when Φ = 0, let (ω, τ) ∈ Kp(D,L) satisfy d(ω, τ) = 0; i.e. dω = 0

and dτ = (−1)pωs. Then we claim that (ω, τ) + d(ατ , 0) ∈ W p, which implies that
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Hp(W,d)→ Hp(K, d) is surjective. Indeed,

d(ατ , 0) = (dατ , (−1)pαsτ ) = (dατ ,−τ), (6.35)

0 = d2(ατ , 0) = (d2ατ ,−dτ + (−1)p−1(dατ )
s) ⇒ (dατ )

s = −ωs, (6.36)

which shows the claim. To show that Hp(W,d) → Hp(K, d) is injective, we let ω ∈
W p(D,L) and (µ, σ) ∈ Kp−1(D,L) satisfy d(µ, σ) = ω; i.e., dµ = ω and dσ+(−1)pµs =
0. Then, by a similar reasoning as before, (µ, σ)+d(ασ, 0) ∈W p−1, which concludes the

proof.

6.1.2 Derived stacks of flat connections, holomorphic structures and

holomorphic connective structures

We proceed to apply the general procedure of Section 6.1.1 to obtain curved L∞-algebras

controlling deformation problems in higher gauge theory.

Example 6.3 (Deformations of flat connections). LetG, T be Lie groups with T abelian,

let G∇ be a multiplicative T -gerbe with connective structure over G, and let P∇ → M

be a G∇-bundle with Atiyah algebroid E (cf. Theorem 4.23). Let (A,B) ∈ A(P∇) be

a connection on P∇ and let s(A,B) : TM → E be its corresponding splitting. We wish

to construct a curved L∞-algebra controlling the problem of deforming (A,B) to a flat

connection.

We note that deforming (A,B) to a flat connection is equivalent to deforming the

sub-bundle s(A,B)(TM) ⊂ E to an isotropic, involutive sub-bundle complementary to

Ker π ⊂ E. Hence, we perform the construction from Section 6.1.1. We define the

vector spaces (6.23) and apply Lemma 6.2 with l the inclusion T ∗M ⊗ t → Ker π. We

also use (A,B) to identify Ker π ∼= T ∗M⊗ t⊕adP , obtaining the following curved cubic

L∞-algebra.

The graded vector space is

W =
n⊕

p=−1

Ωp(adP )⊕ Ωp+1(M, t)

with W p := Ωp(adP )⊕ Ωp+1(M, t) in degree p. The curved L∞-structure is given by

Φ(A,B) := FA −H, (6.37)

d(A,B)(a+ b) := dAa+ (db+ (−1)a⟨FA ∧ a⟩), (6.38)

[a1 + b1, a2 + b2] := −[a1 ∧ a2] + 0, (6.39)

{a1 + b1, a2 + b2, a3 + b3} := 0 + (−1)a1+a2+a3⟨a1 ∧ [a2 ∧ a3]⟩. (6.40)
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for ai ∈ Ω•(adP ) and bi ∈ Ω•+1(M, t).

Now consider the derived manifold N = (A(P∇),W≥2, Q), where Q is defined by the

fiberwise structure of curved cubic L∞-algebra on W≥2 → A(P∇). The gauge 2-group

Gauge(P∇), which is a Lie group by Theorem 4.26, acts smoothly on A(P∇) and we

can lift this to an action on N by letting (u, φ∇, α
φ) ∈ Gauge(P∇)0 act on a + b ∈

Ωp(adP )⊕ Ωp+1(M, t) as

u · (a+ b) = Ad(gu)a+ b,

where gu : M → AdP is the underlying gauge transformation of P . It is easy to check

that the curved L∞-algebra structure is equivariant for this action; hence, this is a well-

defined action on N . We write B♭,d(P∇)• := N//Gauge(P∇) for the quotient 2-groupoid
(cf. Remark 3.18) and call this the derived moduli stack of flat connections on P∇.
Note that, since 2-isomorphic gauge transformations act in the same way, B♭,d(P∇)n =

N ×BGauge(P∇)n, with simplicial maps defined in a similar way to Example 2.5.

Example 6.4 (Deformations of holomorphic structures). Let G, T be complex Lie

groups with T abelian, let G∇ be a holomorphic multiplicative T -gerbe with holomor-

phic connective structure over G, and let P∇ → X be a smooth G∇-bundle over a

complex manifold X with complex Atiyah algebroid E′ (cf. Proposition 5.32). Let

D ∈ D(P∇) be a 1-semiconnection and let sD : T 0,1X → π−1(T 0,1X)/(T ∗X ⊗ t)1,0 be

its corresponding splitting. We wish to construct a curved L∞-algebra controlling the

problem of deforming D to an integrable 1-semiconnection.

We note that deforming D to an integrable 1-semiconnection is equivalent to deforming

the sub-bundle sD(T 0,1X) ⊂ π−1(T 0,1X)/(T ∗X ⊗ t)1,0 to an isotropic, involutive sub-

bundle complementary to Ker(π) ⊂ π−1(T 0,1X)/(T ∗X ⊗ t)1,0. Hence, we perform the

construction from Section 6.1.1. We define the vector spaces (6.23) and apply Lemma

6.2 with l the inclusion (T ∗X ⊗ t)0,1 → Ker(π), using also D to obtain a splitting

Ker(π) = (T ∗X ⊗ t)0,1 ⊕ adP . The result is the following curved cubic L∞-algebra.

The graded vector space is

W =

n⊕
p=−1

Ω(0,p)(adP )⊕ Ω(0,p+1)(X, t)
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with W p := Ω(0,p)(adP )⊕ Ω(0,p+1)(X, t) in degree p. The curved L∞-structure is given

by

ΦD := F 0,2
D −H0,3, (6.41)

d(A,B)(a+ b) := ∂
D
a+ (∂b+ (−1)a⟨F 0,2

D ∧ a⟩), (6.42)

[a1 + b1, a2 + b2] := −[a1 ∧ a2] + 0, (6.43)

{a1 + b1, a2 + b2, a3 + b3} := 0 + (−1)a1+a2+a3⟨a1 ∧ [a2 ∧ a3]⟩. (6.44)

for ai ∈ Ω(0,•)(adP ) and bi ∈ Ω(0,•+1)(X, t).

Now consider the derived manifold N = (D(P∇),W≥2, Q), where Q is defined by the

fiberwise structure of curved cubic L∞-algebra on W≥2 → D(P∇). The complex Lie

2-group Gauge(P∇0,1) acts on D(P∇) and we can lift this to an action on N by letting

(u, [φ∇], α
φ) ∈ Gauge(P∇0,1)0 act on a+ b ∈ Ω0,p(adP )⊕ Ω0,p+1(M, t) as

u · (a+ b) = Ad(gu)a+ b,

where gu : M → AdP is the underlying gauge transformation of P . It is easy to

check that the curved L∞-algebra structure is equivariant for this action; hence, this is

a well-defined action on N . We write Hd(P∇)• := N//Gauge(P∇0,1) for the quotient

2-groupoid (cf. Remark 3.18) and, in light of Proposition 5.22, we call this the derived

moduli stack of holomorphic structures on P∇. Note that, since 2-isomorphic gauge

transformations act in the same way, Hd(P∇)n = N ×BGauge(P∇0,1)n, with simplicial

maps defined in a similar way to Example 2.5.

Example 6.5 (Deformations of holomorphic structures with holomorphic connective

structure). Let G, T be complex Lie groups with T abelian, let G∇ be a holomorphic

multiplicative T -gerbe with holomorphic connective structure over G, and let P∇ → X

be a smooth G∇-bundle over a complex manifoldX with complex Atiyah algebroid E′ (cf.

Proposition 5.32). Let D ∈ D′(P∇) be a 2-semiconnection and let sD : T 0,1X → E′ be

its corresponding lifting of T 0,1X. We wish to construct a curved L∞-algebra controlling

the problem of deforming D to an integrable 2-semiconnection.

We note that deforming D to an integrable 2-semiconnection is equivalent to deforming

the sub-bundle sD(T 0,1X) ⊂ π−1(T 0,1X) to an isotropic, involutive sub-bundle comple-

mentary to Ker(π) ⊂ π−1(T 0,1X). Hence, we perform the construction from Section

6.1.1. We define the vector spaces (6.23) and apply Lemma 6.2 with l the inclusion

(T ∗X ⊗ t)0,1 → Ker(π). The result is a structure of curved cubic L∞-algebra on the

graded vector space

W =

n⊕
p=2

W p,D,
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where W p,D is defined by

W p,D = {ω ∈Λ0,pT ∗X ⊗ (Ker π) |

⟨ω(X1, ..., Xp), s
D(Xp+1)⟩+ ⟨ω(X1, ..., Xp+1), s

D(Xp)⟩ = 0}.
(6.45)

In order to write the curved L∞-structure, we choose a connection (A,B) compatible

with the holomorphic structure induced by D. This gives an isomorphism Ker(π) ∼=
T ∗X ⊗ t ⊕ adP and thus an isomorphism W p,D ∼= Ω0,p(adP ) ⊕ Ω(1,p)+(0,p+1)(X, t). In

this presentation, the structure is described as follows.

ΦD := F 0,2
A −H(1,2)+(0,3), (6.46)

dD(a+ b) := ∂
A
a+ (db)(1,p+1)+(0,p+2) + (−1)a⟨F 0,2

A + 2F 1,1
A ∧ a⟩,

(6.47)

[a1 + b1, a2 + b2]
D := −[a1 ∧ a2] + (−1)a1+a2(⟨∂Aa1 ∧ a2⟩ − (−1)a1⟨a1 ∧ ∂Aa2⟩),

(6.48)

{a1 + b1, a2 + b2, a3 + b3} := 0 + (−1)a1+a2+a3⟨a1 ∧ [a2 ∧ a3]⟩, (6.49)

for ai ∈ Ω(0,•)(adP ) and bi ∈ Ω(1,•)+(0,•+1)(X, t). Note that when G∇ is the com-

plexification of K∇ and P∇ is the complexification of a K∇-bundle Ph,∇h
then each

D ∈ D′(P∇) determines by Theorem 5.26 a compatible connection (Ah, Bh − Jtω), so
the formulas above can be written with respect to it. If we do not want to choose a

compatible connection in the general case, we can simply check how the isomorphisms

W p,D ∼=(A,B) Ω0,p(adP )⊕ Ω(1,p)+(0,p+1)(X, t) behave under changing the connection by

a ∈ Ω1,0(adP ) and b ∈ Ω2,0(X, t). This gives a canonical isomorphism

W p,D :=
(
AD(P∇)× Ω0,p(adP )⊕ Ω(1,p)+(0,p+1)(X, t)

)
/ ∼, (6.50)

where AD(P∇) is the set of connections that are compatible with D, and the equivalence

relation is

(A,B, a, b) ∼ (A′, B′, a, b− 2⟨a ∧ (A′ −A)⟩ (6.51)

for a ∈ Ω0,p(adP ), b ∈ Ω(1,p)+(0,p+1)(X, t). The curved L∞-algebra above is well-defined

over the spaces (6.50) independently of any choices.

Now consider the derived manifold N = (D′(P∇),W≥2, Q), where W≥2 → D′(P∇) is

the graded vector bundle with fiber W≥2,D at D ∈ D′(P∇), and Q is defined by the

preceding fiberwise structure of curved cubic L∞-algebra on W . The complex Lie 2-

group Gauge(P∇) acts on D(P∇) and we can lift this to an action on N by letting

(u, φ∇, α
φ) ∈ Gauge(P∇)0 act on a+ b ∈ Ω0,p(adP )⊕ Ω(1,p)+(0,p+1)(M, t) as

u · (a+ b) = Ad(gu)a+ b,
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where gu : M → AdP is the underlying gauge transformation of P . This defines an

action on the graded vector bundle W≥2 → D′(P∇) since (6.51) is equivariant. It is

also easy to check that the curved L∞-algebra structure is equivariant for this action;

hence, this is a well-defined action on N . We write H′,d(P∇) := N//Gauge(P∇) for

the quotient 2-groupoid (cf. Remark 3.18) and, in light of Proposition 5.22, we call

this the derived moduli stack of holomorphic structures with holomorphic connective

structures on P∇. Note that, since 2-isomorphic gauge transformations act in the same

way, H′,d(P∇)n = N ×BGauge(P∇)n, with simplicial maps defined in a similar way to

Example 2.5.

Remark 6.6. The L∞-algebra in Example 6.5 is closely related to constructions in the

literature on mathematical physics [13] and generalized geometry [126].

1. The L∞-algebra in [13] is defined for an integrable 2-semiconnection D ∈ D′(P∇)
(i.e., F 0,2

A = 0, H1,2+0,3 = 0) over a vector space of the form

⊕
p

Ω0,p(adP )⊕ Ω(1,p)+(0,p+1)(X, t)⊕ Ω0,p(T 1,0X).

The subspace
⊕

pΩ
0,p(adP )⊕Ω(1,p)+(0,p+1)(X, t) is a subalgebra, and its bracket

coincides with ours in the uncurved case.

2. The differential graded Lie algebra in [126] is defined for an integrable 2-semiconnection

D ∈ D′(P∇) (i.e., F 0,2
A = 0, H1,2+0,3 = 0) over a vector space of the form

⊕
p

Ω0,p(adP )⊕ Ω(2,p)+...+(p+2,0)(X, t).

The map a + b 7→ a + (−1)a∂b1,p + 2⟨F 2,0
A ∧ a⟩ gives a morphism between our

L∞-algebra (in the uncurved case) and the one in [126].

6.2 Shifted symplectic structures

6.2.1 Shifted symplectic moduli spaces

Let G∇ be a multiplicative U(1)-gerbe with connective structure over a Lie group G such

that the induced bilinear form ⟨·, ·⟩ : g ⊗ g → R from Theorem 3.43 is non-degenerate.

Then Proposition 3.27 and Theorem 2.29 suggest that, for M an oriented, compact

manifold with dimRM = n, there is a (2−n)-shifted symplectic structure on the moduli

space of pairs ((A,B), ϕ), where (A,B) is a flat connection on a G-bundle and ϕ :M →
R∗ is a constant function. We proceed to construct such structure.
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First we introduce the following notation. For any manifold M we define the following

derived manifold, called the dilaton moduli.

ΩdR(M)∗ := (C∞(M,R∗),Ω≥1(M,R)[−1], Q), (6.52)

The notation is such that we regard the trivial vector bundle with fiber Ωj(M,R) in

degree j + 1. Here Q is defined by the curvature map d : C∞(M,R∗) → Ω1(M,R) and
the differential d : Ω•(M,R)→ Ω•+1(M,R), both given by the exterior derivative. Note

that ΩdR(M)∗ is a model in derived geometry for the space of non-vanishing constant

functions onM . Its role in the following result seems to be related to the role of dilatons

in heterotic string theory.

Theorem 6.7. Let G∇ be a multiplicative U(1)-gerbe with connective structure over a

Lie group G such that the induced bilinear form ⟨·, ·⟩ : g ⊗ g → R from Theorem 3.43

is non-degenerate, let M be an oriented, compact manifold with dimRM = n and let

P∇ → M be a G∇-bundle. Then there is a (2 − n)-shifted symplectic structure on the

Cartesian product (see (2.95))

M• := B♭,d(P∇)• × ΩdR(M)∗, (6.53)

where B♭,d(P∇)• is as in Example 6.3 and ΩdR(M)∗ is as in (6.52).

Proof. Note that Mj = N ×BGauge(P∇)j × ΩdR(M)∗, where

N = (A(P∇),Ω≥2(adP )⊕ Ω≥3(M,R)[1], Q)

is as in Example 6.3. The simplicial maps of M• are defined by the action of Gauge(P∇)
on N as in Example 2.5. We define the (2− n)-shifted symplectic structure on M• first

for n ≥ 3. Recall the Maurer-Cartan 1-form onGauge(P∇) constructed in Theorem 4.26.

We use this to send vectors tangent to BGauge(P∇)1 and BGauge(P∇)2 to elements

ȧ0 + ḃ1 ∈ Γ(adP ) ⊕ Ω1(X,R) ∼=(A,B) Γ(adP) and ḃ0 ∈ C∞(X, t), respectively. The

differential forms defining the shifted symplectic structure only depend on these images

and so we will abuse notation by writing just ȧ0 + ḃ1 and ḃ0 in their entries. The

identification Γ(adP )⊕ Ω1(X,R) ∼=(A,B) Γ(adP) is done at each point of Mj using the

corresponding connection (A,B) ∈ A(P∇). We let

ω0 ∈ Ω2(M0)2−n, ω1 ∈ Ω2(M1)1−n, ω2 ∈ Ω2(M2)−n (6.54)
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be given by ωi = (−1)n+1dλi for

λ0(ȧ1 + ḃ2 + ϕ̇0 + ...+ ȧn + ḃn + ϕ̇n) =∫
M
(2⟨an−1 ∧ ȧ1⟩+ ⟨an−2 ∧ ȧ2⟩+ ⟨an−3 ∧ ȧ3⟩+ ...+ ⟨a2 ∧ ȧn−2⟩+ (−1)nḃn)ϕ0

+

∫
M
(2⟨an−2 ∧ ȧ1⟩ − ⟨an−3 ∧ ȧ2⟩+ ⟨an−4 ∧ ȧ3⟩ − ...+ (−1)n⟨a2 ∧ ȧn−3⟩+ ḃn−1) ∧ ϕ1

+

∫
M
(2⟨an−3 ∧ ȧ1⟩+ ⟨an−4 ∧ ȧ2⟩+ ⟨an−5 ∧ ȧ3⟩+ ...+ ⟨a2 ∧ ȧn−4⟩+ (−1)nḃn−2) ∧ ϕ2

+ ...+

∫
M
(2⟨a2 ∧ ȧ1⟩+ (−1)nḃ3) ∧ ϕn−3 +

∫
M
ḃ2 ∧ ϕn−2,

(6.55)

λ1(ȧ0 + ḃ1 + ȧ1 + ḃ2 + ϕ̇0 + ...+ ȧn + ḃn + ϕ̇n) =∫
M
((−1)n2⟨an, ȧ0⟩ϕ0 − (−1)n2⟨an−1, ȧ0⟩ ∧ ϕ1 + ...+ 2⟨a2, ȧ0⟩ ∧ ϕn−2 + ḃ1 ∧ ϕn−1).

(6.56)

λ2(ḃ0 + ȧ1 + ḃ2 + ϕ̇0 + ...+ ȧn + ḃn + ϕ̇n) = −
∫
M
ḃ0ϕn, (6.57)

where api ∈ Ωp(adP ), bpi ∈ Ωp(M,R), ϕpi ∈ Ωp(M,R) stand for the parameters of a

function on Mj and ȧpi ∈ Ωp(adP ), ḃpi ∈ Ωp(M,R), ϕ̇pi ∈ Ωp(M,R) determine vector

fields onMj as discussed in Section 2.3.1. Computations similar to the ones from Section

2.3.3, and in particular (2.165), show that the LQ-derivative of the first line in (6.55) is∫
M
(d⟨an−2 ∧ ȧ1⟩+ ...+ d⟨a2 ∧ ȧn−3⟩+ (−1)n+1dḃn−1)ϕ0

+

∫
M
(⟨dAan−2 ∧ ȧ1⟩+ ⟨FA ∧ ȧn−2⟩)ϕ0 + (−1)n

2

∑
2≤i≤n−4

2≤j≤n−2−i

∫
M
⟨ai ∧ [ȧj ∧ an−i−j ]⟩ϕ0

−
∫
M
((−1)n+1⟨dAȧ1 ∧ an−2⟩+ ⟨FA ∧ ȧn−2⟩)ϕ0 + 1

2

∑
2≤i≤n−4

2≤j≤n−2−i

(−1)ij+n
∫
M
⟨ȧi ∧ [aj ∧ an−i−j ]⟩ϕ0

=

∫
M
d(2⟨an−2 ∧ ȧ1⟩+ ⟨an−3 ∧ ȧ2⟩+ ...+ ⟨a2 ∧ ȧn−3⟩+ (−1)n+1ḃn−1)ϕ0.

(6.58)

The terms in the third line of (6.58) arise from applying LQ to the term
∫
M ḃnϕ0. Then,

similarly, the LQ-derivative of the second line in (6.55) is∫
M
d(2⟨an−3 ∧ ȧ1⟩ − ⟨an−4 ∧ ȧ2⟩+ ...+ (−1)n⟨a2 ∧ ȧn−4⟩+ ḃn−2) ∧ ϕ1

+

∫
M
((−1)n+1(2⟨an−2 ∧ ȧ1⟩+ ⟨an−3 ∧ ȧ2⟩+ ...+ ⟨a2 ∧ ȧn−3⟩) + ḃn−1) ∧ dϕ0,

(6.59)

and thus iterating and integrating by parts we obtain LQλ
0 = 0. Then LQλ

1 = δλ0 ,
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LQλ
2 = δλ1 and δλ2 = 0 follow similarly, using relations (4.102), (4.103) for computing

the δ-differentials. This implies that (ω0, ω1, ω2) defines a (2− n)-shifted presymplectic

structure on M• for n ≥ 3. When n = 2 the formulas for ω1 and ω2 still work, but in

this case we define ω0 as follows.

ω0(ȧ11 + ...+ ϕ̇21, ȧ
1
2 + ...+ ϕ̇22) =

∫
M

2⟨ȧ11 ∧ ȧ12⟩ϕ0 −
∫
M
(ḃ21ϕ̇

0
2 − ḃ22ϕ̇01). (6.60)

Note that dω0 = 0, as it follows from formula (4.110) for the Lie bracket of vector fields

on A(P∇). To check the non-degeneracy condition for (ω0, ω1, ω2), we note that the

tangent complex of M is the following chain complex of vector bundles over the space

{((A,B), ϕ) ∈ A(P∇)× C∞(M,R∗) | (FA, H, dϕ) = (0, 0, 0)}.

C∞(M,R) d→Ω0(adP )⊕ Ω1(M,R) d
A+d→ Ω1(adP )⊕ Ω2(M,R)⊕ C∞(M,R)→

dA+d+d→ Ω2(adP )⊕ Ω3(M,R)⊕ Ω1(M,R) d
A+d+d→ ...

...
dA+d+d→ Ωn−2(adP )⊕ Ωn−1(M,R)⊕ Ωn−3(M,R) d

A+d+d→

→ Ωn−1(adP )⊕ Ωn(M,R)⊕ Ωn−2(M,R) d
A+d→ Ωn(adP )⊕ Ωn−1(M,R) d→ Ωn(M,R),

(6.61)

with Ω1(adP )⊕ Ω2(M, t)⊕ C∞(M,R) in degree 0 and all other vector bundles graded

accordingly. Here we are slightly abusing notation by writing V for the trivial vector

bundle V with fiber the vector space V . One can check that (ω0, ω1, ω2) induces the

pairing

ω̃ϕ(ȧ
j
1 + ḃj+1

1 + ϕ̇j−1
1 , ȧn−j2 + ḃn−j+1

2 + ϕ̇n−j−1
2 ) =

∫
M
(2⟨ȧj1 ∧ ȧ

n−j
2 ⟩ϕ

±
∫
M
(ḃj+1

1 ∧ ϕ̇n−j−1
2 ± ḃn−j+1

2 ∧ ϕ̇j−1
1 ),

(6.62)

which is non-degenerate, as we wanted to show.

There is a holomorphic analog of Theorem 6.7. To state the result, we define for any

complex manifold X with dimCX = n the following complex derived manifold, called

the axio-dilaton moduli.

Ωn,•
∂

(X)∗ := (Ωn,0(X,C)∗,Ω(n,≥1)(X,C)[−1], Q), (6.63)

The notation is such that we regard the trivial vector bundle Ω(n,j)(M,C) in degree

j + 1. Here we write Ωn,0(X,C)∗ for the space of nowhere-vanishing (n, 0)-forms on X,



Geometry of moduli spaces 192

and Q is defined by the curvature map d : Ωn,0(X,C)∗ → Ωn,1(X,C) and the differential

d : Ω(n,•)(X,C)→ Ω(n,•+1)(X,C), both given by the exterior derivative.

Theorem 6.8. Let G∇ be a holomorphic multiplicative C∗-gerbe with holomorphic con-

nective structure over a complex Lie group G such that the induced bilinear form ⟨·, ·⟩ :
g⊗ g→ C from Theorem 3.43 is non-degenerate, let X be a complex, compact manifold

with dimCX = n admitting holomorphic volume forms, and let P∇ → X be a smooth

G∇-bundle. Then there is a (2− n)-shifted holomorphic symplectic structure on

X := Hd(P∇)× Ωn,•
∂

(X)∗, (6.64)

where Hd(P∇) is as in Example 6.4 and Ωn,•
∂

(X)∗ is as in (6.63).

Proof. Analogous to Theorem 6.7. Note that Xj = N × BGauge(P∇0,1)j × Ωn,•
∂

(X)∗,

where

N = (D(P∇),Ω(0,≥2)(adP )⊕ Ω(0,≥3)(M,C)[1], Q)

is as in Example 6.4. Recall the holomorphic Maurer-Cartan 1-form on Gauge(P∇0,1)

from Corollary 5.34 and use it to send vectors tangent to BGauge(P∇0,1)1 and to

BGauge(P∇0,1)2 to elements ȧ0 + ḃ0,1 ∈ Γ(adP ) ⊕ Ω0,1(X,C) ∼=D Γ(adP ′/T ∗
1,0X) and

ḃ0 ∈ C∞(X,C), respectively. The identification Γ(adP )⊕Ω0,1(X,C) ∼=D Γ(adP ′/T ∗
1,0X)

is done at each point of Xj using the corresponding 1-semiconnection D ∈ D(P∇). The
(2− n)-shifted holomorphic symplectic structure is defined for n ≥ 3 by

ω0 ∈ Ω2,0(X0)2−n, ω1 ∈ Ω2,0(X1)1−n, ω2 ∈ Ω2,0(X2)−n, (6.65)

ωi = (−1)n+1dλi, where

λ0(ȧ0,1 + ḃ0,2 + Ω̇n,0 + ...+ ȧ0,n + ḃ0,n + Ω̇n,n) =∫
X
(2⟨a0,n−1 ∧ ȧ0,1⟩+ ⟨a0,n−2 ∧ ȧ0,2⟩+ ...+ ⟨a0,2 ∧ ȧ0,n−2⟩+ (−1)nḃ0,n)Ωn,0

+

∫
X
(2⟨a0,n−2 ∧ ȧ0,1⟩ − ⟨a0,n−3 ∧ ȧ0,2⟩+ ...+ (−1)n⟨a0,2 ∧ ȧ0,n−3⟩+ ḃ0,n−1) ∧ Ωn,1

+

∫
X
(2⟨a0,n−3 ∧ ȧ0,1⟩+ ⟨a0,n−4 ∧ ȧ0,2⟩+ ...+ ⟨a0,2 ∧ ȧ0,n−4⟩+ (−1)nḃ0,n−2) ∧ Ωn,2

+ ...+

∫
X
(2⟨a0,2 ∧ ȧ0,1⟩+ (−1)nḃ0,3) ∧ Ωn,n−3 +

∫
M
ḃ0,2 ∧ Ωn,n−2,

(6.66)
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λ1(ȧ0 + ḃ0,1 + ȧ0,1 + ḃ0,2 + Ω̇n,0 + ...+ ȧ0,n) + ḃ0,n + Ω̇n,n) =∫
X
((−1)n2⟨a0,n, ȧ0⟩Ωn,0 − (−1)n2⟨a0,n−1, ȧ0⟩ ∧ Ωn,1 + ...+ 2⟨a0,2, ȧ0⟩ ∧ Ωn,n−2)

+

∫
X
ḃ0,1 ∧ Ωn,n−1.

(6.67)

λ2(ḃ0 + ȧ0,1 + ḃ0,2 + Ω̇n,0 + ...+ ȧ0,n + ḃ0,n + Ω̇n,n) = −
∫
X
ḃ0Ωn,n, (6.68)

where a0,p ∈ Ω0,p(adP ), bp ∈ Ω0,p(M,C), Ωn,p ∈ Ωn,p(M,C). When n = 2, the formula

for ω0 is

ω0(ȧ0,11 + ...+ Ω̇2,2
1 , ȧ0,12 + ...+ Ω̇2,2

2 ) =

∫
M

2⟨ȧ0,11 ∧ ȧ
0,1
2 ⟩Ω

2,0 −
∫
M
(ḃ0,21 ∧ Ω̇2,0

2 − ḃ
0,2
2 ∧ Ω̇2,0

1 ).

(6.69)

The tangent complex of X is the following chain complex of vector bundles over the

space {([(A,B)],Ω) ∈ D(P∇)× Ωn,0(X,C)∗ | (F 0,2
A , H0,3, dΩ) = (0, 0, 0)}.

C∞(M,C) ∂→Ω0(adP )⊕ Ω0,1(M,C) ∂
A
+∂→ Ω0,1(adP )⊕ Ω0,2(M,C)⊕ C∞(M,C)→

∂
A
+∂+∂→ Ω0,2(adP )⊕ Ω0,3(M,C)⊕ Ω0,1(M,C) ∂

A
+∂+∂→ ...

...
∂
A
+∂+∂→ Ω0,n−2(adP )⊕ Ω0,n−1(M,C)⊕ Ω0,n−3(M,C) ∂

A
+∂+∂→

Ω0,n−1(adP )⊕ Ω0,n(M,C)⊕ Ω0,n−2(M,C) ∂
A
+∂→ Ω0,n(adP )⊕ Ω0,n−1(M,R) ∂→ Ω0,n(M,C),

(6.70)

and then non-degeneracy of (ω0, ω1, ω2) follows as in Theorem 6.7.

Remark 6.9. Let

X′ := H′,d(P∇)× Ωn,•
∂

(X)∗, (6.71)

where H′,d(P∇) is as in Example 6.5 and Ωn,•
∂

(X)∗ is as in (6.63). There is an obvious

map X′ → X, where X is as in Theorem 6.8, and the pull-back of the (2 − n)-shifted
holomorphic symplectic form on X is a (2− n)-shifted holomorphic presymplectic form

on X′. In Section 8.2.2 we comment on some conjectural ideas to make this form non-

degenerate by introducing the complex structure on X as a parameter on the moduli

space.

6.2.2 Action functionals and moment maps for Lie 2-group actions

We proceed to present alternative constructions for some of the moduli spaces in Section

6.2.1. They are based on general constructions of derived critical loci for Lie 2-group
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invariant functionals and symplectic reduction for actions of Lie 2-groups. While inspired

by Examples 2.32 and 2.34, which we can generalize to the context of Lie 2-groups thanks

to Proposition 3.27, these are original constructions that have not appeared before in

the literature on algebraic derived geometry.

Proposition 6.10. Let G be a Lie 2-group with a Maurer-Cartan form (θ0, θ1) acting

by a smooth functor ρ :M ×G→M on a manifold M , and let S :M → R be a smooth,

G-invariant function. Then there is a model dCrit(S) for the space {dS = 0}/G as a

simplicial derived manifold with a (−1)-shifted symplectic structure.

If (G, θ0, θ1) is a complex Lie 2-group with a holomorphic Maurer-Cartan form acting

holomorphically on a complex manifold X and S : X → C is holomorphic and G-

invariant, then dCrit(S) is (−1)-shifted holomorphic symplectic.

Proof. In the algebraic setting, this follows from [67, 210], as discussed in Example 2.32.

We present a model as a simplicial derived manifold. Define first the derived manifold

N := (M,T ∗[−2]M ⊕ g∗[−3] ⊕ h∗[−4], Q), where Q is defined by Φ : M → T ∗[−2]M ,

Φ = dS and the differential d : T ∗[−2]M → g∗[−3], d = ρ∗, d : g∗[−3] → h∗[−4],
d = t∗∗. This gives a derived manifold, since dΦ = 0 follows from S being G-invariant

and t∗ρ∗ = 0 because isomorphic elements in G must act in the same way on M .

The action of G on M lifts to an action on N , where the action on g∗[−3], h∗[−4] is
the (dual of the) adjoint action defining the Maurer-Cartan form on G and the action

on T ∗[−2]M is given by pull-back. More precisely, g ∈ G0 acts on α ∈ T ∗
pM sending

it to g∗α ∈ T ∗
ρ(p,g)M defined by (g∗α)(v) = α(ρ∗(v, g

−1)), where g−1 ∈ G0 is any point

such that there exists m ∈ BG2 with d2(m) = g, d0(m) = g−1, d1(m) = 1. It is clear

that dS is equivariant, while the fact that ρ∗ is equivariant follows from Lemma 3.25.

Then define dCrit(S) := N//G in the sense of Remark 3.18. Its tangent complex is the

following chain complex of vector bundles over M .

h[2]
t∗→ g[1]

ρ→ TM
dS→ T ∗[−1]M ρ∗→ g∗[−2] t

∗
∗→ h∗[−3], (6.72)

The canonical isomorphism T (dCrit(S)) ∼= T ∗(dCrit(S))[−1] is induced by a (−1)-
shifted symplectic structure on dCrit(S) which we describe as follows. It is given by

the canonical symplectic structure on T ∗M , seen as a degree −1, d-exact, 2-form ω0 =

dλ0 ∈ Ω2(N )−1, and the symplectic structure induced by the Maurer-Cartan form as in

Proposition 3.27, seen now as a pair (ω1, ω2) of a degree −2, d-exact, 2-form ω1 = dλ1 ∈
Ω2(N × BG1)−2 and a degree −3, d-exact, 2-form ω2 = dλ1 ∈ Ω2(N × BG2)−3. Then

LQω
0 = 0 follows as in Example 2.32, LQω

2 = δω1 = 0 and δω2 = 0 are implied by

Proposition 3.27, and LQω
1 = δω0 follows from the fact that θ01 is the identity. Hence,
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(ω0, ω1, ω2) is indeed a (−1)-shifted symplectic structure on dCrit(S). The holomorphic

case follows analogously, using Proposition 5.14.

Proposition 6.11. Let G be a Lie 2-group with Lie 2-algebra h
t∗→ g and Maurer-Cartan

form (θ0, θ1) acting by a smooth functor ρ : M × G → M on a symplectic manifold

(M,ω). Let µ :M → g∗ be a map such that

d(µ(·)(v)) = ιXvω, v ∈ g (6.73)

µ(g · x)(v) = µ(x)(g · v), g ∈ G0, v ∈ g, x ∈M (6.74)

µ(x)(t∗u) = 0, u ∈ h, x ∈M, (6.75)

where Xv(p) := ρ∗|(p,1)(0 + v) ∈ TpM . Then there is a model M//µG for the space

µ−1(0)/G as a simplicial derived manifold with a 0-shifted symplectic structure.

If (G, θ0, θ1) is a complex Lie 2-group with a holomorphic Maurer-Cartan form acting

holomorphically on a holomorphic symplectic manifold (X,ω) and µ : X → g∗ is holo-

morphic, then M//µG is 0-shifted holomorphic symplectic.

Proof. Define first the derived manifold N = (M, h∗[−3]⊕g∗[−2], Q), where Q is defined

simply by the curvature µ : M → g∗ and the differential g∗
t∗∗→ h∗. Note that (6.75)

implies that the differential of the curvature is zero. Then the action of G onM , together

with (the dual of) the adjoint action defining the Maurer-Cartan form, determines an

action of G on N (note that (6.74) and t : h
t∗→ g being Ad-equivariant ensures that

the action preserves Q). Then we define M//µG := N//G (cf. Remark 3.18), which

is a simplicial derived manifold with (M//µG)n = N × BGn. We define a 0-shifted

symplectic structure on M//µG as follows. Consider the symplectic form ω on M , seen

as a d-closed 2-form ω0 ∈ Ω2(M) ⊂ Ω2(N )0, and the 2-forms ω1 ∈ Ω1(BG1 × g∗,R),
ω2 ∈ Ω1(BG2 × h∗,R) defined by ωi = dλi, where

λ1g,ξ(vg + ξ̇) = ξ(θ0g(vg)), (6.76)

λ2γ,η(vγ + η̇) = η(θ1γ(vγ)). (6.77)

As in Proposition 3.27, ω1 and ω2 can be seen as d-closed 2-forms in (M//µG)1, (M//µG)2

by linearity on the g∗, h∗ components, and they satisfy δω1 = LQω
2, δω2 = 0. Then

LQω
0 = 0 follows for degree reasons and δω0 = LQω

1 is precisely condition (6.73). Thus

(ω0, ω1, ω2) is a 0-shifted presymplectic form onM//µG. Note that the tangent complex

of M//µG is the following complex of vector bundles over {x ∈M | µ(x) = 0}.

h
t∗→ g

ρ→ TxM
dµ|x→ g∗

t∗∗→ h∗. (6.78)
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Then non-degeneracy of ω and of the symplectic form in Proposition 3.27 implies non-

degeneracy of (ω0, ω1, ω2). The holomorphic case follows analogously, using Proposition

5.14.

Example 6.12. Let G∇ be a multiplicative U(1)-gerbe with connective structure over

a Lie group G such that the induced bilinear form ⟨·, ·⟩ : g ⊗ g → R from Theorem

3.43 is non-degenerate, let M be an oriented, compact manifold with dimRM = 3

and let P∇ → M be a G∇-bundle. Consider the infinite-dimensional manifold M =

A(P∇)× C∞(M,R∗) and the function

S :M→ R

((A,B), ϕ) 7→
∫
M
Hϕ.

(6.79)

Its differential is

dS((A,B),ϕ)(ȧ+ ḃ+ ϕ̇) =

∫
M
(dḃϕ− 2⟨FA ∧ ȧ⟩ϕ+Hϕ̇)

=

∫
M
(−ḃ ∧ dϕ− 2⟨FA ∧ ȧ⟩ϕ+Hϕ̇).

(6.80)

Ignoring foundational questions about infinite-dimensional manifolds, we may identify

M× Ω2(adP )⊕ Ω1(M,R)⊕ Ω3(M,R)
∼=−→ T ∗M

(((A,B), ϕ), ȧ, ϕ̇, ḃ) 7→
(
((A,B), ϕ),

∫
M
⟨ȧ ∧ ·⟩ϕ,

∫
M
ϕ̇ ∧ ·,

∫
M
ḃ·
)
,

(6.81)

M× Ω3(adP )⊕ Ω2(M,R)
∼=−→M× Ω0(adP )∗ ⊕ Ω1(M,R)∗

(((A,B), ϕ), ȧ, ϕ̇) 7→
(
((A,B), ϕ),

∫
M
⟨ȧ, ·⟩ϕ,

∫
M
ϕ̇ ∧ ·

)
,

(6.82)

M× Ω3(M,R)
∼=−→M× C∞(X,R)∗

(((A,B), ϕ), ϕ̇) 7→
(
((A,B), ϕ),

∫
M
ϕ̇·

)
,

(6.83)

then we see that dCrit(S) as in Proposition 6.10 coincides with the simplicial derived

manifold M from Theorem 6.7.

Similarly, when G∇ is a holomorphic multiplicative C∗-gerbe with holomorphic connec-

tive structure over a complex Lie group G and X is a complex, compact manifold with

dimCX = 3 admitting holomorphic volume forms, then the simplicial derived mani-

fold X from Theorem 6.8 can be constructed as in Proposition 6.10 from the following
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Gauge(P∇0,1)-invariant holomorphic functional on D(P∇)× Ω3,0(X,C)∗

D(P∇)× Ω3,0(X,C)∗ → C

([(A,B)],Ω) 7→
∫
X
H ∧ Ω.

(6.84)

Note both (6.79) and (6.84) are analogs of the heterotic superpotential [13], adapted to

our setting. In Section 8.2.2 we mention a conjecture regarding the moduli space that

could be built as the derived critical locus of the full heterotic superpotential from string

theory.

Example 6.13. Let G∇ be a multiplicative U(1)-gerbe with connective structure over

a Lie group G such that the induced bilinear form ⟨·, ·⟩ : g ⊗ g → R from Theorem

3.43 is non-degenerate, let M be an oriented, compact manifold with dimRM = 2

and let P∇ → M be a G∇-bundle. Consider the infinite-dimensional manifold M =

A(P∇)× C∞(M,R∗) and define a symplectic form ω on it by

ω((A,B),ϕ)(ȧ
1
1 + ḃ21 + ϕ̇01, ȧ

1
2 + ḃ22 + ϕ̇02) =

∫
M

2⟨ȧ11 ∧ ȧ12⟩ϕ−
∫
M
(ḃ21ϕ̇

0
2 − ḃ22ϕ̇01), (6.85)

where ȧ1i ∈ Ω1(adP ), ḃ2i ∈ Ω2(M,R), ϕ̇0i ∈ C∞(X,R), i = 1, 2. This is d-closed, as it

follows from formula (4.110) for the Lie bracket on A(P∇). The 2-group Gauge(P∇)
acts onM and the map

µ :M→ Γ(adP∇)∗ ∼= Ω2(adP )⊕ Ω1(X,R)

((A,B), ϕ) 7→ FA + dϕ;
(6.86)

that is,

µ(A,B, ϕ)(s+ ξ) :=

∫
M
(2⟨FA, s⟩ϕ+ ξ ∧ dϕ). (6.87)

for s + ξ ∈ Ω0(adP ) ⊕ Ω1(M,R)
(A,B)∼= Γ(adP∇) satisfies the conditions of Proposition

6.11. It is easy to check thatM//µG = M, for M the simplicial derived manifold from

Theorem 6.7.

Similarly, when G∇ is a holomorphic multiplicative C∗-gerbe with holomorphic connec-

tive structure over a complex Lie group G and X is a complex, compact manifold with

dimCX = 2 admitting holomorphic volume forms, then the simplicial derived complex

manifold X from Theorem 6.8 can be constructed as in Proposition 6.11 from the infinite-

dimensional complex manifoldM = D(P∇)×Ω2,0(X,C)∗ with holomorphic symplectic
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form

ω([(A,B)],Ω)(ȧ
0,1
1 + ḃ0,21 +Ω̇2,0

1 , ȧ0,12 + ḃ0,22 + Ω̇2,0
2 )

=

∫
X
2⟨ȧ0,11 ∧ ȧ

0,1
2 ⟩Ω−

∫
M
(ḃ0,21 ∧ Ω̇2,0

2 − ḃ
0,2
2 ∧ Ω̇2,0

1 ),
(6.88)

on which Gauge(P∇0,1) acts holomorphically with holomorphic moment map

µ :M→ Γ(adP∇/(T ∗X ⊗ t)1,0)∗ ∼= Ω0,2(adP )⊕ Ω2,1(X,C)

([(A,B)],Ω) 7→ F 0,2
A + dΩ.

(6.89)

6.2.3 Pre-Kähler and universal geometry of the Hull-Strominger sys-

tem

Let K be a compact Lie group and let K be a multiplicative U(1)-gerbe over K whose

induced pairing ⟨·, ·⟩ : k ⊗ k → R by Corollary 3.45 is non-degenerate. Let G, G∇
be the complexifications of K, K, respectively, as in Theorem 5.8. Let Ph,∇h

→ X

be a K∇-bundle over a complex manifold with dimCX = n and recall from Remark

4.8 that enhanced connections on Ph,∇h
can be identified with pairs ((Ah, Bh), g) with

(Ah, Bh) ∈ A(Ph,∇h
) and g ∈ Γ(S2T ∗X).

We write Aen+ (Ph,∇h
) for the open subset of Aen(Ph,∇h

) consisting of ((Ah, Bh), g) with

g1,1 positive definite.

Definition 6.14. Let Ph,∇h
→ X be a K-bundle over a compact, complex manifold

X of dimCX = n with a holomorphic volume form Ω ∈ Ωn,0(X,C). A solution to the

Hull-Strominger system is ((Ah, Bh), g) ∈ Aen+ (Ph,∇h
) such that

g0,2 = 0, F 0,2
Ah

= 0, Hh = dcω, (6.90)

FAh
∧ ωn−1 = 0, d(e−fωn−1) = 0, (6.91)

where ω := g(I·, ·) for I the complex structure on X and f : X → R is defined by

ωn

n!
= e2f (−1)

n(n−1)
2 inΩ ∧ Ω. (6.92)

Note that Theorem 5.26 implies that equations (6.90) state precisely that ((Ah, Bh), g)

induces a holomorphic structure with holomorphic connective structure on P∇ := PC
h,∇h

.

These are called F-term equations. The remaining equations (6.91), called D-term equa-

tions, are interpreted as moment map conditions in [127]. We recall (a slightly adapted

version of) their construction.
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Let M = Aen+ (Ph,∇h
), considered as an infinite-dimensional complex manifold with

complex structure given by identifying

T((Ah,Bh),g)M = Ω1(adPh)⊕ Γ(T ∗
RX ⊗R T

∗
RX)

= Ω0,1(adPC
h )⊕ Γ(T ∗

0,1X ⊗C T
∗
CX)

= Ω0,1(adP ′
∇),

(6.93)

where adP ′
∇ ⊂ E′ is the kernel of the anchor of the complex Courant algebroid associated

to P∇. In other words,

IM((Ah,Bh),g)
(ȧ+ ḃ+ ġ) = (iȧ0,1 − iȧ1,0, ġ1,1(I·, ·), iḃ1,1(I·, ·) + iġ0,2 − iġ2,0). (6.94)

We define a presymplectic structure ωM of type (1, 1) on M as follows. Consider the

1-form λ ∈ Ω1(M,R) given by

λ((Ah,Bh),g)(ȧ+ ḃ+ ġ) =
1

2

∫
X
−ḃ ∧ e−f ωn−1

(n− 1)!
(6.95)

where ω = g(I·, ·) and f is defined by (6.92). This can also be written as λ = dcM for

M :M→ R the dilaton functional

M((Ah, Bh), g) =

∫
X
e−f

ωn

n!
= (−1)

n(n−1)
2 in

∫
X
efΩ ∧ Ω; (6.96)

in particular, it is clear that ωM = dλ = ddcM is a presymplectic form of type (1, 1).

Now Gauge(Ph,∇h
) acts on M through its action on A(P∇), and this action preserves

λ by (4.88). This implies that it admits a moment map in the sense of Proposition 6.11,

which is given by

µ :M→ Γ(adPh,∇h
)∗,

((Ah, Bh), g) 7→ µ((Ah, Bh), g)
(6.97)

defined over s+ ξ ∈ Γ(adP) ∼=(Ah,Bh) Γ(adPh,∇h
) as

µ((Ah, Bh), g)(s+ ξ) =
1

2

∫
X
(dξ + 2⟨FAh

, s⟩) ∧ e−f ωn−1

(n− 1)!
. (6.98)

Equations (6.91) are equivalent to µ = 0. In particular, Proposition 6.11 implies that

M//µGauge(Ph,∇h
) has a natural 0-shifted presymplectic structure. In fact, if we define

M0 ⊂M to be the subspace of points satisfying the F -term equations (6.90), then (ig-

noring possible smoothness problems) one can check thatM0 is a complex submanifold

invariant by Gauge(P∇) and so one can also obtain a presymplectic structure on the

moduli space of solutions to the Hull-Strominger systemM0//µGauge(Ph,∇h
).
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We conclude with some speculative comments on this construction based on Remark 2.37

and previous work in mathematical physics [72, 73]. First we note that there is an analog

of formula (2.170) in this setting. Namely, consider the K∇-bundleM×Ph,∇h
→M×X,

which carries a canonical connection (Ah,Bh). If {Xa}a is a cover of X on which Ph,∇h

has cocycle data as in Proposition 4.4, thenM×Ph,∇h
is described by the same cocycle

data over the cover {M×Xa}a and we can define (Ah,Bh) by the local forms

Aah|(((Ah,Bh),g),x)
(ȧ+ ḃ+ ġ + vx) = Aah|x(vx), (6.99)

Bah|(((Ah,Bh),g),x)
(ȧ+ ḃ+ ġ + vx) = Ba

h|x
(vx), (6.100)

where (Aah, B
a
h) are the local forms defining (Ah, Bh). The curvature of (Ah,Bh) is

(FAh
,Hh) defined by

FAh|(((Ah,Bh),g),x)
(ȧ1 + ḃ1 + ġ1 + v1x, ȧ2 + ḃ2 + ġ2 + v2x)

= FAh
(v1x, v

2
x) + ȧ1(v

2
x)− ȧ2(v1x),

(6.101)

Hh|(((Ah,Bh),g),x)
(ȧ1 + ḃ1 + ġ1 + v1x, ȧ2 + ḃ2 + ġ2 + v2x, ȧ3 + ḃ3 + ġ3 + v3x)

= Hh(v
1
x, v

2
x, v

3
x) + ḃ1(v

2
x, v

3
x)− ḃ2(v1x, v3x) + ḃ3(v

1
x, v

2
x)

(6.102)

We also define ω ∈ Ω1,1(M×X,R) and f :M×X → R by

ω|(((Ah,Bh),g),x)(ȧ1 + ...+ v1x, ȧ2 + ...+ v2x) = ω(v1x, v
2
x), (6.103)

f(((Ah, Bh), g), x) = f(x). (6.104)

Then it is straightforward to check that the 1-form λ from (6.95) can be written as

λ =
1

2

∫
X
Hh ∧ e−f ωn−1

(n− 1)!
. (6.105)

This shows that the presymplectic form ωM = dλ onM is very natural: while the term

⟨FA ∧FA⟩ ∈ Ω4(M×X,R) appearing in Donaldson’s formula (2.170) is the pull-back of

the 2-shifted symplectic form on BK• by the mapM×X → BK given by the universal

K-bundle (as it follows from Lemma 4.6), the term d(Hh ∧ e−f) appearing in ωM is the

pull-back of the 2-shifted symplectic form on BK• × R∗ (cf. Proposition 3.52) by the

mapM×X → BK × R∗ given by the universal K-bundle and the functional f.

Secondly, we comment on the relation between the presymplectic form ωM defined here

and the (2−n)-shifted holomorphic symplectic form from Remark 6.9. As in the case of

ordinary gauge theory (cf. Remark 2.37), we can make sense of this relation when n = 2.

In this case, note that a point ((Ah, Bh), g) ∈ µ−1(0) ⊂M determines by the Calabi-Yau

theorem complex structures J, K such that (I, e−f(ω)ω), (J, e−f(ω)ωJ), (K, e
−f(ω)ωK) is
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a hyperkähler structure on X with Ω = e−f(ω)ωJ + ie−f(ω)ωK , where ωJ := g(J ·, ·),
ωK := g(K·, ·).

This means that we can also define presymplectic forms ωM
J and ωM

K on µ−1(0) ⊂ M
by a similar formula to (6.105). Each of these has again a moment map for the action

of Gauge(Ph,∇h
) and so they descend to the quotient M0//µGauge(P∇). Now there

is a map ψ : M0//µGauge(P∇) → H
′,d(P∇) × Ωn,•

∂
(X)∗ and the pull-back of the 0-

shifted holomorphic presymplectic form from Remark 6.9 coincides with the reduction

of ωM
J + iωM

K . Note that other interpretations of the Hull-Strominger equations in terms

of hyper-Kähler moment maps have been studied in [122].

The conclusion of this observation is the following. If ψ was proven to be a diffeomor-

phism between appropriate open smooth locus of both spaces, then such moduli space

would be hyper-(pre-pseudo)-Kähler. One can probably get rid of the degeneracy of

such structure by considering larger moduli spaces in which the complex structure on

the base manifold X is also included as a parameter, as we discuss in more detail in

Section 8.2.2.



Chapter 7

Higher derived differential

geometry

In Chapter 6 we have constructed moduli spaces parameterizing geometric structures in

higher gauge theory, and we have modelled them as simplicial derived manifolds using

the formalism of Chapter 2. While there is a well-defined category of simplicial derived

manifolds, the fundamental nature of these moduli spaces is more properly captured by

regarding them as objects in the (∞, 1)-category of derived differentiable ∞-stacks, as

explained in Sections 1.2 and 1.3. We expect our results to have applications in the

construction of invariants with good functorial and combinatorial properties, but such

applications will necessary require understanding the formalism of ∞-categories.

Informally, an (∞,∞)-category is

• a collection of objects or 0-cells, for which we use letters x, y, z, ...,

• a collection of arrows or 1-cells between objects f : x→ y,

• a collection of 2-cells between arrows x y

f

g

α ,

• a collection of 3-cells between 2-cells x y x y

f

g

α
ψ

f

g

β

• ...

in which all cells can be composed in many different ways. For r ∈ N, an (∞, r)-category
is the same data, but in which all m-cells for m ≥ r + 1 are invertible. For n ∈ N and

202
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r ≤ n, an (n, r)-category is the same data, but in which all m-cells for m ≥ r + 1 are

invertible and all m-cells for m ≥ n+ 1 are identities.

The study of higher categories has at least two different origins. The first one is the ob-

servation that sets form a category, while categories form a bicategory or (2, 2)-category

[35, 106], and bicategories form a tricategory or (3, 3)-category [135], which suggests

the natural problem of providing a rigorous axiomatization of all these structures. The

second one arises from noting that many results about derived categories are proven

by chasing morphisms and homotopies between them in the original abelian category,

yielding the question of finding an algebraic structure that is well-suited for dealing

with these homotopies. Quillen’s answer [214] is to consider simplicial model categories,

which provide examples of what we now call (∞, 1)-categories. These ideas motivated

Grothendieck to envision models for ∞-categories and ∞-stacks in his manuscript Pur-

suing Stacks [138], which already included many of the fundamental ideas of∞-category

theory. This has now become a well-developed theory thanks to the work of many au-

thors, such as [17, 26, 29, 104, 157, 181, 218, 255] and others.

We will focus our attention on (∞, 1)-categories and (∞, 0)-categories. An example of

(∞, 1)-category is the (∞, 1)-category with objects topological spaces, arrows continu-

ous maps, 2-cells homotopies, 3-cells homotopies between homotopies, etc. [214]. An

example of an (∞, 0)-category is the fundamental ∞-groupoid Π∞(X) [138, 203] of a

topological space X: an object in Π∞(X) is a point in X, an arrow x → y is a contin-

uous map γ : [0, 1] → X with γ(0) = x and γ(1) = y, a 2-cell is a homotopy of paths

inside X, etc. Note that the composition of two paths x
γ→ y

η→ z is only well-defined

up to homotopy, in the sense that any two of the following paths could equally well be

considered a composite of γ and η.

(η ◦ γ)(t) :=

γ(2t) 0 ≤ t ≤ 1/2

η(2t− 1) 1/2 ≤ t ≤ 1
, (η◦̃γ)(t) :=

γ(3t) 0 ≤ t ≤ 1/3

η((3t− 1)/2) 1/3 ≤ t ≤ 1
.

(7.1)

This highlights a feature of (∞, 1)-categories that one should try to model: given k-cells

in an (∞, 1)-category with adequate source and target, composites must exist but they

may be non-unique; instead, any two composite k-cells must be related by a (k+1)-cell.

In particular, note that this implies that composition of n-cells in an (n, 1)-category is

uniquely well-defined.

Most models for (∞,∞)-categories can be classified as either algebraic or geometric.

Algebraic models axiomatize all the ways in which composites of cells can be assigned

to composable cells in an (n, 1)-category, and the conditions that these compositions

must satisfy. For n ≤ 4, this is covered by the theory of [135, 144, 266], but for general
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n ∈ N ∪ {∞} these sort of definitions require too much combinatorial effort and are

replaced by operadic approaches [29]. Geometric models axiomatize only the existence of

composites of composable cells, without prescribing preferred composites. Most models

are based on some category of ‘prescribed shapes’ for the k-cells such as the globe [254],

the simplex [26, 157, 218, 255] or the opetope [17] categories. Comparisons and reviews

of all these models can be found in [27, 83, 176, 219, 248].

The idea of seeing moduli spaces as objects in a higher category can be traced back to

[10, 97, 197], where the notion of algebraic stack was introduced based on ideas from

[9, 133] to deal with some aspects of the moduli space of curves of fixed genus over

an algebraically closed field. Algebraic stacks model spaces with an internal notion of

symmetry. It was suggested in [138] that a notion of higher algebraic stack could be

useful for studying moduli problems in which the symmetries have themselves some

notion of ‘homotopy’ between them, but it was not until [248] that a rigorous notion of

higher algebraic stack was presented.

A parallel story is the development of derived geometry for the study of moduli spaces.

Derived geometry started with the observation that the deformation theory of schemes

can be studied by resolving them with smooth dg-algebras [7, 139, 155, 216], setting

the foundations for what are now known as derived schemes. These model spaces with

an internal notion of smooth deformation, which makes them suitable for dealing with

iterated fibered products of schemes. The theory of derived algebraic geometry was

developed and combined with the theory of higher algebraic stacks in [182, 183, 262, 263],

observing in particular that many moduli spaces of interest in algebraic geometry have

a natural structure of higher derived algebraic stack.

The use of higher derived geometry for the study of moduli spaces has also been im-

mensely influenced by the literature on mathematical physics. The BV-BRST [28, 30]

approach for quantizing gauge-theories is based on the idea of adding extra coordinates

(ghosts and antifields) in the configuration space of a field theory. These extra coordi-

nates were interpreted in [240, 241] as the variables of non-zero degree on a differential

graded supermanifold, as defined in [37, 171], which is an infinitesimal approximation to

the kind of geometric object that is studied in higher derived geometry.

In the differential geometric context, the full theory is less developed. Regarding higher

differential geometry (i.e., the extension of differential geometry in which quotients can

always be taken but intersections can still be problematic), differentiable ∞-stacks can

be defined by a straightforward generalization of the algebraic setting from [247], as

done for example in [239]. A more explicit approach is proposed in [282], defining Lie

∞-groupoids as simplicial manifolds satisfying certain conditions, and the results of [213]

imply that both approaches are equivalent. In particular, all the simplicial manifolds
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that appear in this thesis aim to model objects in higher differential geometry and should

therefore be thought of as objects in the (∞, 1)-category of differentiable stacks.

On the other hand, the (∞, 1)-category dMan∞ of derived manifolds is an extension

of the category of manifolds in which fibered products always exist and satisfy good

combinatorial properties, but in which quotients can still be problematic. The first

attempt at constructing dMan∞ traces back to [250]. More recent approaches [46, 158,

252] mimic the definitions in the algebraic context, replacing commutative rings by C∞-

rings in order to capture the subtleties of the smooth setting. As proven in [76], all

these approaches yield the same (∞, 1)-category dMan∞. Based on work from [32], an

alternative construction of dMan∞ is presented in [75] using the theory from Section

2.2.2, as it had originally been proposed by Kontsevich [170]. In particular, all the

derived manifolds in this thesis aim to model objects in derived differential geometry

and should therefore by thought of as objects of the (∞, 1)-category dMan∞.

Given a model for dMan∞, constructing the ∞-category of derived differentiable stacks

is immediate by mimicking the definitions from algebraic geometry [261]. Moreover,

the results in [213] imply that simplicial objects in the category dMan from Section

2.2.2 satisfying certain horn-filling conditions provide examples of derived differentiable

stacks, and all the simplicial derived manifolds in this thesis should be regarded as such.

However, at the time of writing of this thesis it is still an open problem to give an explicit

model, along the lines of the Lie ∞-groupoids from [282], that suffices to construct all

derived differentiable stacks [89].

In Section 7.1.1 we present the first definitions and examples of∞-categories. In Section

7.1.2 we discuss the method of localization of categories of fibrant objects to construct

∞-categories, and in Section 7.1.3 we present the basics of ∞-sheaf theory. In Section

7.2.1 we define the (∞, 1)-category of differentiable stacks, and we discuss how to present

its objects by Lie ∞-groupoids. In Section 7.2.2 we define and present examples of Lie

m-groups for high m ∈ N, relating them to the theory from Chapters 3 and 4. In 7.2.3

we construct dMan∞ in terms of the category dMan from Section 2.2.2, and we combine

this theory with the one from Section 7.1.3 to define the (∞, 1)-category ∞dManSt of

derived differentiable ∞-stacks. The content of this chapter is mostly adapted from

[32, 75, 181, 204, 213, 261, 282] and there is no claim of originality, except for Example

7.31 and some aspects of the presentation of Example 7.30.
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7.1 ∞-categories

7.1.1 Kan conditions

Recall the categories ∆ and ∆inj from Definition 2.2.

Definition 7.1 ([106]). Let C be a category. A simplicial object in C is a functor

X : ∆op → C. A semi-simplicial object in C is a functor X : ∆op
inj → C. A morphism

of (semi-)simplicial objects X → Y is a natural transformation of functors X → Y . If

C is a monoidal category, the Cartesian product of two (semi-)simplicial objects X, Y

is the (semi-)simplicial object X × Y defined by point-wise product in C. We write C∆

for the category of simplicial objects in C and C∆inj for the category of semi-simplicial

objects in C.

A simplicial object X in C can equivalently be described by a sequence of objects Xn

in C, n ∈ N, with face arrows dnj : Xn → Xn−1 and degeneracy arrows snj : Xn → Xn+1,

j = 0, ..., n satisfying the simplicial identities (2.3). Similarly, a semi-simplicial object

in C is described by objects Xn and face maps dnj : Xn → Xn−1 satisfying the first

equation in (2.3). We will often use the notation X• when we present a (semi-)simplicial

object in this way, and we will omit the superscript in the face and degeneracy maps

when it is clear from context. When C is the category of sets, groups, manifolds, etc. we

refer to a simplicial object in X as a simplicial set, simplicial group, simplicial manifold,

etc.

Example 7.2. For each n ∈ N we define the combinatorial n-simplex ∆n as the

simplicial set associated to the object [n] ∈ ∆ by the Yoneda embedding. That is,

∆n : ∆ → Set is defined as ∆n([m]) = ∆([m], [n]) on objects, and it sends an arrow

f : [m1] → [m2] to the corresponding pull-back map f∗ : ∆([m2], [n]) → ∆([m1], [n]).

In particular, note that fully faithfulness of the Yoneda embedding implies that for any

simplicial set X• the corresponding set Xn can also be written as Xn = Set∆(∆
n, X•).

Example 7.3. For n ∈ N≥1 and j = 0, ..., n, the (n, j) horn is the simplicial set Λnj

obtained from ∆n by ‘removing the jth face’. More explicitly, this means that

Λnj ([m]) := {f ∈ ∆([m], [n]) | f([m]) ∪ {j} ≠ [n]}. (7.2)

In particular, there is a canonical inclusion morphism Λnj → ∆n. The inner horns of ∆n

are the horns Λnj with j = 1, ..., n− 1 and the outer horns of ∆n are the horns Λnj with

j = 0, n.

Example 7.4. If A is a small category, then we can build a simplicial set N(A)•, called

the nerve of A, as follows. Let N(A)0 be the set of objects of A, N(A)1 be the set of
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arrows of A and for n ≥ 2 let

N(A)n := N(A)1 s×tN(A)1 s×t... s×tN(A)1; (7.3)

i.e., an element of N(A)n is a string (g1, ..., gn) of n composable arrows of A. The face

and degeneracy maps are then defined as

d0(g) = s(g),

d1(g) = t(g),

d0(g1, ..., gn) = (g2, ..., gn),

dj(g1, ..., gn) = (g1, ..., gj−1, gj ◦ gj+1, gj+2, ..., gn), j = 1, ..., n− 1,

dn(g1, ..., gn) = (g1, ..., gn−1),

s0(x) = idx,

sj(g1, ..., gn) = (g1, ..., gj , ids(gj), gj+1, ..., gn), j = 0, ..., n.

(7.4)

The usual axioms of a category, such as associativity of composition, imply the simplicial

identities.

It is not hard to prove that, for X a simplicial set, there exists a small category A and

an isomorphism X ∼= N(A)• if and only if the following condition is satisfied.

Condition 1. For n ≥ 2 and 1 ≤ j ≤ n− 1, the map

Set∆(∆
n, X)→ Set∆(Λ

n
j , X) (7.5)

induced by the inclusion Λnj → ∆n is a bijection.

In this case, the category A is completely determined by X and so one can define small

categories as simplicial sets satisfying Condition 1. Note also that A is a groupoid (i.e.,

every arrow is invertible) if and only if the map (7.5) is also a bijection for j = 0, n and

n ≥ 2

The previous observation motivates the following approach to define∞-categories. Given

a (small) (∞, 1)-category A in the informal description from the introduction to Chapter

7, we should be able to define a simplicial set N(A)• such that

• N(A)0 is the set of objects of A,

• N(A)1 is the set of arrows of A,

• N(A)2 is the set of quadruples (f1, f2, f12, α) such that f1, f2 are composable

arrows in C and α : f1 ◦ f2 ⇒ f12 is a 2-cell in A,
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• N(C)3 is the set of tuples

(f1, f2, f3, f12, f23, f123, α1,2, α12,3, α2,3, α1,23, ψ)

such that f1, f2, f3 are composable arrows in A, α1,2 : f1 ◦ f2 ⇒ f12, α12,3 :

f12 ◦ f3 ⇒ f123, α2,3 : f2 ◦ f3 ⇒ f23, α1,23 : f1 ◦ f23 ⇒ f123 are 2-cells in A and

ψ : α12,3 ◦ α1,2 ⇒ α1,23 ◦ α2,3 is a 3-cell in A,

• ...

Since N(A)• contains all the information about compositions of cells in A and the

properties that these satisfy, anything that we want to do with A should be possible

to be done with N(A)•, as it is the case with standard categories. Thus, instead of

trying to define small (∞, 1)-categories by axiomatizing all the ways in which cells can

be composed, we may define (∞, 1)-categories as simplicial sets satisfying the analog of

Condition 1 that we would expect from the nerve of an ‘informal’ (∞, 1)-category. This
idea is due to [157], based on [44]. From now on we will ignore size issues, which can

always be dealt with by working in appropriate universes.

Definition 7.5 ([44, 157, 181]). An (∞, 1)-category A is a simplicial set A• such that,

for n ≥ 2 and 1 ≤ j ≤ n− 1, the map

Set∆(∆
n, A)→ Set∆(Λ

n
j , A) (7.6)

induced by the inclusion Λnj → ∆n is a surjection. An ∞-groupoid, (∞, 0)-category or

Kan complex is an (∞, 1)-category such that the maps (7.6) are also surjections for

j = 0, n and n ≥ 2. For m ∈ N, an (m, 1)-category is an (∞, 1)-category such that

the maps (7.6) are bijections for n > m, 1 ≤ j ≤ n − 1, and an m-groupoid is an is an

(∞, 1)-category such that the maps (7.6) are bijections for n > m, 0 ≤ j ≤ n.

The motivation for Definition 7.5 is that, as it is clear from the informal description

of the nerve of an (∞, 1)-category, imposing surjectivity of (7.6) for n = 2 and j = 1

amounts to imposing existence of composites of 1-arrows, while imposing surjectivity for

n > 2 and 1 ≤ j ≤ n − 1 amounts to imposing existence of composites and inverses of

(n− 1)-cells, and imposing that (7.6) is a bijection amounts to imposing uniqueness of

such composites.

Example 7.6. For X a topological space, we define its fundamental∞-groupoid Π∞(X)

as follows. First, recall that there is a functor | · | : ∆→ Top, called the standard cosim-

plicial topological space of topological simplices, where Top is the category of topological
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spaces and continuous maps, such that

|∆n| := {(x0, ..., xn) ∈ [0, 1]n+1 |
∑

i xi = 1},

|δj |(x0, ..., xn−1) = (x0, ..., xj−1, 0, xj , ..., xn−1),

|σj |(x0, ..., xn+1) = (x0, ..., xj−1, xj + xj+1, xj+2, ..., xn+1).

(7.7)

Then Π∞(X) is defined by

Π∞(X)n := Top(|∆n|, X),

dj := |δj |∗ : Top(|∆n|, X)→ Top(|∆n−1|, X),

sj := |σj |∗ : Top(|∆n|, X)→ Top(|∆n+1|, X).

(7.8)

This construction can be enhanced to give a functor Π∞ : Top→ Set∆. Moreover, Π∞

has an adjoint | · | : Set∆ → Top, called fat geometric realization, and defined on objects

as

||X•|| :=
⊔
n∈N

Xn × |∆n|/ ∼, (7.9)

where the equivalence relation is (p, d∆j (x)) ∼ (dj(p), x). A theorem of Quillen states that

for any compactly generated topological space X and for any Kan complex X• the counit

and unit of this adjunction induce a weak homotopy equivalence of topological spaces

||Π∞(X)|| ∼= X and a weak homotopy equivalence of simplicial sets X• ∼= Π∞(||X•||).

Recall that, given categories A, B, then functors A → B form a category Fun(A,B),

where arrows are given by natural transformations. It is easy to check thatN(Fun(A,B))n =

Set∆(N(A)• ×∆n, N(B)•), which justifies the following definition.

Definition 7.7 ([181]). Let A, B be (∞, 1)-categories. The (∞, 1)-category of functors

from A to B is the simplicial set Fun(A,B) with

Fun(A,B)n := Set∆(A×∆n, B),

dj := (s∆j )
∗,

sj := (d∆j )
∗,

(7.10)

where d∆j : ∆n+1 → ∆n, s∆j : ∆n−1 → ∆n are the face and degeneracy maps between the

combinatorial simplices (see Example 7.2). Element of Fun(A,B)0 are called functors,

elements of Fun(A,B)1 are called natural transformations and elements of Fun(A,B)2

are called modifications.

For Definition 7.7 to make sense, one must check that when A, B satisfy the Kan

condition from Definition 7.5 then the simplicial set defined by (7.10) also satisfies it;
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this is proven in [181, Prop 1.2.7.3]. In fact, it is also true that when B is an∞-groupoid

then so is Fun(A,B), and that when B is an (n, 1)-category then so is Fun(A,B).

7.1.2 Simplicial categories and localization

In the following definition, and for the rest of this chapter, we shall abuse language

by using the term simplicial categories for certain objects which are not equivalent to

arbitrary functors ∆op → Cat (cf. Definition 7.1), although they can be identified with

those functors ∆op → Cat which are ‘constant on objects’ [185, Remark 3.6].

Definition 7.8 ([181]). A simplicial category or simplicially enriched category A is the

following data.

1. A class of objects A0

2. For each pair of objects x, y ∈ A0, a simplicial set of arrows A(x, y) ∈ Set∆,

3. For each triple of objects x, y, z ∈ A0, a composition morphism of simplicial sets

◦ : A(x, y)×A(y, z)→ A(x, z) such that for x, y, z, t ∈ A0 we have a commutative

diagram

A(x, y)×A(y, z)×A(z, t) A(x, z)×A(z, t)

A(x, y)×A(y, t) A(x, t).

id×◦

◦×id ◦

◦

, (7.11)

4. For each object x ∈ A0, a map idx : ∆0 → A(x, x) such that for x, y ∈ A0 we have

commutative diagramas

∆(x, y) ∆(x, x)×∆(x, y)

∆(x, y)

idx

id
◦ ,

∆(x, y) ∆(x, y)×∆(y, y)

∆(x, y)

idy

id
◦ . (7.12)

A fibrant simplicial category is a simplicial category A such that all the simplicial sets

A(x, y) are ∞-groupoids. The underlying fibrant simplicial category A(∞,1) of a sim-

plicial category A is the fibrant simplicial category with same objects as A but with

A(∞,1)(x, y) = Π∞(||A(x, y)||), where || · || denotes fat geometric realization (cf. Exam-

ple 7.6). The homotopy category of a simplicial category A is the category Ho(A) with

same objects as A but with Ho(A)(x, y) = π0(||A(x, y)||).

As discussed in [181, Section 1.1.5], a simplicial category A has a simplicial nerve N(A)•,

which is a simplicial set constructed similarly as the nerve of a category. If A is a fibrant
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simplicial category, then N(A)• is an (∞, 1)-category as in Definition 7.5. Up to set-

theoretic considerations, and with the right notion of equivalence, the simplicial nerve

construction induces an equivalence between fibrant simplicial categories and (∞, 1)-
categories.

Most of the (large) ∞-categories that we consider in this thesis are presented as fibrant

simplicial categories, and the only reason why we have defined (∞, 1)-categories as in

Definition 7.5, instead of as fibrant simplicial categories, is that the (∞, 1)-category of

functors between two (∞, 1)-categories is much easier to define in the model from Defi-

nition 7.5. For this reason, given fibrant simplicial categories A, B we write Fun(A,B)

for the (∞, 1)-category of functors between the (∞, 1)-categories associated to A, B.

Example 7.9. The fibrant simplicial category Spc of spaces is the simplicial cate-

gory whose class of objects is the class of all ∞-groupoids as in Definition 7.5, with

Spc(A,B) = Fun(A,B) and where composition and identities are defined in an obvious

way. Note that this is a combinatorial model for the (informal) (∞, 1)-category of topo-

logical spaces, continuous maps, homotopies and higher homotopies. Indeed, Quillen’s

theorem that we recalled in Example 7.6 implies that the homotopy category of Spc co-

incides with the localization of the category of compactly generated topological spaces

at the weak homotopy equivalences. [181, Section 1.1.4]

We define homotopy limits and homotopy colimits in Spc by taking them in topological

spaces; i.e., given a small category C and a functor F : C → Spc, then its homotopy

limit is Π∞(lim || · || ◦F ) ∈ Spc0, where lim || · || ◦F ∈ Top0 denotes the homotopy limit

in the sense of topology [146] of the functor || · || ◦ F : C → Top.

A common technique in category theory is localization; i.e., constructing a category

A[W ] out of a category A and a class of morphisms W (weak equivalences) in A that

are formally inverted in A[W ]. For example, a span x
w← x′

f→ y with w ∈W induces an

arrow (w, f) : x → y in A[W ], and given a second span x
w2← x′2

f2→ y with w2 ∈ W one

has (w, f) = (w2, f2) if there exists some α : x′ → x′2 commuting with the two spans.

This identification, which is necessary for the composition on A[W ] to be well-defined,

loses the information of the arrow α, which is important in some contexts.

If we are working in one such context, then we might try to construct instead an (∞, 1)-
category A[W ]∞ in which pairs (w, f) as before induce arrows, and in which α induces

a 2-cell from (w, f) to (w2, f2). The systematic way to do this for an arbitrary class of

morphisms W is called hammock, Dwyer-Kan or simplicial localization [104]. If (A,W )

satisfy additional conditions, then the∞-category obtained from Dwyer-Kan localization

is equivalent to an easier to present fibrant simplicial category [204, Section 3.6.2], and

for the purposes of this thesis this situation is general enough.
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Definition 7.10 ([204]). Let A be a category, let W, F ⊂ A be two subcategories,

whose arrows we call weak equivalences and fibrations, respectively, and call the arrows

that are both in F and W acyclic fibrations. The data (A,W,F ) is a category of fibrant

objects if the following axioms are satisfied.

1. Isomorphisms are acyclic fibrations.

2. For x
f→ y

g→ z, if any two of {f, g, g ◦ f} is a weak equivalence, then so is the

other one.

3. For every x ∈ A0, x→ 1 is a fibration.

4. Any diagram
x

y z

f
g

(7.13)

in A such that g is a fibration has a pull-back x f×gy → z in A. This is again a

fibration and, if g is an acyclic fibration, then so is the pull-back.

5. Any arrow x
f→ y in A factorizes as x

λ→ x′
f ′→ y, where f ′ is a fibration and λ is a

weak equivalence that is a section of an acyclic fibration x′ → x.

The localization A[W ](∞,1) of a category of fibrant objects (A,W,F ) is the underlying

fibrant simplicial category of the simplicial category A[W ]∞ defined as follows.

1. The class of objects of A[W ]∞ is A0 .

2. For x, y ∈ A0 the simplicial set A[W ]∞(x, y) is the nerve of the following category:

(a) Its objects are spans x
w← x′

f→ y in A with w an acyclic fibration.

(b) An arrow between the spans x
w← x′

f→ y and x
w2← x′2

f2→ y is a weak

equivalence α : x′ → x′2 in A such that

x′

x y

x′2

α

fw

f2w2

(7.14)

commutes.

(c) Composition and identities are induced by composition and identities in A.
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3. For x, y, z ∈ A0, composition A[W ]∞(x, y) × A[W ]∞(y, z) → A[W ]∞(x, z) is de-

fined by

x′ y′

x y z

wx f wy g =

x′ f×wy
y′

x z

wx g (7.15)

4. The identity of x ∈ A0 is x
idx← x

idx→ x.

Remark 7.11. Since the simplicial sets A[W ]∞(x, y) in Definition 7.10 are nerves of cat-

egories, one can think of A[W ]∞ as a category internal to categories, or equivalently as

a strict (2, 2)-category. It might seem counter-intuitive that it is possible to construct

an (∞, 1)-category A[W ](∞,1) with non-trivial k-cells for k ≥ 3 out of a (2, 2)-category

A[W ]∞. However, this is related to the surprising fact that the geometric realization

of any ∞-groupoid (such as A[W ](∞,1)(x, y)) is weakly homotopy equivalent to the geo-

metric realization of some category (such as A[W ]∞(x, y)) [260]. For example, note that

A[W ]∞(x, y) are groupoids if and only if every weak equivalence is already invertible in

A, in which case A[W ]∞ = A[W ](∞,1) is a (2, 1)-category which is actually canonically

equivalent to the category A.

The motivation for Definition 7.10 is that, although arbitrary fibered products need not

exist on the nose on A, they do exist ‘up to weak equivalences’. Hence, if we pass from A

to A[W ](∞,1), then we can take arbitrary fibered products. More precisely, if (A,W,F )

is a category of fibrant objects and we are given a diagram in A

x

y z

f
g

, (7.16)

we may choose a factorization x
λ→ x′

f ′→ z of f , with f ′ a fibration and λ a weak

equivalence. Then we define the corresponding homotopy fibered product to be x f×hg y :=

x′ f ′×g y. Since this depends on the choice of factorization, the homotopy fibered product

is not really a well-defined fibered product on A, but it is well-defined as an operation on

A[W ](∞,1). In fact, it satisfies an analogous universal property (it is an (∞, 1)-limit [181,

Section 1.2.13]). Notice the similarity with how derived functors in abelian categories

are computed in terms of resolutions.

Example 7.12. Let A be the category whose objects are ∞-groupoids and whose mor-

phisms are functors between them. We define weak equivalences in A to be functors

f• : X• → Y• such that |f•| : |X•| → |Y•| is a weak homotopy equivalence of topological

spaces and fibrations in A to be Kan fibrations; i.e., functors f• : X• → Y• such that for
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n ≥ 1 and 0 ≤ j ≤ n, the map

Set∆(∆
n, X)→ Set∆(Λ

n
j , X)×Set∆(Λn

j ,Y ) Set∆(∆
n, Y ) (7.17)

induced by the inclusion Λnj → ∆n and the map f , is surjective. This is a structure of

category of fibrant objects on A, and its localization coincides with Spc [214, Section

II.3].

Example 7.13. For a field k of characteristic 0, write dgAlg for the category of dif-

ferential Z≤0-graded commutative k-algebras, with degree and differential-preserving

morphisms of algebras as arrows. This has structure of category of fibrant objects [50] if

we define weak equivalences to be quasi-isomorphisms (i.e., morphisms that induce iso-

morphisms in cohomology) and fibrations to be morphisms that are surjections on each

degree. The localization of dgAlg is by definition (the opposite of) the (∞, 1)-category
AffdSch of affine derived schemes. AffdSch is an enhancement of the category of

smooth schemes in which fibered products always exist and behave better than the

standard fibered products of schemes.

7.1.3 ∞-stacks

The easiest way to define rigourously the (∞, 1)-category of derived differentiable ∞-

stacks is to adopt the functor of points approach. For this we need some basic notions

of sheaf theory on (∞, 1)-categories.

Definition 7.14 ([261]). Let A be a fibrant simplicial category. Then its opposite is

the fibrant simplicial category Aop with same objects as A but Aop(x, y) = A(y, x). The

(∞, 1)-category of ∞-presheaves on A is P (A) := Fun(Aop, Spc). For each j ∈ N, the
jth homotopy presheaf of X ∈ P (A) is πj(X) ∈ Fun(Aop,Set) obtained by composing X

with the jth homotopy group functor πj : Spc→ Set. The homotopy limit or homotopy

colimit of a diagram in P (A) is the presheaf that assigns to each x ∈ A0 the homotopy

limit or homotopy colimit of the corresponding diagram in Spc.

A sieve on an object x ∈ A is a sieve on Ho(A); that is, a collection of arrows in Ho(A)

ταx := {Uαi → x}i∈I

such that for l ∈ ταx and V
f→ Uαi an arrow in Ho(A) we have l◦f ∈ ταx . A Grothendieck

topology on A is a Grothendieck topology τ on Ho(A). Equivalently, it is the data of,

for each x ∈ A, a class of distinguished sieves on x, called covering sieves and denoted

ταx , subject to the following axioms.
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1. The class of all arrows in Ho(A) with target x is a covering sieve on x.

2. If f : x → y is an arrow in Ho(A) and ταy is a covering sieve on y, then f∗ταy :=

{h : s(h)→ x | f ◦ h ∈ ταy } is a covering sieve on x.

3. If ταx is a covering sieve on x and τβx is an arbitrary sieve such that for any l :

Uαi → x in ταx the sieve l∗τβx is a covering sieve on Uαi , then τ
β
x is a covering sieve

on x.

Example 7.15. Let A = Man be the category of manifolds. Define a good open cover

of X ∈ Man to be a collection {Ui → X}i∈I of morphisms in Man such that Ui → X

are inclusions of open sets with X = ∪i∈IUi and all finite intersections of the open sets

{Ui}i∈I are contractible. A Grothendieck topology on Man is given by letting a sieve

be a covering sieve if and only if it contains a good open cover.

Example 7.16. Let A be the fibrant simplicial category of affine derived schemes from

Example 7.13. There is a notion of étale morphism between affine derived schemes

[261] that can be used to define a Grothendieck topology by letting {Ui → X}i∈I be a

covering sieve if each Ui → X is étale and the induced morphism
⊔
i∈I t0(Ui) → t0(X)

is a surjective morphism of schemes, where for

Z = Spec(O(Z)0
d← O(Z)−1

d← ...) ∈ AffdSch

we define t0(Z) := Spec(O(Z)0/dO(Z)−1) ∈ AffSch.

For A a fibrant simplicial category and an object X ∈ A0, we write j(X) ∈ P (A) for

the presheaf associated to j by the Yoneda embedding (i.e., j(X)(Y ) = A(X,Y )). It

is proved in [181, Prop 6.2.2.5] that, as in ordinary category theory, sieves on X are in

bijection with pairs (U, s) of a presheaf U ∈ P (A) and a monomorphism U
s→ j(X). For

example, when A = Man, a sieve τX = {Ui
li→ X}i∈I over a manifold X determines the

presheaf

U(M) := {{fi :M → Ui}i∈I | ∀i, j ∈ I, li ◦ fi = lj ◦ fj}, (7.18)

which has an obvious monomorphism U → j(X). When A is an arbitrary (∞, 1)-
category, the presheaf U can be constructed as follows. First, construct the Čech reso-

lution of the sieve τX ; this is a simplicial object Č(τX) : ∆
op → P (A) in P (A) defined

as

Č(τX)n :=
⊔

i0,...,in

j(Ui0)×hj(X) ...×
h
j(X) j(Uin), (7.19)
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with obvious face and degeneracy maps. Then U ∈ P (A) is defined as the homotopy

colimit of Č(τX); that is,

U(M) := lim
[n]∈∆

( ⊔
i0,...,in

j(Ui0)(M)×hj(X)(M) ...×
h
j(X)(M) j(Uin)(M)

)
, (7.20)

where ×hj(X)(M) denotes homotopy fibered products of spaces and lim denotes homotopy

colimit of spaces. We can then formulate the descent condition of a sheaf as follows.

Definition 7.17 ([181, Def. 6.2.2.6]). Let A be a fibrant simplicial category with a

Grothendieck topology τ . A sheaf on A is a presheaf X : Aop → Spc such that for

every covering sieve τX = {Ui
li→ X}i∈I over X ∈ A0 determining the monomorphism

U → j(X) in P (A) we have that the induced map

P (A)(j(X),X)→ P (A)(U,X) (7.21)

is a weak homotopy equivalence of topological spaces. The fibrant simplicial category

of sheaves Sh(A, τ) (or simply Sh(A)) is the full simplicial subcategory of the simplicial

category of presheaves spanned by the sheaves. A subcanonical Grothendieck topology

on A is a Grothendieck topology τ such that for every X ∈ A0 we have j(X) ∈ Sh(A, τ).

For any Grothendieck topology, the inclusion functor Sh(A)→ P (A) has a left exact (in

the sense of (∞, 1)-categories) adjoint functor L : P (A) → Sh(A), called sheafification

[181, Lem. 6.2.2.7]. This implies in particular that Sh(A) is closed under the homotopy

limits of P (A), while homotopy colimits on Sh(A) are defined by taking them on P (A)

and then sheafifying with L. Moreover, [181, Lem. 6.2.2.7] also implies that Sh(A) has

all internal homs, meaning that for any X, Y ∈ Sh(A) there exists some Sh(A)(X,Y) ∈
Sh(A) such that Sh(A)(Z, Sh(A)(X,Y)) = Sh(A)(Z× X,Y).

In the applications we have in mind, A is an (∞, 1)-category of (possibly very singular)

geometric objects and τ is a subcanonical Grothendieck topology. In this case, an

arbitrary sheaf X ∈ Sh(A) represents the functor of points of a moduli problem on A,

and we want to characterize which of these sheaves are geometric, in the sense that they

can be represented in some way by objects of A.

Definition 7.18 ([261]). Let Ã be a fibrant simplicial category and let j : Ã→ P (Ã) be

the Yoneda embedding. Then a groupoid object in Ã is a functor X : ∆op → Ã satisfying

the Segal condition: for n ≥ 2 and for every subdivision [n] = S ∪ S′ with S ∩ S′ = {s},
the map

Xn → X(S)× X(S′) (7.22)
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induced by the inclusions S, S′ → [n] exhibits j(Xn) as the homotopy fibered product

in P (Ã)

j(Xn) = j(X(S))×hj(X({s})) j(X(S
′)). (7.23)

A morphism of groupoid objects is a natural transformation of functors.

Let (A, τ) be a fibrant simplicial category with a subcanonical Grothendieck topology.

Let (A, τ ′) be a full simplicial sub-category of Sh(A) containing the image of the Yoneda

embedding j : A → Sh(A), with a Grothendieck topology τ ′ restricting to τ over A.

A morphism U → X in A is called smooth if {U → X} is a covering sieve for τ ′. We

define inductively, for each n ≥ 0, the fibrant simplicial category of n-geometric stacks

and their smooth morphisms as follows.

1. The fibrant simplicial category of 0-geometric stacks 0gSt(A) is A.

2. For n ≥ 1, a smooth groupoid in (n−1)-geometric stacks X : ∆op → (n−1)gSt(A)
is a groupoid object in the simplicial category of (n−1)-geometric stacks such that

X1
dj→ X0 is a smooth arrow for j = 0, 1. A smooth morphism between two such

groupoids X→ Y is a morphism of groupoid objects such that the corresponding

map X0 → Y0 is a smooth morphism of (n− 1)-geometric stacks.

3. For n ≥ 1, the fibrant simplicial category ngSt(A) of n-geometric stacks is the

full simplicial sub-category of Sh(A) spanned by objects that can be obtained as

colimits of i ◦ X : ∆op → Sh(A), for X a smooth groupoid in (n − 1)-geometric

stacks and i : (n− 1)gSt(A)→ Sh(A) the inclusion functor. A smooth morphisms

of n-geometric stacks is an arrow in ngSt(A) arising as the colimit of a smooth

morphism of groupoid objects in (n− 1)gSt(A).

4. A geometric stack is X ∈ Sh(A)0 such that X ∈ ngSt(A) for some n ∈ N.

Remark 7.19. When Ã is actually an ordinary category, then groupoid objects on Ã

as in Definition 7.18 coincide with groupoid objects as in Definition 7.5 (replacing Set

by Ã and bijection by isomorphism). In this case, n-geometric stacks in the setting of

Definition 7.22 form an (n+1, 1)-category [213]. Another interesting remark is that the

homotopy presheaves of a sheaf are actually sheaves, but even if the original sheaf was

geometric then its homotopy presheaves might not be so, if A does not have all colimits.

Example 7.20. If we take A to be the category AffSch := Ringop of affine schemes,

with étale covers as covering sieves, and A to be the image under the Yoneda embedding

of the category of all schemes, also with étale covers as covering sieves, then the corre-

sponding n-geometric stacks are precisely the Artin n-stacks that model higher algebraic

geometry. If we take A to be the fibrant simplicial category of affine derived schemes
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with the étale Grothendieck topology from Example 7.16, and we let A be the image

under the Yoneda embedding of the fibrant simplicial category of all derived schemes

in the sense of [261] with étale topology, then the resulting geometric stacks are called

derived Artin stacks and provide the framework for higher derived algebraic geometry.

The following proposition provides a way to present examples of geometric stacks over

a fibrant simplicial category A in terms of simplicial objects on A.

Proposition 7.21 ([213]). Let (A, τ) be a fibrant simplicial category with a subcanonical

Grothendieck topology and a fully faithful embedding Set → A. Let (A, τ ′) be a full

simplicial sub-category of Sh(A) containing the image of the Yoneda embedding j : A→
Sh(A), scuh that τ ′ restricts to τ over A, and such that homotopy fibered products along

smooth maps remain in A. Let m ≥ 1 and let X : ∆op → A be a functor such that

1. Face maps Xn → Xn−1 are smooth. In particular, for every horn Λnj , the internal

hom Fun(∆op, Ã)(Λnj ,X) exists in A.

2. The arrows in A

Xn = Fun(∆op, A)(∆n,X)→ Fun(∆op, A)(Λnj ,X) (7.24)

induced by the inclusion Λnj → Λn are isomorphisms for n > m, 0 ≤ j ≤ n and

smooth for 2 ≤ n ≤ m, 0 ≤ j ≤ n.

Then the colimit of j ◦X : ∆op → Sh(A) is an m-geometric stack. Moreover, if A, A are

ordinary categories and the class of smooth morphisms satisfies the conditions in [213,

Properties 1.8], then all m-geometric stacks arise in this way.

7.2 Higher derived differential geometry

7.2.1 Lie ∞-groupoids

Definition 7.22 ([213, 282]). For m ∈ N, the (m + 1, 1)-category of differentiable m-

stacks is the (m + 1, 1)-category of geometric m-stacks X : Manop → Spc in the sense

of Definition 7.18, for (A, τ) = (A, τ ′) the category of manifolds with the Grothendieck

topology from Example 7.15. The (∞, 1)-category DiffSt of differentiable stacks is the

(∞, 1)-category of all stacks that are m-geometric for some m ∈ N.
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For m ∈ N ∪ {∞}, a Lie m-groupoid is a simplicial manifold X : ∆op → Man (cf.

Definition 2.1) such that the restriction maps

Xn = Man∆(∆
n,X)→ Man∆(Λ

n
j ,X) (7.25)

are diffeomorphisms for n > m, 0 ≤ j ≤ n and surjective submersions for 1 ≤ n ≤ m,

0 ≤ j ≤ n.

Remark 7.23. [282] proves that, for anyN ∈ N, the right-hand side of (7.25) is a manifold

for n = N and any 0 ≤ j ≤ N if for n < N and all 0 ≤ j ≤ n the right-hand side of

(7.25) is a manifold and the restriction maps (7.25) are surjective submersions. Thus, it

follows by induction that Definition 7.22 makes sense. It is also useful to know that, as

shown in [177, Def. 2.39, Lem. 2.44], all face maps of a Lie m-groupoid are submersions.

Moreover, the tangent complex of a Lie m-groupoid as defined in Section 2.1.1 is indeed

a complex of vector bundles, as the quotients (2.17) have constant rank in this case.

Example 7.24. For G a Lie 2-group acting on a Lie 1-groupoid P, the quotient 2-

groupoid constructed in Section 3.1.2 is a Lie 2-groupoid in the sense of Definition 7.22.

By definition, the category of manifolds is equivalent to the category of differentiable 0-

stacks. The bicategory of Lie groupoids, anafunctors and smooth transformations from

Section 3.1.1 is equivalent to the bicategory of differentiable 1-stacks, as shown in [33].

An explicit way of assigning a differentiable 1-stack X to a Lie groupoid X is to construct

its nerve N(X)• as in Section 3.1.1, which is a Lie 1-groupoid in the sense of Definition

7.22, and then take the homotopy colimit X := lim∆(N(X)•) as in Section 7.1.3. Note

that, for Lie groupoids X, Y, the simplicial set Fun(N(X•), N(Y•)) is (the nerve of)

the groupoid of smooth functors X → Y with smooth transformations between them,

and not the groupoid of all smooth anafunctors.

For arbitrary m ∈ N, Proposition 7.21 implies that all differentiable m-stacks admit a

description as colimits of Lie m-groupoids in the sense of Definition 7.22. In particular,

Lie m-groupoids defining equivalent differentiable m-stacks have weak homotopy equiv-

alent geometric realizations (but equivalence as geometric m-stacks is stronger). As we

have just seen for m = 1, given two Lie m-groupoids X, Y : ∆op → Man defining stacks

X, Y, the space DiffSt(X,Y) contains but can be strictly bigger than the simplicial set

Fun(X, Y).

The idea is that the Lie m-groupoid X is only a presentation of its corresponding m-

stack X, and so an arbitrary morphism of stacks might only be defined as a functor

of m-groupoids in some other presentation X′. Thus, a rigorous presentation of the

whole (m+ 1, 1)-category of differentiable m-stacks purely in terms of Lie m-groupoids
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requires allowing for resolutions of X and then localizing in an appropriate way to remove

the dependence on the resolution, similarly as in the construction in Section 7.1.2. A

rigorous construction for arbitrary m ∈ N in the algebraic setting is in [213], while [222]

solves the problem in the smooth setting through the notion of incomplete categories of

fibrant objects. The result for m = 1 is the bicategory of Lie groupoids and anafunctors

from Section 3.1.1. A useful intermediate result is the following.

Proposition 7.25. Let M be a manifold and let Y be a Lie m-groupoid defining differ-

entiable stacksM and Y. For {Ui}i∈I a good cover ofM , there is a canonical equivalence

of m-groupoids

Fun(Č(M,U)•,Y)→ DiffSt(M,Y), (7.26)

where Č(M,U)• is the Čech groupoid from Example 2.7.

Proof. It follows directly from the sheaf condition from Definition 7.17 and the definition

of the Grothendieck topology on Man.

Remark 7.26. Complex differentiable m-stacks are defined analogously as in 7.22, replac-

ing Man by the category of complex manifolds with similar Grothendieck topology, and

similarly for complex Lie m-groupoids. Then Proposition 7.21 implies that every complex

differentiable m-stack can be represented as the colimit of a complex Lie m-groupoid.

7.2.2 Lie m-groups and principal m-bundles

Given a Lie group G we can associate to it two simplicial manifolds.

1. The one that is just G at all levels. This is a Lie 0-groupoid in the sense of

Definition 7.22.

2. Its delooping BG• (cf. Example 2.6). This is a Lie 1-groupoid in the sense of

Definition 7.22.

Note Proposition 7.25 implies that for any manifold M the groupoid DiffSt(M,BG) is

equivalent to the groupoid of principal G-bundles on M . Moreover, for {∗} → BG• the

unique map of simplicial manifolds extending the map {∗} → {∗} at level 0, one can

easily see that a map of differentiable stacks M → BG factorices through {∗} → BG•

if and only if the corresponding G-bundle P →M is trivial. This means that

G = {∗} ×hBG• {∗}, (7.27)
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because for any manifold M we have G(M) = ({∗} ×hBG•
{∗})(M), meaning that the

set of functions from M to G equals the set of automorphisms of the trivial G-bundle

over M . Similarly, given a Lie 2-group G in the sense of Definition 3.9 we can associate

to it the Lie 1-groupoid N(G)• and the Lie 2-groupoid BG•, and their corresponding

differentiable stacks satisfy N(G)• = {∗} ×hBG•
{∗}.

Definition 7.27 ([239]). For m ≥ 1, a Lie m-group is a Lie (m− 1)-groupoid G in the

sense of Definition 7.22 such that there exists a Lie m-groupoid, denoted BG and called

its delooping, with

BG0 = {∗}, (7.28)

G = {∗} ×hBG {∗} ∈ Sh(Man), (7.29)

where the map {∗} → BG is the inclusion of the point {∗} ∈ BG0. For X a Lie l-groupoid

X and a Lie m-group G, the m-groupoid of G-principal bundles over X is DiffSt(X, BG).

The equivalence between Lie 1-groups in the sense of Definition 7.27 and ordinary Lie

groups follows from the familiar fact that a Lie groupoid with one object is determined

by a Lie group. The equivalence between Lie 2-groups in the sense of Definition 7.27 and

Lie 2-groups in the sense of Definition 3.9 is proven in [281]. By spelling out in detail

the definition of the homotopy fibered product of sheaves, one sees that imposing (7.29)

is equivalent to imposing that for any manifold M there is a canonical equivalence of

(m − 1)-groupoids between DiffSt(M,G) and the (m − 1)-groupoid of automorphisms

inside DiffSt(M,BG) of the unique functor M → BG that extends the smooth map

M → {∗} at level 0.

We proceed to present examples of Lie m-groups for higher m ∈ N. We define a Lie

m-group G by presenting its delooping BG, from which G can be recovered by definition.

One of the advantages of this approach is that cocycle data for G-bundles is obtained

immediately. We also comment on how to define connections on G-bundles in each case,

for which we use some extra data on G generalizing the Maurer-Cartan forms from

Definition 3.23.

Example 7.28 ([178]). For T an abelian Lie group and l ≥ 1, recall the simplicial

manifold BlT• from Example 2.8. It is clear that BlT• is a Lie l-groupoid with BlT0 =

{∗}. We claim that Bl−1T = {∗}×h
BlT
{∗}, implying that Bl−1T is a Lie l-group for each

l. One way to see this is by noting that for a manifoldM we can compute DiffSt(M,BlT )

as in Proposition 7.25, by taking a good cover U = {Ui}i∈I of M . Then an object in

DiffSt(M,BlT ) is precisely a T -valued Čech l-cocycle, an arrow between two l-cocycles

is a coboundary for the difference of the l-cocycles, a 2-cell is a coboundary between

coboundaries, etc. In particular, the (l − 1)-groupoid of automorphisms of any given
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object in DiffSt(M,BlT ) is equivalent to DiffSt(M,Bl−1T ), which means precisely that

{∗} ×h
BlT
{∗} = Bl−1T .

In conclusion, DiffSt(M,BlT ) is the l-groupoid of T -(l − 1)-gerbes over M in the sense

of [57, 82, 133]. The preceeding discussion implies that we can think of T -(l − 1)-

gerbes as Bl−1T -principal bundles over M . If T is connected, so that the exponential

sequence 1 → Z → t
exp→ T → 1 is exact (for Z := ker(exp)), then for a Bl−1T -bundle

described by a T -valued cocycle ti0...il we may choose a lift to t-valued functions fi0...il

with exp(fi0...il) = ti0...il . One can easily prove that the Z-valued cocycle λi0...il+1
:= δf

determines a class in H l+1(M,Z), which we call the Chern or Dixmier-Douady class,

and which classifies the Bl−1T -bundle completely.

Note that the Maurer-Cartan form on T defines a canonical 1-form θ ∈ Ω1((BlT )l, t) such

that δθ = 0 and dθ = 0. This means that we can define connections on a Bl−1T -principal

bundle described by coycle data ti0...il : Ui0...il → T as follows. Since δθ = 0, t∗θ ∈
Ω1(⊔i0...ilUi0...il , t) is a Čech cocycle and so there exist A1

i0...il−1
∈ Ω1(Ui0...il−1

, t) with

δA1 = t∗θ. Then dθ = 0 implies δdA1 = 0 and so there exist A2
i0...il−2

∈ Ω2(Ui0...il−2
, t)

with δA2 = dA1. This procedure continues until we have Ali ∈ Ωl(Ui, t) with Alj −
Ali = dAl−1

ij ; these define a global closed (l + 1)-form F := dAli, which is a de Rham

representative for the Chern class. In the literature (A1, ..., Al) is called a connection on

the l-gerbe and F is its curvature.

Given a Lie m-group G, one can compose the sheaf G : Man→ Spc with the Postnikov

tower construction [189, Theorem 4.35] on Spc, as explained in [181, Section 6.5.1]. It

follows that the composition of G with each homotopy group functor Spc→ Grp defines

(possibly not representable) sheaves G0 : Man → Grp and T1, T2, ..., Tm−1 : Man →
AbGrp such that G0 acts on each Tj and G can be decomposed as

G = Gm−1 → Gm−2 → ...→ G1 → G0 = G0, (7.30)

where the fiber of each Gj → Gj−1 is BjTj . It follows that one way to construct Lie

m-groups is by characterizing extensions of Lie (m − 1)-groups by Lie m-groups of the

form Bm−1Tm−1 and then proceeding inductively. A cocycle characterization of such

extensions is in [178, Ex. 4.7], which can be used to construct many examples of relevance

in physics.

Example 7.29 ([119]). Given vector spaces V0, V1 with lattices Λ0 ⊂ V0, Λ1 ⊂ V1 and

a bilinear form ⟨·, ·⟩ : Λ0⊗Λ0 → Λ1, the Lie 2-group T from [119] presented in Example
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3.14 has delooping BT defined by

(BT )n := {{v0ij}i<j∈[n], {λ0ijk}i<j<k∈[n], {[v1ijk]}) ∈ V
(n+1

2 )
0 × Λ

(n+1
3 )

0 × (V1/Λ1)
(n+1

3 ) |

∀i < j < k, v0ij − v0ik + v0jk = λ0ijk,

∀i < j < k < l, [v1ijk − v1ijl + v1ikl − v1jkl] = [⟨v0ij , λ0jkl, ⟩]},
(7.31)

with simplicial maps defined as in Example 7.28. Using that ⟨·, ·⟩ is Λ1-valued over

Λ0⊗Λ0, one can see that (BT )n = V n
0 ×Λ

(n2)
0 ×(V1/Λ1)

(n2) and that the Kan conditions are

satisfied. As proven in [119], the 2-group constructed from the bilinear form ⟨·, ·⟩t defined
by ⟨u, v⟩t := ⟨v, u⟩ is isomorphic to the one constructed from ⟨·, ·⟩. In this approach this

can be seen from the fact that, if {[v1ijk]}i,j,k satisfies (δv1)ijkl = [⟨v0ij , λ0jkl⟩], then

w1
ijk := [v1ijk − ⟨v0ij , v0jk⟩+ ⟨λ0ijk, v0ik⟩] (7.32)

satisfies (δw1)ijkl = [⟨λ0jkl, v0ij⟩].

Let M be a manifold and let v0ij , λ
0
ijk, [v

1
ijk] be cocycle data for a T -bundle on a cover

{Ui}i∈I of M (i.e., these are local functions satisfying the same relations as in (7.31)).

This has an underlying V0/Λ0-bundle P whose Chern class c(P ) ∈ H2(M,Λ0) is repre-

sented in Čech cohomology by the cocycle λ0ijk. We may choose lifts v1ijk : Uijk → V1 of

[v1ijk] and define λ1ijkl : Uijkl → Λ1 by

v1ijk − v1ijl + v1ikl − v1jkl = ⟨v0ij , λ0jkl, ⟩ − λ1ijkl; (7.33)

then we see that (δλ1)ijklm = ⟨λ0ijk, λ0klm⟩, which means precisely that 0 = ⟨c(P )∧c(P )⟩ ∈
H4(M,Λ1). This recovers Proposition 4.5 for the Lie 2-group T .

The Maurer-Cartan form on T determined by Example 3.46 and Proposition 3.50 is

given by the 1-forms θ0 ∈ Ω1(BT1, V0), θ1 ∈ Ω1(BT2, V1) defined by

θ0 := dv01, (7.34)

θ1 := dv1012 − ⟨dv001, v12⟩. (7.35)

They satisfy

δθ0 = 0, δθ1 = 0, dθ0 = 0, dθ1 = ⟨d∗2θ0 ∧ d∗0θ0⟩. (7.36)

Given a T -bundle over a manifold M described by cocycle data v0ij , λ
0
ijk, [v

1
ijk] on a

cover {Ui}i∈I of M , Proposition 4.12 implies that a connection on it is described by a
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family ({Ai}i, {Λij}i,j , {Bi}i) with

Ai ∈ Ω1(Ui, V0), Λij ∈ Ω1(Uij , V1), Bi ∈ Ω2(Ui, V1)

such that

Aj −Ai = (v0ij)
∗θ0, (7.37)

Λij − Λik + Λjk = (v1ijk)
∗θ1, (7.38)

Bj −Bi = dΛij +
1

2
⟨dv0ij ∧ dv0ij⟩ − ⟨Ai ∧ (v0ij)

∗θ0⟩sy. (7.39)

We can do a change of variables B′
i := Bi − 1

2⟨Ai ∧Ai⟩ to obtain a simpler relation

B′
j −B′

i = dΛij − ⟨Ai ∧ (v0ij)
∗θ0⟩. (7.40)

The curvature of the connection is the pair (F,H) ∈ Ω2(M,V0)⊕ Ω3(M,V1) defined by

F = dAi, H = dB′
i + ⟨dAi ∧Ai⟩ (7.41)

and one can check directly that it satisfies the Bianchi identity

dF = 0, (7.42)

dH − ⟨F ∧ F ⟩ = 0, (7.43)

giving an explicit proof of Proposition 4.11 for T . When V0/Λ0 = Rn⊕(Rn)∗/Zn⊕(Zn)∗,
V1 = R/Z and

⟨·, ·⟩ : (Zn ⊕ (Zn)∗)⊗ (Zn ⊕ (Zn)∗)→ Z (7.44)

(v1 +A1, v2 +A2) 7→ ιv1A2, (7.45)

the corresponding Lie 2-group is denoted TDn and plays a role in the description of

T -Duality from [166, 207, 274].

Example 7.30. The same data from Example 7.29 can be used to construct for each

p ∈ N a (2p+ 2)-group T which extends Bp(V0/Λ0) by B
2p+1(V1/Λ1). It is defined by

(BT )n := {{v0i0,...,ip+1
}, {λ0i0,...,ip+2

}, {[v1i0,...,i2p+2
]}) ⊂ V0 × Λ0 × V1/Λ1

| δv0 = λ0, [δv1] = [⟨v0, λ0⟩]},
(7.46)

where the indices belong to [n] and the equations are defined similarly as in (7.31),

suppresing the indices from the notation. Similar arguments as in Example 7.29 show

that a Bp(V0/Λ0)-bundle with Chern class c ∈ Hp+2(M,Λ0) lifts to a T -bundle if and
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only if 0 = ⟨c∧ c⟩ ∈ H2p+4(M,Λ1). This implies that when p is even, then two (2p+2)-

groups constructed in this way are isomorphic if and only if the symmetric parts of the

corresponding bilinear forms ⟨·, ·⟩ coincide, and when p is odd then the same is true

but for the skew-symmetric part of ⟨·, ·⟩. Indeed, in these cases we have that for any

c ∈ Hp+2(M,Λ1) the classes ⟨c∧ c⟩ ∈ H2p+4(M,Λ1) coincide for the two bilinear forms,

and so a coboundary relating them can be used to give an isomorphism between the

corresponding (2p+ 2)-groups as in Example 7.29.

The 1-forms θ0 ∈ Ω1((BT )p+1, V0), θ
1 ∈ Ω1((BT )2p+2, V1) defined by

θ0 := dv0i0...ip+1
,

θ1 := dv1i0...i2p+2
− ⟨dv0i0,...,ip+1

, v0ip+1...i2p+2
⟩,

(7.47)

can be used to define a connection on a T -bundle described by cocycle data v0i0...ip+1
,

λ0i0,...,ip+2
, [v1i0...i2p+2

] as a sequence of differential forms

Ari0...ip+1−r
∈ Ωr(Ui0...ip+1−r , V0), r = 1, ..., p+ 1,

Λsi0...i2p+2−s
∈ Ωs(Ui0...i2p+2−s , V1), s = 1, ..., 2p+ 2,

(7.48)

such that

δA1 = (v0)∗θ0, (7.49)

δAr = dAr−1, r = 2, ..., p+ 1, (7.50)

δΛ1 = (v1)∗θ1, (7.51)

δΛs = dΛs−1 + (−1)s+1⟨As ∧ (v0)∗θ0⟩, s = 2, ..., p+ 2, (7.52)

δΛs = dΛs−1 + (−1)s+1⟨dAp+1 ∧As−p−2⟩, s = p+ 3, ..., 2p+ 2, (7.53)

where δ denotes the Čech differential and the products ⟨· ∧ ·⟩ are defined by taking the

indices similarly as in (7.47). Its curvature is (F,H) ∈ Ωp+2(M,V0) ⊕ Ω2p+3(M,V1)

defined locally by

F := dAp+1
i , H := dΛ2p+2

i + ⟨dAp+1
i ∧Ap+1

i ⟩ (7.54)

and it satisfies the Bianchi identity

dF = 0, dH − ⟨F ∧ F ⟩ = 0. (7.55)

The 6-group corresponding to p = 2, V0/Λ0 = V1/Λ1 = R/Z and ⟨·, ·⟩ : Z ⊗ Z → Z the

canonical product provides a model for prequantizing M5-branes [234]. The (4k + 2)-

groups for p = 2k, k ≥ 1 and the same choice of V0/Λ0, V1/Λ1, ⟨·, ·⟩ that gives TDn in
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Example 7.29 are called higher T -duality groups in [108], where their role in string and

M -theory is discussed.

Example 7.31. Let T be the Lie 2-group constructed from Λ0 ⊂ V0, Λ1 ⊂ V1, ⟨·, ·⟩0 :

Λ0 ⊗ Λ0 → Λ1 as in Example 7.29. Given another vector space with a lattice Λ2 ⊂ V2,

we construct a Lie 3-group T 2 extending T by B2(V2/Λ2) from the data of a bilinear

form ⟨·, ·⟩1 : Λ0 ⊗ Λ1 → Λ2 such that

⟨u0, ⟨v0, w0⟩0⟩1 + ⟨v0, ⟨u0, w0⟩0⟩1 = 0. (7.56)

We also choose a section of the map of Z-modules Λ∗
0⊗Λ∗

0 → Λ2Λ∗
0 defined by B 7→ Bsk,

where

Bsk(u, v) := B(u, v)−B(v, u). (7.57)

Then for λ0 ∈ Λ0 we write

⟨·, ⟨·, λ0⟩0⟩low1 ∈ Λ∗
0 ⊗ Λ∗

0 ⊗ Λ2 (7.58)

for the corresponding bilinear form such that

⟨u0, ⟨v0, λ0⟩0⟩1 = ⟨u0, ⟨v0, λ0⟩0⟩low1 − ⟨v0, ⟨u0, λ0⟩0⟩low1 . (7.59)

Then we define T 2 by

(BT 2)n := {({v0ij}, {λ0ijk}, {v1ijk}, {λ1ijkl}, {[v2ijkl]}) ⊂ V0 × Λ0 × V1 × Λ1 × V2/Λ2

| v0ij − v0ik + v0jk = λ0ijk,

v1ijk − v1ijl + v1ikl + v1jkl = ⟨v0ij , λ0jkl⟩0 − λ1ijkl,

[v2ijkl − v2ijkm + v2ijlm − v2iklm + v2jklm]

= [⟨v0ij , λ1jklm⟩1 + ⟨λ0ijk, ⟨v0ik, λ0klm⟩0⟩low1 − ⟨v0ij , ⟨v0jk, λ0klm⟩0⟩low1 ]}.
(7.60)

Given a T -bundle P →M , the obstruction to lift it to a T 2-bundle can be described as

follows. First, recall from Example 7.29 that the topological class of P is characterized

on a good open cover {Ui}i∈I of M by a Λ0-cocycle λ
0
ijk : Uijk → Λ0 defining a class

[λ0] ∈ H2(M,Λ0) and a coboundary λ1ijkl : Uijkl → Λ1 for ⟨λ0 ∧ λ0⟩0; i.e., (δλ1)ijklm =

⟨λ0ijk, λ0klm⟩0. Given this data, one can check that

−⟨λ0ijk, λ1klmn⟩1 + ⟨λ0ijk, ⟨λ0ikl, λ0lmn⟩0⟩low1 − ⟨λ0jkl, ⟨λ0ijl, λ0lmn⟩0⟩low1 (7.61)

is a Čech cocycle defining a class in H5(M,Λ2) which vanishes precisely when P can be

lifted to a T 2-bundle. The image of this class in H5(M,V2) is represented in de Rham
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cohomology by [−⟨F ∧H⟩1] ∈ H5(M,V2), where (F,H) ∈ Ω2(M,V0)⊕Ω3(M,V1) is the

curvature of any connection on the T -bundle. This follows from the following discussion.

We define the 1-forms

θ0 ∈ Ω1((BT 2)1, V0), θ1 ∈ Ω1((BT 2)2, V1), θ2 ∈ Ω1((BT 2)3, V2)

by

θ0 := dv001,

θ1 := dv1012 − ⟨dv001, v012⟩0,

θ2 := dv20123 + ⟨dv001, v1123⟩1 − ⟨v001, ⟨dv001, λ0123⟩0⟩low1 .

(7.62)

These satisfy

δθ0 = 0, dθ0 = 0,

δθ1 = 0, dθ1 = ⟨d∗2θ0 ∧ d∗0θ0⟩0,

δθ2 = 0, dθ2 = −⟨dv001 ∧ dv1123⟩1 − ⟨dv001 ∧ ⟨dv001, λ0123⟩0⟩low1 .

(7.63)

Then we define a connection on a T 2-bundle to be the data of

Ai ∈ Ω1(Ui, V0), Λij ∈ Ω1(Uij , V1), Bi ∈ Ω2(Ui, V1),

Ξijk ∈ Ω1(Uijk, V2), Σij ∈ Ω2(Uij , V2), Ci ∈ Ω3(Ui, V2)
(7.64)

satisfying the relations

Aj −Ai = (v0ij)
∗θ0, (7.65)

Λij − Λik + Λjk = (v1ijk)
∗θ1, (7.66)

Bj −Bi = dΛij − ⟨Ai ∧ (v0ij)
∗θ0⟩0, (7.67)

Ξijk − Ξijl + Ξikl − Ξjkl = (v2ijk)
∗θ2, (7.68)

Σij − Σik +Σjk = dΞijk + ⟨dv0ij ∧ Λjk⟩1 + ⟨dv0ij ∧ ⟨dv0ij , v0jk⟩0⟩low1 , (7.69)

Cj − Ci = dΣij − ⟨dv0ij ∧Bj⟩1 + ⟨Ai ∧ ⟨Ai ∧ dv0ij⟩0⟩low1 . (7.70)

Its curvature is the triple (F,H,G) ∈ Ω2(M,V0)⊕Ω3(M,V1)⊕Ω4(M,V2) defined locally

by

F := dAi, (7.71)

H := dBi + ⟨dAi ∧Ai⟩0, (7.72)

G := dCi − ⟨Ai ∧ dBi⟩1, (7.73)
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and it satisfies the Bianchi identity

dF = 0, (7.74)

dH − ⟨F ∧ F ⟩0 = 0, (7.75)

dG+ ⟨F ∧H⟩1 = 0. (7.76)

In [117] we study a certain duality for 2-branes in M -theory which is closely related

to U -Duality, and we model it in terms of Lie 3-groups T2DF3
n , T2DF3

n which can be

constructed as above from the following data.

1. T2DF3
n is the Lie 3-group constructed from

V0 = Rn, V1 = (Rn)∗, V2 = R,

Λ0 = Zn, Λ1 = (Zn)∗, Λ2 = Z,

⟨v1, v2⟩0 = 0, ⟨v,A⟩1 = ιvA. (7.77)

2. T2DF2
n is the Lie 3-group constructed from

V0 = Rn ⊕ Λ2(Rn)∗, V1 = (Rn)∗, V2 = R,

Λ0 = Zn ⊕ Λ2(Zn)∗, Λ1 = (Zn)∗, Λ2 = Z,

⟨v1 +B1, v2 +B2⟩0 = ιv1B2, ⟨v +B,A⟩1 = ιvA. (7.78)

7.2.3 The ∞-categories of derived manifolds and derived differentiable

stacks

There is an (∞, 1)-category dMan∞ which can be characterized axiomatically as the

minimal (∞, 1)-category in which manifolds can be embedded and in which fibered

products always exist [76]; this is the framework of derived differential geometry. The

results of [32, 75] imply that dMan∞ can be presented in terms of the derived manifolds

from Section 2.2.2.

Definition 7.32 ([32]). LetM1 = (M1, E1, Q1),M2 = (M2, E2, Q2) be derived mani-

folds. A morphism (φ,ψ) :M1 →M2 is

1. a fibration if ψ1 : E1 → E2 is a submersion,

2. étale if ψ∗ : TM1 → φ∗TM2 is a quasi-isomorphism of chain complexes of vector

bundles over Z(M1),
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3. a weak equivalence if it is étale and φ :M1 →M2 restricts to a bijection Z(M1)→
Z(M2).

The following theorem recaps the main results of [32] and [75].

Theorem 7.33 ([32, 75]). The category dMan from Definition 2.17 is a category of

fibrant objects in the sense of Definition 7.10 with the fibrations and weak equivalences

from Definition 7.32. Its localization is the (∞, 1)-category dMan∞.

As it follows from Section 7.1.2, Theorem 7.33 states the following.

1. Given morphisms of derived manifolds

M1

M2 N

(φ1,ψ1)

(φ2,ψ2)

(7.79)

such that (φ1, ψ1) is a fibration, then the fibered product M1 ×N M2 exists.

Indeed, we define this fibered product by the vector bundle L := E1 ×EN E2 →
M1 ×N M2, which satisfies S•L[1]∗ = S•E1[1]∗ ⊗S•EN [1]∗ S

•E2[1]∗ and so it has

a natural homological vector field Q, since tensor product is a coproduct in the

category of dg-algebras.

2. Any morphism of graded manifolds M1 f→ N factorizes as M1 λ→ M̃1 f ′→ N ,

where λ is a weak equivalence and f ′ is a fibration. Thus, given a diagram (7.79)

where (φi, ψi) are arbitrary morphisms, we may choose a factorization (φ1, ψ1) =

(φ′
1, ψ

′
1) ◦ λ1 and construct the fibered product of (φ′

1, ψ
′
1) and (φ2, ψ2) as in 1.

This is called the homotopy fibered product of (φ1, ψ1) and (φ2, ψ2), as it is only

well-defined up to weak equivalences.

We show how to perform homotopy fibered products in dMan∞ with some examples.

Example 7.34. Let Φ : M → E be a section of a vector bundle π : E → M and write

0 : M → E for the zero section. We claim that the derived manifold constructed in

Example 2.20 coincides with the homotopy fibered product M Φ×h0M of Φ and 0. This

can be seen by factorizing 0 : M → E as M
λ→ M ′ 0′→ E, where M ′ is the derived

manifold associated to the vector bundle π∗E[−2] → E with homological vector field

given by the identity section E → π∗E[−2], λ is defined by the zero section and 0′ is the

identity on E. In particular, one can easily show that when Φ is transversal to 0 and

rk(E) = dim(M) then M Φ×h0M is weakly equivalent to the manifold given simply by

the standard zero set of Φ.
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Moreover, if there is a map of vector bundles d : E → F such that dΦ = 0, then

we claim that the corresponding derived manifold from Example 2.20 is obtained by

defining first the homotopy fibered product Ed := E d×h0M , letting Φd be the map

M → Ed induced by Φ and then taking the homotopy fibered product Z :=M Φd
×h0M .

This can be checked similarly as before, resolving the zero sections 0 : M → F by the

derived manifold M ′ = (F, π∗F [−2], id) and the zero section 0 :M → Ed by the derived

manifoldsM ′
d = (E, π∗E[−2]⊕F [−2]⊕F [−3]), Q), with Q defined by the identity section

E → π∗E[−2] and the identity map F [−2]→ F [−3].

Example 7.35. Let i : X → Y be an embedded submanifold. We construct a derived

manifold modelling the fibered product X×hY X, called the self-intersection of X within

Y . For this we use the tubular neighborhood theorem to obtain a neighborhood V of the

zero section of the normal bundle π : N(X)→ X, defined by N(X) := i∗TY/TX, and a

diffeomorphism V
ϕ→ U onto an open neighborhood U ⊂ Y of i(X) such that i = ϕ ◦ 0,

for 0 : X → V the zero section. Then we factorize i as X
λ→ X ′ i′→ Y , where X ′ is the

derived manifold associated to the vector bundle π∗N(X)[−2] → V with homological

vector field given by the identity section V → π∗N(X)[−2], λ is defined by the zero

section of N(X) and i′ is defined by ϕ. Then we can compute X ×hY X = X ′ ×Y X,

which is the derived manifold with underlying vector bundle N(X)[−2] → X and 0 as

homological vector field.

Finally, once we have a model for the (∞, 1)-category dMan∞ of derived manifolds, the

construction of the (∞, 1)-category dDiffSt of derived differentiable stacks is a straight-

forward analog of its algebraic geometric counterpart.

Definition 7.36. LetM := (M,E,Q) be a derived manifold. A covering sieve onM
is a family {Ui →M}i∈I of étale morphisms of derived manifolds such that the induced

map ⊔i∈IZ(Ui)→ Z(M) is surjective.

For m ∈ N, the (∞, 1)-category of derived differentiable m-stacks is the (∞, 1)-category
of m-geometric stacks as in Definition 7.18, for (A, τ) = (A, τ ′) the (∞, 1)-category
dMan∞ with the Grothendieck topology induced by the above covering sieves. The

(∞, 1)-category dDiffSt of derived differentiable stacks is the (∞, 1)-category of stacks

that are m-geometric for some m ∈ N.

For m ∈ N ∪ {∞}, a derived Lie m-groupoid is a simplicial derived manifold X : ∆op →
dMan (cf. Definition 2.22) such that the restriction maps

Xn = Man∆(∆
n,X)→ Man∆(Λ

n
j ,X) (7.80)

are weak equivalences for n > m, 0 ≤ j ≤ n and fibrations for 1 ≤ n <∞, 0 ≤ j ≤ n.
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Remark 7.37. The right-hand side of (7.80) is a derived manifold, as it follows from the

proof in [282] applied to the category dMan with the Grothendieck topology given by

fibrations.

Since all homotopy fibered products exist in dMan∞, it follows by general sheaf theory

that dDiffSt is an enrichment of the category of manifolds in which all fibered products

and quotients exist. Derived Lie m-groupoids provide examples of derived differentiable

∞-stacks by Proposition 7.21 but, as opposed to the case of (not derived) differentiable

stacks, it is not necessarily true that all derived differentiable∞-stacks arise in this way.

It is easy to check that the simplicial derived manifolds from Examples 6.3, 6.4 and 6.5

are derived Lie 2-groupoids in the sense of Definition 7.36, and so they should actually

be regarded as derived differentiable 2-stacks.



Chapter 8

Discussions, open problems and

conclusions

8.1 Discussions

8.1.1 On the need for Maurer-Cartan forms

Maurer-Cartan forms on Lie 2-groups play a prominent role in our work. We proceed

to discuss some thoughts on whether these are actually necessary and/or fundamental.

For a Lie 2-group G with Lie 2-algebra h
t∗→ g, our approach requires choosing a Maurer-

Cartan form on G for the following purposes.

1. Defining a 1-shifted symplectic structure on (g∗
t∗∗→ h∗)//G which can be used for

defining Hamiltonian actions of G (see Propositions 3.27 and 6.11).

2. Defining an L∞-structure on h
t∗→ g that maps into the Lie 2-algebra of vector

fields on G, at least when G arises from a multiplicative gerbe (see Proposition

3.51).

3. Defining connections on G-bundles, at least when G arises from a multiplicative

gerbe or from a Lie crossed module (see Sections 4.1.2 and 4.1.4).

Item 1 seems to be related through Theorem 3.43 to the observation in [66] that the Lie

algebra of a Lie group acting on a Courant algebroid in a way that Hamiltonian reduction

can be performed is naturally equipped with an Ad-invariant, symmetric bilinear form.

Item 2 reflects the problem that an L∞-algebroid structure on the tangent complex of

a simplicial manifold can only be obtained after choosing connections [178]. Item 3

232
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reflects the problem that a consistent, fully non-abelian notion of connection is for now

only available for Lie 2-groups with an additional structure [220, 237, 273] (Chern-Simons

forms or adjustments).

What we seem to be experiencing in all situations is that, while the tangent bundle of a

Lie group is trivial, and the Maurer-Cartan form provides a canonical trivialization that

behaves well with respect to the group product, a trivialization of the tangent complex

of a Lie 2-group is only available after choosing a Maurer-Cartan form (which we have

not proved to always be possible).

For example, as we mentioned in Example 2.33, the 1-shifted symplectic structure on

g∗//G for G a Lie group exists essentially because the Maurer-Cartan form on G induces

an isomorphism g∗//G = T ∗[1](BG); thus, it seems reasonable to expect that the 1-

shifted symplectic structure from Proposition 3.27 exists because a choice of Maurer-

Cartan form on the Lie 2-group G induces an isomorphism (g∗
t∗∗→ h∗)//G = T ∗[1]BG

(although here we have not defined T ∗[1]BG rigorously, this is perhaps possible following

[90, 223]). Similarly, the fact that a connection on the trivial G-bundle P :=M×G→M

(thought of as a splitting of TP/G→ TM) is given by a g-valued 1-form on M follows

from the isomorphism TG = G × g, and so it is natural that a connection on a G-

bundle can only be defined in terms of g- and h-valued forms once we have chosen an

isomorphism TG = G× (h→ g).

Following this line of thought, a natural objection to our approach is that we should just

acknowledge the fact that TG is not canonically trivial, instead of trying to fix this with

a seemingly arbitrary choice of trivialization. Indeed, it is perhaps possible to define

Hamiltonian actions of G and connections on G-bundles in this way, probably leading

to moment maps that take values in some non-trivial vector bundle with fiber g∗ → h∗

and to connections described locally by differential forms with values in some non-trivial

vector bundle with fiber h → g, and this is perhaps the only way to develop a natural

theory that is valid for any Lie 2-group (or even higher Lie group).

A possible answer to this objection is that results such as Corollary 3.45 show that, for

important families of Lie 2-groups, there is a canonical choice of Maurer-Cartan form,

up to a notion of isomorphism that does not change the notion of Hamiltonian actions

or connections. Moreover, our examples of higher Lie groups from Section 7.2.2 are

also equipped with canonical Maurer-Cartan forms (see Section 8.2.1 for a discussion

of how likely it is that this is in fact true for all higher Lie groups). Hence, in these

situations, there is no reason not to use Maurer-Cartan forms, since they are essentially

canonical, they simplify the presentation of definitions and examples with respect to an

hypothetical abstract theory that does not trivialize TG, and their corresponding notion

of connection behaves exactly as expected from the physics literature.
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A more elaborate answer is that some of our results and the intuition from physics suggest

that Maurer-Cartan forms are not just useful gadgets, but actually fundamental objects.

The first observation in this direction is Proposition 3.52, which follows from the fact

that the Maurer-Cartan form associated to a connective structure on a multiplicative

U(1)-gerbe over G (defining a 2-shifted presymplectic structure on BG through the

pairing ⟨·, ·⟩) provides a prequantization of this 2-shifted presymplectic structure on

BG → BG. This is an important remark, as Theorem 2.29 suggests that the structure

from Proposition 3.52 is essentially the one that leads to the shifted symplectic structures

in our moduli spaces (Theorem 6.7 and 6.8), hence that the Maurer-Cartan form on G

is a fundamental object.

On the other hand, to illustrate the meaning of Maurer-Cartan forms in physics, recall

from Theorem 3.48 that a multiplicative T -gerbe G over G defines a central extension

of Lie 2-groups

1→ BT → G → G→ 1. (8.1)

This can also be read as a sequence of differentiable 1-stacks, where G : Man→ Gpd is

the stack with G(M) the groupoid of pairs (g, σ), where g : M → G is a smooth map

and σ is a trivialization of g∗G. Now a connective structure on G determines a lift of

this sequence to a sequence of stacks

1→ BT∇ → G∇ → G→ 1, (8.2)

where BT∇ : Man → Gpd is the stack with BT∇(M) the groupoid of T -bundles with

connection over M . Namely, G∇(M) is the groupoid of pairs (g, σ∇) of a function

g : M → G and σ∇ a trivialization with connection of g∗G∇. Then G∇ is a stack of 2-

groups, in the sense that pairs (g1, σ1∇), (g
2, σ2∇) can be multiplied in a weakly associative

way. Proposition 4.12 can be interpreted as saying that a principal bundle for G∇ is a

G-bundle with connective structure (hence the terminology used throughout the thesis).

At different points throughout the thesis we have decided to fix a connective structure

on a G-bundle for convenience (for example, for constructing the Atiyah algebroid in

Theorem 4.23 or for presenting the moduli spaces in Theorems 6.7 and 6.8). From the

discussion above, this can be interpreted as the idea of fixing a G∇-bundle as background
geometry, and then seeing the data (A,B) as a connection on it, instead of fixing a G-
bundle and then seeing the data of a connective structure and (A,B) as a connection

on it.

This is arguably the natural way to proceed from the point of view of 2-dimensional

sigma-models. Indeed, a 2-form B on M is supposed to model the interaction of a

physical field with a closed oriented surface Σ→M , defined as exp(2πi
∫
ΣΣ∗B) ∈ U(1).
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Since this expression does not change under B 7→ B + F , for F the curvature of a

line bundle, it leads naturally to determine that the physical field is actually given by

locally defined 2-forms Bi that satisfy the gluing condition Bi − Bj = Fij , for Fij the

curvature of local U(1)-bundles with connection (Pij , Aij)→ Uij . In short, the 2-forms

Bi describe the physical field, while the U(1)-bundles with connection (Pij , Aij) describe

how it transforms. This suggests that the 2-group describing the local symmetries of

these fields is BT∇, instead of BT ; thus why in the context in which B is coupled to

an ordinary G-connection we need to consider extensions of the form (8.2) instead of

extensions of the form (8.1). Using a related physics terminology, for our theory to have

local 1-form symmetries, we must have a ‘gauge group’ containing the information of

how to glue those 1-form symmetries, which is what (8.2) provides.

A philosophical discussion of whether a connective structure on a principal 2-bundle

should be considered as part of the principal 2-bundle or as part of a connection on it

might seem superficial, considering that for quantizing the theory all that we care about

is the moduli space of all connections modulo gauge, and this coincides in both points of

view by Proposition 4.17. However, it becomes more relevant once we impose equations

of motion: our Theorem 5.26 (generalizing the abelian version from [142]) states that

supersymmetric configurations in heterotic string theory are related to holomorphic G-
bundles with holomorphic connective structure (i.e. holomorphic G∇-bundles and not

plain holomorphic G-bundles). This can be compared with how holomorphic G-bundles

are related to the Yang-Mills equations, but holomorphic connections on G-bundles do

not often play a significant role in physics, and is important for constructing geometric

structures on moduli spaces that are natural from the point of view of complex geometry.

We summarize our conclusion in the following slogan. The local symmetries of higher

gauge theory are described not by plain higher Lie groups, but rather by higher Lie

groups equipped with Maurer-Cartan forms (or some generalization of these, such as the

cleavages in [265]). The observations above show in which sense this is the natural point

of view in physics, and how it leads to a well-behaved mathematical theory.

8.1.2 On the interplay between higher geometry, generalized geometry

and string theory

Our main results are obtained from a fruitful interaction between higher geometry and

generalized geometry, inspired by string theory. We comment on some generalities about

the relation between these theories. Firstly, we note that the bijection between connec-

tions on a principal 2-bundle and splittings of its associated Courant-Dorfman algebroid

from Theorem 4.23 might suggest that higher geometry is not necessary to describe
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heterotic string theory coupled to supergravity, as long as one uses Courant algebroids.

However, this is not entirely true. The reason is that, as already noted in [245], au-

tomorphisms of principal 2-bundles do not coincide with automorphisms of the corre-

sponding Courant algebroid, leading to different moduli spaces when quotienting fields

by symmetries. We proceed to justify that higher geometry describes the symmetries

of 2-dimensional field theories in a way that is closer to the original literature on string

theory than the approach from generalized geometry.

Consider, for example, the description of parallel transport along surfaces associated to

a U(1)-gerbe with connection (L,Λ, B)→M in [131] (see also [116, 186]). This assigns

to each smooth map γ : S1 → M a U(1)-torsor Lγ , and to each smooth map Σ → M ,

where Σ is a connected, oriented, compact, 2-dimensional manifold, a morphism of U(1)

torsors PT (Σ, B) : ⊗γ∈#∂Σ+Lγ → ⊗γ∈#∂Σ−Lγ , where #∂Σ+ (resp. #∂Σ−) denotes

the set of positively (resp. negatively) oriented connected components of the boundary

of Σ. For example, for (L,Λ) the trivial gerbe with trivial connective structure and

B ∈ Ω2(M) a connection on it, Lγ is the trivial torsor for every γ and PT (Σ, B) is the

automorphism of the trivial torsor given by exp(2πi
∫
ΣB).

An automorphism of the gerbe with connective structure (L,Λ) given by a U(1)-bundle

with connection (P,A) → M induces for each γ : S1 → M an automorphism Lγ → Lγ

(given by acting with the holonomy of A around γ), and these automorphisms induce

a commutative diagram relating PT (Σ, B) and PT (Σ, B + FA) for any Σ → M . In

particular, if (P,A) and (P ′, A′) are related by an isomorphism (P,A)→ (P ′, A′), then

they induce the same automorphisms Lγ → Lγ .

We learn two things from this construction. The first one is that the isomorphisms

(P,A) → (P ′, A′) (i.e., 2-isomorphisms of gerbes) are natural symmetries of the theory

and so a mathematical framework that accounts for them is desirable. The second one,

perhaps more interesting, is that, while a Kalb-Ramond field B can be equivalently

modelled by a connection on L or by a splitting of its associated Courant algebroid

E, from the point of view of parallel transport the natural symmetries of B are the

automorphisms of (L,Λ); i.e., the U(1)-bundles with connection (P,A). Automorphisms

of E are general closed 2-forms b0 ∈ Ω2
cl(M), acting on B as B + b0, but this is not a

symmetry of the parallel transport construction above unless b0 has integral periods (i.e.

exp(2πi
∫
Σ b0) = 1 for every Σ), which happens precisely when it is the curvature of a

U(1)-bundle with connection (P,A). Restricting to exact or Hamiltonian symmetries of

E as in, for example, [127], would amount to restricting b0 to be exact, but this does

not capture all the symmetries of the theory.

To sum up, we can conclude that higher geometry is faithful to physics on encoding the

symmetries of 2-dimensional sigma-models, while generalized geometry is not. Thus,
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moduli spaces associated to these field theories are more rigorously defined in terms

of the symmetries dictated by higher geometry. We can also see that this pays off

with moduli spaces that behave better than those in [84, 125, 127], in the sense that

the shifted symplectic structures from Theorems 6.7 and 6.8 only exist because we are

taking this approach: the tangent complex of a similar moduli space not keeping track

of 2-isomorphisms of G-bundles will never have the right dimensions to admit a shifted

symplectic structure, if the last term in the deformation complex of volume forms is

included.

However, this is not to say that generalized geometry is of no use for dealing with these

moduli spaces. In fact, our construction of simplicial derived manifolds in Section 6.1.2

relies completely on the construction of the Atiyah algebroid E of a principal 2-bundle

P from Theorem 4.23. Indeed, Theorem 4.26 uses E to give a smooth structure on the

gauge 2-group of P, which is responsible for the ‘higher’ smooth structure on the moduli

spaces, while the ‘derived’ structure follows from the deformation theory of sub-bundles

of Courant-Dorfman algebroids developed in Section 6.1.1.

The preceeding discussion shows what higher geometry offers to string theory, and what

generalized geometry offers to higher geometry. As for what string theory and higher

geometry offer to generalized geometry, we can only make some general comments based

on the work of other authors. A key construction is the result from [226, 243] that

Courant algebroids are equivalent to degree 2 symplectic dg-manifolds, which is used

in [242], based on the AKSZ construction from [1], to associate a 2-dimensional sigma-

model (the Courant sigma-model) to any Courant algebroid E →M . This implies that

essentially every construction in generalized geometry has a counterpart within string

theory, with the interpretation of generalized Kähler geometry as the imposition of

N = (2, 2) supersymmetry on the corresponding field theory [141] as its prime example.

This suggests that the construction of invariants in generalized geometry can be ap-

proached by a deep understanding of the Courant sigma-model and its quantization,

and so that such invariants will naturally be of higher categorical nature. Examples of

this line of thought can be traced back to Weinstein’s observation that Poisson manifolds

are integrated by symplectic groupoids [275], and the complex analog of this result [22],

while a more recent construction is the interpretation of the generalized Kähler potential

within a double symplectic groupoid in [3].
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8.2 Open problems

8.2.1 On the theory of higher Lie groups and connections on higher

principal bundles

In this thesis we have developed some original tools for dealing with Lie 2-groups. As

we had concrete applications within the theory of moduli spaces in mind, some of these

tools might seem ad hoc from a more abstract point of view, or only applicable to certain

families of Lie 2-groups. Thus, a general problem to address in the future is to translate

our tools to a language that allows for generalizations to all Lie 2-groups, or even to all

higher Lie groups. A concrete problem in this direction is the following.

Problem 8.1. Find a notion of Maurer-Cartan form on a Lie∞-group G that subsumes

Definition 3.23 and which has the following properties.

1. The choice of a Maurer-Cartan form on G leads to a good notion of connection on

a G-bundle P → M , based on local differential forms with values on the tangent

complex of BG, and with an associated parallel transport map from the fundamental

∞-groupoid of M to BG.

2. The choice of a Maurer-Cartan form on G leads to an L∞-structure on the tangent

complex of BG that maps to an L∞-algebra of vector fields on G.

3. The choice of a Maurer-Cartan form on G leads to a good notion of exponential

map for G.

4. Every Lie∞-group admits a Maurer-Cartan form, and any two choices of Maurer-

Cartan forms lead to equivalent notions of connections on G-bundles, L∞-structures

and exponential maps.

It could seem that property 4 of Problem 8.1 contradicts Proposition 3.42, which de-

scribes an obstruction to the existence of connective structures on a multiplicative T -

gerbe over G (living in H2
gr,cont(G, g

∗⊗t)), and identifies the space of inequivalent choices

of connective structures as H1
gr,cont(G, g

∗⊗ t), which could be larger than a point. How-

ever, there could be a notion of Maurer-Cartan form solving Problem 8.1 which for the

case of a multiplicative T -gerbe over G is more flexible than the notion of connective

structures, allowing for a twist by an element in H2
gr,cont(G, g

∗ ⊗ t), and whose corre-

sponding notion of connection is unaffected by H1
gr,cont(G, g

∗ ⊗ t).

We wish to emphasize here that there are consistent notions of connections on bundles for

general Lie∞-groups in the literature [110], with associated notions of parallel transport.
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However, as already noticed in [235], the connections defined in this way are in general

too strict, as they satisfy additional Bianchi identites (such as fake flatness) which are not

expected from physics. This is only solved in [235] for Lie ∞-groups with an additional

structure. This additional structure is axiomatized in the notion of adjustments for Lie

∞-algebras [230] and for strict Lie 2-groups [220] (we interpreted the latter in terms

of Maurer-Cartan forms in Proposition 3.59). We expect a solution to Problem 8.1 to

be a global, perhaps also weaker, version of the adjustments from [230]. A very recent

alternative approach to define general connections uses Atiyah L∞-algebroids defined

abstractly as formal moduli problems [61]; perhaps Theorem 4.23 and Proposition 4.21,

or the work of [111], help on relating both approaches.

A good candidate to solve Problem 8.1 is the notion of cleavage from [95, 265]. This

is a connection-like object on the simplicial manifold BG, which provides a ‘horizontal

transport’ of vectors along the products of G. A cleavage on a Lie ∞-group always

exists and, as shown in [265], it induces an adjoint (homotopy) action on the tangent

complex of BG which is independent (up to homotopy) of the choice of cleavage. It is

thus natural to expect that this can be used to define connections, as local differential

forms with values on the tangent complex of BG that are glued in terms of this adjoint

action and the horizontal projections of the cleavage. We believe, however, that for a

complex Lie 2-group it is not reasonable to expect existence of holomorphic cleavages in

general.

Asides from the satisfaction of developing the theory in its most general possible form,

solving Problem 8.1 could lead to applications in high-dimensional field theories. Exam-

ples of physical phenomena that have been modelled with higher Lie groups include the

3-forms and 6-forms that couple to fivebranes in M -theory [11, 236], topological defects

in topological phases of matter [25] and higher form symmetries in axion electrodynam-

ics [150]. However, the study of geometric structures in moduli spaces associated to

these theories is yet to be done. Some aspects of M -theory have also been treated with

the language of exceptional generalized geometry [23, 60, 154, 211], in which Courant

algebroids are replaced by more complicated objects called exceptional algebroids. Thus,

an interesting problem to approach is the following.

Problem 8.2. Find a family of higher Lie groups G with the following properties.

1. There is a good notion of connection on G-bundles.

2. A G-bundle with connection P determines an exceptional algebroid E with a split-

ting of π : E → TM .

3. Sections of E can be exponentiated to give automorphisms of P.
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In relation to Problem 8.2, it is worth mentioning that some of the examples of higher

Lie groups that we presented in this thesis (namely, Examples 7.30 and 7.31), with a

notion of connection on their associated principal bundles, play a role in M -theory. It

is thus plausible that a solution to Problem 8.2 is related to these, as well as to the

fivebrane 6-group from [236, 237].

Finally, recall that we also used Maurer-Cartan forms to define Hamiltonian actions

of a Lie 2-group G on a symplectic manifold M (see Proposition 6.11). Although the

constructions of moduli spaces in Section 6.2.2 provide interesting examples of these,

the arrows of G play a rather trivial role, as M is a manifold. For a more interesting

action, M must be replaced by a Lie groupoid M, which is the natural object where a

Lie 2-group acts.

Problem 8.3. Find a notion of Hamiltonian action of a Lie 2-group G equipped with a

Maurer-Cartan form on a quasi-symplectic groupoid M such that a symplectic quotient

M//µG can be defined. Provide natural examples of this construction.

The formalism of [210] suggests how to proceed for solving Problem 8.3. Namely, one

can construct in a similar way to Proposition 3.27 a 2-shifted symplectic structure on

the simplicial manifold

Y := (h∗//g∗)//G, (8.3)

where g∗ acts on h∗ by t∗∗ and G acts on h∗//g∗ by the adjoint action. It is such that the

canonical morphisms h∗//g∗ → Y and BG → Y have canonical Lagrangian structures.

Then a Hamiltonian map for the action of a Lie 2-groupG on a quasi-symplectic groupoid

M is the following data.

1. A morphism with a Lagrangian structure µ : M//G→ (h∗//g∗)//G.

2. An equivalence of 1-shifted symplectic derived stacks M ∼= M//G µ×idh∗//g∗.

The corresponding symplectic reduction is the 1-shifted symplectic derived differentiable

stack M//G µ×idBG. So the problem is actually to characterize this construction in

terms of more classical data, perhaps for the case in which G is a multiplicative gerbe

with connective structure or an adjusted Lie crossed module. Whether there are already

natural constructions in the literature that can be interpreted within this formalism is

unknown to us, but it is possible that the work on reduction of Courant algebroids [66],

homotopy moment maps [71] or reduction of symplectic graded manifolds [21, 65, 194]

is related to this.
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8.2.2 On the theory of moduli spaces in higher gauge theory

In Section 6.1.2 we construct simplicial derived manifolds presenting moduli spaces of

flat connections, holomorphic structures and holomorphic structures with holomorphic

connective structure on principal 2-bundles, and in Section 6.2.1 we show that we can

equip the first two moduli spaces with shifted symplectic structures, if we also include a

new parameter in the moduli representing, respectively, a smooth or holomorphic volume

form on the base manifold. The most natural problem that arises from this thesis is

thus to perform a similar construction with the third moduli space.

Problem 8.4. Let G∇ be a holomorphic multiplicative C∗-gerbe with holomorphic con-

nective structure over a complex Lie group G such that the induced bilinear form ⟨·, ·⟩ :
g⊗ g→ C from Theorem 3.43 is non-degenerate. Let X be a smooth, compact manifold

with dimRX = 2n admitting SU(n)-structures, and let P∇ → X be a smooth G∇-bundle.
Construct a simplicial derived manifold with a (2 − n)-shifted holomorphic symplectic

structure parameterizing SU(n)-structures on X and holomorphic structures with holo-

morphic connective structure on P∇.

The idea that SU(n)-structures are the parameters to include in order to obtain a shifted

symplectic structure is motivated by two observations. The first one is that, as shown

in [136], the natural deformation complex associated to a SU(n)-structure on X (i.e. a

complex structure J and a holomorphic volume form Ω ∈ Ω(n,0)(X,C)) is

Ω(n−1,0)(X,C) d→ Ω(n,0)+(n−1,1)(X,C) d→ Ω(n,1)+(n−1,2)(X,C) d→ ...

...
d→ Ω(n,n−2)+(n−1,n−1)(X,C) d→ Ω(n,n−1)+(n−1,n)(X,C) d→ Ω(n,n)(X,C),

(8.4)

which is canonically dual to the deformation complex of holomorphic structures with

holomorphic connective structure on a gerbe

Ω0(X,C) d→ Ω1(X,C) d→ Ω(0,2)+(1,1)(X,C) d→ ...

...
d→ Ω(0,n−1)+(1,n−2)(X,C) d→ Ω(0,n)+(1,n−1)(X,C) d→ Ω(1,n)(X,C).

(8.5)

The second one is that, for n = 3, this is exactly what the literature on heterotic

string theory expects [13, 14, 94, 174]. These references also suggest how to construct

the moduli when n = 3 using the derived critical locus construction from Proposition

6.10. Namely, let M be the space of equivalence classes [(Ω, (A,B))], where Ω is a

totally decomposable form on X in the sense of [153] (in particular, it defines an almost

complex structure JΩ on X), (A,B) is a connection on P∇, and we identify (Ω, (A,B)) ∼
(Ω, (A,B)·(a, b)) for (a, b) ∈ Ω1,0(adP )×⟨·,·⟩Ω

2,0(adP ), where the types are with respect
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to JΩ. Then the superpotential is the function S :M → C defined by

S(Ω, (A,B)) =

∫
X
H ∧ Ω. (8.6)

Its critical points are the [(Ω, (A,B))] such that JΩ is integrable, Ω is a holomorphic

volume form and (A,B) is an integrable 2-semiconnection. Moreover, it is invariant

by the action of the 2-group Aut(P∇) of automorphisms of P∇ covering possibly non-

identity diffeomorphisms of X. If we had a smooth structure with a Maurer-Cartan

form on Aut(P∇), which should probably be modelled on the space of all sections of

the Atiyah algebroid of P∇, then we could apply Proposition 6.10 to obtain the desired

moduli space when n = 3.

The idea of working with derived moduli stacks is not to replace classical moduli spaces

of stable objects, as discussed in Section 1.3, but rather to produce new geometric

structures on them. For example, [34, 160, 164] construct a perverse sheaf on the

moduli space of stable bundles over a Kähler Calabi-Yau threefold using the −1-shifted
holomorphic symplectic structure from Section 2.3.3, which categorifies the Donaldson-

Thomas invariants from [102, 259]. The existence of a well-behaved moduli space of

stable objects, which can be obtained either by algebraic-geometric methods or from the

Donaldson-Uhlenbeck-Yau theorem [100, 267], is crucial for their construction.

Similarly, the shifted holomorphic symplectic structure from Theorem 6.8, or the con-

jectural shifted holomorphic symplectic from Problem 8.4, could be used in a similar

way to produce categorified invariants, provided we have a good notion of stable holo-

morphic principal 2-bundles (with holomorphic connective structure). An ‘infinitesimal

Donaldson-Uhlenbeck-Yau’ theorem from [127] suggests that the gauge-theoretic analog

of such stability condition is given by the Hull-Strominger system from Definition 6.14.

Problem 8.5. Let K be a compact, connected Lie group and let K → K be a multi-

plicative U(1)-gerbe whose associated pairing ⟨·, ·⟩ : k ⊗ k → R is non-degenerate. Let

(X,Ω) be a complex manifold with a holomorphic volume form and let Ph,∇h
→ X be a

K-bundle with connective structure. Write P∇ for its complexification and let

M := {((Ah, Bh), g) ∈ Aen+ (Ph,∇h
) | ((Ah, Bh), g) solves (6.90), (6.91)}/Gauge(Ph,∇h

),

H := D′
int(P∇)/Gauge(P∇).

Prove that the mapM→H given by Theorem 5.26 induces a homeomorphism between

large open subsets U ⊂ M and V ⊂ H with manifold structure. Use this and the

holomorphic shifted symplectic structure from Theorem 6.8 and Problem 8.4 to produce

invariants.



Discussions, open problems and conclusions 243

The problem of relating the Hull-Strominger system to complex-geometric stability con-

ditions has been approached with the language of Courant algebroids in [122, 123]; it

is expected that the natural geometric flows of generalized geometry can help solve this

problem [124]. A solution to Problem 8.5 could also relate our shifted holomorphic

symplectic structures with the presymplectic structure from [127] by means of some

hyperKähler structure, as sketched in Section 6.2.3. Note hyperKähler structures asso-

ciated to the Hull-Strominger system have been considered in [122].

Other geometric structures on higher gauge moduli spaces could also arise from relating

connections with representations of fundamental 2-groupoids by the parallel transport

construction from Problem 8.1. This, together with a good description of fundamental

2-groupoids of manifolds in terms of generators and relations, could also give rise to

global finite-dimensional descriptions for the moduli spaces, as in the case of ordinary

Lie groups [31, 42]. This point of view has been adopted for studying moduli spaces of

flat connections on principal 2-bundles with finite structure 2-group in [41].

It would also be interesting to quantize the shifted symplectic structures from Theorems

6.7 and 6.8 in some sense that recovers constructions in mathematical physics. For

example, BV quantization in its different incarnations has been interpreted as a form of

either deformation quantization or geometric quantization for shifted symplectic derived

stacks [70, 145, 231] which we could try to apply. Another approach for quantizing

these systems, based on the theory of vertex algebras [191], is also related to Courant

algebroids [4, 5, 51, 148] and should therefore have an interpretation within the language

of higher gauge theory. Perhaps a necessary step to perform these constructions is to

understand first the representation theory of the main Lie 2-groups of interest [172, 173].

Finally, developing the representation theory of Lie 2-groups could also lead to an ex-

planation and generalization of the construction of instanton towers in [93]. As shown

there, a solution to the gravitino equations over a spin manifold M with a G-bundle

P → M induces for each k ∈ N≥1 an instanton ∇k on a vector bundle Vk of the form

Vk = T ∗M ⊕ Λ2V ∗
k−1 ⊕ Λ2V ∗

k−1, with V1 = adP . A potential explanation for this is

that there is a Lie 2-group G∇ extending G such that a solution to the gravitino equa-

tions can be understood as a special type of connection (A,B) on a principal 2-bundle

P∇ → M extending P , and that each instanton (Vk,∇k) is obtained from (A,B) by

some associated vector bundle construction.

Problem 8.6. Let G be a Lie 2-group (perhaps with a Maurer-Cartan form) with a

homotopy representation in the 2-vector space V−1
d→ V0 in the sense of [265]. Define, for

each G-bundle P→M (with connection), an associated vector bundle (with connection)

with the following properties.



Discussions, open problems and conclusions 244

1. For G the Lie 2-group associated to a multiplicative T -gerbe G∇ with connective

structure over G and its adjoint representation from Proposition 3.50, the associ-

ated vector bundle of a G∇-bundle P∇ is Ker(π) ⊂ E, for E the Atiyah algebroid

of P∇ from Theorem 4.23.

2. For each Lie 2-group G, there is a sequence of Lie 2-group homomorphisms G
Ad→

G1
Ad→ G2

Ad→ ... such that each Gj has a natural homotopy representation in the

Lie 2-algebra of Gj−1.

3. The tower of instantons from [93] is constructed from the associated vector bundle

construction, applied to some initial connection on a G∇-bundle and the corre-

sponding sequence of Lie 2-group homomorphisms starting with G∇.

8.3 Conclusions

The main goal of this thesis has been the development and application of general tools for

studying the geometry of moduli spaces that can be expressed in terms of equations for

connections on categorified principal bundles. More precisely, we have studied principal

bundles for Lie 2-groups G that can be decomposed as central extensions [238] of the

form 1 → BT → G → G → 1 for Lie groups G, T with T abelian. This family of Lie

2-groups is relevant in string theory and supergravity [235, 253].

A mathematical study of this sort of moduli spaces has only been carried out until now

for the case in which G = BT for an abelian Lie group T [63, 109, 110, 192, 256]. One

of the main ingredients of our work is the fact that, for G a Lie 2-group as above, a

G-bundle P → M with connection determines a transitive Courant algebroid E → M

with a splitting. This was proven in [245] for a specific choice of Lie 2-group. Apart

from extending their result to a larger family of Lie 2-groups (Theorem 4.23), we have

used it for the following two purposes.

1. The construction of a smooth structure on the automorphism 2-group of P, mod-

elled on the space of sections of a sub-bundle of E (Theorem 4.26).

2. The identification of the deformation theory for connections on P with the defor-

mation theory for sub-bundles of E (Section 6.1.2).

These two results constitute fundamental blocks in higher gauge theory, as they can be

applied to the construction of any (derived) moduli space that can be expressed in terms

of equations for connections on G-bundles. We have applied them in Section 6.1.2 to

construct derived moduli spaces of flat G-connections, of holomorphic G-bundles and of
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holomorphic G-bundles with holomorphic connective structures. This last moduli space

parameterizes supersymmetric configurations in heterotic string theory, as it follows

from our Theorem 5.26, inspired by analogous results for Courant algebroids [127] and

gerbes [142]. This means that our constructions are crucial for a rigorous mathematical

understanding of string theory.

Besides constructing these derived moduli spaces, we have shown that they can be

equipped with canonical shifted symplectic structures (Theorems 6.7 and 6.8). These

are geometric structures that were introduced in [210] and which have attracted a lot of

attention in recent years for their relation with the obtainment of invariants for man-

ifolds [69, 160, 208], suggesting that our constructions also have potential applications

in this respect. Moduli spaces of flat connections and holomorphic structures on ordi-

nary principal bundles also have shifted symplectic structures which generalize work of

Atiyah-Bott [15] and Mukai [196]. While these have inspired our results, an interesting

difference is that, in order to be equipped with a shifted symplectic structure, our moduli

spaces need to include an additional parameter representing a volume form on the base

manifold. This agrees with the expectations from string theory, where this volume form

can be interpreted as a dilaton.

We wish to emphasize that, for G a Lie 2-group, defining connections on G-bundles is

already a subtle point in the literature. Over the last fifteen years, different authors

[220, 235, 273] have managed to formalize previous work on supergravity [38, 81] to

obtain a satisfactory notion of connection on G-bundles, whenever G arises from either

a multiplicative gerbe with connection or from a Lie crossed module with an adjustment.

However, there is still no conceptual framework for defining connections on fully general

Lie 2-groups in such a way that the work of [220, 235, 273] is recovered as a special

case. This is a fundamental problem, as it shows a conceptual insufficiency in our

understanding of connections.

We have also contributed to this general problem by proving that the different approaches

from [273] and [220] are equivalent. Moreover, we have shown that connections on

multiplicative gerbes and adjustments on Lie crossed modules are both examples of a

more general object that can be defined for any Lie 2-group, and which we have called

Maurer-Cartan forms. These play a very important role in all our main results, and we

expect that they can be used in the future for defining connections on principal bundles

for arbitrary Lie 2-groups.
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8.4 Conclusiones

El objetivo principal de esta tesis ha sido el desarrollo y la aplicación de herramientas

generales para el estudio de la geometŕıa de espacios de móduli que pueden ser descritos

en términos de ecuaciones para conexiones en fibrados principales categorificados. Con-

cretamente, hemos estudiado fibrados principales para 2-grupos de Lie G que pueden

ser descompuestos como extensiones centrales [238] de la forma 1→ BT → G→ G→ 1

para grupos de Lie G, T con T abeliano. Esta familia de 2-grupos de Lie es relevante

en teoŕıa de cuerdas y supergravedad [235, 253].

El estudio matemático de este tipo de espacios de móduli solo se ha llevado a cabo hasta

ahora en el caso en que G = BT para un grupo abeliano T [63, 109, 110, 192, 256].

Uno de los ingredientes principales de nuesto trabajo es el hecho de que, para G un

2-grupo de Lie del tipo mencionado anteriormente, un G-fibrado P → M con una

conexión determina un algebroide de Courant transitivo E →M con una escisión. Esto

fue demostrado en [245] para un 2-grupo concreto. Además de extender este resultado

para toda una familia de 2-grupos de Lie (Teorema 4.23), lo hemos utilizado para los

siguientes propósitos.

1. La construcción de una estructura suave en el 2-grupo de automorfismos de P,

modelada en el espacio de secciones de un sub-fibrado de E (Teorema 4.26).

2. La identificación de la teoŕıa de deformaciones de conexiones en P con la teoŕıa

de deformaciones de sub-fibrados de E (Sección 6.1.2).

Estos dos resultados constituyen pilares fundamentales para la teoŕıa gauge de tipo su-

perior, ya que pueden ser aplicados a la construcción de cualquier espacio de móduli

derivado que pueda expresarse en términos de conexiones en G-fibrados. Nosotros

los hemos aplicado en la Sección 6.1.2 para construir espacios de móduli derivados de

G-conexiones planas, G-fibrados holomorfos y G-fibrados holomorfos con estructuras

conectivas holomorfas. Este último espacio de móduli parametriza configuraciones su-

persimétricas en teoŕıa de cuerdas heterótica, como se sigue de nuestro Teorema 5.26,

inspirado por resultados análogos para algebroides de Courant [127] y gerbes [142]. Por

tanto, nuestras construcciones son cruciales para entender la teoŕıa de cuerdas de manera

matemáticamente rigurosa.

Además de construir estos espacios de móduli derivados, hemos demostrado que están

equipados con estructuras simplécticas desplazadas canónicas (Teoremas 6.7 y 6.8). Es-

tas son estructuras geométricas que fueron introducidas en [210] y que han atráıdo

mucha atención en los últimos años por su relación con la obtención de invariantes para
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variedades [69, 160, 208], sugeriendo que nuestras construcciones también podŕıan ser

aplicadas para este propósito. Los espacios de móduli de conexiones planas y estructuras

holomorfas en fibrados principales ordinarios también tienen estructuras simplécticas

desplazadas que generalizan trabajos de Atiyah-Bott [15] y Mukai [196]. Si bien esto ha

inspirado nuestros resultados, una diferencia interesante es que, para aceptar estructuras

simplécticas desplazadas, nuestros espacios de móduli deben incluir un parámetro adi-

cional representando una forma de volumen en la variedad base. Esto se corresponde con

las previsiones de teoŕıa de cuerdas, donde esta forma de volumen puede ser interpretada

como un dilatón.

Queremos destacar que, para G un 2-grupo de Lie, incluso definir conexiones en G-

fibrados constituye ya una tarea sutil en la literatura. En los últimos quince años,

distintos autores [220, 235, 273] han logrado formalizar trabajos previos sobre super-

gravedad [38, 81] para obtener una noción satisfactoria de conexión en un G-fibrado, si

G puede construirse a partir de un gerbe multiplicativo con conexión o de un módulo

cruzado con un ajuste. Sin embargo, no existe aún un paradigma conceptual capaz de

definir conexiones para 2-grupos de Lie totalmente generales que recupere el trabajo

de [220, 235, 273] como un caso particular. Este es un problema fundamental, ya que

muestra una deficiencia conceptual en nuestra comprensión de las conexiones.

También hemos contribuido a este problema general demostrando que los distintos enfo-

ques de [273] y [220] son equivalentes. Además, hemos demostrado que tanto conexiones

en gerbes multiplicativos como ajustes en módulos cruzados son ejemplos de objetos más

generales que pueden definirse para cualquier 2-grupo de Lie, a los que hemos llamado

formas de Maurer-Cartan. Estas juegan un papel fundamental en todos nuestros resul-

tados, y confiamos en que puedan usarse en el futuro para definir conexiones en fibrados

principales para 2-grupos de Lie arbitrarios.
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