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0.1 Summary
In this thesis we study the behaviour of several active scalar equations in spaces where well-
posedness is not expected, namely we study 2D-Euler, the Surface Quasi-Geostrophic equation
(SQG) and the generalized Surface Quasi-Geostrophic equation (gSQG) . Even though one expects
some kind of bad behaviour to happen, such as non-uniqueness, wild norm growth or non-existence
of solutions, it is hard to predict what the behaviour will be for a specific model. Furthermore,
some counter-intuitive phenomena are possible, such as global existence when wild norm growth
is possible.

In chapter 2, we study the SQG equation both in Hs and in Ck. For Hs, s ∈ ( 32 , 2] and Ck,
k ≥ 2 a natural number, we obtain wild norm growth as well as non existence of solutions. The
same tools we apply can be used to obtain similar results in other critical spaces, such as W 1,∞,
as well as some other supercritical spaces (for example Hs with s ≤ 3

2 ).
In chapter 3, we study the generalized Surface Quasi-Geostrophic equation with more singular

velocities than SQG in the spaces Ck,β . For this family of equations, the low regularity of the
velocity suggests the possibility of ill-posedness, but a important cancelation in the evolution
equation makes it so that there is local well-posedness in Hs. When considering the spaces Ck,β ,
it is unclear if this cancellation is enough to obtain well-posedness. The results in chapter 3
show that not only there is wild norm growth for this family of equations, but in fact there is
non-existence of solutions.

In chapter 4 we study the 2D-Euler equation, and find initial conditions that produce global
unique classical solutions with instant gap loss of regularity, i.e., they start in some space Hs

(s ∈ (0, 1)) and for all t > 0 the solution is, at most, in some given space Hs′ with s′ < s.
Finally, in chapter 5 we study the SQG equation again, but this time we add some fractional

diffusion. Diffusion in general makes it harder for any kind of ill-posedness to occur, since it has
a regularizing effect in the solutions. Despite this, we prove that for Sobolev spaces below the
critical regularity strong ill-posedness can happen and in fact we prove non-existence of uniformly
bounded solutions.
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0.2 Resumen
En esta tesis estudiamos el comportamiento de diversas ecuaciones de escalar activo, en concreto
2D-Euler, la ecuación Cuasi-Geostrófica Superficial (SQG) y la ecuación Cuasi-Geostrófica Su-
perficial generalizada (gSQG) en espacios donde se desconoce si el problema está bien propuesto.
A pesar de que lo esperable es que se observe un comportamiento indeseado, como no unicidad,
crecimiento salvaje de la norma o no existencia de soluciones, es difícil hacer predicciones so-
bre el comportamiento dada una ecuación concreta. Además, existen modelos para los cuales se
producen fenómenos contraintuitivos, como la existencia global de soluciones a pesar de existir
crecimiento salvaje de la norma.

En el capítulo 2, estudiamos la ecuación SQG en los espacios Hs y Ck. En Hs, s ∈ ( 32 , 2],
y Ck, k ≥ 2 un numero natural, demostramos que puede tener lugar un crecimiento salvaje de
la norma e incluso que es posible la no existencia de soluciones. Las herramientas utilizadas
servirían para demostrar resultados similares en otros espacios críticos como W 1,∞ y en otros
espacios supercríticos como Hs con s ≤ 3

2 .
En el capítulo 3, estudiamos la ecuación Cuasi-Geostrófica Superficial generalizada en los

espacios Ck,β cuando la velocidad es más irregular que en SQG. Para esta familia de ecuaciones,
la baja regularidad de la velocidad sugiere que el problema podría estar mal propuesto, pero
una cierta cancelación en la ecuación de evolución permite demostrar que el problema está bien
propuesto en Hs. Cuando se consideran los espacios Ck,β , no es evidente si dicha cancelación es
suficiente como para demostrar que el problema está bien propuesto. Los resultados obtenidos en
el capítulo 3 demuestran que el problema no está bien propuesto en Ck,β y, de hecho, puede darse
tanto el crecimiento salvaje de la norma como la no existencia de soluciones.

En el capítulo 4 estudiamos la ecuación 2D-Euler, y encontramos condiciones iniciales que
producen una solución clásica única y global, pero dicha solución sufre instantáneamente un salto
en su regularidad, más concretamente, la solución empieza perteneciendo al espacio Hs (s ∈ (0, 1))
pero, para cualquier t > 0, está como mucho en Hs′ para un cierto s′ < s.

Finalmente, en el capítulo 5 estudiamos una vez más la ecuación SQG, pero esta vez le añadimos
una difusión fraccionaria. La difusión en general favorece que el problema esté bien propuesto,
dado que produce un efecto regularizador sobre la solución. A pesar de esto, demostramos que,
para espacios de Sobolev con regularidad supercrítica, el problema está fuertemente mal propuesto
e incluso se da la no existencia de soluciones uniformemente acotadas.
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Chapter 1

Introduction

On this thesis we will study the behaviour of active scalar equations, i.e., PDEs of the form

∂

∂t
f + v(f) · ∇f = 0, (1.1)

f(x, 0) = f0(x),

where v(f)) = (v1(f), v2(f)) is a given operator.
Many important equations can be written in this form, such as 2D-Euler (v(f) = ∇⊥∆−1f),

the surface quasi-geostrophic equation (v(f) = ∇⊥(−∆)−
1
2 f) or the Prandtl equation (v1(f) =

f, ∂v1(f)
∂x1

= −∂v2(f)
∂x2

), and extra terms can be added to the equation to model specific phenomena,
such as diffusion or external forces. One property that all these equations we mentioned have in
common, is that

∂v1(f)

∂x1
= −∂v2(f)

∂x2

i.e., they produce an incompressible flow. Even though this is not necessary, all the equations that
we will consider in this thesis produce incompressible flows. A very important property of such
equations is that, given a solution f(x, t), if we define

∂

∂t
ϕ(x, t) = v(f)(x = ϕ(x, t), t)

ϕ(x, 0) = x

then (assuming v is regular enough) f(x, t) = f0(ϕ
−1(x, t)). This in particular implies that the

Lp norms (1 ≤ p ≤ ∞) are conserved.
In general, we say that an evolution equation is (locally) well-posed in some space X if, for

any initial conditions f0(x) ∈ X, the following conditions are fulfilled:

• Existence: There exists a solution f(x, t) ∈ X for t ∈ [0, ϵ) for some ϵ > 0.

• Uniqueness: f(x, t) is the only solution fulfilling f(x, t) ∈ X for the time interval [0, ϵ).

• Continuity: The solution (and, in particular, the time of existence) depends continuously on
the initial conditions, i.e., given a solution f(x, t) that exists for t ∈ [0, ϵ), for each t0 ∈ [0, ϵ),
we have that

lim||f(x,0)−f̃(x,0)||X→0supt∈[0,t0]||f(x, t)− f̃(x, t)||X = 0

with f̃(x, t) another solution to the evolution equation.

This definition of well-posedness, which is the well-posedness in the sense of Hadamard, is
unfortunately in general a little too restrictive when talking about active scalar equations. The
reason for this is that some spaces, and in particular Ck,α, have the property that there exist
functions f(x) such that
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limc→0||f(x+ c)− f(x)||Ck,α ̸= 0,

so that, very often, active scalar equations are not well-posed in Ck,α, even when the solutions
exist and have nice properties. An example in that regard is the 2D-Euler equation, where initial
conditions in Ck,α produce unique global solutions but we do not have well-posedness in the
sense of Hadamard. Keeping this in mind, we will consider a different definition of well-posedness
through this thesis that is better suited for active scalars equation:

Definition 1. We say that an active scalar equation as in (1.1) is well-posed in a Banach space
X if, for f(x, 0) ∈ X

• Existence: There exists a solution f(x, t) ∈ X for t ∈ [0, ϵ) for some ϵ > 0.

• Uniqueness: f(x, t) is the only solution fulfilling f(x, t) ∈ X for the time interval [0, ϵ).

• Norm control: There exists a continuous function

H : A→ (0,∞)

with
A := {(a, b) ∈ R2 : b > a ≥ 0}

such that, for any solution f(x, t), we have that, if t1 ∈ [t0, t0 +H(λ1, λ2)], then

||f(x, t0)||X ≤ λ1 → ||f(x, t1)||X ≤ λ2.

The norm control condition allows us to assure that, if an active scalar equation is well-posed,
then the norm of the solutions cannot grow in a very wild way. Note that in particular H(a, b)
gives us a lower bound for the time of existence for any solution with initial conditions with
||f0(x)||X = a.

The main goal of this thesis is to study the behaviour of active scalar equations in spaces
where we do not have local well-posedness in the sense of Definition 1. When this happens, we
expect that we have either non-existence of solutions, non-uniqueness or a wild behaviour of the
evolution of the norm, and in this thesis we will focus on showing either wild behaviour of the
norm or non-existence of solutions.

We will distinguish between several different kinds of ill-posedness, depending on how bad the
behaviour of the solutions is.

Definition 2. We say that an evolution equation is mildly ill-posed in the space X if there exists
a constant c such that for any ϵ > 0 we can find a solution f(x, t) such that

||f(x, 0)||X ≤ ϵ, supt∈[0,ϵ]||f(x, t)||X ≥ c.

Definition 3. We say that an evolution equation is strongly ill-posed in the space X if for any
ϵ > 0 we can find a solution f(x, t) such that

||f(x, 0)||X ≤ ϵ, supt∈[0,ϵ]||f(x, t)||X ≥ 1

ϵ
.

There are a few relevant comments regarding these two definitions. First, mild ill-posedness
implies that a continuous function H(a, b) as in Definition 1 does not exist, but it could be possible
to define H(a, b) for b big enough or for b− a big enough. This, however, does not always imply a
very wild behaviour of the solution. For example, when one studies the evolution of perturbations
around a stationary radial solution g(r) ∈ Ck,α for 2D-Euler, we obtain a system of the form

∂

∂t
f(x, t) + v(f) · ∇(f(x, t) + g(r)) + v(g) · ∇f(x, t) = 0,

which can be mildly ill-posed in Ck,α despite the fact that f(x, t) exists for all time and is in Ck,α

if f(x, 0) ∈ Ck,α and in fact ||f(x, t) + g(r)||Ck,α is continuous in time.
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Another thing to keep in mind is that, usually, to show strong or mild ill-posedness we find
initial conditions f0(x) ∈ Y ∩X, with Y a space where we actually have well-posedness, to ensure
that there exists some kind of solution. When this is not an option (for example, when it is not
known if the evolution equation is well-posed in any space), one can consider similar definitions
that work by contradiction: We find initial conditions such that, if a solution exists, then the
norm of the solution will grow in the way specified by Definitions 2 or 3.

The wild growth of the norm that occurs when an evolution equation is strongly ill-posed in
a space X suggests the possibility of finding initial conditions where no solution exists at all: If
a solution grows infinitely fast, it could leave the space X instantly. There are several possible
definitions of what non-existence even means, but the basic one is the following:

Definition 4. Given an evolution equation, we say that there is non-existence of uniformly
bounded solutions in the space X if, for all ϵ > 0 we can find initial conditions f0(x) with
||f0(x)||X ≤ ϵ such that, for any solution f(x, t) with f(x, 0) = f0(x) and any δ > 0 we have

ess-supt∈[0,δ]||f(x, t)||X = ∞.

Throughout this thesis we will obtain several different results regarding loss of regularity/non-
existence of solutions, some stronger than others, but all of them will, at least, imply a result like
Definition 4.

In order to show strong ill-posedness, we will usually consider what we call pseudo-solutions,
so it is important to clarify what we mean exactly by a pseudo-solution.

Definition 5. Given an evolution equation

∂f

∂t
= H(f), f(t = 0) = f0(x)

with H(f) some operator, we say that f̄(x, t) is a pseudo-solution to the evolution equation with
initial conditions f0(x) if it fulfills

∂f̄

∂t
= H(f̄) + F (x, t), f̄(t = 0) = f0(x)

for some function F (x, t).

Although this definition of pseudo-solution is very general (since F (x, t) can be basically any-
thing we want), we are only actually interested in pseudo-solutions with the source term F (x, t)
small in an appropriate norm. In order to obtain strong ill-posedness in a certain space, we will
find (usually explicit) pseudo-solutions that exhibit the desired behaviour we want to show (i.e.,
arbitrarily fast norm growth), and with F (x, t) smooth and small enough. In general one expects
that, if F (x, t) is sufficiently small, the pseudo-solution will have the same qualitative behaviour
as an actual solution to the evolution equation, which would then imply strong ill-posedness.

One thing to keep in mind is that, even though one expects that

limF (x,t)→0f̄(x, t) = f(x, t)

this actually depends on the specific evolution equation we are considering, the specific space in
which F (x, t) tends to 0, and the properties of f̄(x, t), so in particular proving convergence can
be difficult if we do not know f̄(x, t) explicitly.

As an example we can consider the evolution equation

∂f

∂t
= f2 +H(f)

for f(x) : [0, π] → R, and with H the Hilbert transform. This evolution is locally well-posed in
Cα for α ∈ (0, 1), but the appearance of the Hilbert transform suggest that it might be ill-posed
in C1.

This can actually be proved by considering the family of pseudo-solutions
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f̄N,K(x, t) :=

K∑
i=1

cos(Nix− t)

Ni2

which fulfil

∂f̄N,K

∂t
= H(f̄N,K)

||f̄N,K(x, t = 0)||C1 ≤ C

||f̄N,K(x, t)||C1 ≥ c0t ln(K)

for some C, c0 > 0, for t ∈ [0, π4 ].
Furthermore, it is easy to check that

||f̄2N,K(x, t)||H1 ≤ C

N

for some C > 0 depending on K.
One can then use this to prove that, if we define

∂fN,K

∂t
= f2N,K +H(fN,K)

fN,k(x, 0) = f̄N,k(x, 0)

then, for any fixed K, for N big and t ∈ [0, π4 ] we get

||fN,k(x, t)− f̄N,k(x, t)||H1 ≤ Ct

N

for some C depending on K. This plus the properties of f̄N,k(x, t) (in particular, the fact that the
function is 2π

N -periodic) allows then us to show that, for N big

||fN,k(x, t)||C1 ≥ c0
2
t ln(K)

which proves strong ill-posedness.

1.1 Overview of the thesis
Chapter 2 will cover the Surface Quasi-geostrophic equation, obtaining strong ill-posedness

and non existence of solutions in Ck (k ≥ 2 a natural number) and Hs (s ∈ ( 32 , 2)), as well strong
ill-posedness and non-existence of uniformly bounded solutions in H2 (see [39]).

Chapter 3 studies the generalized Quasi-geostrophic equation for singular kernels, and we
manage to show strong ill-posedness and non-existence of solutions in Ck,β with the specific
values of k and β depending the specific kernel considered (see [40]).

In Chapter 4 we deal with the 2D-Euler equation, and we construct unique, global solutions
ω(x, t) that lose some regularity instantly, and more precisely

ω(x, 0) ∈ Hs, ω(x, t) /∈ Hs′

for all t > 0, for some s′ < s, s ∈ (0, 1) (see [41]).
Finally in Chapter 5 we consider the Surface Quasi-geostrophic equation with (supercritical)

fractional diffusion, and construct global unique solutions w(x, t) with

||w(x, 0)||Hs ≤ ϵ, sup[0,ϵ)||w(x, t)||Hs = ∞

and with w(x, t) ∈ C∞ for all t > 0 (see [38]).
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Chapter 2

Strong ill-posedness and
Non-existence results for SQG

2.1 Introduction
In this chapter we will focus on the study of the Surface Quasi-Geostrophic equation, from now
on the SQG equation.

We say a function θ(x, t) : R2 × [0, T ) → R is a solution to the SQG equation with initial
conditions θ(x, 0) = θ0(x) if the equation

∂θ

∂t
+ v1

∂θ

∂x1
+ v2

∂θ

∂x2
= 0 (2.1)

is fulfilled for every x ∈ R2 and θ(x, t) is (pointwise) differentiable for (x, t) ∈ R2 × [0, T ). The
velocity field v = (v1, v2) is defined by

v1 = − ∂

∂x2
Λ−1θ = −R2θ

v2 =
∂

∂x1
Λ−1θ = R1θ

where Ri are the Riesz transforms in 2 dimensions, with the integral expression

Rjθ =
Γ(3/2)

π3/2
P.V.

ˆ
R2

(xj − yj)θ(y)

|x− y|3
dy1dy2

for j = 1, 2. We denote Λαf ≡ (−∆)
α
2 f by the Fourier transform Λ̂αf(ξ) = |ξ|αf̂(ξ).

This model arises in a geophysical fluid dynamics context (see [60] and [88]) and its mathe-
matical analysis was initially treated by Constantin, Majda and Tabak in [27] motivated by the
number of traits it shares with 3-D incompressible Euler system, where they already established
local existence in Hs (see also [28] for bounded domains) and in the case of Ck,α (k ≥ 1 and
1 > α > 0), see [98] by Wu. In the critical Sobolev space H2 Chae and Wu [21] proved local
existence for a logarithmic inviscid regularization of SQG (see also [66]). Finite time formation
of singularities for smooth initial data with finite energy remains an open problem for both SQG
and 3-D incompressible Euler equations.

Due to incompressibility and the transport structure of SQG the Lp (1 ≤ p ≤ ∞) norms of
the scalar θ and the L2 norm of the velocity field v = (v1, v2) (kinetic energy) are conserved
quantities of the system (2.1) for sufficiently regular solutions. Global existence of weak solutions
in L2 was proven by Resnick in [89] (see also [29] in the case of bounded domains) and extended
by Marchand in [84] to the class of initial data in Lp with p > 4

3 . However non-uniqueness of
weak solutions was obtained by Buckmaster, Shkoller and Vicol in [12] for solutions such that
Λ−1θ ∈ Cσ

t C
β
x with 1

2 < β < 4
5 and σ < β

2−β .
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One of the main objectives of this chapter is to construct solutions in R2 of SQG that initially
are in Ck ∩ L2 (k ≥ 2) but are not in Ck for t > 0. Note that if we consider a velocity field
v(θ) = ∇⊥Λ−(1+ϵ)(θ) with ϵ > 0, then we have local existence in Ck for (2.1). We also prove
strong ill-posedness in Hs for supercritical spaces in the range s ∈ ( 32 , 2) and for the critical
space H2. Moreover we construct solutions that are initially in Hs for s ∈ ( 32 , 2) but are not
in Hs for t > 0, and that are unique in a certain sense that we will specify later. For the SQG
equation, there were no strong ill-posedness results in Hs and Ck prior to the ones obtained in this
chapter. There are ill-posedness results for active scalars with more singular velocities obtained by
Kukavica, Vicol and Wang in [78] and, in the case of SQG, in [55] Elgindi and Masmoudi a mild
ill-posedness result is obtained for perturbations of a stationary solution. This, however, does not
imply mild or strong ill-posedness for SQG. A few days after the results of this chapter appeared
on the arXiv, Jeong and Kim [64] posted an article on the arXiv with a similar result in the case
of the critical Sobolev space H2.

There are some remarkable results regarding norm growth in the periodic setting for SQG.
Kiselev and Nazarov [73] showed that there exists initial conditions with arbitrarily small norm
in Hs (s ≥ 11) that become large after a long period of time. Recently, He and Kiselev proved in
[59] an exponential in time growth for the C2 norm

supt≤T |∇2θ|L∞ ≥ exp γT for γ(θ0) > 0.

On the other hand, numerical simulations suggested the existence of solutions with very fast
growth of |∇θ| starting with a smooth profile by a collapsing hyperbolic saddle scenario (see [27],
[87] and [26]). Such a scenario cannot develop a singularity as shown analytically in [35] and [37],
where a double exponential bound on |∇θ| is obtained. A different blow-up scenario was proposed
in [90] where the fast growth of |∇θ| is associated to a cascade of filament instabilities.

2.1.1 The main theorems
In this chapter we prove the following results:

Theorem 2.1.1. (Strong ill-posedness in Ck) For any c0 > 0, M > 0, 2 ≤ k ∈ N and t∗ > 0,
there exists θ0(x) ∈ Hk+ 1

4 ∩Ck with ||θ0(x)||Ck ≤ c0 such that the unique solution θ(x, t) ∈ Hk+ 1
4

to the SQG equation (2.1) with initial conditions θ0(x) satisfies ||θ(x, t∗)||Ck ≥Mc0.

Theorem 2.1.2. (Non existence in Ck) Given c0 > 0, t∗ > 0 and 2 ≤ k ∈ N, there exists
θ0(x) ∈ Hk+1/8 ∩ Ck for the SQG equation (2.1) such that ||θ0||Ck ≤ c0 and the unique solution
θ(x, t) ∈ Hk+1/8 exists and satisfies that ||θ(x, t)||Ck = ∞ for all t ∈ (0, t∗].

In fact, for the initial conditions given by Theorem 2.1.2 there is no solution θ(x, t) ∈ L∞
t L

2
x

to (2.1) with those initial conditions and ||θ(x, t)||Ck ≤ M(t), for any M(t) : R+ → R+, even if
we allow for ||M(t)||L∞ = ∞. For more details see Remark 2 after Theorem 2.2.2.

Theorem 2.1.3. (Strong ill-posedness in Hs) For any c0 > 0, M > 0, s ∈ ( 32 , 2] and t∗ > 0, there
exists a Hβ function θ0(x) with ||θ0(x)||Hs ≤ c0 such that the only solution θ(x, t) ∈ Hβ , with
β(s) > 2 to the SQG equation (2.1) with initial conditions θ0(x) satisfies ||θ(x, t∗)||Hs ≥Mc0.

Remark 1. The purpose of this chapter is not to obtain the optimal range of Sobolev spaces in
which strong ill-posedness is achieved. There are refinements to the methods used in Theorem 2.1.3
that would allow us to decrease the lower bound in the interval of ill-posedness.

Theorem 2.1.4. (Non existence in Hs in the supercritical case) For any t∗, c0 > 0 and s ∈ ( 32 , 2)
we can find initial conditions θ0(x), with ||θ0(x)||Hs ≤ c0 such that there exists a solution θ(x, t)
to (2.1) with θ(x, 0) = θ0(x) satisfying ||θ(x, t)||Hs = ∞ for all t ∈ (0, t∗]. Furthermore, it is the
only solution with initial conditions θ0(x) such that θ(x, t) ∈ L∞

t C
α1
x ∩ L∞

t L
2
x (0 < α1 <

1
2 ) with

the property that ||θ(x, t)||Hα2 ≤M(t) (1 < α2 ≤ 3
2 ) for some function M(t).

Theorem 2.1.5. (Non uniform existence in H2) For any c0 > 0 there exist initial conditions
θ(x, 0) with ||θ(x, 0)||H2 ≤ c0 such that there is no solution θ(x, t) to (2.1) satisfying

ess-supt∈[0,ϵ]||θ(x, t)||H2 =M

for any ϵ,M > 0.
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The proof of Theorems 2.1.4 and 2.1.5 can be adapted to work in the critical spaces W 1+ 2
p ,p,

p ∈ (1,∞], but we will not go into detail since that is not the goal of the chapter. For more
information regarding the necessary changes to adapt the proof for these cases, see Remark 5
after Theorem 2.4.2.

2.1.2 The strategy of the proof
Ill-posedness in critical spaces for the incompressible Euler equations was already considered in
the papers by Bourgain and Li (see [9] and [8]) obtaining strong ill-posedness for the velocity in
the 2D and 3D Euler equations in Ck, k ≥ 1 and for vorticity in the space Hd/2 (d the dimension).
In fact, they obtained stronger results: in [8] they obtain a velocity u satisfying, for 0 < t0 ≤ 1

ess-sup0<t<t0 ||u(x, t)||Ck = ∞,

||u(x, 0)||Ck ≤ c0

and in [9] the vorticity ω satisfies

ess-sup0<t<t0 ||ω(x, t)||Ḣ d
2
= ∞,

||ω(x, 0)||
Ḣ

d
2
≤ c0,

that is to say, they obtained non-existence of uniformly bounded solutions in H1 for the vorticity
and in Ck for the velocity. Later, analogous results were obtained by Elgindi and Masmoudi in
[55] and Elgindi and Jeong in [54] with a different approach. Recently, Kwon proved in [77] that
there is still strong ill-posedness in H1 for a regularized version of the 2D incompressible Euler
equations.

Our strategy in this chapter for proving strong ill-posedness for SQG differs from the previous
works mentioned above since there is no global existence result for SQG in Hs. More precisely
for Theorems 2.1.1, 2.1.2, 2.1.3 and 2.1.4, we construct solutions by perturbing radial stationary
solutions θ = θ(r) and, in order to obtain precise bounds of the errors, we consider an explicit in
time family of pseudo-solutions of SQG for t ∈ [0, T ], namely

θ̄λ,J,N (r, α, t) :=λf1(r)

+ λf2(N
1/2(r − 1) + 1)

J∑
j=1

sin(Njα− λtNj vα(f1)
r − λC0t− π

2 j)

Nkjk+1
,

where (r, α) are the polar coordinates, fi are smooth compactly supported radial functions, vα(f1)
is the angular velocity generated by the function f1, the parameters fulfil (λ, J,N) ∈ (R+, N, N)
and C0 is a constant that arises from the velocity operator. This θ̄λ,J,N fulfills the evolution
equation

∂θ̄λ,J,N
∂t

+
∂θ̄λ,J,N
∂α

vα(λf1)

r
+ λC0H(θ̄λ,J,N ) = 0,

where H denotes the Hilbert transform with respect to the α variable, and for any fixed λ and
J , as N becomes big, this pseudo-solution becomes a good approximation of SQG. The ill-
posedness arises from the unboundedness of the operator H in the Ck ∩L2 spaces. Note however
that the appearance of an unbounded operator in our evolution equation does not imply directly
ill-posedness, and for example in the Burger-Hilbert’s equation

∂f

∂t
+ f

∂f

∂x
+H(f) = 0,

although the L∞ norm has a fast growth (see [14]) as long as the solution is C1,δ, Bressan and
Nguyen [11] proved the surprising result of global existence in L2 ∩ L∞.

We denote by θλ,J,N (r, α, t) the unique Hk+ 1
4 solution of (2.1) satisfying initially

θλ,J,N (r, α, 0) = θ̄λ,J,N (r, α, 0).

12



We will prove that, for any fixed λ and J , for sufficiently large N we have

||θλ,J,N (r, α, t)− θ̄λ,J,N (r, α, t)||Hk ≤ CtN−( 1
4+a(k))

where a(k) > 0 and the constant C depends only on the parameters λ, J, k and T . With this
bound and the properties of the pseudo-solution we obtain

||θλ,J,N (r, α, t)||Ck ≥ C̃λ2 ln(J)t

where C̃ is a universal constant.
Once we have solutions with arbitrarily large growth in norm we prove non-existence of solu-

tions in Ck by considering the following initial conditions

θ(x, 0) =
∑
n∈N

TRn
(θ̄λn,Jn,Nn

(x, 0))

with TR(f(x1, x2)) := f(x1+R, x2). By choosing appropriately the parameters (λn)n∈N, (Kn)n∈N,
(Nn)n∈N and (Rn)n∈N we can show that the unique solution θ(x, t) ∈ Hk+ 1

8 with this initial data
will leave Ck instantaneously. In particular the solution θ(x, t) is not in Ck for any time t ∈ (0, T ].

In the case of strong ill-posedness in Sobolev spaces, Theorem 2.1.3, we will use a similar
strategy for s ∈ ( 32 , 2), although the proofs are more involved since we do not have any existence
result for the supercritical Sobolev spaces. However, in the critical case (Theorem 2.1.5) it is not
clear that a suitable pseudo-solution could be constructed by perturbing a radial solution. In
order to overcome this obstacle we need a different strategy. In this case our initial data is similar
to the one consider in [9] with the following expression

θc,J,b(x, 0) =

J∑
j=1

c
f(b−jr)bj sin(2α)

j
,

1

2
> b > 0,

where the radial function 0 ≤ f ∈ C∞ has supp(f) ∈ [ 12 ,
3
2 ], c > 0 and J ∈ N. The main

difficulty when considering this type of initial conditions is that the usual energy estimates only
give existence for a short time interval which does not provide enough growth in H2. To obtain
improved time intervals of existence we decompose our solution as a sum of pseudo-solutions with
initial conditions

c
f(b−jr)bj sin(2α)

j

for j = 1, ..., J . To finish the proof we perturb this solution with a small H2 function localized
around the origin that will experience very large norm growth.

The chapter is organized as follows. First in section 2.2 we prove strong ill-posedness and
non existence for the space Ck. In section 2.3 we show strong ill-posedness and non existence for
Sobolev spaces in the supercritical case. Finally in section 2.4 we prove strong ill-posedness and
non-existence of uniformly bounded solutions for the critical H2 space.

2.1.3 Notation
In this chapter we will consider functions f(x) : R2 → R in Ck with k a positive integer and Hs

with s a positive real number. These spaces allow many different equivalent norms, but we will
specifically use

||f(x)||Ck =

k∑
i=0

i∑
j=0

|| ∂if(x)

∂jx1∂i−jx2
||L∞

and for Hs, when s is a positive integer we will use

||f(x)||Hs =

s∑
i=0

i∑
j=0

|| ∂if(x)

∂jx1∂i−jx2
||L2 ,
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where the derivative is understood in the weak sense.
For non integer s , the standard way of defining the norm is by

||f(x)||Hs = ||F−1
[
(1 + |ξ|2) s

2Ff
]
||L2 ,

where F is the Fourier transform. We will not require to use this definition to compute the norm
in these spaces through this chapter. For s a positive integer, we will sometimes write

||f(x)1A||Hs ,

where 1A is the characteristic function in the set A. This is a slight abuse of notation since the
function f(x)1A may not be in Hs, but we will use this as a more compact notation to write

s∑
i=0

i∑
j=0

(

ˆ
A

(
∂if(x)

∂jx1∂i−jx2
)2dx)

1
2 .

Analogously, we will use

||f(x)1A||Ck :=

k∑
i=0

i∑
j=0

ess-supx∈A(
∂if(x)

∂jx1∂i−jx2
).

We will work both in normal cartesian coordinates and in polar coordinates, using the change
of variables x1 = r cos(α), x2 = r sin(α). We will sometimes define f(x) as a function in the
variable (x1, x2) and then refer to f(r, α) in polar coordinates (or vice versa), and this is an abuse
of notation since we should actually write, if F (r, α) is the change of variables that takes us from
(r, α) to (x1, x2), f(F (r, α)). Furthermore, given a function f(r, α) in polar coordinates, we define

||f(r, α)||Hs := ||f(F−1(x))||Hs ,

||f(r, α)||Ck := ||f(F−1(x))||Ck .

For two sets A1, A2, we will use d(A1, A2) to refer to the distance between the sets

d(A1, A2) := infx∈A1,y∈A2
|x− y|.

2.2 Strong ill-posedness and non existence in Ck

To prove ill-posedness in Ck we construct fast growth solutions by perturbing in a suitable way
a stationary smooth radial solution. In contrast, there are previous results ([16] and [17]) where
the perturbation of a radial function led to global C4 rotating solutions and enhanced lifespan of
solutions respectively.

In this section we will show that, for a specific kind of perturbation we can predict the behaviour
of the solution with a very small error. The perturbation will be composed of functions of the
form

f(N1/2(r − 1) + 1) sin(Nnα)

where f is a given smooth function and N,n are integers. Below we will obtain the properties
that will allow us to work with this kind of functions.

2.2.1 Estimates on the velocity field.
In this section we will use the following expression of the velocity field

v(θ(.))(x) =
Γ(3/2)

π3/2
P.V.

ˆ
R2

(x− y)⊥θ(y)

|x− y|3
dy1dy2

with v = (v1, v2) and for a vector (a, b) we define (a, b)⊥ := (−b, a).
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We will omit the constant on the outside of the integral from now on, since all the results we
will obtain would remain the same if we were to change Γ(3/2)

π3/2 for an arbitrary (non-zero) constant.

Lemma 2.2.1. Given natural numbers n, N and a L∞ function gN (r) : [0,∞) → R with support
in (1 − N−1/2

2 , 1 + N−1/2

2 ) we have that, for θ(r, α) := gN (r) sin(Nnα), there exists a constant C
(depending on n) such that, for N big enough and r ∈ [1−N− 1

2 , 1 +N− 1
2 ]

|vr(θ(., .))(r, α)− cos(Nnα)

ˆ
R×[−π,π]

r2α′gN (r + h) sin(Nnα′)

|h2 + r2(α′)2|3/2
dα′dh|

≤ C||gN ||L∞N−1/2.

Analogously, for θ(r, α) = gN (r) cos(Nnα) we have that

|vr(θ(., .))(r, α) + sin(Nnα)

ˆ
R×[−π,π]

r2α′gN (r + h) sin(Nnα′)

|h2 + r2(α′)2|3/2
dα′dh|

≤ C||gN (r)||L∞N−1/2.

Before we get into the proof, a couple of comments need to be made. First, vr refers to the
radial component of the velocity at a given point, that is to say, if we call x̂ to the unitary vector
in the direction of x then

vr(θ(.))(x) = P.V.

ˆ
R2

x̂ · (x− y)⊥θ(y)

|x− y|3
dy1dy2.

However, the expression obtained in Lemma 2.2.1 requires us to work in polar coordinates.
Therefore, considering a generic function f(r) sin(kα) and making the usual changes of variables
(x1, x2) = r(cos(α), sin(α)), (y1, y2) = r′(cos(α′), sin(α′)) we obtain

vr(θ( . , . ))(r, α)

= P.V.

ˆ
R×[−π,π]

(r′)2
(cos(α) sin(α′)− sin(α) cos(α′))f(r′) sin(kα′)

|(r cos(α)− r′ cos(α′))2 + (r sin(α)− r′ sin(α′))2|3/2
dα′dr′

= P.V.

ˆ
R×[−π,π]

(r′)2
sin(α′ − α)

|(r − r′)2 + 2rr′(1− cos(α− α′))|3/2
f(r′) sin(kα′)dα′dr′

= cos(kα)P.V.

ˆ
R×[−π,π]

(r′)2
sin(α′ − α)f(r′) sin(kα′ − kα)

|(r − r′)2 + 2rr′(1− cos(α− α′))|3/2
dα′dr′

= cos(kα)P.V.

ˆ
R×[−π,π]

(r + h)2
sin(α′)f(r + h) sin(kα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh, (2.2)

where we have used trigonometric identities and eliminated the terms that are odd with respect
to α′ − α. Note that in the last line we have relabeled α′ − α as α′ for a more compact notation.
Analogously if θ(r, α) = f(r) cos(kα) we obtain

vr(θ( . , . ))(r, α) = − sin(kα)

ˆ
R×[−π,π]

(r + h)2
sin(α′)f(r + h) sin(kα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh.

With this, we are now ready to start the proof of Lemma 2.2.1.

Proof. We need to find bounds for
ˆ
R×[−π,π]

r2α′gN (r + h) sin(Nnα′)

|h2 + r2(α′)2|3/2
dα′dh

−
ˆ
R×[−π,π]

(r + h)2
sin(α′)gN (r + h) sin(Nnα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh
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with gN (r) satisfying our hypothesis. We will first focus on

IA := |
ˆ
A

r2α′gN (r + h) sin(Nnα′)

|h2 + r2(α′)2|3/2
dα′dh (2.3)

−
ˆ
A

(r + h)2
sin(α′)gN (r + h) sin(Nnα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh|

with A := [−2N−1/2, 2N−1/2] × [−2N−1/2, 2N−1/2]. This is accomplished in several steps. It
should be noted that the constant C may depend on n and it may change through the proof, as
it is the name we use for a generic constant that is independent of N and g.

Step 1:

|
ˆ
A

(r + h)2
(sin(α′)− α′)gN (r + h) sin(Nnα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh|

≤ C

ˆ
A

(r + h)2
|α′|3|gN (r + h)|

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh

≤ C

ˆ
A

|gN (r + h)|dα′dh

≤ CN−1||gN ||L∞

Step 2: Defining

F (r, h, α′) :=
1

|h2 + 2(r + h)r(1− cos(α′))|3/2
− 1

|h2 + (r + h)r(α′)2)|3/2

we estimate the following integral by

|
ˆ
A

(r + h)2α′gN (r + h) sin(Nnα′)F (r, h, α′)dα′dh|

≤ C

ˆ
A

|α′||gN (r + h)| (α′)4

|h2 + 2(r + h)r(1− cos(α′))|5/2
dα′dh

≤ C

ˆ
A

|gN (r + h)|dα′dh

≤ CN−1||gN ||L∞ .

Step 3:

|
ˆ
A

((r + h)2 − r2)
α′gN (r + h) sin(Nnα′)

|h2 + (r + h)r(α′)2)|3/2
dα′dh|

≤ C

ˆ
A

|h| |α′||gN (r + h)|
|h2 + (r + h)r(α′)2)|3/2

dα′dh

≤ C

ˆ
A

|gN (r + h)|
|h2 + (r + h)r(α′)2|1/2

dα′dh

≤ CN−1/2||gN ||L∞

Combining all these three steps we conclude

|
ˆ
A

r2α′gN (r + h) sin(Nnα′)

|h2 + r(r + h)(α′)2|3/2
dα′dh−

ˆ
A

(r + h)2sin(α′)gN (r + h) sin(Nnα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh|

≤ C||gN ||L∞N−1/2,
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and to bound the contribution of the integral in A we also need

|
ˆ
A

r2α′gN (r + h) sin(Nnα′)

|h2 + (r + h)r(α′)2)|3/2
− r2α′gN (r + h) sin(Nnα′)

|h2 + r2(α′)2)|3/2
dα′dh|

≤ C

ˆ
A

|α′||gN (r + h)| (α′)2|h|
|h2 + r2

2 (α
′)2)|5/2

dα′dh

≤ C

ˆ
A

|gN (r + h)|
|h2 + r2

2 (α
′)2|1/2

dα′dh

≤ CN−1/2||gN ||L∞ .

Therefore adding and subtracting
ˆ
A

r2α′gN (r + h) sin(Nnα′)

|h2 + (r + h)r(α′)2)|3/2

to (2.3) we obtain that

IA ≤ C||gN ||L∞N−1/2.

Finally, we need to deal with the integral outside of A. First we bound the following integral

ˆ
R×[−π,π]\A

r2α′gN (r + h) sin(Nnα′)

|h2 + r2(α′)2|3/2
dα′dh

= 2

ˆ
[−2N−1/2,2N−1/2]

ˆ
[2N−1/2,π]

r2α′gN (r + h) sin(Nnα′)

|h2 + r2(α′)2|3/2
dα′dh.

To do this we compute, for fixed arbitrary h ∈ (−2N− 1
2 , 2N− 1

2 ) and r + h ∈ supp(gN ), the
integral over an interval of the form α ∈ [k 2π

Nn − π
2Nn , (k+ 1) 2π

Nn − π
2Nn ] (which we will denote by

[αk, αk+1]). Note that it has the length of the period of sin(Nnα) and that sin(Nnα) is an even
function around the point k 2π

Nn + π
2Nn .

If we define
H(α′, h, r) :=

α′

|h2 + r2(α′)2|3/2

we have that

=

ˆ
[αk,αk+1]

sin(Nnα′)
(
H(

αk + αk+1

2
, h, r) (2.4)

+
∂H(αk+αk+1

2 , h, r)

∂α′ (α′ − αk + αk+1

2
) +

∂2H(c(α′), h, r)

∂α′2
1

2
(α′ − αk + αk+1

2
)2dα′

)
=

ˆ
[αk,αk+1]

sin(Nnα′)
∂2H(c(α′), h, r)

∂α′2
1

2
(α′ − αk + αk+1

2
)2dα′

≤ C

ˆ
[αk,αk+1]

| sin(Nnα′)|(α′ − αk + αk+1

2
)2

1

|h2 + r2α2
k|2

dα′

≤ C
( 2π

Nn

)3 1

|h2 + r2α2
k|2

,

where we have used a second degree Taylor expansion around αk+αk+1

2 for H, and c(α′) is where
we need to evaluate the second derivative to actually obtain an equality. Now, adding over all the
intervals [αk, αk+1] with π − 2π

Nn ≥ αk ≥ 2N−1/2, we get the upper bound
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π− 2π
Nn∑

αk≥2N−1/2

C
( 2π

Nn

)3 1

|h2 + r2α2
k|2

≤
∞∑

k≥N1/2n
π

C
( 2π

Nn

)3 1

|h2 + r2α2
k|2

≤ C
( 2π

Nn

)3 ˆ ∞

N1/2n
π −1

1

|h2 + r2(x 2π
Nn − π

2Nn )
2|2
dx

≤ C
( 2π

Nn

)3 ˆ ∞

N1/2n
π −2

1

|h2 + (rx 2π
Nn )

2|2
dx

≤ C
( 2π

Nn

)3( 2π

Nn

)−4

(
2π

N1/2n
)3 ≤ CN−1/2,

where we took N big to pass from the third to the fourth line. The only contribution missing now
from the integral in the α′ variable, if we call αk0

the smallest αk such that αk ≥ 2N−1/2 and α∞
the biggest one with π ≥ α∞, is

ˆ
[2N−1/2,αk0

]∪[α∞,π]

sin(Nnα′)
α′

|h2 + r2(α′)2|3/2
dα′,

but

|
ˆ αk0

2N−1/2

sin(Nnα′)
α′

|h2 + r2(α′)2|3/2
dα′| ≤ C, (2.5)

|
ˆ π

αk∞

sin(Nnα′)
α′

|h2 + r2(α′)2|3/2
dα′| ≤ C

N
. (2.6)

Combining (2.5),(2.6) and the bound we obtained for (2.4) and integrating with respect to h
we get

|2
ˆ
[−2N1/2,2N−1/2]

ˆ
[2N−1/2,π]

r2α′gN (r + h) sin(Nnα′)

|h2 + r2(α′)2|3/2
dα′dh|

≤
ˆ
[−2N1/2,2N−1/2]

C|gN (r + h)|dh ≤ C||gN ||L∞N−1/2.

The term

|
ˆ
R×[−π,π]\A

(r + h)2
sin(α′)gN (r + h) sin(Nnα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh|

is bounded in a similar fashion, integrating first with respect to α′ in intervals of the form [αk, αk+1]
and then bounding the parts that are not covered exactly by said intervals (as in (2.5) and (2.6)),
and with that we would be done.

Now that we have a manageable expression for the radial velocity we are ready to compute it
explicitly (with some error) for some special kind of functions.

Lemma 2.2.2. Given natural numbers n, N and a C2 function gN (.) : R → R with support in
the interval (1− N−1/2

2 , 1+ N1/2

2 ) satisfying ||gN ||Ci ≤MN i/2 for i = 0, 1, 2 there exists a constant
C0 ̸= 0 (independent of N , n and gN ) such that for x̃ ∈ [1−N− 1

2 , 1 +N− 1
2 ],

|C0gN (x̃)−
ˆ
R×[−π,π]

gN (x̃+ h1)
sin(Nnh2)h2
(h21 + h22)

3/2
dh1dh2|

≤ CMN−1/2, (2.7)
with C depending on n.
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Proof. The strategy of this proof is to first show that

|
ˆ
R×[−π,π]

(gN (x̃+ h1)− gN (x̃))
sin(Nnh2)h2
(h21 + h22)

3/2
dh1dh2|

≤ CMN−1/2, (2.8)

and then prove that

IN,n :=

ˆ
R×[−π,π]

sin(Nnh2)
h2

(h21 + h22)
3/2

dh1dh2 (2.9)

is a Cauchy series with respect to N , satisfying

|IN1,n − IN2,n| ≤ Csup(N1, N2)
−1/2 (2.10)

with C depending on n.
Combining both of these results and taking

C0 := limN→∞IN,n

we obtain (2.7), and we only need to check that C0 is different from zero and independent of n.
We first obtain bound (2.8), by noting that, due to parity

|
ˆ
[−2N−1/2,2N−1/2]×[−π,π]

(gN (x̃+ h1)− gN (x̃)) sin(Nnh2)
h2

(h21 + h22)
3/2

dh1dh2|

= |
ˆ
[0,2N−1/2]×[−π,π]

(gN (x̃+ h1) + gN (x̃− h1)− 2gN (x̃)) sin(Nnh2)h2
(h21 + h22)

3/2
dh1dh2|. (2.11)

Next we fix some h1 ∈ (0, 2N− 1
2 ) and obtain bounds for the integral with respect to h2. This

is done as in Lemma 2.2.1, dividing in periods of length 2π
Nn starting at π

2Nn , and approximating
h2

h2
1+h2

2
by its second order Taylor expansion, since the first two orders will cancel. That way, for

the interval with h2 ∈ [k 2π
Nn + π

2Nn , (k + 1) 2π
Nn + π

2Nn ] we obtain the bound

|
ˆ (k+1) 2π

Nn+ π
2Nn

k 2π
Nn+ π

2Nn

sin(Nnh2)
h2

(h21 + h22)
3
2

dh2| ≤ C
( 2π

Nn

)3 1

(h21 + (k2πNn )
2)2

. (2.12)

We add periods contained in the interval [0, 2N−1/2] and we denote by k∞ = k∞(N,n) the biggest
integer k such that (k + 1) 2π

Nn + π
2Nn ≤ 2N−1/2 to obtain that

|
ˆ (k∞+1) 2π

Nn+ π
2Nn

5π
2Nn

sin(Nnh2)
h2

(h21 + h22)
3
2

dh2|

≤
k∞∑
k=1

C
( 2π

Nn

)3 1

(h21 + (k2πNn )
2)2

≤ C
( 2π

Nn

)3 ˆ k∞

0

1

(h21 + (x2πNn )
2)2

dx

≤ C
( 2π

Nn

)3 ˆ k∞

0

1

(h1 +
x2π
Nn )

4
dx = C

( 2π

Nn

)3 ˆ k∞+
h1Nn

2π

h1Nn
2π

1

(x2πNn )
4
dx

≤ C
( 2π

Nn

)2 1

h31
.

This allows us to bound the contribution to (2.11) when h1 ≥ 2π
Nn by dividing it into three parts:

1) If h2 ≤ 5π
2Nn :

|
ˆ 2N−1/2

2π
Nn

ˆ 5π
2Nn

0

(gN (x̃+ h1) + gN (x̃− h1)− 2gN (x̃)) cos(Nnh2)
h2

(h21 + h22)
3/2

dh2dh1|
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≤ |C
ˆ 2N−1/2

2π
Nn

5π

2Nn
Mh21N

1

h21
dh1| ≤ CMN−1/2.

2) If 5π
2Nn ≤ h2 ≤ (k∞ + 1) 2π

Nn + π
2Nn :

|
ˆ 2N−1/2

2π
Nn

ˆ (k∞+1) 2π
Nn+ π

2Nn

5π
2Nn

(gN (x̃+ h1) + gN (x̃− h1)− 2gN (x̃))
sin(Nnh2)h2
(h21 + h22)

3/2
dh2dh1|

≤
ˆ 2N−1/2

2π
Nn

|gN (x̃+ h1) + gN (x̃− h1)− 2gN (x̃)| |
ˆ (k∞+1) 2π

Nn+ π
2Nn

5π
2Nn

sin(Nnh2)h2
(h21 + h22)

3/2
dh2|dh1

≤ C

ˆ 2N−1/2

2π
Nn

Mh21N
( 2π

Nn

)2 1

h31
dh1 ≤ CMN−1log(N).

3) If (k∞ + 1) 2π
Nn + π

2Nn ≤ h2 ≤ 2N−1/2:

|
ˆ 2N−1/2

2π
Nn

ˆ 2N−1/2

(k∞+1) 2π
Nn+ π

2Nn

(gN (x̃+ h1) + gN (x̃− h1)− 2gN (x̃))
sin(Nnh2)h2
(h21 + h22)

3/2
dh2dh1|

≤ C

ˆ 2N−1/2

2π
Nn

Mdh1 ≤ CMN− 1
2 .

Finally, we bound the error when h1 ≤ 2π
Nn :

1) If |h2| ≤ 2N−1/2

|
ˆ 2π

Nn

0

ˆ 2N−1/2

0

(gN (x̃+ h1) + gN (x̃− h1)− 2gN (x̃)) cos(Nnh2)
h2

(h21 + h22)
3/2

dh2dh1|

≤
ˆ 2π

Nn

0

ˆ 2N−1/2

0

Mh21N
1

(h21 + h22)
dh2dh1 ≤ CMN−1/2.

2) If |h2| ≥ 2N−1/2

|
ˆ 2π

Nn

0

ˆ π

2N−1/2

(gN (x̃+ h1) + gN (x̃− h1)− 2gN (x̃))
sin(Nnh2)h2
(h21 + h22)

3/2
dh2dh1|

≤
ˆ 2π

Nn

0

ˆ π

2N−1/2

M

2
h21N

1

(h21 + h22)
dh2dh1 ≤ CMN−1.

Combining all these bounds we obtain (2.8). Therefore, we have that it is enough to prove
that

|C0gN (x̃)−
ˆ
R×[−π,π]

gN (x̃) cos(Nnh2)
h2

(h21 + h22)
3/2

dh1dh2|

≤ CMN−1/2,

which is equivalent to studying the behaviour of IN,n, defined as in (2.9).
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We start by transforming the integral with a change of variables h̄1 := Nnh1, h̄2 := Nnh2,
although we will relabel h̄1, h̄2 as h1, h2 to simplify the notation.

gN (x̃)

ˆ
[−2N−1/2,2N−1/2]×[−π,π]

sin(Nnh2)
h2

(h21 + h22)
3/2

dh1dh2

= gN (x̃)

ˆ
[−2nN1/2,2nN1/2]×[−Nnπ,Nnπ]

sin(h2)
h2

(h21 + h22)
3/2

dh1dh2.

If we compare the integral for different values of N , N1 ≥ N2 we get

IN1,n − IN2,n =

ˆ
A∪B

sin(h2)
h2

(h21 + h22)
3/2

dh1dh2

with

A = [−2nN
1/2
2 , 2nN

1/2
2 ]× [N2nπ,N1nπ] ∪ [−2nN

1/2
2 , 2nN

1/2
2 ]× [−N1nπ,−N2nπ],

B = [2nN
1/2
2 , 2nN

1/2
1 ]× [−nN1π, nN1π] ∪ [−2nN

1/2
1 ,−2nN

1/2
2 ]× [−nN1π, nN1π].

To get an estimate for the integral on A we use symmetry to focus on h2 > 0 and we separate the
integral into three parts, h2 ∈ [2πk0+

π
2 , 2π(k∞+1)+ π

2 ] (with k0 = k0(N2, n) the smallest integer
with 2πk0 +

π
2 ≥ N2nπ and k∞ = k∞(N1, n) the biggest one such that (k∞ + 1)2π + π

2 ≤ N1nπ),
h2 ∈ [N2nπ, 2πk0 +

π
2 ] and h2 ∈ [(k∞ + 1)2π + π

2 , N1nπ], and we estimate each part separately:
1) If h2 ∈ [2πk0 +

π
2 , 2π(k∞ + 1) + π

2 ]

|
ˆ 2nN

1/2
2

−2nN
1/2
2

ˆ 2π(k∞+1)+π
2

2πk0+
π
2

sin(h2)
h2

(h21 + h22)
3/2

dh2dh1|

≤
ˆ 2nN

1/2
2

−2nN
1/2
2

C

k∞∑
k=k0

1

(h21 + (k2π)2)2
dh1 ≤ C

ˆ 2nN
1/2
2

−2nN
1/2
2

k∞∑
k=k0

1

(h1 + k2π)4
dh1

≤ C

ˆ 2nN
1/2
2

−2nN
1/2
2

ˆ N1n
2

N2n
2 − 5

4

1

(h1 + x2π)4
dxdh1 ≤ C

ˆ 2nN
1/2
2

−2nN
1/2
2

1

(h1 +N2n)3
dh1

≤ C

N
5/2
2 n2

,

2) If h2 ∈ [N2nπ, 2πk0 +
π
2 ]

|
ˆ 2nN

1/2
2

−2nN
1/2
2

ˆ 2πk0+
π
2

N2nπ

sin(h2)
h2

(h21 + h22)
3/2

dh2dh1| ≤
C

N
3/2
2 n

,

3) If h2 ∈ [(k∞ + 1)2π + π
2 , N1nπ]

|
ˆ 2nN

1/2
2

−2nN
1/2
2

ˆ N1nπ

2π(k∞+1)+π
2

sin(h2)
h2

(h21 + h22)
3/2

dh2dh1| ≤
C

N
3/2
2 n

.

For the integration in B we use a similar trick, using parity to consider only h2 ≥ 0 and
separating in the parts h2 ≤ 5π

2 , 5π
2 ≤ h2 ≤ 2π(k∞ + 1) + π

2 and 2π(k∞ + 1) + π
2 ≤ h2 ≤ N1nπ,
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with k∞ = k∞(N1, n) the biggest integer such that (k∞ + 1)2π + π
2 ≤ N1nπ: 1) If 5π

2 ≤ h2 ≤
2π(k∞ + 1) + π

2

|
ˆ 2nN

1/2
1

2nN
1/2
2

ˆ 2π(k∞+1)+π
2

5π
2

sin(h2)
h2

(h21 + h22)
3/2

dh2dh1|

≤
ˆ 2nN

1/2
1

2nN
1/2
2

C

k∞∑
k=1

1

(h21 + (k2π)2)2
dh1 ≤ C

ˆ 2nN
1/2
1

2nN
1/2
2

k∞∑
k=1

1

(h1 + k2π)4
dh1

≤ C

ˆ 2nN
1/2
1

2nN
1/2
2

ˆ N1n
2

0

1

(h1 + x2π)4
dxdh1 ≤ C

ˆ 2nN
1/2
1

2nN
1/2
2

1

h31
dh1

≤ C

N2n2

2) If h2 ≤ 5π
2

|
ˆ 2nN

1/2
1

2nN
1/2
2

ˆ 5π
2

0

sin(h2)
h2

(h21 + h22)
3/2

dh2dh1| ≤
C

N2n2
,

3) If 2π(k∞ + 1) + π
2 ≤ h2 ≤ N1nπ

|
ˆ 2nN

1/2
1

2nN
1/2
2

ˆ N1nπ

2π(k∞+1)+π
2

sin(h2)
h2

(h21 + h22)
3/2

dh2dh1| ≤
C

N
3/2
2 n

.

Putting together the estimates in the regions A and B we have that limN→∞IN,n = C0(n),
and that |C0 − IN,n| ≤ CN−1/2. The only thing left to do is to prove that C0 is indeed different
from 0 and independent of n.

To prove that C0(n) is actually independent of n, it is enough to prove that, for two arbitrary
integers n1, n2,

limN→∞IN,n1
− IN,n2

= 0.

The proof is equivalent to that of (2.10), so we will omit it.
To prove that C0 ̸= 0, we start by focusing on the integral with respect to h2 for any fixed h1

on an interval of the form [−Kπ,Kπ, ] with K ∈ N

ˆ
[−Kπ,Kπ]

sin(h2)
h2

(h21 + h22)
3/2

dh2

=

ˆ
[−Kπ,Kπ]

cos(h2)
1

(h21 + h22)
1/2

dh2 −
[
sin(h2)

1

(h21 + h22)
1/2

]Kπ

h2=−Kπ

=

ˆ
[−Kπ,Kπ]

cos(h2)
1

(h21 + h22)
1/2

dh2 = 2

ˆ
[0,Kπ]

cos(h2)
1

(h21 + h22)
1/2

dh2,

and we can use this property to compute the integral in [−2nN1/2, 2nN1/2]× [−Kπ,Kπ] as

ˆ 2nN1/2

−2nN1/2

ˆ Kπ

0

cos(h2)
1

(h21 + h22)
1/2

dh2dh1 =

ˆ Kπ

0

ˆ 2nN1/2

−2nN1/2

cos(h2)
1

(h21 + h22)
1/2

dh1dh2

=

ˆ Kπ

0

cos(h2)

ˆ 2nN1/2

h2

− 2nN1/2

h2

1

(x2 + 1)1/2
dxdh2 = 2

ˆ Kπ

0

cos(h2)log(
2nN1/2

h2
+ (1 +

4n2N

h22
)1/2)dh2
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= 2

ˆ Kπ

0

cos(h2)(log(
2nN1/2

h2
+ (1 +

4n2N

h22
)1/2)− log(

4nN1/2

h2
))dh2

+ 2

ˆ Kπ

0

cos(h2)log(
4nN1/2

h2
)dh2,

and we can evaluate the last line by checking the two integrals separately
ˆ Kπ

0

cos(h2)log(
4nN1/2

h2
)dh2 = −

ˆ Kπ

0

cos(h2)log(h2)dh2

= −
[
log(x) cos(x)− Si(x)

]Kπ

0
= Si(Kπ) > 0,

where Si(x) ≡
´ x
0

sin(t)
t dt denotes the Sine integral function, and

|
ˆ Kπ

0

cos(h2)(log(
2nN1/2

h2
+ (1 +

4n2N

h22
)1/2)− log(

4nN1/2

h2
))dh2|

≤
ˆ Kπ

0

h2
4nN1/2

((1 +
4n2N

h22
)1/2 − 2nN1/2

h2
)dh2 ≤ CK3

N
.

Furthermore, we can bound the integral outside of the interval h2 ∈ [−Kπ,K, π]. The par-
ticular way we divide the integral depends on the parity of K and Nn. Here we will obtain the
bounds in the case K even and Nn odd, the other cases being analogous:

|
ˆ 2nN1/2

−2nN1/2

ˆ Nnπ

Kπ

cos(h2)
h2

(h21 + h22)
3/2

dh2dh1|

≤
ˆ 2nN1/2

−2nN1/2

Nn−1
2 −1∑
k=K

2

1

(h21 + (2πk)2)2
dh1 +

ˆ 2nN1/2

−2nN1/2

ˆ Nnπ

(Nn−1)π

1

h21 + h22
dh2dh1

≤ C

ˆ 2nN1/2

0

Nn−1
2 −1∑
k=K

2

1

(h1 + 2πk)4
dh1 +

C

N
3
2

≤ C

ˆ 2nN1/2

0

1

(h1 + 2π(K2 − 1))3
dh1 +

C

N
3
2

≤ (
C

K − 2
)2 +

C

N
3
2

.

Combining all these together we get that, for any K ≤ nN

ˆ 2nN1/2

−2nN1/2

ˆ nNπ

0

cos(h2)
1

(h21 + h22)
1/2

dh2dh1

≥ Si(Kπ)− (
C

K − 2
)2 − CK3

N
− C

N
3
2

and by taking K big enough so that Si(Kπ)
2 − ( C

K−2 )
2 > 0 and then N big enough so that

Si(Kπ)
2 − CK3

N − C

N
1
2
> 0 we are done.

We can now combine both lemmas to obtain
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Lemma 2.2.3. Given natural numbers n, N and a C2 function gN (.) : R → R with support in
the interval (1− N−1/2

2 , 1 + N1/2

2 ) and ||gN ||Ci ≤MN i/2 for i = 0, 1, 2 , we have that there exists
a constant C0 ̸= 0 such that, for r ∈ (1−N−1/2, 1 +N−1/2),

|vr(gN (r) cos(Nnα))− C0cos(Nnα)gN (r)| ≤ CMN−1/2 (2.13)

with C depending on n but not on N or g.
Analogously, we have that

|vr(gN (r) cos(Nnα)) + C0 sin(Nnα)gN (r)| ≤ CMN−1/2 (2.14)

with C depending only on n.

Proof. We already know by Lemma 2.2.1 that

|vr(gN (r) cos(Nnα))− cos(Nnα)

ˆ
R×[−π,π]

r2α′gN (r + h) cos(Nnα′)

|h2 + r2(α′)2|3/2
dα′dh| (2.15)

≤ C||gN (r)||L∞N−1/2

and, by a change of variables, we have that

ˆ
R×[−π,π]

r2α′gN (r + h) cos(Nnα′)

|h2 + r2(α′)2|3/2
dhdα′ =

ˆ
R

ˆ
[−π,π]

α′gN (r + hr) cos(Nnα′)

|h2 + α′2|3/2
dα′dh.

However, for any fixed r ∈ [1/2, 3/2], we have ||gN (r + rh)||Ci ≤ 2i||gN (r + h)||Ci and thus
applying Lemma 2.2.2 we get

|C0gN (r)−
ˆ
R

ˆ
[−π,π]

α′gN (r + hr) cos(Nnα′)

|h2 + α′2|3/2
dα′dh| ≤ 2CMN−1/2, (2.16)

and combining (2.15) and (2.16) finishes the proof of (2.13).
We omit the proof of (2.14) since it is completely analogous to that of (2.13).

All these results will allow us to compute locally the radial velocity with a small error, but we
would like to also have decay as we go far away from r = 1. For that we have the following lemma.

Lemma 2.2.4. Given a L∞ function gN (.) : R→ R with support in the interval (1− N−1/2

2 , 1 +
N−1/2

2 ), and let θ be defined as

θ(r, α) := sin(Nnα)gN (r)

with N,n natural numbers.
Then there is a constant C (independent of gN ) such that, if N is big enough and 1/2 >

|r − 1| ≥ N−1/2 or r ≥ 3/2, we have

|vr(θ)(r, α)| ≤
C||gN ||L∞

N3/2|r − 1|2
.

Proof. To estimate |vr(θ)(r, α)| we will use expression (2.2) and therefore we need to find upper
bounds for

|
ˆ
R×[−π,π]

(r + h)2
sin(α′)gN (r + h) cos(Nnα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′dh|.
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Let us fix h such that r + h ∈ (1 − N−1/2

2 , 1 + N−1/2

2 ) and with r ≥ 1/2. Using that´ (i+1) 2π
Nn

i 2π
Nn

sin(Nnα)dα = 0 and a degree one Taylor expansion around α′ = k 2π
Nn + π

Nn for
sin(α′)

|h2+2(r+h)r(1−cos(α′))|3/2 we can bound the integral over a single period

|
ˆ
[k 2π

Nn ,(k+1) 2π
Nn ]

sin(α′) cos(Nnα′)

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′|

≤
ˆ
[k 2π

Nn ,(k+1) 2π
Nn ]

C

Nn

1

|h2 + 2(r + h)r(1− cos(α′))|3/2
dα′

≤ C

(Nn)2
1

|h+ ck 2π
Nn |3

,

with c small and C big, where we used that r + h, r ≥ 1/2 and that there exists c > 0 such that
1
c (1− cos(α′)) ≥ (α′)2 if α′ ∈ [−π, π]. Adding over all the relevant periods we obtain

nN∑
k=0

C

(Nn)2
1

|h+ ck 2π
Nn |3

≤
ˆ Nn

−1

C

(Nn)2
1

|h+ cx 2π
Nn |3

dx

ˆ Nn

−1

CNn
1

|hNn
2πc + x|3

dx ≤ CNn
1

|hNn
2πc − 1|2

=
C

Nn

1

|h− 2πc
Nn |2

≤ C

Nn

1

h2
.

Furthermore, since the support of gN (r) lies in (1− N−1/2

2 , 1+ N−1/2

2 ) and |r− 1| > N−1/2 we
have that |h| ≥ |r−1|

2 , so, by integrating in h we get

ˆ
R

C

Nn
(r + h)2

|gN (r + h)|
h2

dh

≤
ˆ
r+h−1∈(−N−1/2

2 ,N
−1/2

2 )

C

Nn|r − 1|2
||g||L∞dh ≤ C

N3/2n|r − 1|2
||g||L∞ .

2.2.2 The pseudo-solution method for ill-posedness in Ck

As mentioned in Definition 5, we will say θ̄ is a pseudo-solution to the SQG equation if it fulfils
that

∂θ̄

∂t
+ v1(θ̄)

∂θ̄

∂x1
+ v2(θ̄)

∂θ̄

∂x2
+ F (x, t) = 0

v1(θ̄) = − ∂

∂x2
(−∆)1/2θ̄ = −R2θ̄

v2(θ̄) =
∂

∂x1
(−∆)1/2θ̄ = R1θ̄

θ̄(x, 0) = θ0(x),

for some F (x, t).
We will work with initial conditions of the form
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λ(f1(r) + f2(N
1/2(r − 1) + 1)

K∑
k=1

sin(Nkα)

N2k3
)

with N and K natural numbers, 1 > λ > 0 and where f1 and f2 satisfy the following conditions:

• Both f1(r) and f2(r) are C∞ functions.

• f2(r) has its support contained in the interval (1/2, 3/2) and f1 has its support in (1/2, 3/2)∪
(M1,M2) with some M1, M2 big.

• ∂f1(r)
∂r = 1 in (3/4, 5/4).

• f2(r) = 1 in (3/4, 5/4).

• ∂k vα(f1)(r)
r

∂rk
is 0 when r = 1, k = 1, 2, where vα(f1) is the velocity produced by f1 in the

angular direction.

We will use these pseudo-solutions to prove ill-posedness in C2, and at the end of this section
we will explain how to extend the proof to Ck, k > 2.

It is not obvious that the properties we require for f1 can be obtained, so we need the following
lemma.

Lemma 2.2.5. There exists a C∞ compactly supported function g(·) : [0,∞) → R with support

in (2,∞) such that ∂i vα(g(.))(r)
r

∂ri (r = 1) = ai with i = 1, 2 and ai arbitrary.

Proof. We start by considering a C∞ function h(x) : R → R which is positive, with support in
(−1/2, 1/2) and

´
hdx = 1. We define the family of functions

fn1,n2
(r) := n1h(n1(r − n2)),

with n2 ≥ n1 ≥ 2, n1, n2 ∈ N. These functions are C∞ for any n1, n2 , and are supported in the
interval (n2 − 1

2n1
, n2 +

1
2n1

). Now let us consider the associated family of vectors

V = ∪n1,n2Vn1,n2 ,

with

Vn1,n2
:= (

∂vα(fn1,n2
)

∂r
(r = 1),

∂2vα(fn1,n2
)

∂r2
(r = 1)).

Note that to prove our lemma it is sufficient to show that this family is in fact a basis of
R2. Before we can prove that this is the case, we need to find expressions for Vn1,n2 . For our
purposes it is enough to compute λn1,n2Vn1,n1 since these vectors will span the same space as long
as λn1,n2

̸= 0.
To begin with, we deduce the expression for vα. Proceeding in a similar way as for vr, and for

simplicity only considering the case when θ(r, α) = f(r) we get

vα(θ(·, ·))(r, α)

= P.V.

ˆ
R2

x̂⊥
(x− y)⊥θ(y)

|x− y|3
dy1dy2 = P.V.

ˆ
R2

x̂⊥
(x− y)⊥(θ(y)− θ(x))

|x− y|3
dy1dy2

= P.V.

ˆ
R+×[−π,π]

r′
(f(r′)− f(r))(r − r′(cos(α) cos(α′) + sin(α) cos(α′)))

|(rcos(α)− r′cos(α′))2 + (r sin(α)− r′sin(α′))2|3/2
dα′dr′

= P.V.

ˆ
R+×[−π,π]

r′
r − r′cos(α′ − α)

|r2 + (r′)2 − 2rr′cos(α− α′))|3/2
(f(r′)− f(r))dα′dr′. (2.17)
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Moreover, since we will be considering functions with support in (2,∞), after relabeling α−α′

as α′ we end up with the expression

P.V.

ˆ ∞

2

ˆ π

−π

r′
r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2
(f(r′)− f(r))dr′dα′.

Furthermore, if we write

F (r, r′, α′) := r′
r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2

for r = 1, we can use differentiation under the integral sign and obtain

∂jvα(f(.))

∂rj
(r = 1) =

ˆ
(2,∞)×[−π,π]

∂jF

∂rj
(r, r′, α′)(r = 1)f(r′)dr′dα′.

But for f = fn1,n2
we have that

|
ˆ
(2,∞)×[−π,π]

∂jF

∂rj
(r, r′, α′)fn1,n2(r

′)dα′dr′ −
ˆ
[−π,π]

∂jF

∂rj
(r, n2, α

′)dα′| ≤ C

n1
,

with C depending on r and, in particular, since span(V ) is a closed set, by taking limn1→∞Vn1,n2

we get that

(

ˆ
[−π,π]

∂F

∂r
(1, n2, α

′)dα′,

ˆ
[−π,π]

∂2F

∂r2
(1, n2, α

′)dα′) ∈ span(V )

Furthermore, we have that

∂F

∂r
(r, r′, α′)(r = 1)

= r′
( 1

|r2 + (r′)2 − 2rr′cos(α′)|3/2
− 3(r − r′cos(α′))2

|r2 + (r′)2 − 2rr′cos(α′)|5/2
)
(r = 1)

and, integrating with respect to α′ we get
ˆ
[−π,π]

∂F

∂r
(r, n2, α

′)(r = 1)dα′ = − π

(r′)2
(1 +O(

1

r′
)).

With the second derivative we obtain

∂2F

∂r2
(r, r′, α′)(r = 1)

= −r′
( 9(r − r′cos(α′))

|r2 + (r′)2 − 2rr′cos(α′)|5/2
− 15(r − r′cos(α′))3

|r2 + (r′)2 − 2rr′cos(α′)|7/2
)
(r = 1).

Now, before we get into more details regarding this value, we note that

r′
(
| 9(r − r′cos(α′))

|r2 + (r′)2 − 2rr′cos(α′)|5/2
− 15(r − r′cos(α′))3

|r2 + (r′)2 − 2rr′cos(α′)|7/2
|
)
(r = 1) ≤ 1

(r′)3
.

Therefore, we have that
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(
1

(n2)2
+O(

1

(n2)3
), O(

1

(n2)3
)) ∈ span(V ),

and again since span(V ) is a closed set, the vector (1, 0) belongs to span(V ). Now we only need
to prove that there exists a point r′ such that

ˆ
[−π,π]

−r′
( 9(1− r′cos(α′))

|1 + (r′)2 − 2r′cos(α′)|5/2
− 15(1− r′cos(α′))3

|1 + (r′)2 − 2r′cos(α′)|7/2|

)
dα′ ̸= 0,

so that we can find a vector Vn1,n2
of the form (a, b) with b ̸= 0. But, for example, using that, for

δ > 0 and r′ big

1

(1 + (r′)2 − 2r′cos(α′))δ
+

1

(1 + (r′)2 + 2r′cos(α′))δ
− 2

(1 + (r′)2)δ
≤ C

(r′)2(δ+1)

one can check that
ˆ
[−π,π]

−r′
( 9(1− r′cos(α′))

|1 + (r′)2 − 2r′cos(α′)|5/2
− 15(1− r′cos(α′))3

|1 + (r′)2 − 2r′cos(α′)|7/2|

)
dα′

=
C

(r′)4
+O(

1

(r′)5
)

with C ̸= 0, and taking r′ big enough we are done.

Therefore, to obtain f1 with the desired properties, we first consider a radial C∞ function
f̃1(r) with support in ( 12 ,

3
2 ) and derivative 1 in ( 34 ,

5
4 ) and then define

f1(r) := f̃1(r) + f̄1(r)

with f̄1(r) a C∞ function with support in [2,M ] such that

∂k vα(f̃1(r)+f̄1(r))(r)
r

∂rk
= 0

for r = 1, k = 1, 2 and such a function exists thanks to Lemma 2.2.5.
Once we choose specific f1 and f2, this family of initial conditions has some useful proper-

ties that we will use later. First, for any fixed K and λ our initial conditions are bounded in
H2+1/4 independently of the choice of N . Furthermore, the C2 norm is bounded for any fixed λ
independently of both N and K, and can be taken as small as we want by taking λ small.

For any such initial conditions, we consider the associated pseudo-solution

θ̄λ,K,N (r, α, t) := λ(f1(r) + f2(N
1/2(r − 1) + 1)

K∑
k=1

sin(Nkα− λtNk vα(f1)
r − λC0t)

N2k3
), (2.18)

where C0 is the constant from Lemmas 2.2.2 and 2.2.3. We do not add subindexes for f1 and f2
since we consider them fixed from now on. Furthermore, the constants appearing in most of our
results will also depend on f1 and f2, but, since we consider them fixed, we will not mention this.

This function for N ≥ 4 satisfies

∂θ̄λ,K,N (r, α, t)

∂t
+
∂θ̄λ,K,N

∂α

vα(λf1)

r
+
∂λf1
∂r

v̄r(θ̄λ,K,N ) = 0 (2.19)

with
v̄r(f(r) cos(kα+ g(r))) = C0f(r) cos(kα+ g(r) +

π

2
)

if k ̸= 0, and v̄r(f(r)) = 0. Note that, for arbitrary fixed T , these functions satisfy that
||θ̄λ,K,N ||H2+1/4 ≤ CλK, with C depending only on T .
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Furthermore, we can rewrite (2.19) as

∂θ̄λ,K,N (r, α, t)

∂t
+
∂θ̄λ,K,N

∂α

vα(θ̄λ,K,N )

r
+
∂θ̄λ,K,N

∂r
vr(θ̄λ,K,N )

+
∂θ̄λ,K,N

∂α

vα(λf1 − θ̄λ,K,N )

r
+
∂(λf1 − θ̄λ,K,N )

∂r
vr(θ̄λ,K,N )

+
∂λf1
∂r

(v̄r(θ̄λ,K,N )− vr(θ̄λ,K,N )) = 0

Therefore θ̄ is a pseudo-solution with source term

Fλ,K,N (x, t) =

∂θ̄λ,K,N

∂α

vα(λf1 − θ̄λ,K,N )

r
+
∂(λf1 − θ̄λ,K,N )

∂r
vr(θ̄λ,K,N ) +

∂λf1
∂r

(v̄r(θ̄λ,K,N )− vr(θ̄λ,K,N )).

Next we would like to prove that this source term is, indeed, small enough to obtain the desired
results. We start by proving bounds on L2 and in H3 for Fλ,K,N (x, t).

Lemma 2.2.6. For t ∈ [0, T ] and a pseudo-solution θ̄λ,K,N as in (2.18) the source term Fλ,K,N (x, t)
satisfies

||Fλ,K,N (x, t)||L2 ≤ CN−(2+3/4)

with C depending on K, λ and T .

Proof. We start bounding the term ∂λf1
∂r (v̄r(θ̄λ,K,N )− vr(θ̄λ,K,N )). First we decompose each func-

tion

sin(Nkα− λtN vα(f1)
r − λC0t)

N2k3

=
sin(Nkα) cos(λtN vα(f1)

r + λC0t)− cos(Nkα) cos(λtN vα(f1)
r + λC0t)

N2k3

and using that ∂k vα(f1)
r

∂rk
(r = 1) = 0 for k = 1, 2, then for r ∈ (1 − 2N−1/2, 1 + 2N−1/2) we have

that

|
∂ vα(f1)

r

∂r
| ≤ C

N

and thus

||
∂cos(λtNk vα(f1)

r + λC0t)

∂r
||L∞ ≤ C

||
∂ sin(λtNk vα(f1)

r + λC0t)

∂r
||L∞ ≤ C.

Therefore, we can directly apply Lemma 2.2.3 to obtain

|vr(f2(N1/2(r − 1) + 1)
sin(Nkα) cos(λtN vα(f1)

r + λC0t)

N2k3
)

− v̄r(f2(N
1/2(r − 1) + 1)

sin(Nkα) cos(λtN vα(f1)
r + λC0t)

N2k3
)| ≤ C

N5/2k3
,
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|vr(f2(N1/2(r − 1) + 1)
cos(Nkα) cos(λtN vα(f1)

r + λC0t)

N2k3
)

− v̄r(f2(N
1/2(r − 1) + 1)

cos(Nkα) cos(λtN vα(f1)
r + λC0t)

N2k3
)| ≤ C

N5/2k3
.

With this we can estimate
ˆ 1+N−1/2

1−N−1/2

ˆ π

−π

(
∂λf1
∂r

(vr(θ̄λ,K,N )− v̄r(θ̄λ,K,N )))2dαdr ≤ (||∂f1
∂r

||L∞)2
C

N5+1/2
.

For r ∈ (1/2, 1−N−1/2)∪(1+N−1/2,∞), we use that v̄ is zero in those points and Lemma 2.2.4
to obtain

ˆ 1−N−1/2

1/2

ˆ π

−π

(
∂λf1
∂r

(vr(θ̄λ,K,N )− v̄r(θ̄λ,K,N )))2dαdr

≤ C

N4
(||∂f1
∂r

||L∞)2
ˆ 1−N−1/2

1/2

ˆ π

−π

(
||f2||L∞

N3/2|r − 1|2
)2dαdr

≤ C

N5+1/2
(||∂f1
∂r

||L∞)2(||f2||L∞)2

and similarly

ˆ ∞

1+N−1/2

ˆ π

−π

(
∂λf1
∂r

(vr(θ̄)− v̄r(θ̄)))
2dαdr ≤ C

N5+1/2
(||∂f1
∂r

||L∞)2(||f2||L∞)2.

Combining all of these inequalities we get

||∂λf1
∂r

(vr(θ̄)− v̄r(θ̄))||L2 ≤ C

N2+3/4

with C depending on λ, K and T .
For the term ∂θ̄λ,K,N

∂α
vα(λf1−θ̄λ,K,N )

r we simply use ||∂θ̄λ,K,N

∂α ||L∞ ≤ C
N and

||vα(λf1 − θ̄λ,K,N )

r
1supp(θ̄λ,K,N )||L2 ≤ C

N2+1/4

so

||∂θ̄λ,K,N

∂α

vα(λf1 − θ̄λ,K,N )

r
||L2 ≤ C

N3+1/4
.

Similarly for ∂(λf1−θ̄λ,K,N )
∂r vr(θ̄λ,K,N ) we have that

||vr(θ̄λ,K,N )||L2 ≤ C

N2+1/4
and ||∂(θ̄λ,K,N − λf1)

∂r
||L∞ ≤ C

N
,

so

||∂(θ̄λ,K,N − λf1)

∂r
vr(θ̄λ,K,N )||L2 ≤ C

N3+1/4
,

which finishes the proof.
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Lemma 2.2.7. For t ∈ [0, T ], given a pseudo-solution θ̄λ,K,N as in (2.18) the source term
Fλ,K,N (x, t) satisfies

||Fλ,K,N (x, t)||H3 ≤ CN3/4

with C depending on K, λ, and T .

Proof. To prove this we will use that, given the product of two functions, we have

||fg||H3 ≤ C(||f ||L∞ ||g||H3 + ||f ||C1 ||g||H2 + ||f ||C2 ||g||H1 + ||f ||C3 ||g||L2).

Furthermore, for the pseudo-solutions considered, we have that ||θ̄λ,K,N − λf1||Ck ≤ CNk−2,
||θ̄λ,K,N − λf1||Hk ≤ CNk−2−1/4, ||λf1||Ck ≤ C with the constants C depending on k, λ and K.

Therefore we have that, using the bounds for the support of θ̄λ,K,N

||∂θ̄λ,K,N

∂α

vα(λf1 − θ̄λ,K,N )

r
||H3

≤ C(||∂θ̄λ,K,N

∂α
||L∞ ||vα(λf1 − θ̄λ,K,N )||H3 + ||∂θ̄λ,K,N

∂α
||C1 ||vα(λf1 − θ̄λ,K,N )||H2

+ ||∂θ̄λ,K,N

∂α
||C2 ||vα(λf1 − θ̄λ,K,N )||H1 + ||∂θ̄λ,K,N

∂α
||C3 ||vα(λf1 − θ̄λ,K,N )||L2)

≤ CN−1/4,

and analogously

||∂(θ̄λ,K,N − λf1)

∂r
vr(θ̄λ,K,N )||H3

≤ C(||∂(θ̄λ,K,N − λf1)

∂r
||L∞ ||vr(θ̄λ,K,N )||H3 + ||∂(θ̄λ,K,N − λf1)

∂r
||C1 ||vr(θ̄λ,K,N )||H2

+ ||∂(θ̄λ,K,N − λf1)

∂r
||C2 ||vr(θ̄λ,K,N )||H1 + ||∂(θ̄λ,K,N − λf1)

∂r
||C3 ||vr(θ̄λ,K,N )||L2)

≤ CN−1/4,

and finally

||∂λf1
∂r

(vr(θ̄λ,K,N )− v̄r(θ̄λ,K,N ))||H3

≤ C(||∂λf1
∂r

||L∞ ||(vr(θ̄λ,K,N )− v̄r(θ̄λ,K,N ))||H3 + ||∂λf1
∂r

||C1 ||(vr(θ̄λ,K,N )− v̄r(θ̄λ,K,N ))||H2

+ ||∂λf1
∂r

||C2 ||(vr(θ̄λ,K,N )− v̄r(θ̄λ,K,N ))||H1 + ||∂λf1
∂r

||C3 ||(vr(θ̄λ,K,N )− v̄r(θ̄λ,K,N ))||L2)

≤ CN3/4.

We can combine these two lemmas and use the interpolation inequality for Sobolev spaces to
obtain that

||Fλ,K,N ||H2+1/4 ≤ C(N−(2+3/4))1/4(N3/4)3/4 ≤ CN−1/8.

With this, we are ready to study how the solution to SQG with the same initial conditions as
θ̄λ,K,N behaves. If we define

Θλ,K,N := θλ,K,N − θ̄λ,K,N ,
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with θλ,K,N the only H2+ 1
4 solution to the SQG equation with the same initial conditions as

θ̄λ,K,N , we have that

∂Θλ,K,N

∂t
+ v1(Θλ,K,N )

∂Θλ,K,N

∂x1
+ v2(Θλ,K,N )

∂Θλ,K,N

∂x2

+ v1(Θλ,K,N )
∂θ̄λ,K,N

∂x1
+ v2(Θλ,K,N )

∂θ̄λ,K,N

∂x2
(2.20)

+ v1(θ̄λ,K,N )
∂Θλ,K,N

∂x1
+ v2(θ̄λ,K,N )

∂Θλ,K,N

∂x2
− Fλ,K,N (x, t) = 0,

and we have the following results regarding the evolution of Θλ,K,N .

Lemma 2.2.8. Let Θλ,K,N defined as in (2.20), then if θλ,K,N exists for t ∈ [0, T ], we have that

||Θλ,K,N (x, t)||L2 ≤ Ct

N (2+3/4)

with C depending on λ, K and T .

Proof. We start by noting that

∂

∂t

||Θλ,K,N ||2L2

2
= −

ˆ
R2

Θλ,K,N(
(v1(Θλ,K,N ) + v1(θ̄λ,K,N ))

∂Θλ,K,N

∂x1
+ (v2(Θλ,K,N ) + v2(θ̄λ,K,N ))

∂Θλ,K,N

∂x2

+ v1(Θλ,K,N )
∂θ̄λ,K,N

∂x1
+ v2(Θλ,K,N )

∂θ̄λ,K,N

∂x2
− Fλ,K,N (x, t)

)
dx,

but, by incompressibility, we have that

ˆ
R2

Θλ,K,N

(
(v1(Θλ,K,N ) + v1(θ̄λ,K,N ))

∂Θλ,K,N

∂x1
+ (v2(Θλ,K,N ) + v2(θ̄λ,K,N ))

∂Θλ,K,N

∂x2

)
dx = 0,

and therefore we get that

∂

∂t

||Θλ,K,N ||2L2

2

≤ |
ˆ
R2

Θλ,K,N

(
v1(Θλ,K,N )

∂θ̄λ,K,N

∂x1
+ v2(Θλ,K,N )

∂θ̄λ,K,N

∂x2
+ Fλ,K,N (x, t)

)
dx|

≤ ||Θλ,K,N ||L2

(
||Θλ,K,N ||L2 ||θ̄λ,K,N ||C1 + ||Fλ,K,N (x, t)||L2

)
,

and using that ||Fλ,K,N ||L2 ≤ C
N(2+3/4) , ||θ̄λ,K,N ||C1 ≤ C and integrating we get that

||Θλ,K,N ||L2 ≤ C(eCt − 1)

N (2+3/4)
.

Lemma 2.2.9. Let Θλ,K,N be defined as in (2.20), then for N big enough, θλ,K,N exists for
t ∈ [0, T ] and

||Θλ,K,N (x, t)||H2+1/4 ≤ Ct

N1/8

with C depending on λ, K and T .
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Proof. It is enough to prove that

||D2+1/4Θλ,K,N ||L2 ≤ Ct

N1/8

since
||f ||Hs ≤ C(||Dsf ||L2 + ||f ||L2)

with Ds = (−∆)s/2 and we already have the result

||Θλ,K,N ||L2 ≤ Ct

N (2+3/4)
.

We will use the following result found in [81].

Lemma 2.2.10. Let s > 0. Then for any s1, s2 ≥ 0 with s1 + s2 = s, and any f , g ∈ S(R2), the
following holds:

||Ds(fg)−
∑

|k|≤s1

1

k!
∂kfDs,kg −

∑
|j|≤s2

1

j!
∂jgDs,jf ||L2 ≤ C||Ds1f ||L2 ||Ds2g||BMO (2.21)

where j and k are multi-indexes, ∂j = ∂

∂x
j1
1 ∂x

j2
2

, ∂jξ = ∂

∂ξ
j1
1 ∂ξ

j2
2

and Ds,j is defined using

D̂s,jf(ξ) = D̂s,j(ξ)f̂(ξ)

D̂s,j(ξ) = i−|j|∂jξ(|ξ|
s).

Although this result is for functions in the Schwartz space S, since we only consider compactly
supported functions we can apply it to functions in Hs. We will consider s = 2 + 1/4, although
we will just write s for brevity.

Then

d

dt

||DsΘλ,K,N ||2L2

2
= −

ˆ
R2

DsΘλ,K,N

Ds
(
(v1(Θλ,K,N ) + v1(θ̄λ,K,N ))

∂Θλ,K,N

∂x1
+ (v2(Θλ,K,N ) + v2(θ̄λ,K,N ))

∂Θλ,K,N

∂x2

+ v1(Θλ,K,N )
∂θ̄λ,K,N

∂x1
+ v2(Θλ,K,N )

∂θ̄λ,K,N

∂x2
+ Fλ,K,N )(x, t)

)
dx.

We will focus for now on
ˆ
R2

DsΘλ,K,ND
s
(
v1(θ̄λ,K,N ))

∂Θλ,K,N

∂x1
+ v2(θ̄λ,K,N )

∂Θλ,K,N

∂x2

)
dx.

Applying (2.21) with s2 = 1, g = vi(θ̄λ,K,N )), f =
∂Θλ,K,N

∂xi
, i = 1, 2 we get that

(DsΘλ,K,N , D
s(fg)−

∑
|k|≤s1

1

j!
∂jfDs,jg −

∑
|k|≤s2

1

k!
∂kgDs,kf)L2

≤ C||DsΘλ,K,N ||L2 ||Ds1f ||L2 ||Ds2g||BMO

≤ C||DsΘλ,K,N ||L2 ||θ̄λ,K,N ||Hs ||Θλ,K,N ||Hs .

Furthermore we have that

(DsΘλ,K,N , D
s(
∂Θλ,K,N

∂x1
)v1(θ̄λ,K,N ) +Ds(

∂Θλ,K,N

∂x2
)v2(θ̄λ,K,N ))L2

=
1

2

ˆ
R2

∂

∂x1
(DsΘλ,K,N )2v1(θ̄λ,K,N )) +

∂

∂x2
(DsΘλ,K,N )2v2(θ̄λ,K,N )dx = 0
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and, for i = 1, 2, using that the operators Ds,c are continuous from Ha to Ha−s+c, we have the
following three estimates

1)

|(DsΘλ,K,N ,
∑
|k|=1

1

k!
∂kvi(θ̄λ,K,N ))Ds,k ∂Θλ,K,N

∂xi
)L2 |

≤ C||DsΘλ,K,N ||L2 ||vi(θ̄λ,K,N )||H2+ϵ ||Θλ,K,N ||Hs

≤ C||DsΘλ,K,N ||L2 ||θ̄λ,K,N ||Hs ||Θλ,K,N ||Hs ,

2)

|(DsΘλ,K,N ,
∑
|j|=1

1

j!
∂j
∂Θλ,K,N

∂xi
Ds,jvi(θ̄λ,K,N ))L2 |

≤ C
∑
|j|=1

||DsΘλ,K,N ||L2 || 1
j!
∂j
∂Θλ,K,N

∂xi
||L2/(3−s) ||Ds,jvi(θ̄λ,K,N ))||L2/(s−2)

≤ C||DsΘλ,K,N ||L2 ||Θλ,K,N ||Hs ||θ̄λ,K,N ||Hs ,

3)

|(DsΘλ,K,N ,
∂Θλ,K,N

∂xi
Dsvi(θ̄λ,K,N ))L2 |

≤ C||DsΘλ,K,N ||L2 ||Θλ,K,N ||Hs ||θ̄λ,K,N ||Hs .

Most of the other terms are bounded in a similar way without any complication, although a
comment needs to be made about bounding the terms

ˆ
R2

Ds(Θλ,K,N )
(
v1(Θλ,K,N )

∂Dsθ̄λ,K,N

∂x1
+ v2(Θλ,K,N )

∂Dsθ̄λ,K,N

∂x2

)
dx.

At first glance one could think that, since we are considering θ̄λ,K,N bounded in H2+1/4 but
not in higher order spaces, we could have a problem bounding this integral. However, we actually
have that

||∂D
sθ̄λ,K,N

∂xi
||L∞ ≤ C||Dsθ̄λ,K,N ||H2+ϵ ≤ C||θ̄λ,K,N ||H4+1/4+ϵ ≤ CN2+ϵ

||vi(Θλ,K,N )||L2 ≤ CTN−(2+3/4)

and thus

|
ˆ
R2

Ds(Θλ,K,N )
(
v1(Θλ,K,N )

∂Dsθ̄λ,K,N

∂x1
+ v2(Θλ,K,N )

∂Dsθ̄λ,K,N

∂x2

)
dx|

≤ CT ||Ds(Θλ,K,N )||L2N−3/4+ϵ ≤ CT ||Ds(Θλ,K,N )||L2N−1/8,

and combining all of this together plus similar bounds for the other terms, and using

||θ̄λ,K,N ||Hs ≤ C, ||Fλ,K,N ||Hs ≤ CN−1/8
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with C depending on λ, K and T , we get

d

dt
||DsΘλ,K,N ||2L2 ≤ ||DsΘλ,K,N ||L2(CN−1/8 + C||Θλ,K,N ||Hs + C||Θλ,K,N ||2Hs)

which gives us, using

||Θλ,K,N ||Hs ≤ C(||Θλ,K,N ||L2 + ||DsΘλ,K,N ||L2) ≤ C(||DsΘλ,K,N ||L2 +N−(2+3/4))

that

∂

∂t
||DsΘλ,K,N ||L2 ≤ (CN−1/8 + C||DsΘλ,K,N ||L2 + C||DsΘλ,K,N ||2L2).

Now, we restrict ourselves to [0, T∗], with T∗ the biggest time such that ||DsΘλ,K,N ||L2 ≤ 1
(or T if T∗ is bigger than T or it does not exist). Integrating for those times we get

||DsΘλ,K,N ||L2 ≤ C(eCt − 1)

N1/8
,

and since for N big enough we have that T ≤ T∗ we are done.

Now we are finally prepared to prove strong ill-posedness in C2 for the SQG equation.

Theorem 2.2.1. For any c0 > 0, M > 0 and t∗ > 0, we can find a C2 ∩H2+1/4 function θ0(x)

with ||θ0(x)||C2 ≤ c0 such that the only solution θ(x, t) ∈ H2+ 1
4 to the SQG problem (2.1) with

initial conditions θ0(x) will satisfy ||θ(x, t∗)||C2 ≥Mc0.

Proof. We will prove this by constructing a solution with the desired properties. We fix arbitrary
c0 > 0, M > 0 and t∗, and consider the pseudo-solutions θ̄λ,K,N . First, note that, for any N , K
natural numbers, for λ > 0 small enough our family of pseudo-solutions has a small initial norm
in C2, so we consider λ = λ0 small so that ||θλ0,K,N (x, 0)||C2 ≤ c0 for all K, N natural and such
that |λ0C0t∗| ≤ π

2 .
These pseudo-solutions fulfill that, at time t, for α = λ0t

vα(f1)
r

|
∂2θ̄λ0,K,N

(x, t)

∂α2
| = |λ0f2(N1/2(r − 1) + 1)

K∑
k=1

sin(Nkα− λ0tNk
vα(f1)

r − λ0C0t)

k
)|

= |λ0f2(N1/2(r − 1) + 1)

K∑
k=1

sin(−λ0C0t)

k
)|

≥ λ0|f2(N1/2(r − 1) + 1)|ln(K)|sin(−λ0C0t)|.

Furthermore, we can find c > 0 small such that , for α ∈ [λ0t
vα(f1)

r − c 2π
NK , λ0t

vα(f1)
r + c 2π

NK ]
we have

|∂
2θ̄λ0,K,N (x, t)

∂α2
| ≥ λ0

|f2(N1/2(r − 1) + 1)|ln(K)|sin(−λ0C0t)|
2

.

Therefore by using that f(r) = 1 if r ∈ (3/4, 5/4) and defining

B := ∪j∈N

[
j
2π

N
+ λ0t

vα(f1)

r
− c

2π

NK
, j

2π

N
+ λ0t

vα(f1)

r
+ c

2π

NK

]
and A := [1− N−1/2

4 , 1 + N−1/2

4 ], we obtain
ˆ
A

ˆ
B

1

r3

(∂2θ̄λ0,K,N

∂α2

)2
dαdr ≥ λ20

ln(K)2

4(1 +N− 1
2 )2

|A||B||sin(−λ0C0t)|2, (2.22)

with |A|, |B| the length of A and B respectively. We now consider K big enough such that

λ0ln(K)|sin(−λ0C0t∗)| ≥ 16Mc0,
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and thus, for N big
ˆ
A

ˆ
B

1

r3

(∂2θ̄λ0,K,N

∂α2

)2
dαdr ≥ 16M2c20|A||B|. (2.23)

Now, we can use Lemmas 2.2.9 and 2.2.8 plus the interpolation inequality for Sobolev spaces to
obtain that, for N big enough,

||Θλ0,K,N ||H2 ≤ CtN−a−1/4

for some a > 0 which can be computed explicitly but whose particular value is not relevant for
this proof. With this we have that the solution θλ0,K,N satisfies that, at t = t∗

(ˆ
A

ˆ
B

1

r3

(∂2θλ0,K,N

∂α2

)2
dαdr

)1/2
= || 1

r2
∂2θλ0,K,N

∂α2
1A×B ||L2

≥ || 1
r2
∂2θ̄λ0,K,N

∂α2
1A×B ||L2 − || 1

r2
∂2Θλ0,K,N

∂α2
1A×B ||L2

≥ 4Mc0|A|1/2|B|1/2 − Ct∗N
−a−1/4

where we used that there is a constant C such that

|| 1
r2
∂2g

∂α2
1A×B ||L2 ≤ C||g1A×B ||H2 . (2.24)

But |A||B| ≥ CN−1/2, so, taking N big enough we get

(ˆ
A

ˆ
B

1

r3

(∂2θλ0,K,N

∂α2

)2
dαdr

)1/2
≥ 3Mc0|A|1/2|B|1/2.

But

supx∈A×B |
1

r2
∂2g

∂α2
| ≤ 2||g||C2 , (2.25)

so (ˆ
A

ˆ
B

1

r3

(∂2θλ0,K,N

∂α2

)2
dαdr

)1/2
≤ 2|A|1/2|B|1/2||θλ0,K,N ||C2 ,

and thus

||θλ0,K,N ||C2 ≥ 3Mc0
2

.

2.2.3 Non existence in Ck

Now we can prove the last result of this section.

Theorem 2.2.2. Given c0 > 0, there are initial conditions θ0 ∈ H2+1/8∩C2 for the SQG equation
(2.1) such that ||θ0||C2 ≤ c0 and the only solution θ(x, t) ∈ H2+ 1

8 with θ(x, 0) = θ0(x) satisfies
that there exists a t∗ > 0 with ||θ(x, t)||C2 = ∞ for all t in the interval (0, t∗).
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Remark 2. We can actually prove that, for the initial conditions θ0(x) obtained in Theorem
2.2.2, there is no solution in L∞

t L
2
x such that θ(x, t) ∈ C2 for t in some small time interval (even

if we allow ess-supt∈[0,ϵ]||θ(x, t)||C2 = ∞), since, if we call θ1(x, t) the solution found in Theorem
2.2.2 and θ2(x, t) the new solution belonging pointwise in time to C2 for a small time interval, we
can obtain the bound

d||θ2(x, t)− θ1(x, t)||L2

dt
≤ C||θ2(x, t)− θ1(x, t)||L2

which implies that ||θ2(x, t)− θ1(x, t)||L2 = 0.

Remark 3. The value of t∗ can be made arbitrarily big if wanted with very small adjustments
on the proof, but for simplicity we provide the proof without worrying about the specific value of
t∗.

Proof. (of Theorem 2.2.2)
We consider a family of pseudo-solutions to the SQG equation

θ̄n(x, t) = θ̄λn,Kn,Nn
(x, t)

for n ∈ N, with θ̄λn,Kn,Nn
defined as in (2.18). Although θ̄n depends on the choice of λn, Kn and

Nn, we do not write the dependence explicitly to get a more compact notation. We start by fixing
λn satisfying

λn ≤ 2−n,

and such that ||θ̄n(x, 0)||C2 ≤ c0 independently of the choice of Kn and Nn.
Note that this already tells us that for any fixed arbitrary T , if 0 ≤ t ≤ T then

||θ̄n(x, t)||H2+1/8 ≤ C2−n(
Kn

N
1/8
n

+ 1)

with C depending on T . We will only consider N1/8
n ≥ Kn, so that ||θ̄n(x, t)||H2+1/8 ≤ C2−n.

We fix now Kn so that λ2nln(Kn) ≥ 16n. Note that then, as seen in the proof of Theorem 2.2.1,
we have that there is a set Sn = Sλn,Kn,Nn,t, (see (2.22), A× B would give the desired set) with
measure |Sn| ≥ c

KnN
1/2
n

> 0 such that the function θ̄n(x, t) fulfils that

|| 1
r2
∂2θ̄n(x, t)

∂α2
1Sn

||L2 ≥ 4n
|Sn|1/2|sin(λnC0t)|

λn
. (2.26)

Let us consider now the initial conditions

θ((λn)n∈N, (Kn)n∈N, (Nn)n∈N, (Rn)n∈N) =
∑
n∈N

TRn
(θ̄n(x, 0))

with TR(f(x1, x2)) = f(x1+R, x2), with Rn yet to be fixed. We will refer to these initial conditions
simply as θ(x, 0) and to the uniqueH2+ 1

8 solution to the SQG equation (2.1) with initial conditions
θ(x, 0), as θ(x, t) for a more compact notation, keeping in mind that the function depends on
multiple parameters. Since ||θ̄n(x, 0)||H2+1/8 ≤ C2−n we have that ||θ(x, 0)||H2+1/8 ≤ C, and thus
we can use the a priori bounds to assure the existence of θ(x, t) for some time interval [0, tex] and
also ||θ(x, t)||H2+1/8 ≤ C for some big C for t ∈ [0, tex2 ]. This also tells us that, in particular,
||vj(θ)||L∞ ≤ vmax for some big constant vmax for t ∈ [0, tex2 ] and j = 1, 2.

We restrict ourselves now to study the interval t ∈ [0, tcrit] with

tcrit = min(
tex
2
,

π

supn(λn)C02
).

By construction, the support of θ̄n(x, 0) is contained in a disk of a certain radius D. Then, if
we consider Rn = Rn−1 + 2D + 4vmaxtcrit +Dn +Dn−1 with Dn, Dn−1 > 0, we have that

d(supp(1BD+2vmaxtcrit
(−Rn,0)θ(x, t)), supp(θ(x, t)− 1BD+2vmaxtcrit

(−Rn,0)θ(x, t))) > Dn
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and

θ̃n(x, t) := θ(x, t)1BD+2vmaxtcrit
(−Rn,0)

is a pseudo-solution fulfilling

∂θ̃n
∂t

+ v1(θ̃n)
∂θ̃n
∂x1

+ v2(θ̃n)
∂θ̃n
∂x2

+ F̃n = 0,

v1(θ̃n) = − ∂

∂x2
Λ−1θ̃n = −R2θ,

v2(θ̃n) =
∂

∂x1
Λ−1θ̃n = R1θ,

F̃n := v1(θ − θ̃n)
∂θ̃n
∂x1

+ v2(θ − θ̃n)
∂θ̃n
∂x2

,

θ̃n(x, 0) := θ(x, 0)1BD+2vmaxtcrit
(−Rn,0).

If we now define Θn := θ̃n − TRn
(θ̄n) we get

∂Θn

∂t
+ v1(Θn)

∂Θn

∂x1
+ v2(Θn)

∂Θn

∂x2

+ v1(Θn)
∂TRn

(θ̄n)

∂x1
+ v2(Θn)

∂TRn
(θ̄n)

∂x2
(2.27)

+ v1(TRn(θ̄n))
∂Θn

∂x1
+ v2(TRn

(θ̄n))
∂Θn

∂x2
− TRn

(Fλn,Kn,Nn
(x, t)) + F̃n = 0,

with Fλn,Kn,Nn the source term of our pseudo-solution θ̄n = θ̄λn,Kn,Nn and therefore satisfying
the bounds given by Lemmas 2.2.8 and 2.2.9,

||Fλn,Kn,Nn
||L2 ≤ C

N
2+3/4
n

and
||Fλn,Kn,Nn ||H2+1/4 ≤ C

N
1/8
n

.

It is easy to prove that

||vi(θ − θ̃n)1supp(θ̃n)||L∞ ≤ C

(Dn)2

and in fact
||vi(θ − θ̃n)1supp(θ̃n)||Ck ≤ Ck

(Dn)2
(2.28)

since
d(supp(θ̃n), supp(θ̃ − θ̃n)) ≥ Dn.

Taking, for example, Dn = N
2+3/4

2
n to obtain that ||F̃n||L2 ≤ C

N
2+ 3

4
n

we can argue as in Lemma

2.2.8 to get that

||Θn||L2 ≤ Ct

N
2+3/4
n

for all t ∈ [0, tcrit]. We can also estimate ||Θn||H2+1/8 as in Lemma 2.2.9, being the only difference
that now we have the extra term F̃n. Therefore, it is enough to obtain bounds for

ˆ
R2

Ds(Θn)(D
s(v1(θ − θ̃n)

∂θ̃n
∂x1

+ v2(θ − θ̃n)
∂θ̃n
∂x2

))dx1dx2
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with s = 2 + 1/8.
Using Lemma 2.2.10 in the same way as we did in Lemma 2.2.9, we can decompose this integral

in several terms that are easy to bound using (2.28) plus the term
ˆ
R2

Ds(Θn)(v1(θ − θ̃n)D
s ∂θ̃n
∂x1

+ v2(θ − θ̃n)D
s ∂θ̃n
∂x2

)dx1dx2

which is, in principle, too irregular to be bounded. However, using incompressibility and Θn =
θ̃n − TRn(θ̄n) we get

|
ˆ
R2

Ds(Θn)(v1(θ − θ̃n)D
s ∂θ̃n
∂x1

+ v2(θ − θ̃n)D
s ∂θ̃n
∂x2

)dx1dx2|

= |
ˆ
R2

Ds(TRn(θ̄n))(v1(θ − θ̃n)D
s ∂θ̃n
∂x1

+ v2(θ − θ̃n)D
s ∂θ̃n
∂x2

)dx1dx2|

= |
ˆ
R2

Ds(θ̃n)(v1(θ − θ̃n)D
s ∂TRn(θ̄n)

∂x1
+ v2(θ − θ̃n)D

s ∂TRn(θ̄n)

∂x2
)dx1dx2|

≤ ||Dsθ̃n||L2

C

N
2+ 3

4
n

N2
n ≤ C

N
3
4
n

.

Therefore, as in Lemma 2.2.9, we get

||Θn||H2+1/8 ≤ Ct

N
1/8
n

.

This combined with the L2 norm and using the interpolation inequality for Sobolev spaces
gives us

||Θn||H2 ≤ Ct

N
19/68
n

=
Ct

N
1/4+a
n

.

with a > 0, for all t ∈ [0, tcrit].
However, this means that, if we consider the polar coordinates around the point (−Rn, 0),

which we will call (rRn
, αRn

), and using (2.24)

|| 1

r2Rn

∂2θ(x, t)

∂α2
Rn

TRn
(1Sn

)||L2

≥ ||TRn
(
1

r2
∂2θ̄(x, t)

∂α2
1Sn

)||L2 − ||θ̃n − TRn
(θ̄n(x, t))||H2

≥ 4n|Sn|1/2
|sin(λnC0t)|

λn
− Ct

N
1/4+a
n

but, using C0tλn ≤ π
2 , |Sn| ≥ CK−1

n N
−1/2
n and taking Nn big enough we get

||TRn
(1Sn

)
1

r2Rn

∂2θ(x, t)

∂α2
Rn

||L2 ≥ cnt|Sn|1/2

for some small constant c.
But then

||TRn
(1Sn

)
1

r2Rn

∂2θ̃n(x, t)

∂α2
Rn

||L2

≤ ||TRn
θ̃n(x, t)||C2 |Sn|1/2
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and thus ||TRn
(1Sn

)θ(x, t)||C2 ≥ cnt and we are done since we can do this for every n.

Both results in this section can be obtained in Cm for m ≥ 2, using the same method. To do
it we consider pseudo-solutions of the form

λ(f1(r) + f2(N
1/2(r − 1) + 1)

K∑
k=1

sin(Nkα)

Nmkm+1
).

The proof follows the same method, except that this time we have that the associated source
terms Fλ,K,N of these pseudo-solutions fulfil ||Fλ,K,N ||L2 ≤ C

Nm+3/4 , ||Fλ,K,N ||Hk ≤ CNk−m−1/4,
which gives us, by taking k big and using the interpolation inequality that

||Fλ,K,N ||
Hm+1

4
≤ CN− 1

2+δ

for any δ > 0.
Note also that analogous expressions as (2.24) and (2.25) exists for higher order derivatives in

α, albeit with different constants.

2.3 Strong ill-posedness and non existence in supercritical
Sobolev spaces

2.3.1 Pseudo-solutions for Hs

The proof for ill-posedness in supercritical Sobolev spaces follows a very similar strategy as before.
We find an appropriate pseudo-solution with the desired properties, we find bounds for the source
term and then we obtain bounds for the difference between the real solution and the pseudo-
solution. This time, we will consider pseudo-solutions of the form

θ̄(r, α, t) = f1(r) + f2(r)
sin(Nα−Nt vα(f1(r)

r ))rβ0
Nβ

with f1, f2 compactly supported C∞ functions, r0 > 0 and vα(f1(r)) is the angular velocity
generated by the function f1(r).

The choice of f1, f2 and r0 will depend on the specific behaviour we want our pseudo-solutions
to have. Before we start to specify how we choose them and how we will label the pseudo-solutions,
we need the following technical lemma.

Lemma 2.3.1. For any β ∈ ( 32 , 2) and K, c > 0, there exists a C∞ radial function f1(r) :
R+ × [0, 2π] → R, with support in some [a1, a2] × [0, 2π], 0 < a1 < a2 depending on K, c and β

such that ||f1(r)||Hβ ≤ c, and |∂
vα(f1(.))(r)

r

∂r (r = a1

2 )| ≥ 2K
a1

.

Proof. By Lemma 2.2.5, we can find a C∞ function g(r) : R+ × [0, 2π] → R with support in

r ∈ [2,M ] such that ∂
vα(g(.))(r)

r

∂r (r = 1) = 1. If we consider now the functions

gλ1,λ2(r) :=
g(λ1r)

λ2λ
β−1
1

, λ1, λ2 > 1

we have (for example using the interpolation inequalities for Sobolev spaces) that

||gλ1,λ2
(r)||Hβ ≤ C

λ2
(2.29)

with C depending on ||g(r)||H2 .

Furthermore, vα(f(λ·))( rλ ) = vα(f(·))(r), ∂vα(f(λ·))
∂r ( rλ ) = λ∂vα(f(·))

∂r (r), so
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∂
vα(gλ1,λ2

(.))(r)

r

∂r
(r =

1

λ1
) =

λ3−β
1

λ2
=
λ2−β
1
1
λ1
λ2
.

Therefore it is enough to take gλ1,λ2 with λ2 big enough so that C
λ2

≤ c (C the constant in

(2.29)) and then λ1 big enough so that λ2−β
1

λ2
≥ K and gλ1,λ2

with a1 = 2
λ1

, a2 = M
λ1

will have all
the properties desired.

From now on we consider β a fixed value in the interval ( 32 , 2). The family of pseudo-solutions
we consider to obtain ill-posedness in Hβ is, for N ∈ N

θ̄N,c,K(r, α, t) = f1,c,K(r) + f2,c,K(r)rβc,K
sin(Nα−Nt vα(f1(r))

r )

Nβ
(2.30)

with f1,c,K the function given by Lemma 2.3.1 for the specific values of c and K considered and
rc,K = a1

2 given by the lemma. By continuity, we have that there exists an interval [rc,K−ϵ, rc,K+ϵ]
such that if r̄ ∈ [rc,K − ϵ, rc,K + ϵ] then

∂
vα(f1,c,K(.))(r)

r

∂r
(r = r̄) ≥ K

2r̄
. (2.31)

We take f2,c,K to be a C∞ function with support in [rc,K − ϵ, rc,K + ϵ] ∩ [
rc,K
2 ,

3rc,K
2 ] and

fulfilling ||f2,c,K ||L2 = c.
These pseudo-solutions fulfil the evolution equation

∂θ̄N,c,K

∂t
+
vα(f1,c,K(·))

r

∂θ̄N,c,K

∂α
= 0

and therefore they are pseudo-solutions with source term

FN,c,K (2.32)

:= −(
vα(θ̄N,c,K(·)− f1,c,K(·))

r

∂θ̄N,c,K

∂α
+ vr(θ̄N,c,K(·))∂θ̄N,c,K

∂r
)

= −(
vα(θ̄N,c,K(·)− f1,c,K(·))

r

∂θ̄N,c,K

∂α
+ vr(θ̄N,c,K(·)− f1,c,K(·))∂θ̄N,c,K

∂r
).

Next we need to obtain bounds for our source term. To do this, we start with a lemma
analogous to Lemma 2.2.4:

Lemma 2.3.2. Given a L∞ function g̃N : R → R with support in the interval (a, b) then if we
define gN as

gN (r, α) := sin(Nα+ α0)g̃N (r)

with N a natural number, then there is a constant C depending on (a, b) such that if r > b,
then

|vr(gN )|(r, α) ≤ C||gN ||L∞

N |r − b|2
.

Furthermore, we have that if ||g̃N ||Ci ≤MN i for i = 0, 1, ...,m, then

| ∂
mvr(gN )

∂xm−i
1 ∂xi2

|(r, α) ≤ CMNm−1

|r − b|2
, (2.33)

with C depending on (a, b) and m.
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Proof. The proof for the decay of the velocity it is analogous to that of Lemma 2.2.4. As for the
higher derivatives, using that

vr(w) = cos(α(x))v1(w) + sin(α(x))v2(w),

one can obtain that

| ∂
mvr(gN )

∂xm−i
1 ∂xi2

(r, α)|

≤ |vr(
∂mgN

∂xm−i
1 ∂xi2

(r, α))(r, α)|

+ C

m−1∑
i=0

i∑
j=0

|( ∂iv1(gN )

∂jx1∂i−jx2
)(r, α)|

+ C

m−1∑
i=0

i∑
j=0

|( ∂iv2(gN )

∂jx1∂i−jx2
)(r, α)|

with C depending on m, a and b, and using the decay for vr, and

|v1(w)(x)| ≤ C
||w||L1

|d(x, supp(w))|2

|v2(w)(x)| ≤ C
||w||L1

|d(x, supp(w))|2

we obtain (2.33).

With this, we are now ready to obtain the bounds for our source term.

Lemma 2.3.3. For t ∈ [0, T ] and a pseudo-solution θ̄N,c,K as in (2.30) then the source term
FN,c,K(x, t) as in (2.32) satisfies

||FN,c,K(x, t)||L2 ≤ CN−(2β−1)

with C depending on c, K and T .

Proof. In order to obtain the desired estimate we divide the source term into several parts. First
we have

||vα(θ̄N,c,K(·)− f1,c,K(·))
r

∂θ̄N,c,K

∂α
||L2

≤ C||vα(θ̄N,c,K(·)− f1,c,K(·))||L2 ||∂θ̄N,c,K

∂α
||L∞ ≤ C

N2β−1

and analogously

||vr(θ̄N,c,K(·)− f1,c,K(·))∂(θ̄N,c,K − f1,c,K(r))

∂r
||L2

≤ ||vr(θ̄N,c,K(·)− f1,c,K(·))||L2 ||∂(θ̄N,c,K − f1,c,K(r))

∂r
||L∞ ≤ C

N2β−1
.

Finally, by using that supp(f1,c,K) ∈ [2rc,K , a2) (see Lemma 2.3.1 and the definition of the
pseudo-solution ), supp(f2,c,K) ∈ [

rc,k
2 ,

3rc,k
2 ] and together with Lemma 2.3.2 we have
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||vr(θ̄N,c,K(·)− f1,c,K(·))∂f1,c,K(r)

∂r
||L2

≤
( ˆ a2

2rc,k

C

N2+2β(r − 3rc,K
2 )4

rdr
)1/2

≤ C

N1+β
. (2.34)

Combining all three bounds we obtain the desired result.

Lemma 2.3.4. For t ∈ [0, T ] and a pseudo-solution θ̄N,c,K as in (2.30) then the source term
FN,c,K(x, t) as in (2.32) satisfies, for k ∈ N

||FN,c,K(x, t)||Hk ≤ C

N2β−1−k

with C depending on k, c, K and T .

Proof. We separate the source term in three different parts:
1) Using the properties of the support of θ̄N,c,K

||∂θ̄N,c,K

∂α

vα(f1,c,K − θ̄N,c,K)

r
||Hk

≤ C

k∑
i=0

||∂θ̄N,c,K

∂α
||Ci ||vα(f1,c,K − θ̄N,c,K)||Hk−i

≤ C

N2β−1−k
,

2)

||∂(θ̄N,c,K − f1,c,K)

∂r
vr(θ̄N,c,K)||Hk

≤ C

k∑
i=0

||∂(θ̄N,c,K − f1,c,K)

∂r
||Ci ||vr(θ̄N,c,K)||Hk−i

≤ C

N2β−1−k
,

3) To bound ||∂f1,c,K∂r vr(θ̄N,c,K)||Hk , we just apply Lemma 2.3.2 as in (2.34) to obtain

||∂f1,c,K
∂r

vr(θ̄N,c,K)||Hk

≤
k∑

i=0

i∑
j=0

||
∂i(∂

f1,c,K
∂r vr(θ̄N,c,K))

∂jx1∂i−jx2
||L2 ≤ C

Nβ+1−k
≤ C

N2β−1−k
.

And applying the interpolation inequality for Sobolev spaces (with L2 and for example H3)
we obtain the following corollary:

Corollary 2.3.5. For t ∈ [0, T ] and a pseudo-solution θ̄N,c,K as in (2.30) then the source term
FN,c,K(x, t) as in (2.32) satisfies

||FN,c,K(x, t)||
Hβ+1

2
≤ CN−(β− 3

2 )

with C depending on c, K, T .
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Now, as in the previous section, we define θN,c,K(x, t) to be the unique Hβ+ 1
2 solution to (2.1)

with initial conditions θN,c,K(x, 0) = θ̄N,c,K(x, 0), and we denote

ΘN,c,K := θN,c,K − θ̄N,c,k. (2.35)

The next step now is to find bounds for ΘN,c,K .

Lemma 2.3.6. Let Θλ,K,N defined as in (2.35), then if θλ,K,N exists for t ∈ [0, T ], we have that

||ΘN,c,K(x, t)||L2 ≤ Ct

N (2β−1)

with C depending on λ, K and T .

Proof. As in the proof of Lemma 2.2.8, we obtain the equation

d

dt

||ΘN,c,K ||2L2

2
≤ |
ˆ
R2

ΘN,c,K(
v1(ΘN,c,K)

∂θ̄N,c,K

∂x1
+ v2(ΘN,c,K)

∂θ̄N,c,K

∂x2
+ FN,c,K(x, t)

)
dx|

≤ ||ΘN,c,K ||L2

(
||ΘN,c,K ||L2 ||θ̄N,c,K ||C1 + ||FN,c,K(x, t)||L2

)
.

By using that ||FN,c,K ||L2 ≤ C
N(2β−1) , ||θ̄λ,K,N ||C1 ≤ C and integrating it follows

||ΘN,c,K ||L2 ≤ C(eCt − 1)

N (2β−1)
.

Before obtaining the bounds for the higher order norms of ΘN,c,K we need a couple of technical
lemmas:

Lemma 2.3.7. Given a C1 function h(x) : R2 → R with ||h||L∞ ≤ M , ||h||C1 ≤ MN and
a ∈ (0, 1), then there exists a constant C depending on a such that

||(−∆)a/2(h(x))||L∞ ≤ CMNa.

Proof. Using the integral expression from the fractional Laplacian

(−∆)a/2(h(.))(x) = C

ˆ
R2

(h(x)− h(z))

|x− z|2+a
dz

and dividing the integral into two parts depending on the value of |x− z| we get
ˆ
|x−z|≥ 1

N

(h(x)− h(z))

|x− z|2+a
dz ≤ CNa||h||L∞ = CMNa

ˆ
|x−z|≤ 1

N

(h(x)− h(z))

|x− z|2+a
dz ≤ CNa−1||h||C1 = CMNa

and we are done.

Lemma 2.3.8. Given a C1 function h(x) : R2 → R with ||h||L∞ ≤ M , ||h||C1 ≤ MN and with
support in the set [−R,R]2 for some R, we have that there exists a constant C depending on R
such that for i = 1, 2

||vi(h(x))||L∞ ≤ CM log(N).
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Furthermore, if ||h||Cn ≤ M ,||h||Cn+1 ≤ MN for some natural number n we also have that,
for i = 1, 2, k = 0, 2, ..., n

|| ∂
nvi(h(x))

∂n−kx1∂kx2
||L∞ ≤ CMlog(N).

Proof. The proof of the first part is the same as in Lemma 2.3.7 but using the kernel for vi instead
of the one for (−∆)a/2. For the second part we just need to use that, for sufficiently regular
functions we have that

∂vi(h(x))

∂xj
= vi

(∂h(x)
∂xj

)
.

Lemma 2.3.9. Let ΘN,c,K defined as in (2.35), then we have that, for N large, θN,c,K exists for
t ∈ [0, T ] and

||ΘN,c,K(x, t)||
Hβ+1

2
≤ Ct

Nβ− 3
2

with C depending on λ, K and T .

Proof. The proof is very similar to that of Lemma 2.2.9. We will prove the inequality for the time
interval [0, T ∗] with T ∗ the smallest time fulfilling ||ΘN,c,K(x, t)||Hβ+1/2 = log(N)N−(β− 3

2 ), (we
can just consider t ∈ [0, T ] directly if T∗ > T or if it does not exists). Note also that, since we have
local existence, obtaining this bound also ensures that we have existence for the times considered.

First we have that, for s = β + 1
2

d

dt

||DsΘN,c,K ||2L2

2
= −

ˆ
R2

DsΘN,c,K

Ds
(
(v1(ΘN,c,K) + v1(θ̄N,c,K))

∂ΘN,c,K

∂x1
+ (v2(ΘN,c,K) + v2(θ̄N,c,K))

∂ΘN,c,K

∂x2

+ v1(ΘN,c,K)
∂θ̄N,c,K

∂x1
+ v2(ΘN,c,K)

∂θ̄N,c,K

∂x2
+ FN,c,K(x, t)

)
dx.

We start bounding
ˆ
R2

DsΘN,c,KD
s
(
v1(θ̄N,c,K))

∂ΘN,c,K

∂x1
+ v2(θ̄N,c,K)

∂ΘN,c,K

∂x2

)
dx.

Applying Lemma 2.2.10 with s1 = s − 1, s2 = 1, f = vi(θ̄N,c,K)), g =
∂ΘN,c,K

∂xi
, i = 1, 2 we

would get that

(DsΘN,c,K , D
s(fg)−

∑
|k|≤s1

1

k!
∂kfDs,kg −

∑
|j|≤s2

1

j!
∂jgDs,jf)L2

≤ C||DsΘN,c,K ||L2 ||Ds1f ||BMO||Ds2g||L2

≤ C||DsΘN,c,K ||L2 ||ΘN,c,K ||Hs ,

where we used ||Ds1vi(θ̄N,c,K)||L∞ ≤ C. Furthermore we have that

(DsΘN,c,K , D
s(
∂ΘN,c,K

∂x1
)v1(θ̄N,c,K) +Ds(

∂ΘN,c,K

∂x2
)v2(θ̄N,c,K))L2

=
1

2

ˆ
R2

∂

∂x1
(DsΘN,c,K)2v1(θ̄N,c,K) +

∂

∂x2
(DsΘN,c,K)2v2(θ̄N,c,K)dx = 0
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and, for i = 1, 2, using that the operators Ds,k are continuous from Ha to Ha−s+k,

|(DsΘN,c,K ,
∑
|k|=1

1

k!
∂kvi(θ̄N,c,K)Ds,k ∂Θλ,K,N

∂xi
)L2 |

≤ C||DsΘN,c,K ||L2 ||vi(θ̄N,c,K)||C1 ||ΘN,c,K ||Hs

≤ C||DsΘN,c,K ||L2 ||ΘN,c,K ||Hs

where we used ||vi(θ̄N,c,K
− f1,c,K)||C1 ≤ Clog(N)N−β+1 (consequence of Lemma 2.3.8) and

||vi(f1,c,K)||C1 ≤ C.
We also have

|(DsΘλ,K,N ,
∑
|j|=1

1

j!
∂j
∂Θλ,K,N

∂xi
Ds,jvi(θ̄λ,K,N ))L2 |

≤ C
∑
|j|=1

||DsΘλ,K,N ||L2 || 1
j!
∂j
∂Θλ,K,N

∂xi
||L2 ||Ds,jvi(θ̄λ,K,N )||L∞

≤ C
∑
|j|=1

||DsΘλ,K,N ||L2 ||Θλ,K,N ||Hs ||Ds−2∂jvi(θ̄λ,K,N )||L∞ ,

≤ C||DsΘλ,K,N ||L2 ||Θλ,K,N ||Hs(
NNs−2log(N)

Nβ
+ C)

≤ C||DsΘλ,K,N ||L2 ||Θλ,K,N ||Hs ,

where we used Lemmas 2.3.7 and 2.3.8, the expression for Ds,j and the bounds for the derivatives
of θ̄N,c,K .

The last part to bound from the term with vi(θ̄N,c,K) is, for i = 1, 2

|(DsΘN,c,K ,
∂ΘN,c,K

∂xi
Dsvi(θ̄N,c,K))L2 |

≤ C||DsΘN,c,K ||L2 ||ΘN,c,K ||H1 ||Ds−2vi(∆θ̄N,c,K)||L∞ .

≤ C||DsΘN,c,K ||L2N−(β− 1
2 )
CNs−2log(N)N2

Nβ

≤ C||DsΘN,c,K ||L2N−β+1log(N) ≤ C||DsΘN,c,K ||L2N− 1
2 ,

where we used that, for the times considered, using Lemma 2.3.6 and the interpolation inequality
we have ||ΘN,c,K ||H1 ≤ CN−(β− 1

2 ) (the bound is actually better, but this is enough).
The rest of the terms not depending on FN,c,K are bounded in a similar fashion, and using

||θ̄λ,K,N ||Hs ≤ C, ||FN,c,K ||Hs ≤ CN−(β− 3
2 ) with C depending on c, K and T , we get

d

dt
||DsΘN,c,K ||2L2 ≤ ||DsΘN,c,K ||L2(CN−(β− 3

2 ) + C||ΘN,c,K ||Hs + C||ΘN,c,K ||2Hs)

which gives us, using

||ΘN,c,K ||Hs ≤ C(||ΘN,c,K ||L2 + ||DsΘN,c,K ||L2) ≤ C(||DsΘN,c,K ||L2 +N−(2β−1))

that

d

dt
||DsΘN,c,K ||L2 ≤ (CN−(β− 3

2 ) + C||DsΘN,c,K ||L2 + C||DsΘλ,K,N ||2L2),

and using ||DsΘλ,K,N ||L2 ≤ log(N)N−(β− 3
2 ) and integrating we get

||DsΘN,c,K ||L2 ≤ C(eCt − 1)

Nβ− 3
2

.

Now, taking N big enough we obtain that T∗ ≥ T and we are done.

46



2.3.2 Strong ill-posedness in supercritical Sobolev spaces
Now we are ready to prove strong ill-posedness in supercritical Sobolev spaces:

Theorem 2.3.1. (Strong ill-posedness in Hβ) For any c0 > 0, M > 1, β ∈ ( 32 , 2) and t∗ > 0,
we can find a Hβ+ 1

2 function θ0(x) with ||θ0(x)||Hβ ≤ c0 such that the unique solution θ(x, t) in
Hβ+ 1

2 to the SQG equation (2.1) with initial conditions θ0(x) is such that ||θ(x, t∗)||Hβ ≥Mc0.

Proof. First we prove a bound for the pseudo-solution θ̄N,c,K defined in (2.30). More precisely

||f2,c,K(r)
rβc,K sin(Nα)

Nβ
||L2 ≤

crβc,k
Nβ

,

and

||f2,c,K(r)
rβc,K sin(Nα)

Nβ
||H2 ≤

Ccrβ−2
c,k

Nβ−2
,

which in combination with the interpolation inequality for Sobolev spaces and the bounds for
f1,c,K gives us

||θ̄N,c,K(x, 0)||Hβ ≤ C1c

with C1 depending only on β.
Furthermore, at time t we have that our pseudo-solution fulfils

||θ̄N,c,K(x, t)− f1,c,K ||L2 ≤
crβc,k
Nβ

and we can find the lower bound for the H1 norm of θ̄N,c,K − f1,c,K by using

∂(θ̄N,c,K − f1,c,K)

∂x1

= cos(α)
∂(θ̄N,c,K − f1,c,K)

∂r
− sin(α)

r

∂(θ̄N,c,K − f1,c,K)

∂α

which gives us, after some trigonometric manipulations and using (2.31) that, for N large

||θ̄N,c,K(x, t)− f1,c,K ||H1 ≥ C
ctKrβ−1

c,K

Nβ−1

with C a constant.
Furthermore, since supp(θ̄N,c,K − f1,c,K) ∩ supp(f1,c,K) = ∅ we have that

||θ̄N,c,K(x, t)||H1 ≥ ||θ̄N,c,K(x, t)− f1,c,K ||H1 ≥ C
ctKrβ−1

c,K

Nβ−1
,

for sufficiently large N . On the other hand the interpolation inequality gives us

||θ̄N,c,K(x, t)||H1 ≤ ||θ̄N,c,K(x, t)||
1
β

Hβ ||θ̄N,c,K(x, t)||
β−1
β

L2

and using our bounds for ||θ̄N,c,K(x, t)||L2 and ||θ̄N,c,K(x, t)||H1 we get

||θ̄N,c,K(x, t)||Hβ ≥ C2cK
βtβ

with C2 depending only on β. Therefore, by choosing c, K appropriately we have that, for all N
big enough,

||θ̄N,c,K(x, 0)||Hβ ≤ c0,

||θ̄N,c,K(x, t∗)||Hβ ≥ 2Mc0.
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Now, considering the solution θN,c,K of (2.1) with initial conditions θ̄N,c,K(x, 0), we know that

||θN,c,K(x, 0)||Hβ ≤ c0,

and, using Lemma 2.3.9,

||θ̄N,c,K(x, t∗)− θN,c,K(x, t∗)||Hβ

≤ ||θ̄N,c,K(x, t∗)− θN,c,K(x, t∗)||
Hβ+1

2
≤ Ct∗

Nβ− 3
2

for large N , and so, by taking N big enough we can conclude

||θN,c,K(x, t∗)||Hβ ≥ ||θ̄N,c,K(x, t∗)||Hβ − ||θ̄N,c,K(x, t∗)− θN,c,K(x, t∗)||Hβ ≥Mc0.

2.3.3 Non existence in supercritical Sobolev spaces
In this section we prove the following theorem:

Theorem 2.3.2. (Non existence in Hβ in the supercritical case) For any t0, c0 > 0 and β ∈ ( 32 , 2)
we can find initial conditions θ0(x), with ||θ0(x)||Hβ ≤ c0 such that there exists a solution θ(x, t)
to (2.1) with θ(x, 0) = θ0(x) satisfying ||θ(x, t)||Hβ = ∞ for all t ∈ (0, t0]. Furthermore, it is the
only solution with initial conditions θ0(x) that satisfies θ(x, t) ∈ L∞

t C
γ1
x ∩ L∞

t L
2
x (0 < γ1 <

1
2 )

with the property that θ(x, t) ∈ Hγ2 (1 < γ2 ≤ 3
2 ) for t ∈ [0, t0].

Remark 4. In particular, if there is another solution in θ(x, t) ∈ L∞
t C

γ1
x ∩ L∞

t L
2
x then it cannot

fulfil θ(x, t) ∈ Hβ for t ∈ (0, t∗] with any 0 < t∗ ≤ t0, even if we allow

ess-supt∈[0,t∗]||θ(x, t)||Hβ = ∞.

Proof. Let’s first note some of the properties that the pseudo-solutions θ̄N,c,K (for some fixed β)
have:

• θ̄N,c,K(x, t) is in C∞ for all t ∈ [0, t0], with ||θ̄N,c,K(x, t)||Ck ≤ CcNk−β , ||θ̄N,c,K(x, t)||Hk ≤
CcNk−β for any natural k ≥ 2 , with the constant C depending on k, K and t0. Also, for
β > s ≥ 0 we have ||θ̄N,c,K(x, t)||Hs ≤ C1cN

s−β + C2c with C1 depending on K, s and t0
and C2 a constant.

• For N large we have the lower bound ||θ̄N,c,K(x, t)||Hβ ≥ CctβKβ with C a constant.

• θ̄N,c,K(x, t) is supported in the disk of radius M centered at zero BM (0) for some M inde-
pendent of the values of the parameters.

Furthermore, we have the following result.

Lemma 2.3.10. Consider the equation

∂θ̃N,c,K

∂t
+ (v1(θ̃N,c,K) + vN,c,K

1,ext )
∂θ̃N,c,K

∂x1
+ (v2(θ̃N,c,K) + vN,c,K

2,ext )
∂θ̃N,c,K

∂x2
= 0

with initial conditions θ̃N,c,K(x, 0) = θ̄N,c,K(x, 0) and such that

∂vN,c,K
2,ext

∂x2
= −

∂vN,c,K
1,ext

∂x1

and
||vN,c,K

i,ext ||C3 ≤ CN−3
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with C depending on c and K.
Then for any T > 0 we have that if N is big enough, then for t ∈ [0, T ] there exists a unique

θ̃N,c,K(x, t) ∈ Hβ+ 1
2 and

||θ̄N,c,K(x, t)− θ̃N,c,K(x, t)||L2 ≤ CtN−(2β−1)

||θ̄N,c,K(x, t)− θ̃N,c,K(x, t)||
Hβ+1

2
≤ CtN−(β− 3

2 )

with C depending on c, K and T .

We first note that local well-posedness of this equation in Hβ+1 is straightforward since
vN,c,K
i,ext ∈ C3 for i = 1, 2. As for the error bounds, they are obtained in the same way as in

Lemmas 2.3.6 and 2.3.9, i.e., studying the evolution equation for θ̄N,c,K(x, t) − θ̃N,c,K(x, t) now
with new terms depending on vN,c,K

i,ext
∂θ̃N,c,K(x,t)

∂xi
. These terms, however, are easily bounded by

writing

θ̃N,c,K(x, t) = (θ̃N,c,K(x, t)− θ̄N,c,K(x, t)) + θ̄N,c,K(x, t)

and using the properties for vN,c,K
i,ext and θ̄N,c,K(x, t).

This lemma tells us that our pseudo-solutions defined in (2.30) stay close to other pseudo-
solutions that have the same initial conditions and an error term in the velocity field (if the error
term is small enough). Now, to obtain the initial conditions that will produce instantaneous loss
of regularity, we consider

θ(x, 0) :=

∞∑
j=1

TRj (θ̄Nj ,cj ,Kj (x, 0)),

with TR(f(x1, x2)) = f(x1 +R, x2), and Rj yet to be fixed.
We will refer to the solution of (2.1) with this initial conditions and H

3
2 regularity (if it exists)

as θ(x, t), keeping in mind that it depends on the values for Rj , Nj , cj , Kj , with j ∈ N.
We start by fixing cj and Kj with the following properties:
1)

||θ̄Nj ,cj ,Kj
(x, 0)||Hβ ≤ c02

−j , ||θ̄Nj ,cj ,Kj
(x, 0)||L1 ≤ c02

−j . (2.36)

2) If Nj is large enough then

||θ̄Nj ,cj ,Kj
(x, t)||Hβ ≥ tc02

j (2.37)

and
||θ̄Nj ,cj ,Kj

(x, t)||
H

3
2
≤ c02

−j

for t ∈ [0, t0].
This gives us a bound for the velocity generated by

∑∞
j=1 TRj

(θ̄Nj ,cj ,Kj
(x, t)), which we will

call vmax.
As for Rj , we will consider Rj = Rj−1 +Dj +Dj−1, R0 = 0, and we will take Dj = j4N4

j +
2M + 8vmaxt0.

Now, we say that a sequence v⃗ = (vji (x, t))i=1,2,j∈N is in the set V(Nj)j∈N,C0
if

• vji (x, t) ∈ C3 for t ∈ [0, t0], with ||vji (x, t)||C3 ≤ C0

j4N3
j
.

• ∂vj
1

∂x1
= − ∂vj

2

∂x2
.

Given two elements v⃗1, v⃗2 of V(Nj)j∈N,C0
, we will consider the distance

d(v⃗1, v⃗2) := supj∈N,i=1,2ess-supt∈[0,t0]j
4N3

j ||v
j
1,i(x, t)− vj2,i(x, t)||C3 .

Note that with this distance V(Nj)j∈N,C0
is a complete metric space.
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Furthermore, given an element v⃗ ∈ V(Nj)j∈N,C0
we define the sequence of functions W (v⃗) =

(Wj(v⃗)(x, t))j∈N = (wj(x, t))j∈N as the only sequence of Hβ+ 1
2 functions for t ∈ [0, t0], satisfying

∂wj(x, t)

∂t
= −(v1(wj) + vj1(x, t))

∂wj

∂x1
− (v2(wj) + vj2(x, t))

∂wj(x, t)

∂x2
(2.38)

wj(x, 0) = TRj
(θ̄Nj ,cj ,Kj

(x, 0))

Note that Lemma 2.3.10 tells us that if (Nj)j∈N are big enough, the condition

||vji,ext||C3 ≤ C0

j4N3
j

implies that there is a (unique in Hβ+ 1
2 ) solution to (2.38) for t ∈ [0, t0] with

||TRj
(θ̄Nj ,cj ,Kj

(x, t))− wj(x, t)||L2 ≤ CtN
−(2β−1)
j

||TRj (θ̄Nj ,cj ,Kj (x, t))− wj(x, t)||
Hβ+1

2
≤ CtN

−(β− 3
2 )

j . (2.39)

We will call the set including these sequences W(Nj)j∈N,C0
.

Now we define the map vext that takes an element of w ∈ W(Nj)j∈N,C0
to an element of

vext(w) ∈ V(Nj)j∈N,C0
as

vj01,ext((wj)j∈N) =
∂

∂x2

(
TRj0

ϕ(x)Λ−1[(

∞∑
j=1

wj)− wj0 ]

)
,

vj02,ext((wj)j∈N) = − ∂

∂x1

(
TRj0

ϕ(x)Λ−1[(

∞∑
j=1

wj)− wj0 ]

)
,

where ϕ(x) is a smooth C∞ function with ϕ(x) = 1 if x ∈ B4vmax+M (0) and ϕ(x) = 0 if |x| ≥
8vmax +M .

Note that ||vj0i,ext((wj)j∈N)||C3 ≤ Cc0
j40N

4
j0

, and thus ||vj0i,ext((wj)j∈N)||C3 ≤ C0

j40N
3
j0

if Nj0 is large.

Furthermore, if x ∈ B4vmax+M (−Rj0 , 0), then

vj0i,ext((wj)j∈N) = vi((

∞∑
j=1

wj)− wj0) (2.40)

and, since for (Nj)j∈N big enough supp(Wj0(vext(w)) ⊂ B4vmax+M (−Rj0 , 0), we have thatWj0(vext(w))
actually fulfils (2.38) with vij0 given by (2.40).

This allows us to define the operator G over a sequence v in the space V(Nj)j∈N,C0
as

G(v⃗) = (vji,ext(W (v⃗)))i=1,2,j∈N,

The operator G maps (for (Nj)j∈N large) V(Nj)j∈N,C0
to V(Nj)j∈N,C0

and actually, if we can find
a point v⃗ ∈ V(Nj)j∈N,C0

such that G(v⃗) = v⃗, then, for (wj)j∈N =W (v⃗),

θ(x, t) =

∞∑
j=1

wj(x, t)

is a solution to (2.1) with initial conditions

θ(x, 0) =

∞∑
j=1

TRj (θ̄Nj ,cj ,Kj (x, 0)).

If we now consider two sequences v⃗1 = (v1,ji )i=1,2,j∈N, v⃗
2 = (v2,ji )i=1,2,j∈N ∈ V(Nj)n∈N,C0

and we
define for two elements of W(Nj)n∈N,C0

d(w1, w2) = supt∈[0,t0]

∑∞
j=1 ||w1

j −w2
j ||L2 we can compute

d(Wj(v⃗
1),Wj(v⃗

2)), by defining w̃j =W (v⃗1)−W (v⃗2), since it fulfills the evolution equation
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∂w̃j

∂t
= −∂(Wj(v⃗

1))

∂x1
v1(w̃j)−

∂w̃j

∂x1
v1(Wj(v⃗

2))

− ∂(Wj(v⃗
1))

∂x2
v2(w̃j)−

∂w̃j

∂x2
v2(Wj(v⃗

2))

− ∂(Wj(v⃗
1))

∂x1
(v1,j1 − v2,j1 )− ∂w̃j

∂x1
v2,j1

− ∂(Wj(v⃗
1))

∂x2
(v1,j2 − v1,j2 )− ∂w̃j

∂x2
v2,j2 .

This gives us a bound for the evolution of the L2 norm of w̃j

∂||w̃j ||L2

∂t
≤ C||Wj(v⃗

1)||C1 ||w̃j ||L2 + ||Wj(v⃗
1)||C1(||v1,j1 − v2,j1 ||L∞ + ||v1,j2 − v1,j2 ||L∞)

But for Nj large we can bound ||Wj(v⃗
1)||C1 by some constant C̄j using (2.39) , and thus we

obtain, for t ∈ [0, t0]

||w̃j(x, t)||L2 ≤ CC̃j(e
Ct0 − 1)(||v1,j1 − v2,j1 ||L∞ + ||v1,j2 − v1,j2 ||L∞)

≤ CC̃j(e
Ct0 − 1)

d(v⃗1, v⃗2)

j4N3
j

,

and for Nj large

||w̃j(x, t)||L2 ≤ ϵ
d(v⃗1, v⃗2)

j4

with ϵ as small as we want. Adding over all j we obtain, for t ∈ [0, t0]

d(W (v⃗1),W (v⃗2)) ≤ Cϵd(v⃗1, v⃗2)

with ϵ arbitrarily small.
But now, if the Nj ’s are big enough, we have that, by the definition of vext,

d(G(v⃗1), G(v⃗2)) = d(vext(W (v⃗1)), vext(W (v⃗2))) ≤ C

infj∈N
Cd(W (v⃗1),W (v⃗2))

≤ Cϵ

infj∈N(Nj)
d(v⃗1, v⃗2) ≤ 1

2
d(v⃗1, v⃗2)

so the map G is a contraction, and since V(Nj)n∈N,C0
is a (non-empty) complete metric space, there

is a fixed point and therefore w(x, t) is a solution to (2.1) with initial conditions

θ(x, 0) =

∞∑
j=1

TRj
(θ̄Nj ,cj ,Kj

(x, 0)).
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Properties (2.36),(2.37) and (2.39) finish the proof that a solution with the desired properties
of Theorem 2.3.2 exists.

For uniqueness in the space mentioned we call θ1(x, t) the solution we constructed above
and assume the existence of another solution θ2(x, t) ∈ L∞

t C
γ1
x ∩ L∞

t L
2
x (0 < γ1 < 1

2 ) with
the property that θ2(x, t) ∈ Hγ2 (1 < γ2 ≤ 3

2 ) for t ∈ [0, t0]. In particular (since it is in
L∞
t C

γ1
x ), there exists a certain constant v2,max such that ||vi(θ2)||L∞ ≤ v2,max. We start by

studying the uniqueness for t ∈ [0,min(t∗, t0)] with t∗v2,max = t0vmax. In particular, we have that
supp(θ2(x, t)) ⊂ ∪j∈NTRj (Bt0vmax+M (0)). We define

θj1(x, t) = 1B4t0vmax+M (−Rj ,0)θ1(x, t)

θj2(x, t) = 1B4t0vmax+M (−Rj ,0)θ2(x, t).

If we define Θj := θj2 − θj1, Θ := θ2 − θ1, we get

∂Θj

∂t
= − ∂θj1

∂x1
v1(Θ

j)− ∂Θj

∂x1
v1(Θ

j)− ∂θj1
∂x2

v2(Θ
j)− ∂Θj

∂x2
v2(Θ

j)

− ∂Θj

∂x1
v1(θ

j
1)−

∂Θj

∂x2
v2(θ

j
1)−

∂θj1
∂x1

v1(Θ−Θj)− ∂Θj

∂x1
v1(Θ−Θj)

− ∂θj1
∂x2

v2(Θ−Θj)− ∂Θj

∂x2
v2(Θ−Θj)

− ∂Θj

∂x1
v1(θ1 − θj1)−

∂Θj

∂x2
v2(θ1 − θj1)

which gives us

∂||Θj ||L2

∂t
≤ C||θj1||C1 ||Θj ||L2 + C||θj1||C1

||Θ||L2

j4N4
j

and by taking Nj large and integrating the above inequality big we get

||Θj ||L2 ≤ ϵ||Θ||L2

j4

and adding over all j and taking ϵ small

||Θ||L2 ≤ ||Θ||L2

2

and thus ||Θ||L2 for t ∈ [0, t∗]. Iterating the argument allows us to prove ||Θ||L2 = 0 for t ∈ [0, t0].

2.4 Strong ill-posedness in the critical Sobolev space H2

For this section, we will consider solutions of (2.1) that are in layers around zero, each one closer
to the origin, so that within each layer one gets (in the limit) an evolution system of the form

∂θ̄

∂t
+ (v1(θ̄) +K(t)x1)

∂θ̄

∂x1
+ (v2(θ̄)−K(t)x2)

∂θ̄

∂x2
= 0,

v1 = − ∂

∂x2
Λ−1θ̄ = −R2θ̄,
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v2 =
∂

∂x1
Λ−1θ̄ = R1θ̄,

θ̄(x, 0) = θ0(x).

But first we need to obtain an expression for ∂vi(θ)(0)
∂xj

(i, j = 1, 2) for θ with support far away
from 0. We consider first i = 1. We have

v1(θ) =
Γ(3/2)

π3/2
P.V.

ˆ
R2

(−x2 + y2)θ(y)

|x− y|3
dy1dy2.

For θ with support far away from x = 0 we can just differentiate under the integral sign and
when we evaluate at x = 0 this yields

∂v1(θ)

∂x1
(x = 0) =

Γ(3/2)

π3/2
P.V.

ˆ
R2

−3y1
y2θ(y)

|y|5
dy1dy2,

∂v1(θ)

∂x2
(x = 0) =

Γ(3/2)

π3/2
P.V.

ˆ
R2

(
−3y22θ(y)

|y|5
− θ(y)

|y|3
)dy1dy2.

We will consider θ(x1, x2) satisfying θ(−x1, x2) = −θ(x1, x2), θ(x1,−x2) = −θ(x1, x2), so

∂v1(θ)

∂x1
(x = 0) =

4Γ(3/2)

π3/2
P.V.

ˆ
R2

+

−3y1
y2θ(y)

|y|5
dy1dy2,

∂v1(θ)

∂x2
(x = 0) = 0.

If we take a look at the expression for ∂v1(θ)
∂x1

in polar coordinates and combine all the constant
into a certain C0 > 0 we obtain

∂v1(θ)

∂x1
(x = 0) = −C0P.V.

ˆ
R+×[0,π/2]

sin(2α′)θ(r′, α′)

(r′)2
dr′dα′.

The expressions for v2 are obtained the same way and in fact we have

∂v2(θ)

∂x1
(x = 0) = 0,

∂v2(θ)

∂x2
(x = 0) = C0P.V.

ˆ
R+×[0,π/2]

sin(2α′)θ(r′, α′)

(r′)2
dr′dα′.

Analogously, the second derivatives of vi all vanish.
We will be interested in studying the evolution of initial conditions of the form

J∑
j=1

f(b−jr)bj sin(2α)

j

for f(r) a positive C∞ function with compact support and 1
2 > b > 0. More precisely, we would

like to study the behaviour of the unique H4 solution with said initial conditions when b tends to
zero. One could think that we can just check the evolution of each of the terms f(b−jr)bj sin(2α)

j and
then add them together, hoping that the interaction between them gets small as b→ 0. However
this is not true, and we get an interaction depending on ∂vi

∂xi
. To get specific results, we fix some

positive radial function f in C∞ with supp(f) ⊂ {r ∈ [1/2, 3/2]} and ||f(r) cos(2α)||H4 = 1. We
define θc,J,b as the unique H4 solution of

∂θc,J,b
∂t

+ v1(θc,J,b)
∂θc,J,b
∂x1

+ v2(θc,J,b)
∂θc,J,b
∂x2

= 0,

with
v1(θc,J,b) = − ∂

∂x2
Λθc,J,b = −R2θc,J,b,
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v2(θc,J,b) =
∂

∂x1
Λθc,J,b = R1θc,J,b,

θc,J,b(x, 0) = c

J∑
j=1

f(b−jr)bj sin(2α)

j
,

1

2
> b > 0. (2.41)

Note that the odd symmetry is preserved in time.
A few comments need to be made regarding the properties of the transformation h(r, α) →

h(λr,α)
λ (or equivalently h(x) → h(λx)

λ ). We have that

• If λ > 1, then ||h(λr,α)λ ||H2 ≤ ||h(r, α)||H2 .

• If h(r, α, t) is a solution to (2.1) with initial conditions h(r, α, 0), then h(λr,α,t)
λ is a solution

to (2.1) with initial conditions h(λr,α,0)
λ .

• For i = 1, 2, j = 1, 2 we have vi(
h(λ·,·)

λ )( rλ , α) = 1
λvi(h(·, ·))(r, α),

∂vi(
h(λ·,·)

λ )

∂xj
( rλ , α) =

∂vi(h(·,·))
∂xj

(r, α).

The initial conditions in (2.41) fulfil that, taking c small and J big, they have an arbitrarily
small H2 norm and an arbitrarily big value of |∂v1(θc,J,b)

∂x1
(0, t = 0)|. If |∂v1(θc,J,b)

∂x1
(0, t)| remained

big for a long enough time and θ remained sufficiently regular during that time, we could then
use a small perturbation around x = 0 to obtain a big growth in some Hs norm.

The main problem here is that we cannot assure existence for sufficiently long times using just
the a priori bounds, so we need some extra machinery to be able to work with these solutions.
For that we consider C̃ the constant fulfilling that, for any H4 solution of SQG (2.1) we have

∂||θ(x, t)||H4

∂t
≤ C̃||θ(x, t)||2H4 (2.42)

For fixed constants t0,K > 0, we define tcritt0,K,c,J,b as the biggest time fulfilling that, for all times
t satisfying tcritt0,K,c,J,b ≥ t ≥ 0 we have

• t ≤ t0.

• If |x| ∈ [ 12b
n, 32b

n] for 1 ≤ n ≤ J , then |ϕc,J,b(x, t)| ∈ [bn+
1
8 , bn−

1
8 ], with ϕc,J,b(x, t) the flow

given by
dϕc,J,b(x, t)

dt
= v(θc,J,b(x, t)).

• ||b−jθc,J,b(b
jx, t)1

[b
1
8 ,b−

1
8 ]
(r)||H4 ≤ 1

t0C̃
for 1 ≤ j ≤ J .

•
´ t
0
|∂v1(θc,J,b)∂x1

(0, s)|ds ≤ K.

Let us make a few remark on these conditions. First, due to the odd symmetry of the solution
and the initial conditions, ∂v1(θc,J,b)

∂x1
is always negative and thus
ˆ t

0

|∂v1(θc,J,b)
∂x1

(0, s)|ds

is a strictly monotone function with respect to t. Note also that we can check that the norm

||b−jθc,J,b(b
jx, t)1

[b
1
8 ,b−

1
8 ]
(r)||H4

is continuous in time by checking the evolution equation for it and using that θc,J,b exists locally
in time. Also, depending on the choice of parameters it may happen that tcritt0,K,c,J,b does not exists
(the second and third condition may not be satisfied for t = 0), so we will only consider c < 1

C̃t0

and b < 2−8 to avoid that. Finally, if we only consider the typical a priori bounds, the second and
third conditions could make tcritt0,K,c,J,b tend to zero as we make b small, which would be a problem
for our purposes. However, we have the following lemma.
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Lemma 2.4.1. Fixed t0,K, c and J fulfilling c < e−6K

C̃t0
and K > max(1, t0), we have that, if b is

small enough, then the unique H4 solution θc,J,b with initial conditions as in (2.41) satisfies

||bjθc,J,b(b−jx, t)1
[b

1
8 ,b−

1
8 ]
(r)||H4 <

1

t0C̃

for 1 ≤ j ≤ J , t ∈ [0, tcritt0,K,c,J,b] and if x ∈ [bn 1
2 , b

n 3
2 ] then ϕc,J,b(x, t) ∈ (bn+

1
8 , bn−

1
8 ) if 0 ≤ t ≤

tcritt0,K,c,J,b.

Proof. Before we get into the proof, we need to define

kn(t) := |
∂v1(θc,J,b1

(bn+1
8 ,∞)

(r))

∂x1
(0, t)|,

Kn(t) :=

ˆ t

0

kn(s)ds.

We will study the evolution of θj := θc,J,b1
[bj+

1
8 ,bj−

1
8 ]
(r) (these functions obviously depend on

c, J and b, but we will omit this dependence to obtain a more compact notation). These functions
satisfy the evolution equation

∂θj
∂t

+ v1(θj)
∂θj
∂x1

+ v2(θj)
∂θj
∂x2

+ v2(θc,J,b − θj)
∂θj
∂x2

+ v1(θc,J,b − θj)
∂θj
∂x1

= 0.

Furthermore, we have that θ
′

j(x, t) = b−jθj(b
jx, t) fulfils the evolution equation

∂θ
′

j

∂t
+ v1(θ

′

j)
∂θ

′

j

∂x1
+ v2(θ

′

j)
∂θ

′

j

∂x2
+ v2(θ

′,j
c,J,b − θ

′

j)
∂θ

′

j

∂x2
+ v1(θ

′,j
c,J,b − θ

′

j)
∂θ

′

j

∂x1
= 0, (2.43)

with θ
′,j
c,J,b(x, t) := b−jθc,J,b(b

jx, t).

We want to obtain suitable bounds for the terms depending on θ
′,j
c,J,b − θ

′

j . To do this we

decompose θ
′,j
c,J,b − θ

′

j as

θ
′,j
c,J,b − θ

′

j = θ
′

+,j + θ
′

−,j

with θ
′

+,j = (θ
′,j
c,J,b − θ

′

j)1[1,∞](r) and θ
′

−,j = (θ
′,j
c,J,b − θ

′

j)1[0,1](r).

But θ
′

−,j satisfies that ||θ′

−,j ||L1 ≤ Cb3, d(supp(θ
′

j), supp(θ
′

−,j)) ≥ b
1
8

2 , which gives us, if we
define v−,j

i (x) := vi(θ
′

−,j)(x)

||v−,j
i (x)1supp(θ′

j)
||C4 ≤ Cb3−

6
8 .

For the term depending on θ
′

+,j , we use that, for k ≥ 1

||θ
′,j
c,J,b1[b−k+1

8 ,b−k− 1
8 ]
||L1 ≤ Cb−3k

d(supp(θ
′,j
c,J,b1[b−k+1

8 ,b−k− 1
8 ]
), supp(θ

′

j)) ≥
b−k+ 1

8

2

which gives us, after adding the contributions for all the k, if |x| ≤ b−
1
8

|
∂2vi(θ

′

+,j)

∂2−jx1∂jx2
(x)| ≤ Cb

1
2 .

Therefore, using a second order Taylor expansion for the velocity we obtain that, for |x| ≤ b−
1
8

v1(θ
′

+,j) = −kj−1(t)x1 + v+,j,error
1 (x),
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with ||v+,j,error
1 (x)1

[b
1
8 ,b−

1
8 ]
(r)||L∞ ≤ Cb

1
4 . Furthermore by computing the derivatives of v1(θ

′

+,j)

we actually obtain ||v+,j,error
1 (x)1

[b
1
8 ,b

1
8 ]
(r)||C4 ≤ Cb

1
4 .

Analogously, we have

v2(θ
′

+,j) = kj−1(t)x2 + v+,j,error
2 (x),

with ||v+,j,error
2 (x)1

[b
1
8 ,b−

1
8 ]
(r)||C4 ≤ Cb

1
4 .

Writing verrori := v+,j,error
i (x) + v−,j

i (x), we get that (2.43) is equivalent to

∂θ
′

j

∂t
+ (v1(θ

′

j) + verror1 − kj−1x1)
∂θ

′

j

∂x1
+ (v2(θ

′

j) + verror2 + kj−1x2)
∂θ

′

j

∂x2
= 0,

with ||verrori ||C4 ≤ Cb
1
4 . To obtain the evolution of the H4 norm, we note that, with our definition

of the H4 norm

∂||θ′

j ||H4

∂t
=

4∑
i=0

i∑
j=0

∂|| ∂iθ
′
j

∂jx1∂i−jx2
||L2

∂t

and

∂|| ∂iθ
′
j

∂jx1∂i−jx2
||2L2

∂t

= 2(
∂iθ

′

j

∂jx1∂i−jx2
,

∂i

∂jx1∂i−jx2
[(v1(θ

′

j) + verror1 − kj−1x1)
∂θ

′

j

∂x1
+ (v2(θ

′

j) + verror2 + kj−1x2)
∂θ

′

j

∂x2
])L2 .

However, using ||verrori ||C4 ≤ Cb
1
4 and incompressibility we get, for i = 0, 1, ..., 4, j = 0, ..., i

|(
∂iθ

′

j

∂jx1∂i−jx2
,
∂i(verror1

∂θ
′
j

∂x1
)

∂jx1∂i−jx2
+
∂i(verror2

∂θ
′
j

∂x2
)

∂jx1∂i−jx2
)L2 | ≤ Cb

1
4 ||θ

′

j ||2H4

and

|(
∂iθ

′

j

∂jx1∂i−jx2
,
∂i(kj−1x1

∂θ
′
j

∂x1
)

∂jx1∂i−jx2
−
∂i(kj−1x2

∂θ
′
j

∂x2
)

∂jx1∂i−jx2
)L2 | ≤ ikj−1||

∂iθ
′

j

∂jx1∂i−jx2
||2L2

which gives us, by adding all the terms and including the contribution from the terms depending

on v1(θ
′

j)
∂θ

′
j

∂x1
and v2(θ

′

j)
∂θ

′
j

∂x2

∂||θ′

j ||H4

∂t
=
∂||bjθc,J,b(b−jx, t)1

[b
1
8 ,b−

1
8 ]
(r)||H4

∂t
(2.44)

≤ (4kj−1 + Cb
1
4 )||bjθc,J,b(b−jx, t)1

[b
1
8 ,b−

1
8 ]
(r)||H4

+ C̃||bjθc,J,b(b−jx, t)1
[b

1
8 ,b−

1
8 ]
(r)||2H4 ,

with C̃ given by (2.42).
Using that, by hypothesis

||bjθc,J,b(b−jx, t)1
[b

1
8 ,b−

1
8 ]
(r)||H4 ≤ 1

t0C̃
,

||bjθc,J,b(b−jx, 0)1
[b

1
8 ,b−

1
8 ]
(r)||H4 ≤ c
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and integrating (2.44) we get

||bjθc,J,b(b−jx, t)1
[b

1
8 ,b−

1
8 ]
(r)||H4 ≤ ce4Kj−1(t)+( 1

t0
+Cb

1
4 )t

and using Kj−1(t) ≤ K, and taking b small enough

||bjθc,J,b(b−jx, t)1
[b

1
8 ,b−

1
8 ]
(r)||H4 < ce6K <

1

C̃t0
,

which gives us the first property we wanted.
As for the bounds for ϕc,J,b(x, t), we again work in the equivalent problem with θ′c,J,b and note

that we just proved that

|vi(θ
′,j
c,J,b)(x)1[b

1
8 ,b−

1
8 ]
| ≤ (kJ(t) + Cb

1
4 )|x|+ |vi(θ

′

j)|(x),

and since |vi(θ
′

j)| ≤ min(C,C|x|) (by using our bounds in H4 plus vi(θ
′

j)(x = 0) = 0), integrating
in time we have that, for b small, the particles under that flow starting in [ 12 ,

3
2 ] will stay in

(e−C , eC) ⊂ (b
1
8 , b−

1
8 ), with C depending on K and t0 and we are done by undoing the scaling

and returning from θ′j to θj .

Note that last lemma tells us that for b small enough, at t = tcritt0,K,c,J,b, either t = t0 or´ tcritt0,K,c,J,b

0 |∂v1(θc,J,b)
∂x1

(0, s)|ds = K. Our next goal is to prove that, if the right conditions are met,

we will actually have
´ tcritt0,K,c,J,b

0 |∂v1(θc,J,b)
∂x1

(0, s)|ds = K.

Lemma 2.4.2. For fixed t0,K and c fulfilling c < e−6K

C̃t0
and K > max(1, t0), we can find J and

b such that at time t = tcritt0,K,c,J,b we have that´ tcritt0,K,c,J,b

0 |∂v1(θc,J,b)∂x1
(0, s)|ds = K.

Proof. We start by studying the trajectories of particles with |x| ∈ [bJ+
1
8 , b−

1
8 ].

In the proof of Lemma 2.4.1 we obtained that, for |x| ∈ [b
1
8 , b−

1
8 ],

v1(θ
′,j
c,J,b) = v(θ

′

j) + verror1 (x)− kj−1(t)x1 (2.45)

v2(θ
′,j
c,J,b) = v(θ

′

j) + verror2 (x) + kj−1(t)x2

(let us remember that here θ
′

j actually depends on c, J and b but we omit it), with ||verrori (x)||C4 ≤
C1b

1
4 for i = 1, 2, with C1 depending on c, j and J , and ||v(θ′

j)||C1 ≤ C2 with C2 depending on t0.
By returning to the original problem, we get that, for |x| ∈ [bj+

1
8 , bj−

1
8 ]

v1(θc,J,b) = v(θj) + verror,j1 (x)− kj−1(t)x1 (2.46)

v2(θc,J,b) = v(θj) + verror,j2 (x) + kj−1(t)x2

with ||verror||C1 ≤ Cb
1
4 and ||v(θj)||C1 ≤ C2 with C2 depending on t0.

We are interested in studying the ϕ associated to this problem in polar coordinates for particles
starting in (r, α) ∈ ([ 12 ,

3
2 ], [0, 2π]). We study separately the evolution of the radial coordinate and

of the angular coordinate for simplicity.
For the radial coordinate, if we call ϕjr(r0, α0, t) the flow associated to (2.46) that gives us the

radial coordinate of the particle that was initially in (r0, α0), using that v(0) = 0 and integrating
in time, we have that,

ϕjr(r0, α0, t)

r0
≤ e

´ t
0
kj−1(s)ds+C1b

1
4 t+C2t ≤ eK+C1b

1
4 t+C2t.

As for the change in the angular coordinate, we are interested in finding bounds for how fast
a particle can approach the lines α = iπ2 , i = 0, 1, 2, 3. All four cases are equivalent, so we will
consider i = 0. We have that
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vα(r, 0, t) = 0

and, since for i = 1, 2 ||∂vα

∂xi
||L∞ ≤ C(|kj−1|+C1b+C2) (with C a universal positive constant) we

get, defining ϕjα similarly as we did with ϕjr(r0, α0, t),

ϕjα(r0, α0, t)

α0
≥ e−C(

´ t
0
kj−1(s)ds+C1b

1
4 t+C2t) ≥ e−C(K+C1b

1
4 t+C2t).

Now we are ready to obtain bounds for

ˆ tcritt0,K,c,J,b

0

|∂v1(θc,J,b)
∂x1

(0, s)|ds.

Since the transformation

θc,J,b(x) →
θc,J,b(λx)

λ

does not change the value of ∂v1(θc,J,b)
∂x1

(0, s) and by linearity, we have that, for s = 0 we can
compute

|∂v1(θc,J,b)
∂x1

(x = 0, t = 0)| =
J∑

j=1

c

j

∂v1(f(r) cos(2α))

∂x1
(x = 0) = C(

J∑
j=1

c

j
) ≥ Cc ln(J),

for some C > 0.
For times t > 0, writing for the flow map ϕc,J,b(x, t) = (ϕ1,c,J,b(x, t), ϕ2,c,J,b(x, t))

|∂v1(θc,J,b(r, α, t))
∂x1

| = C

ˆ
R2

+

y1
y2θc,J,b(y, t)

|y|5
dy1dy2

= C

ˆ
R2

+

y1
y2θc,J,b(ϕ

−1
c,J,b(y, t), 0)

|y|5
dy1dy2

= C

ˆ
R2

+

ϕ1,c,J,b(ỹ, t)
ϕ2,c,J,b(ỹ, t)θc,J,b(ỹ, 0)

|ϕc,J,b(ỹ, t)|5
dỹ1dỹ2

= C

ˆ
R2

+

ϕ1,c,J,b(ỹ, t)
ϕ2,c,J,b(ỹ, t)

|ϕc,J,b(ỹ, t)|5
|ỹ|5

ỹ1ỹ2

ỹ1ỹ2θc,J,b(ỹ, 0)

|ỹ|5
dỹ1dỹ2

with C a constant, but (passing to polar coordinates to obtain the bound more easily)

ϕ1,c,J,b(x, t)
ϕ2,c,J,b(x, t)

|ϕc,J,b(x, t)|5
|x|5

x1x2

=
sin(2ϕαc,J,b(r, α))

sin(2α)

r3

ϕrc,J,b(r, α)
≥ e−C(K+c1b

1
4 t+C2t)

for some C, and thus

|∂v1(θc,J,b(r, α, t))
∂x1

(x = 0)|

≥ Ce−C(K+c1b
1
4 t+C2t)

ˆ
R2

+

ỹ1ỹ2θc,J,b(ỹ, 0)

|ỹ|5
dỹ1dỹ2
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and integrating in time

ˆ tcritt0,K,c,J,b

0

|∂v1(θc,J,b)
∂x1

(0, s)|ds ≥ tcritt0,K,c,J,bCcln(J)e
−C(K+C1b

1
4 t0+C2t0)

To finish our prove, we just fix some K, t0 and c fulfilling our hypothesis, we take J big enough
so that

t0Ccln(J)e
−C(K+C2t0) > K + 1

and then take b small enough so that using Lemma 2.4.1 either t0 = tcritt0,K,c,J,b or

ˆ tcritt0,K,c,J,b

0

|∂v1(θc,J,b)
∂x1

(0, s)|ds = K

and such that

t0Ccln(J)e
−C(K+C1b

1
4 t0+C2t0) > K.

The result then follows by contradiction, since if we assume t0 = tcritt0,K,c,J,b we obtain
ˆ t0

0

|∂v1(θc,J,b)
∂x1

(0, s)|ds ≥ t0Ccln(J)e
−C(K+C1b

1
4 t0+C2t0) > K.

Corollary 2.4.3. There are initial conditions θinitialK,t0,c̃
∈ H4 with ||θinitialK,t0,c̃

||H2 ≤ c̃ such that there
exists 0 < tcritK,t0,c̃

≤ t0 and a solution θK,t0,c̃(x, t) to (2.1) with θinitialK,t0,c̃
as initial conditions fulfilling

ˆ tcritK,t0,c̃

0

∂v1(θK,t0,c̃)

∂x1
(0, s)ds = −K,

||θK,t0,c̃(x, t)||H4 ≤MK,t0,c̃.

Furthermore we have supp(θinitialK,t0,c̃
) ⊂ {r ∈ (a1,

3
2 )}, supp(θK,t0,c̃(x, t)) ⊂ {r ∈ (a1, a2)} with

a1, a2 depending on K, t0 and c̃.

Proof. The initial conditions and solution are the ones obtained in Lemma 2.4.2, we only need
to note that ||θc,J,b||H2 = c(

∑J
j=1

1
j2 )

1
2 ≤ Cc, and thus we need to take Cc ≤ c̃ and then apply

Lemma 2.4.2. As for the condition regarding the support, we just need to use that since the
solution remains in H4 the velocity is C1 and that the velocity at (x1, x2) = (0, 0) is zero and thus
particles can only approach the origin exponentially fast.

Theorem 2.4.1. For any c0 > 0, M > 2 and t∗ > 0, we can find a H2+ 1
4 function θ0(x) with

||θ0(x)||H2 ≤ c0 such that the only solution θ(x, t) ∈ H2+ 1
4 to the SQG equation (2.1) with initial

conditions θ0(x) is such that there exists t ≤ t∗ with ||θ(x, t)||H2 ≥Mc0.

Proof. We consider the pseudo-solution

θ̄M,t∗,c0,N = θK=4M,t0=t∗,c̃=
c0
2
(x, t) (2.47)

+
c0
4
g1(e

G(t)N
1
2x1)g2(e

−G(t)N
1
2x2)

sin(eG(t)Nx1)

N
3
2

with θK,t0,c̃ given by Corollary 2.4.3 with c̃ = c0
2 , t0 = t∗ and K = 4M ,

G(t) = −
ˆ t

0

∂v1(θK,t0,c̃)

∂x1
(0, s)ds
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and g1(x1), g2(x2) C∞ functions with support in [−1, 1] and ||gi||L2 = 1. We will define

f1M,t∗,c0(x, t) := θK=4M,t0=t∗,c̃=
c0
2
(x, t)

f2c0,N (x, t) :=
c0
4
g1(e

G(t)N
1
2x1)g2(e

−G(t)N
1
2x2)

sin(eG(t)Nx1)

N
3
2

for a more compact notation.
These pseudo-solutions have the following properties:

• For N large, ||θ̄M,t∗,c0,N (t = 0)||H2 ≤ c0.

• There exists a tcrit ≤ t∗ (given by Corollary 2.4.3) such that, for N large, we have

||θ̄M,t∗,c0,N (t = tcrit)||H2 ≥ c0
8
e8M > c0e

M

where we used that, since g1, g2 ∈ C1 and have compact support, for λ > 1

limN→∞||N 1
2 g1(λN

1
2x1)g2(λ

−1N
1
2x2) cos(λNx1)||L2 =

1√
2
||g(x1)||L2 .

Furthermore they fulfil the evolution equation

θ̄M,t∗,c0,N

∂t
+ v1(f

1
M,t∗,c0)

∂f1M,t∗,c0

∂x1
+ v2(f

1
M,t∗,c0)

∂f1M,t∗,c0

∂x2

+ x1
∂v1(f

1
M,t∗,c0

)

∂x1

∂f2c0,N
∂x1

+ x2
∂v2(f

1
M,t∗,c0

)

∂x2

∂f2c0,N
∂x2

= 0

and thus it is a pseudo-solution with source term

FM,t∗,c0,N (x, t) = F 1
M,t∗,c0,N (x, t) + F 2

M,t∗,c0,N (x, t) + F 3
M,t∗,c0,N (x, t),

F 1
M,t∗,c0,N (x, t) := −(v1(f

2
c0,N )

∂f2c0,N
∂x1

+ v2(f
2
c0,N )

∂f2c0,N
∂x2

),

F 2
M,t∗,c0,N (x, t) := −(v1(f

2
c0,N )

∂f1M,t∗,c0

∂x1
+ v2(f

2
c0,N )

∂f1M,t∗,c0

∂x2
),

F 3
M,t∗,c0,N (x, t) := (x1

∂v1(f
1
M,t∗,c0

)(x = 0)

∂x1
− v1(f

1
M,t∗,c0))

∂f2c0,N
∂x1

,

+ (x2
∂v2(f

1
M,t∗,c0

))(x = 0)

∂x2
− v2(f

1
M,t∗,c0))

∂f2c0,N
∂x2

.

As usual we want to find bounds for the source term for t ∈ [0, tcrit]. For F 1
M,t∗,c0,N

(x, t) it is
easy to obtain that

||F 1
M,t∗,c0,N (x, t)||L2 ≤ CN− 5

2 , ||F 1
M,t∗,c0,N (x, t)||H3 ≤ CN

1
2

with C depending on M and c0.
For F 2

M,t∗,c0,N
(x, t), using that ||f2c0,N ||L1 ≤ CN− 5

2 and that the support of f1M,t∗,c0
lies away

from 0, we get
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||F 2
M,t∗,c0,N (x, t)||L2 ≤ CN− 5

2 , ||F 2
M,t∗,c0,N (x, t)||H3 ≤ CN− 5

2

with C depending on M , t∗ and c0.
Finally, for F 3

M,t∗,c0,N
(x, t), using that, for i = 1, 2

xi
∂vi(f

1
M,t∗,c0

)

∂x1
− vi(f

1
M,t∗,c0)

vanishes to second order around 0, that the third derivatives of vi(f1M,t∗,c0
) are bounded around

0, and that supp(f2c0,N ) ⊂ [−N− 1
2 , N− 1

2 ]× [−N− 1
2 , N− 1

2 ], we get

||F 3
M,t∗,c0,N ||L2 ≤ CN− 5

2 , ||F 3
M,t∗,c0,N ||H3 ≤ CN

1
2 ,

with C depending on M , t∗ and c0.
With all this combined and using the interpolation inequality, we get

||FM,t∗,c0,N ||L2 ≤ CN− 5
2 , ||FM,t∗,c0,N ||

H2+ 1
4
≤ CN− 1

4 .

This allows us to obtain, in a similar way as in Lemmas 2.2.8, 2.2.9, 2.3.6 and 2.3.9 that, if
θM,t∗,c0,N (x, t) is the solution to (2.1) with θM,t∗,c0,N (x, 0) = θ̄M,t∗,c0,N (x, 0) then

||θM,t∗,c0,N (x, t)− θ̄M,t∗,c0,N (x, t)||
H2+ 1

4
≤ CtN− 1

4

and this combined with the properties of θ̄M,t∗,c0,N (x, t) finishes the proof.

Theorem 2.4.2. For any c0 > 0 there exist initial conditions θ(x, 0) with ||θ(x, 0)||H2 ≤ c0 such
that there is no solution θ(x, t) to (2.1) satisfying

ess-supt∈[0,ϵ]||θ(x, t)||H2 ≤M

for some ϵ,M > 0.

Proof. After fixing some arbitrary c0 > 0 we define

θ̄n,R,N (x, t) := TR(θ̄M=4n,t∗=2−n,c0=2−n,N ),

with θ̄M,t∗,c0,N as in (2.47) and TR(f(x1, x2)) = f(x1 + R, x2). We will also refer to the first
time when

||θ̄n,R,N (x, t)||H2 ≥ 2n

(which we already know exists and is smaller than 2−n) as tcrit,n.
We will study the initial conditions

θ(x, 0) =

∞∑
n=1

θ̄n,Rn,Nn
(x, 0), (2.48)

which fulfil ||θ(x, 0)||H2 ≤ c0 if each Nn is big enough, and we will prove by contradiction that if
we choose appropriately (Rn)n∈N and (Nn)n∈N there cannot exists a solution θ(x, t) with these
initial conditions that satisfies

ess-supt∈[0,ϵ]||θ(x, t)||H2 ≤ P (2.49)

for some ϵ, P . Note also that θ̄n,Rn,Nn
(x, 0) is supported in B 3

2
(−Rn, 0). We can assume that our

L2 norm is conserved, since this will be true if equation (2.49) holds (for the time intervals that
we will consider). We will assume without loss of generality that ϵ ≤ 1, and we define vmax as the
maximum velocity that a function f with ||f ||H2 ≤ 1 can produce. With this in mind, we write

Rn = Dn +Dn+1 + 4vmax2
n−1 +Rn−1 + 3
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with Dn = N4
n and we will prove that, if Nn is big enough, then any solution to (2.1) with initial

conditions (2.48) will satisfy

ess-supt∈[0,2−n]||θ(x, t)||H2 ≥ 2n−1 (2.50)

for any n ∈ N. Note that with this definition of Rn, we have, for any i ̸= n that

d(supp(TRn
(θ̄n,Rn,Nn

(x, 0))), supp(TRi
(θ̄i,Ri,Ni

(x, 0)))) ≥ 4vmax2
n−1 +Dn

Now, we focus on the evolution of

θn(x, t) := 1B
Dn+2vmax2n−1+ 3

2
(−Rn,0)θ(x, t)

and we will assume that

ess-supt∈[0,2−n]||θ(x, t)||H2 < 2n−1 (2.51)

and try to get to a contradiction.
Then if t ∈ [0, 2−n], we have that θn(x, t) will fulfil the evolution equation

∂θn
∂t

+ (v1(θn) + v1(θ − θn))
∂θn
∂x1

+ (v2(θn) + v2(θ − θn))
∂θn
∂x2

= 0, (2.52)

θn(x, 0) = 1B
Dn+2vmax2n−1+ 3

2
(−Rn,0)θ(x, 0)

and that ||vi(θ − θn)1Bvmax2n (Rn)||C3 ≤ CN−4
n since d(supp(θ − θn), supp(θn)) ≥ N4

n.
But then we can argue as in Lemmas 2.3.6, 2.3.9 and 2.3.10 to show that, for t ∈ [0, tcrit,n], if

Nn is large, we can find a solution θ̃n(x, t) H2+ 1
4 fulfilling (2.52) and

||θ̃n(x, t)− TRn
(θ̄n,Rn,Nn

(x, t))||
H2+ 1

4
≤ CN

− 1
4

n .

But then, the regularity of θ̃n plus the (assumed) regularity of θn allows us to show that both
solutions are actually the same by studying the evolution of θn−θ̃n. Since for some tcrit,n ∈ [0, 2−n]
we have that

||TRn
(θ̄n,Rn,Nn

(x, tcrit,n))||H2 ≥ 2n,

and the H2 norm of TRn(θ̄n,Rn,Nn(x, t)) is continuous in time, we arrive to a contradiction by
taking Nn big enough and repeating this argument for each n ∈ N.

Remark 5. The proof can be adapted to work in the critical spaces W 1+ 2
p ,p for p ∈ (1,∞]. For

this, note that it is easy to obtain a version of Corollary 2.4.3 but with small W 1+ 2
p ,p, since the

function

J∑
j=1

c
f(b−jr)bj sin(2α)

j

has a W 1+ 2
p ,p norm as small as we want by taking c small. As for the perturbation, we need to

consider

λg1(N
bx1)g2(N

bx2)
sin(Nx1)

N1+a
,

with a = a(p), b = b(p) ≥ 0 values that keep the norm W 1+ 2
p ,p bounded (but not tending to zero)

as N → ∞ (for example, in W 1,∞ we consider a = 0) and λ > 0. Taking b = 1
2 and arguing as in

Theorems 2.4.1 and 2.4.2 allows us to obtain ill-posedness for a wide range of p, but we need to
include some refinements to obtain the result for all p ∈ (1,∞]. Namely, approximations for the
velocity similar to those obtained in Lemma 2.2.3 are needed and we have to include one extra
time dependent term in the pseudo-solution.
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Chapter 3

Strong ill-posedness and
Non-existence results for gSQG

3.1 Introduction
In this chapter we consider a generalization to the SQG equation. More precisely, we say a
function w(x, t) : R2 ×R+ → R, w(x, t) ∈ Hs, s > 2 + γ is a solution to the generalized Surface
Quasi-geostrophic equation with parameter γ (or to the γ-SQG equation) with initial conditions
w(x, 0) = w0(x) if the equation

∂w

∂t
+ v1,γ

∂w

∂x1
+ v2,γ

∂w

∂x2
= 0 (3.1)

is fulfilled for every x ∈ R2, with v = (v1,γ , v2,γ) defined by

v1,γ = − ∂

∂x2
Λ−1+γw, v2,γ =

∂

∂x1
Λ−1+γw.

As in the previous chapter, we denote Λαf ≡ (−∆)
α
2 f by the Fourier transform Λ̂αf(ξ) = |ξ|αf̂(ξ).

This family of equations becomes the 2D incompressible Euler equations and the SQG equation
(see [27], [19] and [18]) when γ = −1, 0 respectively. For the entire range γ ∈ (−1, 1), it has been
shown in [18] that this system is locally well-possed in Hs for s > 2+γ. In [21] the authors proved
local existence in the critical Sobolev space H2 for a logarithmic inviscid regularization of SQG
(see also [66] for the γ-SQG case). Regarding Hs norm growth see [73] where the authors show
that there exists initial conditions with arbitrarily small Hs norm (s ≥ 11) that become large after
a long period of time. Finite time formation of singularities for initial data in Hs for s > 2 + γ
remains an open problem for the range γ ∈ (−1, 1). On the other hand, there are a few rigorous
constructions of non-trivial global solutions in Hs (for some s satisfying s > 2 + γ) in [16], [58],
[15] and [95].

For both 2D Euler and SQG, the critical Sobolev space has been studied in [9], [39], [54] and
[65], where it has been established non-existence of uniformly bounded solutions in H2+γ (see also
[78] and [77] for other ill-posedness results for active scalars). Furthermore, for γ = 0, in a range
of supercritical Sobolev spaces (s ∈ ( 32 , 2)) non-existence of solutions in Hs is proved in [39].

Global existence of solutions in L2 have already been obtained for SQG in [89] (see [18], for an
extension in the case γ ∈ (0, 1)), but uniqueness is not known and in fact there is non uniqueness
of solutions for Λ−1w ∈ Cσ

t C
β
x with 1

2 < β < 4
5 and σ < β

2−β (see [12]).
Local well-posedness in Ck,β ∩ Lq (k ≥ 1, β ∈ (0, 1), q > 1) was established for SQG in [98],

and recently the result was improved in [3], where the requirement w ∈ Lq has been dropped. The
same result as in [98] applies for the range γ ∈ [−1, 0) for β ∈ [0, 1] (for the a priori estimates see
[19]). Nevertheless, as shown in [39] for γ = 0, there is no local existence result when β = 0, 1 (in
the case of 2D Euler equations see [8] and [55] for a proof of strong ill-posedness and non-existence
of uniformly bounded solutions for the velocity v in Ck).
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Global in time exponential growth of solutions was obtained in [59] for the range γ ∈ (−1, 1)
in C1,β , with β ∈ [f(γ), 1].

3.1.1 Main results
The aim of this chapter is to prove strong ill-posedness in Ck,β (k ≥ 1, β ∈ (0, 1] and k+β > 1+γ)
of the γ-SQG equation for the range γ ∈ (0, 1). We also construct solutions in R2 of γ-SQG that
initially are in Ck,β ∩ L2 but are not in Ck,β for t > 0.

Theorem 3.1.1. (Strong ill-posedness) Given k a natural number, β ∈ (0, 1], γ ∈ (0, 1) and
δ ∈ (0, 12 ) with k+β− 2δ > 1+ γ, then for any T, tcrit,ϵ1, ϵ2 > 0, there exist a Hk+β+1−δ function
w(x, 0) such that ||w(x, 0)||Ck,β ≤ ϵ1 and the only solution to (3.1) in Hk+β+1−δ with initial
conditions w(x, 0) exists for t ∈ [0, T ] and fulfills that

||w(x, tcrit)||Ck,β ≥ 1

ϵ2
.

Theorem 3.1.2. (Non-existence) Given k a natural number, β ∈ (0, 1], γ ∈ (0, 1) and δ ∈ (0, 12 )

with k+ β− 2δ > 1+ γ, then for any T and ϵ > 0, there exist a Hk+β+1− 3
2 δ function w(x, 0) such

that ||w(x, 0)||Ck,β ≤ ϵ and that the only solution to (3.1) in Hk+β+1− 3
2 δ with initial conditions

w(x, 0) exists for t ∈ [0, T ] and fulfills that, for t ∈ (0, T ], ||w(x, t)||Ck,β = ∞.

Remark 6. Although technically we do not prove the results for the case β = 0, the result in
Ck,1 actually gives us strong ill-posedness and non-existence in the space Ck+1.

3.1.2 Strategy of the proof
To obtain the ill-posedness result, we first focus on finding a pseudo-solution w̄ for γ − SQG that
exhibits the behaviour we would like to show, mainly that it has a small Ck,β norm initially and
this norm grows a lot in a very short period of time. As in Definition 5, we say that w̄ is a
pseudo-solution to γ−SQG if it fulfils an evolution equation of the form

∂w̄

∂t
+ v1,γ

∂w̄

∂x1
+ v2,γ

∂w̄

∂x2
+ F (x, t) = 0 (3.2)

with v = (v1,γ , v2,γ) defined by

v1,γ = − ∂

∂x2
Λ−1+γw̄, v2,γ =

∂

∂x1
Λ−1+γw̄.

Again, in general we will only use this definition for w̄ when F is small in a relevant norm. Once
we have a pseudo-solution w̄ with the desired behaviour, if F is small and both F and w̄ are
regular enough, then w̄ ≈ w, with w the solution to (3.1) with the same initial conditions as w̄,
and therefore w shows the same fast growth as w̄.

The details about how to find a pseudo-solution with the desired behaviour are somewhat
technical, but the rough idea is to consider initial conditions that in polar coordinates have the
form

wN (r, α, 0) = f(r) +
g(r,Nα)

Nk+β
,

that is, a radial function (which is a stationary solution to γ-SQG) plus a perturbation of frequency
N in α. The evolution of wpert,N (r, α, t) := wN (r, α, t)− f(r) satisfies

∂wpert,N

∂t
+ vγ(wpert,N ) · ∇wpert,N + vr,γ(wpert,N )

∂f(r)

∂r
+
∂wpert,N

∂α

vα,γ(f(r))

r
= 0,

where vr,γ , vα,γ are the radial and angular components of the velocity respectively.
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For very big N , we have that

vγ(wpert,N ) · ∇wpert,N ≈ 0, vr,γ(wpert,N ) ≈ Cγ(−∆α)
γ
2Hα(wpert,N )

where (−∆α)
γ
2 , Hα are the fractional laplacian and the Hilbert transform respectively with respect

to only the variable α. This suggest studying

∂w̃

∂t
+
∂f(r)

∂r
Cγ(−∆α)

γ
2Hα(w̃) +

∂w̃

∂α

vα,γ(f(r))

r
= 0. (3.3)

and using w̄ = f(r) + w̃. The system (3.3) is relatively simple to study, since it is linear and one
dimensional in nature, and one can obtain explicit solutions where the Ck,β norm grows arbitrarily
fast. Then, once the candidate pseudo-solutions are found, a careful study of the errors involved
allows us to obtain ill-posedness.

Moreover, to obtain non-existence, we consider an infinite number of fast growing solutions,
and spread them through the plane so that the interactions between them become very small.

3.1.3 Outline of the chapter
The chapter is organized as follows. In Section 2, we set the notation used through the chapter. In
Section 3, we obtain estimates on the velocity in the radial and angular direction. In section 4, we
introduce the pseudo-solutions with the desired properties and establish the necessary estimates
on the source term F (x, t). Finally in section 5, we prove strong ill-posedness and non-existence
for the space Ck,β .

3.2 Preliminaries and notation

3.2.1 Polar coordinates
Many of our computations and functions become much simpler if we use polar coordinates, so we
need to establish some notation in that regard. For the rest of this subsection, we will refer to

F : R+ × [0, 2π) → R2

(r, α) → (r cos (α), r sin (α))

the map from polar to cartesian coordinates. Note that the choice of [0, 2π) for the variable α is
arbitrary and any interval of the form [c, 2π + c) would also work, and in fact we will sometimes
consider intervals different from [0, 2π). These changes in the domain will not be specifically
mentioned since they will be clear by context.

Given a function f(x1, x2) from R2 to R, we define

fpol : R+ × [0, 2π) → R

as fpol(r, α) := f(F (r, α)).
For r > 0, we also have the following equalities

∂f(x1, x2)

∂x1
= cos (α(x1, x2))

∂fpol

∂r
(F−1(x1, x2)) (3.4)

−1

r
sin (α(x1, x2))

∂fpol

∂α
(F−1(x1, x2)),

∂f(x1, x2)

∂x2
= sin (α(x1, x2))

∂fpol

∂r
(F−1(x1, x2)) (3.5)

+
1

r
cos (α(x1, x2))

∂fpol

∂α
(F−1(x1, x2)).
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Furthermore, for functions such that supp(fpol(r, α)) ⊂ {(r, α) : r ≥ r0} with r0 > 0, we have
that for m = 0, 1, ..., using (3.4) and (3.5)

||f ||Cm ≤ Cr0,m||fpol||Cm ,

where

||fpol||Cm =

m∑
k=0

k∑
i=0

|| ∂kfpol

∂ri∂αk−i
||L∞ ,

and similarly
||f ||Cm,β ≤ Cr0,m,β ||fpol||Cm,β . (3.6)

with

||fpol(r, α)||Cm,β = ||fpol||Cm

+

k∑
i=0

supΩ

| ∂mfpol

∂ir∂m−iα (R,A)−
∂mf

∂ir∂m−iα (R+ h1, A+ h2)

|h21 + h22|
β
2

.

where Ω := {R,∈ [0,∞], A ∈ [0, 2π], h1 ∈ [−R,∞], h2 ∈ [−π, π]}
Furthermore, if we restrict ourselves to functions such that

supp(fpol(r, α)) ⊂ {(r, α) : r1 ≥ r ≥ r0}

with r1 > r0 > 0 then for m = 0, 1, ...

||f ||Hm ≤ Cr1,r0,m||fpol||Hm ,

with

||fpol||Hm =

m∑
k=0

k∑
i=0

|| ∂kfpol

∂ri∂αk−i
||L2 .

Since we will need to compute integrals in polar coordinates, for a general set S we will use
the notation

Spol := {(r, α) : F (r, α) ∈ S}

and more specifically, we will use

Bpol
λ (R,A) := {(r, α) : |F (r, α)− F (R,A)| ≤ λ}

with |(x1, x2)| = |x21 + x22|
1
2 (this is simply the set Bλ(R cos (A), R sin (A)) in polar coordinates).

Also, note that, for R ≥ 2λ (which we will assume from now on) we have

Bpol
λ (R,A) ⊂ [R− λ,R+ λ]× [A− arccos (1− λ2

R2
), A+ arccos (1− λ2

R2
)].

We also define, for h ∈ [−λ, λ],

Sλ,R,A(h) := sup(α̃ : (R+ h,A+ α̃) ∈ Bpol
λ (R,A))

and defining
Sλ,R,A,∞ := suph∈[−λ,λ](Sλ,R,A(h))

then for α̃ ∈ [−Sλ,R,A,∞, Sλ,R,A,∞] we can define

Pλ,R,A,+(α̃) := sup(h : (R+ h,A+ α̃) ∈ Bpol
λ (R,A))
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Pλ,R,A,−(α̃) := inf(h : (R+ h,A+ α̃) ∈ Bpol
λ (R,A)).

When the values of λ,R and A are clear by context, we will just write S(h), S∞, P+(α̃) and
P−(α̃). A property for P+(α̃) and P−(α̃) that we will need to use later on is that, for R ∈ [ 12 ,

3
2 ]

and α̃ ∈ [−Sλ,R,A,∞, Sλ,R,A,∞] we have

|Pλ,R,A,+(α̃) + Pλ,R,A,−(α̃)| ≤ Cλ2.

Which can be easily obtained using that, since

|F (R,A)− F (r, α)| = |(R− r)2 + 2Rr(1− cos(A− α))| 12

then

Pλ,R,A,+(α̃) = −R(1− cos(α̃))

+

√
(2R(1− cos(α̃))2 − 4(2R2(1− cos(α̃))− λ2)

2

Pλ,R,A,−(α̃) = −R(1− cos(α̃))

−
√
(2R(1− cos(α̃))2 − 4(2R2(1− cos(α̃))− λ2)

2
,

so

|Pλ,R,A,+(α̃) + Pλ,R,A,−(α̃)| = 4R(1− cos(α̃)) ≤ Cα̃2 ≤ Cλ2.

3.2.2 Other notation
Given two sets X,Y ⊂ R2, we will use d(X,Y ) to refer to the distance between the two, that is

d(X,Y ) := inf
x∈X,y∈Y

|x− y| = inf
x∈X,y∈Y

|(x1 − y1)
2 + (x2 − y2)

2| 12 .

Furthermore, given a function f and a set X we define d(f,X) as

d(supp(f), X).

Also, given a set X and a point x we define the set

X − x := {y ∈ R2 : y + x ∈ X}.

Working in polar coordinates, we will use the notation

Xpol − (r, α) := {(r̃, α̃) ∈ R2 : (r̃ + r, α̃+ α) ∈ Xpol},

where we need to be careful since Xpol − (r, α) ̸= (X − F (r, α))pol.
We will also define, for A a regular enough set, k ∈ N

||f(x)1A||Ck :=

k∑
i=0

i∑
j=0

ess-supx∈A(
∂if(x)

∂jx1∂i−jx2
),

||f(x)1A||Hk :=

s∑
i=0

i∑
j=0

(

ˆ
A

(
∂if(x)

∂jx1∂i−jx2
)2dx)

1
2 .

Finally we will use the notation

|f |Ck,β :=

k∑
i=0

sup
h1,h2∈R

| ∂kf
∂ix1∂k−i∂x2

(y1, y2)− ∂kf
∂ix1∂k−i∂x2

(y1 + h1, y2 + h2)|

|h21 + h22|
β
2

.
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3.2.3 The velocity
We will be considering γ-SQG, so our scalar w will be transported with a velocity given by

vγ(w(.))(x) = C(γ)P.V.

ˆ
R2

(x− y)⊥w(y)

|x− y|3+γ
dy1dy2.

Since the results are independent of the specific value of C(γ), we will just assume C(γ) = 1.
Furthermore we will use the notation

v1,γ(w(.))(x) = vγ · (1, 0) = P.V.

ˆ
R2

(y2 − x2)w(y)

|x− y|3+γ
dy1dy2,

v2,γ(w(.))(x) = vγ · (0, 1) = P.V.

ˆ
R2

(x1 − y1)w(y)

|x− y|3+γ
dy1dy2.

The operators vγ , v1,γ and v2,γ have several useful properties that we will be using later, namely
the fact that they commute with cartesian derivatives ∂

∂x1
and ∂

∂x2
(as long as w is regular enough)

and also that, for i = 1, 2

||vi,γ(w)||Hk ≤ Ck,γ ||w||Hk+γ .

It is unclear (and in fact, untrue) whether these properties translate to the operators vr,γ
and vα,γ that give us the velocity in the radial and polar direction respectively. We can obtain,
however, similar properties for these operators.

We start by noting that

vr,γ(w) = cos(α(x))v1,γ(w) + sin(α(x))v2,γ(w), (3.7)

vα,γ(w) = cos(α(x))v2,γ(w)− sin(α(x))v1,γ(w),

and since cos(α(x)) and sin(α(x)) are C∞ if we are not close to r = 0, we have that, for m ∈ Z

||vr,γ(w)1|x|≥ 1
2
||Hm ≤ Cm(||v1,γ(w)||Hm + ||v2,γ(w)||Hm) ≤ Cm,γ ||w||Hm+γ ,

||vα,γ(w)1|x|≥ 1
2
||Hm ≤ Cm(||v1,γ(w)||Hm + ||v2,γ(w)||Hm) ≤ Cm,γ ||w||Hm+γ .

Furhtermore, if we differentiate with respect to ∂
∂xi

, i = 1, 2 we get

∂vr,γ(w)

∂xi
= vr,γ(

∂w

∂xi
) +

∂ cos(α(x))

∂xi
v1,γ(w) +

∂ sin(α(x))

∂xi
v2,γ(w),

∂vα,γ(w)

∂xi
= vα,γ(

∂w

∂xi
) +

∂ cos(α(x))

∂xi
v2,γ(w)−

∂ sin(α(x))

∂xi
v1,γ(w).

With this, using induction and if we only consider |x| ≥ 1
2 we get that, for m1,m2 ∈ Z

|∂
m1+m2vr,γ(w)

∂xm1
1 ∂xm2

2

(x)− vr,γ(
∂m1+m2w

∂xm1
1 ∂xm2

2

)(x)|

≤ C

m1+m2−1∑
k=0

k∑
j=0

|∂
kv1,γ(w)

∂xj1∂x
k−j
2

(x)|+ |∂
kv2,γ(w)

∂xj1∂x
k−j
2

(x)|,

|∂
m1+m2vα,γ(w)

∂xm1
1 ∂xm2

2

(x)− vα,γ(
∂m1+m2w

∂xm1
1 ∂xm2

2

)(x)|
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≤ C

m1+m2−1∑
k=0

k∑
j=0

|∂
kv1,γ(w)

∂xj1∂x
k−j
2

(x)|+ |∂
kv2,γ(w)

∂xj1∂x
k−j
2

(x)|,

and thus

||(∂
m1+m2vr,γ(w)

∂xm1
1 ∂xm2

2

− vr,γ(
∂m1+m2w

∂xm1
1 ∂xm2

2

))1|x|≥ 1
2
||L∞ (3.8)

≤ C(||v1,γ(w)1|x|≥ 1
2
||Cm1+m2−1 + ||v2,γ(w)1|x|≥ 1

2
||Cm1+m2−1),

||(∂
m1+m2vr,γ(w)

∂xm1
1 ∂xm2

2

− vr,γ(
∂m1+m2w

∂xm1
1 ∂xm2

2

))1|x|≥ 1
2
||L2

≤ C(||v1,γ(w)1|x|≥ 1
2
||Hm1+m2−1 + ||v2,γ(w)1|x|≥ 1

2
||Hm1+m2−1)

||(∂
m1+m2vα,γ(w)

∂xm1
1 ∂xm2

2

− vα,γ(
∂m1+m2w

∂xm1
1 ∂xm2

2

))1|x|≥ 1
2
||L∞ (3.9)

≤ C(||v1,γ(w)1|x|≥ 1
2
||Cm1+m2−1 + ||v2,γ(w)1|x|≥ 1

2
||Cm1+m2−1);

||(∂
m1+m2vα,γ(w)

∂xm1
1 ∂xm2

2

− vα,γ(
∂m1+m2w

∂xm1
1 ∂xm2

2

))1|x|≥ 1
2
||L2

≤ C(||v1,γ(w)1|x|≥ 1
2
||Hm1+m2−1 + ||v2,γ(w)1|x|≥ 1

2
||Hm1+m2−1)

with C depending on m1 and m2.

3.3 Bounds for the velocity
Since we will work in polar coordinates, it will be necessary to obtain expressions for the velocity
in the radial and angular direction. These expressions are, assuming w(x) is a C1 function with
compact support and γ ∈ (0, 1)

vpolr,γ (w)(r, α) =ˆ
[−r,∞]×[−π,π]

(r + h)2 sin(α′)(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + 2r(r + h)(1− cos(α′))|(3+γ)/2
dα′dh

vpolα,γ(w)(r, α) =ˆ
[−r,∞]×[−π,π]

(r + h)(r − (r + h) cos(α′))(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + 2r(r + h)(1− cos(α′))|(3+γ)/2
dα′dh.

These expressions, however, hide some cancellation of the kernel when we are far from the support
of w. Therefore, given a C1 function w with support in Bλ(R cos(A), R sin(A)), 3

2 > R > 1
2 ,

λ ≤ 1
100 we will use the expressions

vpolr,γ (w)(r, α) =ˆ
Bpol

4λ (r,α)−(r,α)

(r + h)2 sin(α′)(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + 2r(r + h)(1− cos(α′))|(3+γ)/2
dα′dh

vpolα,γ(w)(r, α) =
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ˆ
Bpol

4λ (r,α)−(r,α)

(r + h)(r − (r + h) cos(α′))(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + 2r(r + h)(1− cos(α′))|(3+γ)/2
dα′dh

when (r, α) ∈ B2λ(R,A) and

vpolr,γ (w)(r, α) =

ˆ
supp(wpol)−(r,α)

(r + h)2 sin(α′)wpol(r + h, α′ + α)

|h2 + 2r(r + h)(1− cos(α′))|(3+γ)/2
dα′dh

vpolα,γ(w)(r, α) =ˆ
supp(wpol)−(r,α)

(r + h)(r − (r + h) cos(α′))wpol(r + h, α′ + α)

|h2 + 2r(r + h)(1− cos(α′))|(3+γ)/2
dα′dh

when (r, α) /∈ B2λ(R,A).
Although the expression for Bpol

4λ (r, α) is not simple, it will be enough for our computations to
use the properties we obtained in subsection 3.2.1.

We are particularly interested in obtaining the velocity produced by w with support very
concentrated around some point far from r = 0 (say r = 1 for simplicity), and for this we start
with the following technical lemma.

Lemma 3.3.1. Given λ ≤ 1
100 , and a C1 function w(x) with supp(w) ⊂ Bλ(cos(c), sin(c)), c ∈ R,

we have that if (r, α) ∈ B2λ(cos(c), sin(c)) then

|vpolr,γ (w)(r, α)−
ˆ
Bpol

4λ (r,α)−(r,α)

r2α′(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + r2(α′)2|(3+γ)/2
dα′dh|

≤ C||w||L∞λ1−γ ,

|vpolα,γ(w)(r, α) +

ˆ
Bpol

4λ (r,α)−(r,α)

rh(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + r2(α′)2|(3+γ)/2
dα′dh|

≤ C||w||L∞λ1−γ ,

with C depending on γ.

Remark 7. The result can be extended to functions with support concentrated around a point
(r, α) with r ̸= 0, although then the constant will depend on the specific value of r.

Proof. This result is very similar to Lemma 2.2.1, and the proof is analogous. We just need to take
successive approximations of the kernel and bound the error produced by each such approximation.
For example, for (r, α) ∈ B2λ(cos(c), sin(c)) we have that

|
ˆ
Bpol

4λ (r,α)−(r,α)

(r + h)2(sin(α′)− α′)(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + 2r(r + h)(1− cos(α′))|(3+γ)/2
dα′dh|

≤ |
ˆ
Bpol

4λ (r,α)−(r,α)

(r + h)2
|α′|3(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + 2r(r + h)(1− cos(α′))|(3+γ)/2
dα′dh|

≤ Cλ2−γ ||w||L∞

and thus we can substitute the sin(α′−α) by α′−α with an error small enough for our bounds.
Repeating this process for other parts of the kernel yields the desired result.

Lemma 3.3.2. Given a natural number N , 1
2 > δ > 0 fulfilling N−δ ≤ 1

100 and N−1+δ < 1
100 , a

function fN,δ(x) with supp(fN,δ) ⊂ BN−1+δ(cos(c1), sin(c1)) (c1 ∈ R), ||fpolN,δ||Cj ≤ MN j(1−δ) for
j = 0, 1, 2 and 1 > γ > 0, then if wpol

N,δ(r, α) := fpolN,δ(r, α) cos(Nα + c2) (c2 ∈ R) we have that for
(r, α) ∈ Bpol

2N−1+δ(1, c1)
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∣∣∣∣ˆ
Bpol

4N−1+δ (r,α)−(r,α)

r2α′(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + r2(α′)2|(3+γ)/2
dα′dh

− fpolN,δ(r, α)

ˆ
Bpol

4N−1+δ (r,α)−(r,α)

r2α′(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh

∣∣∣∣
≤ CMNγ−δ

∣∣∣∣ˆ
Bpol

4N−1+δ (r,α)−(r,α)

rh(wpol(r + h, α′ + α)− wpol(r, α))

|h2 + r2(α′)2|(3+γ)/2
dα′dh (3.10)

− fpolN,δ(r, α)

ˆ
Bpol

4N−1+δ (r,α)−(r,α)

rh(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh

∣∣∣∣
≤ CMNγ−δ

with C depending on γ and δ.

Proof. We will just consider the case c1, c2 = 0 for simplicity, and we will focus on obtaining
(3.10), the other inequality being analogous. We need to find bounds for∣∣∣∣ˆ

Bpol

4N−1+δ (r,α)−(r,α)

rh(wpol
N,δ(r + h, α′ + α)− fpolN,δ(r, α) cos(N(α′ + α)))

|h2 + r2(α′)2|(3+γ)/2
dα′dh

∣∣∣∣
=

∣∣∣∣ˆ 4N−1+δ

−4N−1+δ

ˆ S(h)

−S(h)

rh(fpolN,δ(r + h, α′ + α)− fpolN,δ(r, α)) cos(N(α′ + α))

|h2 + r2(α′)2|(3+γ)/2
dα′dh

∣∣∣∣
=

∣∣∣∣ˆ 4N−1+δ

−4N−1+δ

ˆ rS(s2)

−rS(s2)

s2(f
pol
N,δ(r + s2,

s1
r + α)− fpolN,δ(r, α)) cos(N( s1r + α))

|s|3+γ
ds1ds2

∣∣∣∣
where we used the change of variables s1 = r(α′ − α), h = s2 and we define |s| := |s21 + s22|

1
2 .

Furthermore,

ˆ 4N−1+δ

−4N−1+δ

ˆ rS(s2)

−rS(s2)

s2 cos(N( s1r + α))(fpolN,δ(r + s2,
s1
r + α)− fpolN,δ(r, α))

|s|3+γ
ds1ds2

= cos(Nα)

ˆ 4N−1+δ

−4N−1+δ

ˆ rS(s2)

−rS(s2)

s2 cos(
N
r s1)(f

pol
N,δ(r + s2,

s1
r + α)− fpolN,δ(r, α))

|s|3+γ
ds1ds2

− sin(Nα)

ˆ 4N−1+δ

−4N−1+δ

ˆ rS(s2)

−rS(s2)

s2 sin(
N
r s1)(f

pol
N,δ(r + s2,

s1
r + α)− fpolN,δ(r, α))

|s|3+γ
ds1ds2.

We will only check the term that is multiplied by cos(Nα), the other term being analogous.
We start with the contribution when (s1, s2) ∈ A := {|sj | ≤ 4πr

N with j = 1, 2}, which gives us

|
ˆ
A

s2 cos(
N
r s1)(f

pol
N,δ(r + s2,

s1
r + α)− fpolN,δ(r, α))

|s|3+γ
ds1ds2|

≤ CMNγ−δ.

Next we consider the integral in

B := {(s1, s2) : (s1, s2) ∈ Bpol
4N−1+δ(r, α)− (r, α), |s1| ≤ ⌊S(s2)N

2π
⌋2πr
N

} \ A,
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with ⌊·⌋ the integer part.
We will focus on the contribution when (s1, s2) ∈ B ∩ (s1 ≥ 4πr

N , s2 ≥ 0), since the other parts
of the integral are bounded analogously. We start by computing the integral with respect to s1.

For this we first note that, for an integer i, given a C2 function g(x) and a real number N
r > 0

we have

|
ˆ (i+1) 2πr

N

i 2πr
N

cos(
N

r
x)g(x)dx| ≤ (

πr

N
)3(supx∈(i 2πr

N ,(i+1) 2πr
N )|g′′(x)|)

where g′′(x) is the second derivative of g(x). This bound is obtained simply by considering a second
order Taylor expansion around the middle point of the interval and noting that the constant and
linear terms vanish. Therefore, if i ≥ 2, s2 > 0

∣∣∣∣ˆ (i+1) 2πr
N

i 2πr
N

cos(Nr s1)(f
pol
N,δ(r + s2,

s1
r + α)− fpolN,δ(r, α))

|s|3+γ
ds1

∣∣∣∣
≤ (

2πr

N
)3(sups1∈(i 2πr

N ,(i+1) 2πr
N )

∣∣∣∣ d2ds21 f
pol
N,δ(r + s2,

s1
r + α)− fpolN,δ(r, α)

|s|3+γ

∣∣∣∣)
≤ CM(

2πr

N
)3

1

(( i2πrN )2 + s22)
3+γ
2

×
(
N2−2δ +

N1−δ

(( i2πrN )2 + s22)
1
2

+
N1−δ[(i+ 1) 2πN + s2]

(( i2πrN )2 + s22)

)
≤ CM(

2πr

N
)3

1

( i2πrN + s2)3+γ

(
N2−2δ +

N1−δ

( i2πrN + s2)

)
.

Adding over all the relevant values of i we get

⌊S(s2)N
2π ⌋∑
i=2

CM(
2πr

N
)3

1

( i2πrN + s2)3+γ

(
N2−2δ +

N1−δ

i2πr
N + s2

)
≤
ˆ ∞

1

CM(
2πr

N
)3

1

(x2πrN + s2)3+γ

(
N2−2δ +

N1−δ

x2πr
N + s2

)
dx

≤ CM

N2δ( 2πrN + s2)2+γ
+

CM

N1+δ( 2πrN + s2)3+γ
,

and multiplying by s2 and integrating with respect to s2 we obtain

ˆ 4N−1+δ

0

s2(
CM

N2δ( 2πrN + s2)2+γ
+

CM

N1+δ( 2πrN + s2)3+γ
)ds2 ≤ CMNγ−δ.

Finally, we need to bound the integral when

(s1, s2) ∈ C := B4N−1+δ(r, α)− (r, α) \ (A ∪ B).

For this we only need to use that in this set |s| ≥ 3N−1+δ and that

|
ˆ
[−rS(r),rS(r)]\[−⌊S(r)N

2π ⌋ 2πr
N ,⌊S(r)N

2π ⌋ 2πr
N ]

ds1| ≤ 2
2πr

N
,

which gives that

|
ˆ
C

s2 cos(
N
r s1)(f

pol
N,δ(r + s2,

s1
r + α)− fpolN,δ(r, α))

|s|3+γ
ds1ds2|
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≤ |
ˆ 4N−1+δ

−4N−1+δ

C|s2|M
N |N−1+δ|3+γ

ds2| ≤ CMNγ−δ−δγ .

Lemma 3.3.3. Given 1
2 > δ > 0 and 1 > γ > 0, for any natural number N fulfilling N−δ ≤ 1

100
and N−1+δ < 1

100 , a function fN,δ(x) with supp(fN,δ) ⊂ BN−1+δ(cos(c1), sin(c1)) (c1 ∈ R),
||fpolN,δ||Cj ≤ MN j(1−δ) for j = 0, 1, 2 then we have that if wpol

N,δ(r, α) := fpolN,δ(r, α) cos(Nα + c2)
(c2 ∈ R) there exist constants C,Cγ such that for (r, α) ∈ B2N−1+δ(1, c1)

|vpolr,γ (wN,δ)(r, α)−NγfpolN,δ(r, α)Cγ sin(Nα+ c2)| ≤ CMNγ−δ,

|vpolα,γ(wN,δ)(r, α)| ≤ CMNγ−δ,

with Cγ ̸= 0 depending on γ and C depending on γ and δ.

Proof. Using Lemmas 3.3.1 and 3.3.2 yields

|vpolr,γ (wN,δ)(r, α)

− fpolN,δ(r, α)

ˆ
Bpol

4N−1+δ (r,α)−(r,α)

r2α′(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh|

≤ CMNγ−δ,

|vpolα,γ(wN,δ)(r, α)

− fpolN,δ(r, α)

ˆ
Bpol

4N−1+δ (r,α)−(r,α)

rh(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh|

≤ CMNγ−δ,

and therefore it is enough to prove

|fpolN,δ(r, α)

ˆ
Bpol

4N−1+δ (r,α)−(r,α)

r2α′(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh (3.11)

−NγCγ sin(Nα+ c2)| ≤ CMNγ−δ,

|fpolN,δ(r, α)

ˆ
Bpol

4N−1+δ (r,α)−(r,α)

rh(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh| (3.12)

≤ CMNγ−δ.

We start with (3.12), where by using the odd symmetry of the integrand with respect to h

|fpolN,δ(r, α)

ˆ
Bpol

4N−1+δ (r,α)−(r,α)

rh(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh|

= |fpolN,δ(r, α)

ˆ S∞

−S∞

ˆ P+(α′)

P−(α′)

rh(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dhdα′|

= |fpolN,δ(r, α)

ˆ S∞

−S∞

ˆ −P+(α′)

P−(α′)

rh(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dhdα′|
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≤ |M
ˆ S∞

−S∞

CN−2+2δ

N (−1+δ)(2+γ)
dα′| ≤ CMN (−1+δ)(1−γ) ≤ CMNγ−δ

where we used that |P+(α
′) + P−(α

′)| ≤ CN−2+2δ, |S∞| ≤ arccos(1− 16N−2+2δ

r2 ) ≤ CN−1+δ and
that, for h ∈ [P−(α

′),−P+(α
′)]

1

|h2 + r2(α′)2|(2+γ)/2
≤ C

N (−1+δ)(2+γ)
.

For (3.11) we use
ˆ
Bpol

4N−1+δ (r,α)−(r,α)

r2α′(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh

= − sin(Nα+ c2)

ˆ 4N−1+δ

−4N−1+δ

ˆ rS(h2)

−rS(h2)

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1dh2

= − sin(Nα+ c2)

ˆ
R

ˆ
R

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1dh2

+ 4 sin(Nα+ c2)

ˆ ∞

0

ˆ ∞

rS̃(h2)

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1dh2

where we just take

S̃(h) =

{
S(h), if h ∈ [−4N−1+δ, 4N−1+δ]

0 otherwise.

But, we have that, for i a natural number,

|
ˆ (i+1) 2πr

N +rS̃(h2)

i 2πr
N +rS̃(h2)

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1|

≤ C

N2

1

|(i 2πrN + rS̃(h2))2 + h22|(3+γ)/2

and thus

|
ˆ ∞

rS̃(h2)

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1|

≤
∞∑
i=0

C

N2

1

|(i 2πrN + rS̃(h2))2 + h22|(3+γ)/2

≤
ˆ ∞

−1

C

N2

1

|x 2πr
N + rS̃(h2) + h2|(3+γ)

dx

≤ C

N | − 2πr
N + rS̃(h2) + h2|(2+γ)

≤ C

N |rS̃(h2) + h2|(2+γ)

where we used for h2 > 0, r ≥ 1
2 we have rS̃(h2) + h2 ≥ CN−1+δ. But then

|4 sin(Nα+ c2)

ˆ N−1+δ

0

ˆ ∞

rS̃(h2)

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1dh2|

≤
ˆ N−1+δ

0

C

N1+(−1+δ)(2+γ)
dh2 = CNγ−δ−δγ
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and

|4 sin(Nα+ c2)

ˆ ∞

N−1+δ

ˆ ∞

rS̃(h2)

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1dh2|

≤ |
ˆ ∞

N−1+δ

C

N |h2|(2+γ)
dh2| ≤ CNγ−δ−γδ,

and therefore

|
ˆ
Bpol

4N−1+δ (r,α)−(r,α)

r2α′(cos(N(α′ + α) + c2)− cos(Nα+ c2))

|h2 + r2(α′)2|(3+γ)/2
dα′dh

+ sin(Nα+ c2)

ˆ
R

ˆ
R

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1dh2| ≤ CNγ−δ−γδ

and combined with (3.11) we get

|vpolα,γ(wN,δ)(r, α) + fpolN,δ(r, α) sin(Nα+ c2)

ˆ
R

ˆ
R

h1 sin(N
h1

r )

|h21 + h22|(3+γ)/2
dh1dh2|

≤ CMNγ−δ.

Furthermore

− sin(Nα+ c2)

ˆ
R2

h1 sin(
N
r h1)

|h21 + h22|
3+γ
2

dh1dh2

= − sin(Nα+ c2)

(
N

r

)γ ˆ
R2

h1 sin(h1)

|h21 + h22|
3+γ
2

dh1dh2,

and ˆ
R2

h1 sin(h1)

|h21 + h22|
3+γ
2

dh1dh2 =

ˆ ∞

−∞
h1 sin(h1)

ˆ ∞

−∞

1

(h21 + h22)
(3+γ)

2

dh2dh1

=

ˆ ∞

−∞

h1 sin(h1)

|h1|2+γ

ˆ ∞

−∞

1

(1 + λ2)
(3+γ)

2

dλdh1 = Kγ2

ˆ ∞

0

h1 sin(h1)

|h1|2+γ
dh1.

By using that h1

|h1|2+γ is monotone decreasing for h1 > 0, sin(x + π) = − sin(x), sin(x) > 0 if
x ∈ (0, π) and Kγ > 0 we obtain

Cγ := −Kγ2

ˆ ∞

0

h1 sin(h1)

|h1|2+γ
< 0.

Thus

|vpolr,γ (wN,δ)(r, α)− fpolN,δ(r, α)

(
N

r

)γ

Cγ sin(Nα+ c2)| ≤ CMNγ−δ,

and since, for the values of r considered we have

|
(
N

r

)γ

−Nγ | ≤ CNγ−1+δ ≤ CNγ−δ

we are done.
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Lemma 3.3.4. Given 0 < δ < 1
2 , 0 < γ < 1, a natural number N such that N−1+δ ≤ 1

100 and a
C2 function fN,δ, satisfying

supp(fN,δ) ⊂ BN−1+δ(cos(c1), sin(c1))

(c1 ∈ R) with ||fN,δ||Cj ≤MN j(1−δ), j = 0, 1, 2, then for any x = (x1, x2) = (R cos(A), R sin(A)) ∈
R2 \B2N−1+δ(cos(c1), sin(c1)) we have that

|vpolr,γ (fN,δ(r, α) sin(Nα))(R,A)| ≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ,

|vpolα,γ(fN,δ(r, α) sin(Nα))(R,A)| ≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ

with C depending only on γ.
Furthermore, if fN,δ ∈ Ck+2 for k an integer k ≥ 1 and ||fN,δ(r, α)||Cj ≤ MN j(1−δ) for

j = 0, 1, ..., k then we have

|
∂jvpolr,γ (fN,δ(r, α) sin(Nα))(R,A)

∂xl1∂x
j−l
2

| ≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ+j ,

|
∂jvpolα,γ(fN,δ(r, α) sin(Nα))(R,A)

∂xl1∂x
j−l
2

| ≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ+j

for j = 0, 1, ..., k + 2, l = 0, 1, ..., j, with C depending on γ and j.

Proof. We will consider c1 = 0 for simplicity and we will obtain the expression only for vr,γ , vα,γ
being equivalent. That is to say, we want to compute

ˆ
supp(fpol

N,δ)

(r′)2 sin(α′ −A)fN,δ(r
′, α′) sin(Nα′)

|(R− r′)2 + 2Rr′(1− cos(A− α′))|(3+γ)/2
dα′dr′

= cos(NA)

ˆ
supp(fpol

N,δ)

(r′)2 sin(α′ −A)fN,δ(r
′, α′) sin(Nα′ −NA)

|(R− r′)2 + 2Rr′(1− cos(A− α′))|(3+γ)/2
dα′dr′

+ sin(NA)

ˆ
supp(fpol

N,δ)

(r′)2 sin(α′ −A)fN,δ(r
′, α′) cos(Nα′ −NA)

|(R− r′)2 + 2Rr′(1− cos(A− α′))|(3+γ)/2
dα′dr′

= cos(NA)

ˆ
supp(fpol

N,δ)−(0,A)

(r′)2 sin(ᾱ)fN,δ(r
′, ᾱ+A) sin(Nᾱ)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2
dᾱdr′

+ sin(NA)

ˆ
supp(fpol

N,δ)−(0,A)

(r′)2 sin(ᾱ)fN,δ(r
′, ᾱ+A) cos(Nᾱ)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2
dᾱdr′

with f , R and A as in the hypothesis of the lemma. We will focus on the part depending on
cos(NA), the other term being analogous. First, a second order Taylor expansion and some
computations give us, since r′ ∈ ( 12 ,

3
2 )

|
ˆ (i+1) 2π

N + π
2N

i 2π
N + π

2N

(r′)2 sin(ᾱ)fN,δ(r
′, ᾱ+A) sin(Nᾱ)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2
dᾱ|

≤
ˆ (i+1) 2π

N + π
2N

i 2π
N + π

2N

(
2π

N

)2

| sin(Nᾱ)|

× supᾱ∈[i 2π
N + π

2N ,(i+1) 2π
N + π

2N ]

(∣∣∣ ∂2
∂ᾱ2

(r′)2 sin(ᾱ)fN,δ(r
′, ᾱ+A)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2

∣∣∣)dᾱ
≤ C

(
2π

N

)3( ||fN,δ(r, α)||C2

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(2+γ)/2
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+
||fN,δ(r, α)||C1

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2

+
||fN,δ(r, α)||L∞

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(4+γ)/2

)
.

Using that, for (r′, ᾱ) ∈ supp(fpolN,δ)− (0, A)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))| 12 ≥ d((R,A), fN,δ)

d((R,A), fN,δ) ≥ N−1+δ

and the properties of fN,δ we get then that

|
ˆ (i+1) 2π

N + π
2N

i 2π
N + π

2N

(r′)2 sin(ᾱ)fN,δ(r
′, ᾱ+A) sin(Nᾱ)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2
dᾱ|

≤ CMN−1−2δ

d((R,A), fN,δ)2+γ
,

so that

∣∣∣ ˆ 1+N−1+δ

1−N−1+δ

ˆ ⌊S(r′)N
2π ⌋ 2π

N − 3π
2N

−⌊S(r′)N
2π ⌋ 2π

N + π
2N

(r′)2 sin(ᾱ)fN,δ(r
′, ᾱ+A) sin(Nᾱ)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2
dᾱdr′

∣∣∣
≤
ˆ 1+N−1+δ

1−N−1+δ

CMN−1−δ

d((R,A), fN,δ)2+γ
dr′ ≤ CM

N2d((R,A), fN,δ)2+γ
.

As for the rest of the integral we have

∣∣∣ ˆ 1+N−1+δ

1−N−1+δ

ˆ S(r′)

⌊S(r′)N
2π ⌋ 2π

N − 3π
2N

(r′)2 sin(ᾱ)fN,δ(r
′, ᾱ+A) sin(Nᾱ)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2
dᾱdr′

∣∣∣
≤
ˆ 1+N−1+δ

1−N−1+δ

CMN−1

d((R,A), fN,δ)2+γ
dr′ ≤ CMNδ

N2d((R,A), fN,δ)2+γ
,

and ∣∣∣ ˆ 1+N−1+δ

1−N−1+δ

ˆ −⌊S(r′)N
2π ⌋ 2π

N + π
2N

−S(r′)

(r′)2 sin(ᾱ)fN,δ(r
′, ᾱ+A) sin(Nᾱ)

|(R− r′)2 + 2Rr′(1− cos(ᾱ))|(3+γ)/2
dᾱdr′

∣∣∣
≤
ˆ 1+N−1+δ

1−N−1+δ

CMN−1

d((R,A), fN,δ)2+γ
dr′ ≤ CMNδ

N2d((R,A), fN,δ)2+γ

and we are done.
To obtain the result for the derivatives, we first note that since

v1,γ(w) = cos(α)vr,γ(w)− sin(α)vα,γ(w) (3.13)
v2,γ(w) = sin(α)vr,γ(w) + cos(α)vα,γ(w)
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then for x = (x1, x2) = (R cos(A), R sin(A))

|vpol1,γ(fN,δ(r, α) sin(Nα))(R,A)| ≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ,

|vpol2,γ(fN,δ(r, α) sin(Nα))(R,A)| ≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ.

Furthermore, derivation commutes with the operators v1,γ and v2,γ , so we can prove that

|
∂jvpol1,γ(fN,δ(r, α) sin(Nα))(R,A)

∂xl1∂x
j−l
2

| ≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ+j ,

|
∂jvpol2,γ(fN,δ(r, α) sin(Nα))(R,A)

∂xl1∂x
j−l
2

| ≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ+j

by differentiating fN,δ(r, α) sin(Nα) and applying our lemma for each individual term.
Then, using (3.7) and computing ∂j

∂xl
1∂x

j−l
2

vr,γ , ∂j

∂xl
1∂x

j−l
2

vα,γ we obtain, for r ≥ 1
2 that

∂j

∂xl1∂x
j−l
2

vr,γ(R,A) ≤ C
( j∑

k=0

k∑
l=0

| ∂kv1,γ

∂xl1∂x
k−l
2

(R,A)|+ | ∂kv2,γ

∂xl1∂x
k−l
2

(R,A)|
)

≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ+j ,

∂j

∂xl1∂x
j−l
2

vα,γ(R,A) ≤ C
( j∑

k=0

k∑
l=0

| ∂kv1,γ

∂xl1∂x
k−l
2

(R,A)|+ | ∂kv2,γ

∂xl1∂x
k−l
2

(R,A)|
)

≤ C
M

|d(x, fN,δ)|2+γ
N−2+δ+j ,

and we are done.

3.4 Pseudo-solutions considered and their properties
To obtain ill-posedness for the space Ck,β for γ-SQG, we will add perturbations to a radial solution
f(r) (with f(r) chosen so that it has some specific properties). These perturbations will be of the
form

λ

L−1∑
l=0

f(N1−δ(r − 1), N1−δα)
cos(N(M + l)(α− α1) + α2 + kπ

2 )

L(NM)k+β
, (3.14)

with

• f(r − 1, α) = g(r − 1)g(α), g a positive C∞ function with support in [− 1
2 ,

1
2 ] and such that

f(x) = 1 if x ∈ [− 1
4 ,

1
4 ] and ||f(r − 1, α)||Cj ≤ 100j ,

• M,N, λ > 0, δ ∈ (0, 12 ), L ∈ N and α1, α2 ∈ R,

• Nδ ≥ 100, N1−δ ≥ 100,

• k ∈ N, β ∈ (0, 1], γ ∈ (0, 1),
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• k + β > 1 + 2δ + γ,

• L < M
2 .

For compactness of notation, whenever we have f, δ,N, L,M, λ satisfying these properties we
will say that they satisfy the usual conditions. From now on we will consider k, β, γ and δ fixed
satisfying these properties, just so that we can avoid extra sub-indexes for these parameters. Due
to this, one needs to keep in mind that in general the constants in the lemmas obtained might
depend on the specific values of k, β, γ and δ. Before we study how this kind of perturbations
will evolve with time, we start by obtaining some basic properties regarding the norms of (3.14).

Lemma 3.4.1. Given a perturbation as in (3.14), which we will refer as wk,β, with f, δ,N, L,M, λ
satisfying the usual conditions we have that

||wk,β ||Cj ≤ CKjλ(NM)j−k−β

|∂
kwk,β(r, α)

∂k−ix1∂ix2
| ≤ Cλ

L| sin(N α−α1

2 )|(NM)β
+ Cλ(NM)−δ−β +

CλL

M(NM)β

|∂
k+1wk,β(r, α)

∂k+1−ix1∂ix2
| ≤ Cλ(NM)1−β

L| sin(N α−α1

2 )|
+ Cλ(NM)−δ−β+1 +

Cλ(NM)1−βL

M

with C a constant depending on f and Kj constants depending on j.

Proof. The bounds for the Cj norms can be obtained directly by using that, for functions with
support concentrated around r = 1, we have that

||f(x1, x2)||Cj ≤ Kj ||fpol(r, α)||Cj

and the bounds for the derivatives of wpol
k,β can be obtained by direct computation. For the other

two inequalities, we have that

|∂
kwk,β(r, α)

∂k−ix1∂ix2
| ≤ Kk||wpol

k,β(r, α)||Ck ≤ Cλ(NM)−β−δ

+ Cλ|
L−1∑
l=0

f(N1−δ(r − 1), N1−δα)
∂k

∂αk
(
cos(N(M + l)(α− α1) + α2 + kπ

2 )

L(NM)k+β
)|

≤ Cλ(NM)−β−δ +
CλL

M(NM)β

+ Cλ|
L−1∑
l=0

f(N1−δ(r − 1), N1−δα)
cos(N(M + l)(α− α1) + α2)

L(NM)β
|

and we can compute
∑L−1

l=0 cos(N(M + l)(α− α1) + α2) as

L−1∑
l=0

cos(N(M + l)(α− α1) + α2)

=
sin(NL(α−α1)

2 )

sin(N α−α1

2 )
cos(NM(α− α1) + α2 +

N(L− 1)(α− α1)

2
)

which gives us

|∂
kwk,β(r, α)

∂k−ix1∂ix2
| ≤ Cλ(NM)−β−δ +

CλL

M(NM)β
+

Cλ

| sin(N α−α1

2 )|L(NM)β
.

The proof with k + 1 derivatives is done analogously.
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This lemma tells us that these perturbations behave similarly to wave packets, with their
amplitude and derivatives decreasing as one gets further from α1+j 2πN . We will use this property
to obtain upper bounds for the norms of these perturbations when several of them are placed
appropriately far way from each other. For this, we first we need a short technical lemma.

Lemma 3.4.2. Given a C1 function f(x) : R→ R with ||f(x)||L∞ ≤ M1 and ||f ′(x)||L∞ ≤ M2,
we have that, for any x, h ∈ R, β ∈ (0, 1)

|f(x)− f(x+ h)|
|h|β

≤ 21−βM1−β
1 Mβ

2 .

Proof. We have the two trivial bounds

|f(x)− f(x+ h)|
|h|β

≤ 2M1

|h|β
,

|f(x)− f(x+ h)|
|h|β

≤ |h|M2

|h|β
,

and thus it is enough to find a bound for

suph∈R(min(
2M1

|h|β
,
|h|M2

|h|β
)).

But it is easy to see that the supremum is attained when 2M1

|h|β = |h|M2

|h|β . Since this happens
when |h| = 2M1

M2
, substituting |h| in any of the upper bounds gives us

|f(x)− f(x+ h)|
|h|β

≤ 2M1(
2M1

M2

)β = (2M1)
1−βMβ

2 .

Now we are ready to prove decay in space of the functions that we use as perturbations.

Lemma 3.4.3. Given a function g(x) of the form

gpol(r, α) =

J∑
j=1

λj

L−1∑
l=0

f(N1−δ(r − 1), N1−δα)
cos(N(Mj + l)(α− α1

j ) + α2
j +

kπ
2 )

JL(NMj)k+β

where f, δ,N, L,Mj , λj satisfy the usual conditions and with α1
j ∈ [c π

N ,
π
N ] and |α1

j1
− α1

j2
| ≥ c π

N

for some c > 0 and Mj1

Mj2
≤ 2 for j1, j2 ∈ {1, 2, ..., J} then we have that

|g|Ck,β ≤ Cλ̄(
1

J
+

1

(NM̄)δ
+

L

M̄
+

1

cL
)

with C depending on k, β and δ and where M̄ := supj=1,...,J(Mj), λ̄ := supj=1,...,J(λj).

Proof. We will compute bounds for the seminorm | · |Cα of an arbitrary k-th derivative of g, and
we will refer to it simply as g(k)(x) since the specific derivative we consider is irrelevant for the
proof and we will use dk as notation for the specific k-th derivative for the same reason. We start
by obtaining bounds for ||g(k)||L∞ . Since |α1

j1
− α1

j2
| ≥ c π

N and α1
j ∈ [c π

N ,
π
N ], we have that for

any α there is at most one j with

min
n∈Z

|α− α1
j −

πn

N
| < cπ

2N
. (3.15)

For simplicity, assume that j = 1 fulfils (3.15) (the proof when other values of j or no value of
j fulfil (3.15) is equivalent).

Then, using Lemma 3.4.1 we obtain
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|g(k)(r, α)| ≤

≤ C|λ1
L−1∑
l=0

dk
(
f(N1−δ(r − 1), N1−δα)

cos(N(M1 + l)(α− α1
j ) + α2

1 +
kπ
2 )

JL(NM1)k+β

)
|

+ C|
J∑

j=2

λj

L−1∑
l=0

dk
(
f(N1−δ(r − 1), N1−δα)

cos(N(Mj + l)(α− α1
j ) + α2

j +
kπ
2 )

JL(NMj)k+β

)
|

≤ Cλ̄

J(NM̄)β
+

Cλ̄

(NM̄)β+δ
+

Cλ̄L

M̄(NM̄)β
+

Cλ̄

| sin( cπ2 )|L(NM̄)β

≤ Cλ̄

J(NM̄)β
+

Cλ̄

(NM̄)β+δ
+

Cλ̄L

M̄(NM̄)β
+

Cλ̄

cL(NM̄)β

=
Cλ̄

(M̄N)β
(
1

J
+

1

(NM̄)δ
+

L

M̄
+

1

cL
).

Arguing the same way for any arbitrary k + 1 derivative we obtain

|g(k+1)(r, α)|

≤ NM̄
Cλ̄

(M̄N)β
(
1

J
+

1

(NM̄)δ
+

L

M̄
+

1

cL
).

and then a direct application of Lemma 3.4.2 gives us

g(k)(x)− g(k)(x+ h)

|h|β
≤ Cλ̄(

1

J
+

1

(NM̄)δ
+

L

M̄
+

1

cL
).

With this out of the way, we are ready to define the pseudo-solutions that we will use to prove
ill-posedness. Namely, we define

w̄pol

λ,N,M,J,L,t̃
(r, α, t) := λ0f1(r) (3.16)

+

J∑
j=1

L−1∑
l=0

(
λjf2(N

1−δ(r − 1), N1−δ(α− tλ0vα,γ(f1)(r = 1)))× cos(Ξj,l)

JL(NMj)k+β

)

with

Ξj,l := N(Mj + l)(α− α1
j − tλ0vα,γ(f1)(r = 1)) + α2

j +
kπ

2
+ tλ0CγN

γ(Mj + l)γ

Mj =M(1 +
j

J
), λ0 =

πM1−γ

2t̃NγCγγ
, λj = λ(1 +

j

J
)β for j = 1, ..., J,

α1
j =

π

2N
(1 +

j

J
)−1+γ − t̃λ0vα,γ(f1)(r = 1), α2

j = −(
1

γ
− 1)

π

2
M(1 +

j

J
)γ .

The functions f1,γ(r) and f2(r − 1, α) and the values k, β, γ, δ, λ,N,M, J, L and t̃ will fulfil the
following properties:

• λ,N,M, J, L, t̃ > 0, δ ∈ (0, 12 ), γ ∈ (0, 1) and L, J,M ∈ N, M
J ∈ N,
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• f2(r− 1, α) = g(r− 1)g(α), g a positive C∞ function with support in [− 1
2 ,

1
2 ] and such that

f(x) = 1 if x ∈ [− 1
4 ,

1
4 ] and ||f2(r − 1, α)||Cj ≤ 100j ,

• Nδ ≥ 100, N1−δ ≥ 100, λ0 ≤ 1 (i.e. Nγ ≥ πM1−γ

2t̃Cγγ
),

• k ∈ N, β ∈ (0, 1], γ ∈ (0, 1),

• k + β > 1 + 2δ + γ,

• L < M
2 ,

• ∂i v
pol
r,γ (f1)

r

∂ri (r = 1) = 0 for i = 1, 2,

• ∂f1
∂r = 1 if r ∈ [ 34 ,

5
4 ],

• supp(f1) ⊂ {r : r ∈ ( 12 ,Kγ)} for some Kγ depending only on γ.

As before, to avoid extra sub-indexes we consider k, β, δ and γ to be fixed, but all the results will
apply as long as they fulfil the restrictions mentioned. The constants appearing in the lemmas
might depend on our specific choice but the final results will not.

However it is not immediately obvious whether the conditions we impose over f1,γ are too
restrictive, so we need the following lemma to assure us that a f1,γ with the desired properties
exists.

Lemma 3.4.4. There exists a C∞ compactly supported function g(.) : [0,∞) → R with support

in (2,∞) such that ∂i vα,γ (g(.))(r)

r

∂ri (r = 1) = ai with i = 1, 2 and ai arbitrary.

We will omit the proof of this lemma since it is completely equivalent to that of Lemma 2.5
in [39]. With this, the existence of the desired f1 is easy to prove, since we can just choose some
C∞ f̃ with support in ( 12 , 2) with the desired derivative in r ∈ [ 34 ,

5
4 ] and then add some other C∞

function given by Lemma 3.4.4 to cancel out the derivatives of Vα,γ around r = 1.
Our next goal will be to prove that this family of pseudo-solutions is a good approximation

for our solutions. For this we define v̄r,γ as

v̄polr,γ (f2(N
1−δ(r − 1), N1−δα+ c1) cos(NKα+ c2))(r, α)

:= (NK)γCγf2(N
1−δ(r − 1), N1−δα+ c1) sin(NKα+ c2),

v̄r,γ(f(r)) = 0.

We will only use this definition for ease of notation and we will only apply this operator to our
pseudo-solution so we do not have to worry about defining this for a more general function.

With this, the evolution equation for w̄pol

λ,N,M,J,L,t̃
is

∂w̄pol

λ,N,M,J,L,t̃

∂t

= −vpolα,γ(λ0f1)(r = 1)
∂w̄pol

λ,N,M,J,L,t̃

∂α
− λ0v̄

pol
r,γ (w̄

pol

λ,N,M,J,L,t̃
)

= −vpolα,γ(λ0f1)(r = 1)
∂w̄pol

λ,N,M,J,L,t̃

∂α
− ∂λ0f1(r)

∂r
v̄polr,γ (w̄

pol

λ,N,M,J,L,t̃
)

while on the other hand, if wλ,N,M,J,L,t̃ is the solution to γ-SQG with the same initial conditions
as w̄λ,N,M,J,L,t̃ then

∂wpol

λ,N,M,J,L,t̃

∂t
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= −
vpolα,γ(w

pol

λ,N,M,J,L,t̃
)

r

∂wpol

λ,N,M,J,L,t̃

∂α
−
∂wpol

λ,N,M,J,L,t̃

∂r
vpolr,γ (w

pol

λ,N,M,J,L,t̃
)

and we can rewrite the evolution equation of wpol

λ,N,M,J,L,t̃
in pseudo-solution form as

∂w̄pol

λ,N,M,J,L,t̃

∂t

= −
vpolα,γ(w̄

pol

λ,N,M,J,L,t̃
)

r

∂w̄pol

λ,N,M,J,L,t̃

∂α
−
∂w̄pol

λ,N,M,J,L,t̃

∂r
vr,γ(w̄

pol

λ,N,M,J,L,t̃
)

− F pol

λ,N,M,J,L,t̃

with

F pol

λ,N,M,J,L,t̃
= F pol

1 + F pol
2 + F pol

3 + F pol
4 ,

F pol
1 :=

vpolα,γ(λ0f1 − w̄pol

λ,N,M,J,L,t̃
)

r

∂w̄pol

λ,N,M,J,L,t̃

∂α
,

F pol
2 := (vpolα,γ(λ0f1)(r = 1)−

vpolα,γ(λ0f1)

r
)
∂w̄pol

λ,N,M,J,L,t̃

∂α
,

F pol
3 :=

∂(λ0f1(r)− w̄pol

λ,N,M,J,L,t̃
)

∂r
vr,γ(w̄

pol

λ,N,M,J,L,t̃
),

F pol
4 :=

∂λ0f1(r)

∂r

(
v̄r,γ(w̄

pol

λ,N,M,J,L,t̃
)− vr,γ(w̄

pol

λ,N,M,J,L,t̃
)
)
.

The next step in our proof will be to show that Fλ,N,M,J,L,t̃ can be made as small as we need
by choosing appropriately the parameters, namely we will show that it becomes small as we make
N big.

Before we get to prove that, there are some basic properties of w̄λ,N,M,J,L,t̃ that we will need
later on

•
||w̄pol

λ,N,M,J,L,t̃
(r, α, t)||Cm,β′ ≤ C1 + C2λ(NM)m+β′−k−β

||w̄pol

λ,N,M,J,L,t̃
(r, α, t)− λ0f1(r)||Cm,β′ ≤ C2λ(NM)m+β′−k−β

for any m ∈ N, β′ ∈ [0, 1], t ∈ R, with C1 and C2 depending on m and β′.

•
||w̄pol

λ,N,M,J,L,t̃
(r, α, t)||Hm ≤ C1 + C2λN

−1+δ(NM)m−k−β

||w̄pol

λ,N,M,J,L,t̃
(r, α, t)− λ0f1(r)||Hm ≤ C2λN

−1+δ(NM)m−k−β

for any m ∈ N, β′ ∈ [0, 1], t ∈ R, with C1 and C2 depending on m.

•
||w̄λ,N,M,J,L,t̃(x1, x2, t)||Cm,β′ ≤ C1 + C2λ(NM)m+β′−k−β

||w̄λ,N,M,J,L,t̃(x1, x2, t)− λ0f1(
√
x21 + x22)||Cm,β′ ≤ C2λ(NM)m+β′−k−β

for any m ∈ N, β′ ∈ [0, 1], t ∈ R, with C1 and C2 depending on m and β′.
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•
||w̄λ,N,M,J,L,t̃(x1, x2, t)||Hm ≤ C1 + C2λN

−1+δ(NM)m−k−β

||w̄λ,N,M,J,L,t̃(x1, x2, t)− λ0f1(
√
x21 + x22)||Hm ≤ C2λN

−1+δ(NM)m−k−β

for any m ∈ N, β′ ∈ [0, 1], t ∈ R, with C1 and C2 depending on m.

• By using the interpolation inequality for sobolev spaces we also have

||w̄λ,N,M,J,L,t̃(x1, x2, t)− λ0f1(x
2
1 + x22)||Hm ≤ C1λN

−1+δ(NM)m−k−β

for any m > 0, t ∈ R, with C1 depending on m.

The bounds in polar coordinates are obtained by direct calculation and then we obtain from
those the ones in cartesian coordinates using that the functions are compactly supported and with
support far from the origin. Now, for our pseudo-solutions to be a useful approximation of the
solution to γ-SQG, we need the source term to be small. For that we have the following lemmas.

Lemma 3.4.5. For any fixed T , if 0 ≤ t ≤ T we have that

||Fλ,N,M,J,L,t̃||L2 ≤ (1 +
1

t̃
)

C

Nk+β+1

with C depending on T, λ,M, J and L.
Furthermore, for m ∈ N, we have that

||Fλ,N,M,J,L,t̃||Hm ≤ C(1 +
1

t̃
)

Nm

Nk+β+1

with Cm depending on T, λ,M, J, L and m. In fact, by interpolation, the inequality also holds for
any m > 0.

Proof. We start by obtaining bounds for ||F1||L2 . We have that

||F1||L2 ≤ ||vα,γ(λ0f1 − w̄λ,N,M,J,L,t̃)1|x|≥ 1
2
||L2 ||1

r

∂w̄λ,N,M,J,L,t̃

∂α
||L∞

≤ C||λ0f1 − w̄λ,N,M,J,L,t̃||Hγ ||
∂w̄λ,N,M,J,L,t̃

∂α
||L∞

≤ C
Nγ

Nk+β+1−δ

1

Nk+β−1
≤ C

1

Nk+β+1
.

For F2, using that the first two derivatives with respect to r of vα,γ(λ0f1)
r vanish at r = 1 plus

the fact that it is a radial function, we have that if x ∈ supp(∂w̄λ,N,M,J,L,t̃

∂α ) then

|vpolα,γ(λ0f1)(r = 1)−
vpolα,γ(λ0f1)

r
| ≤ CN−3+3δ,

and so

||F pol
2 ||L2 ≤ Cλ0N

−3+3δ||
∂w̄pol

λ,N,M,J,L,t̃

∂α
||L2 ≤ C

N−3+4δ

Nk+β
≤ C

Nk+β+1
.

Similarly, for F3 we have

||F3||L2 ≤ ||
∂(w̄pol

λ,N,M,J,L,t̃
− λ0f1(r))

∂r
||L∞ ||vr,γ(w̄pol

λ,N,M,J,L,t̃
)1|x|≥ 1

2
||L2
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≤ ||
∂(w̄pol

λ,N,M,J,L,t̃
− λ0f1(r))

∂r
||L∞ ||vr,γ(w̄pol

λ,N,M,J,L,t̃
− λ0f1(r))||Hγ

≤ C
N1−δ

Nk+β

Nγ

Nk+β+1−δ
≤ C

1

Nk+β+1
.

Finally, for F4, we go back to cartesian coordinates and divide the integral in two different
parts,

A1 := B2N−1+δ(cos(tλ0vα,γ(f1)(r = 1)), sin(tλ0vα,γ(f1)(r = 1)))

A2 := supp(w̄λ,N,M,J,L,t̃) \A1

we have

||F4||L2

≤ ||∂λ0f1
∂r

(
v̄r,γ(w̄λ,N,M,J,L,t̃)− vr,γ(w̄λ,N,M,J,L,t̃)

)
1A1

||L2

+ ||∂λ0f1
∂r

(
v̄r,γ(w̄λ,N,M,J,L,t̃)− vr,γ(w̄λ,N,M,J,L,t̃)

)
1A2 ||L2 .

For the bound on A1, using Lemma 3.3.3 and |∂f1∂r | ≤ C we get

||∂λ0f1(r)
∂r

(
v̄r,γ(w̄λ,N,M,J,L,t̃)− vr,γ(w̄λ,N,M,J,L,t̃)

)
1A1 ||L2

≤ ||λ0f1(r)||C1 ||v̄r,γ(w̄λ,N,M,J,L,t̃)− vr,γ(w̄λ,N,M,J,L,t̃)
)
1A1 ||L∞ |A1|

1
2

≤ Cλ0
Nγ−δ

Nk+β+1−δ
= C

1

t̃Nk+β+1

where we used that λ0 = CN−γ

t̃
(the constant C depending on M).

For the integral in A2 using Lemma 3.3.4 and the bounds on f1 we have(ˆ
A2

(
∂λ0f1
∂r

(
v̄r,γ(w̄λ,N,M,J,L,t̃)− vr,γ(w̄λ,N,M,J,L,t̃)

)
)2dx1dx2

) 1
2

≤ t̃−1CN−γ
( ˆ

A2

(vr,γ(w̄λ,N,M,J,L,t̃))
2dx1dx2

) 1
2

≤ t̃−1 C

Nk+β+γ

( ˆ ∞

2N−1+δ

(
N−2+δ C

h2+γ

)2

hdh
) 1

2

≤ C

t̃Nk+β+1

For the proof for the bound in Hm, we use the that, since

supp(wpol

λ,N,M,J,L,t̃
) ⊂ {(r, α) : r ∈ [

1

2
,K]}

for some K, then

||wλ,N,M,J,L,t̃||Hm ≤ ||wpol

λ,N,M,J,L,t̃
||Hm

and therefore we just need to find bound for

m∑
k=0

k∑
j=0

|| ∂kFi

∂jr∂k−jα
||L2
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with i = 1, 2, 3, 4.
For the bounds in Hm we will use that, given two functions f, g and m ∈ Z we have

||fg||Hm ≤ C

m∑
i=0

||f ||Ci ||g||Hm−i

with C depending on m. Combining this with (3.9) we have

||F1||Hm ≤ C

m∑
i=0

||vα,γ(λ0f1 − w̄pol

λ,N,M,J,L,t̃
)1|x|≥ 1

2
||Hi ||1

r

∂w̄pol

λ,N,M,J,L,t̃

∂α
||Cm−i

≤ C

m∑
i=0

N iN−1+δ+γ

Nk+β

Nm−i+1

Nk+β
≤ C

Nm

Nk+β+1
.

For F2, using that, for r ∈ Bpol := supp(
∂w̄pol

λ,N,M,J,L,t̃

∂α ) we have that

∂i(vpolα,γ(λ0f1)(r = 1)− vpol
α,γ(λ0f1)

r )

∂ri
≤ CN (3−i)(−1+δ)

for i = 0, 1, 2, and since vpolα,γ(λ0f1)(r = 1)− vpol
α,γ(λ0f1)

r only depends on r, then, for i = 0, 1, 2

||vα,γ(λ0f1)(r = 1)−
vpolα,γ(λ0f1)

r
1x∈B ||Ci ≤ CN (3−i)(−1+δ)

and for higher derivatives we just use

||vα,γ(λ0f1)(r = 1)−
vpolα,γ(λ0f1)

r
1x∈B ||Ci ≤ C,

where the constant depends on i. With this we get

||F2||Hm ≤ C

m∑
i=0

||vα,γ(λ0f1)(r = 1)− vα,γ(λ0f1)

r
1x∈B ||Ci ||

∂w̄λ,N,M,J,L,t̃

∂α
||Hm−i

≤ C
N−3+4δ+m

t̃Nk+β
≤ CNm

t̃Nk+β+1
.

For F3 we have

||F3||Hm ≤ C

m∑
i=0

||
∂(w̄λ,N,M,J,L,t̃ − λ0f1(r))

∂r
||Ci ||vr,γ(w̄λ,N,M,J,L,t̃)||Hm−i

≤ C

m∑
i=0

N i+1

Nk+β

Nm−i−1+δ+γ

Nk+β
≤ C

Nm

Nk+β+1
.

As for F4, the contribution obtained when integrating in A2 is obtained again applying lemma
3.3.4

||F41A2
||Hm

≤ C
∑
i

||λ0f1(r)||Ci+1 ||v̄r,γ(w̄λ,N,M,J,L,t̃)− vr,γ(w̄λ,N,M,J,L,t̃)
)
1A1 ||Cm−i |A1|

1
2
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≤ Cλ0
Nm+γ−δ

Nk+β+1−δ
= C

Nm

t̃Nk+β+1
.

For the contribution when we integrate F4 over A1 using (3.8) we have

||F41x∈A1 ||Hm ≤ Cλ0||(v̄r,γ(w̄λ,N,M,J,L,t̃)− vr,γ(w̄λ,N,M,J,L,t̃))1x∈A1 ||Hm

≤ Cλ0

m∑
q=0

q∑
j=0

||
(∂q v̄r,γ(w̄λ,N,M,J,L,t̃)

∂xj1∂x
q−j
2

− vr,γ(
∂qw̄λ,N,M,J,L,t̃

∂xj1∂x
q−j
2

)
)
1x∈A1

||L2

+ Cλ0||v1,γ(w̄λ,N,M,J,L,t̃)1x∈A1
||Hm−1 + Cλ0||v2,γ(w̄λ,N,M,J,L,t̃)1x∈A1

||Hm−1

≤ Cλ0

m∑
q=0

q∑
j=0

||
(∂q v̄r,γ(w̄λ,N,M,J,L,t̃)

∂xj1∂x
q−j
2

− vr,γ(
∂qw̄λ,N,M,J,L,t̃

∂xj1∂x
q−j
2

)
)
1x∈A1 ||L2

+ C
N−1+δ

t̃Nk+β
Nm−1.

But then since

∂qf(r, α)

∂xj1∂x
q−j
2

=

q∑
p=0

p∑
l=0

gq,j,p,l(r, α)
∂pf(r, α)

∂rl∂αp−l

with gm,j,q,l in C∞ and bounded if r ≥ 1
2 , we have that

||
(∂q v̄r,γ(w̄λ,N,M,J,L,t̃)

∂xj1∂x
q−j
2

− vr,γ(
∂qw̄λ,N,M,J,L,t̃

∂xj1∂x
q−j
2

)
)
1x∈A1

||L2

≤
q∑

p=0

p∑
l=0

||
(
gq,j,p,l(r, α)

∂pv̄polr,γ (w̄λ,N,M,J,L,t̃)

∂rl∂αp−l

− vpolr,γ

(
gq,j,p,l(r, α)

∂pw̄λ,N,M,J,L,t̃

∂rl∂αp−l

))
1(r,α)∈Apol

1
||L2 .

But applying Lemma 3.3.3 to each of the terms we obtain after differentiating, we get

≤
q∑

p=0

p∑
l=0

||
(
gq,j,p,l(r, α)

∂pv̄polr,γ (w̄λ,N,M,J,L,t̃)

∂rl∂αp−l

− vpolr,γ

(
gq,j,p,l(r, α)

∂pw̄λ,N,M,J,L,t̃

∂rl∂αp−l

))
1(r,α)∈Apol

1
||L2

≤ C
NqNγ−δN−1+δ

Nk+β
,

and so

||F41x∈A1 ||Hm ≤ C
N−1+δ

t̃Nk+β
Nm−1 + Cλ0

m∑
q=0

q∑
j=0

NqNγ−δN−1+δ

Nk+β
≤ CNm

t̃Nk+β+1
,

and we are done.
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Since we are interested in showing (arbitrarily) fast norm growth for γ-SQG, our solution
should start with a very small norm that gets very big after a short period of time. Lemma 2.2.4
already gives us tools to show that the initial norm is small, and the next lemma will gives us a
lower bound for the Ck,β norm of our pseudo-solutions at time t̃.

Lemma 3.4.6. There exists a set A (depending on λ,N,M, J and L) such that, if x ∈ A then
there exists unitary u depending on x and a constant C with

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
|

≥ λ(
1

2(MN)β
− CL2

(NM)βM
− C(NM)−(δ+β) − C(NM)−βN−1+δ)

and a set B (depending on λ,N,M, J and L) such that if x ∈ B then for all unitary v we have
that

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
| ≤ λ(

1

4(MN)β
+ C(NM)−(δ+β) +

CL2

(NM)βM
)

furthermore, there is a set SM,N,δ with |SM,N,δ| ≥ C1MN2δ,

A = ∪s∈SM,N,δ
As,

B = ∪s∈SM,N,δ
Bs,

d(x, y) ≤ 4π
NM if x ∈ As, y ∈ Bs, and |As|, |Bs| ≥ C2

(NM)2 , with C1 and C2 constants.
Note that, in particular

||w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1||Ck,β ≥ λ(
1

4(4π)β
− CL2

M
− C(NM)−δ − CN−1+δ)

Proof. We start by finding the set A as well as the unitary vector v that gives us a big k − th
derivative.

For this, we first want to obtain accurate estimates for

∂k(w̄pol
λ,N,M,J,L,δ,t(r, α, t)− λ0f1)

∂αk

The definition (3.16) yields

∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t)

∂αk
=
∂k(w̄pol

λ,N,M,J,L,t̃
(r, α, t)− λ0f1)

∂αk

=

k∑
i=0

(
k

i

) J∑
j=1

L−1∑
l=0

(
1

JL(NMj)k+β

× ∂iλjf2(N
1−δ(r − 1), N1−δ(α− tλ0vα,γ(f1)(r = 1)))

∂αi

∂k−i cos(Ξj,l)

∂αk−i

)
,

and so

|
∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t)

∂αk
−

J∑
j=1

L−1∑
l=0

(
1

JL(NMj)k+β

× λjf2(N
1−δ(r − 1), N1−δ(α− tλ0vα,γ(f1)(r = 1)))

∂k cos(Ξj,l)

∂αk

)
|

≤ Cλ(NM)−(δ+β).

88



Furthermore

∂k cos(Ξj,l)

∂αk

= (N(Mj + l))k cos(N(Mj + l)(α− α1
j − tλ0vα,γ(f1)(r = 1))

+ α2
j + tλ0CγN

γ(Mj + l)γ)

= (N(Mj + l))k cos(N(Mj + l)(α− α1
j (t)) + α2

j (t) + α3
j,l(t))

with

α1
j (t) := α1

j − tλ0Cγγ(NMj)
γ−1 + tλ0vα,γ(f1)(r = 1)

α2
j (t) := α2

j + (1− γ)tλ0Cγ(NMj)
γ

α3
j,l(t) = tλ0Cγ((N(Mj + l))γ − (NMj)

γ − γlNγMγ−1
j ),

and we have

| cos(N(Mj + l)(α− α1
j (t)) + α2

j (t) + α3
j,l(t))

− cos(N(Mj + l)(α− α1
j (t)) + α2

j (t))|

≤ C|α3
j,l(t)| ≤ Ctγ(1− γ)λ0Cγ(NMj)

γ L2

(Mj)2
=
CtJL2

t̃Mj

,

so

|
∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t)

∂αk

−
J∑

j=1

L−1∑
l=0

(
1

JL(NM)β
λf2(N

1−δ(r − 1), N1−δ(α− tλ0vα,γ(f1)(r = 1)))

cos(N(Mj + l)(α− α1
j (t)) + α2

j (t))

)
| ≤ Cλ(NM)−(δ+β) + λ

CtL2

t̃(NM)βM
.

But we have that α1
j (t̃) = 0, α2

j (t̃) = 0, so that if α = i 2π
NM , i ∈ Z, then

|
∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk

− 1

(NM)β
λf2(N

1−δ(r − 1), N1−δ(α− λ0t̃vα,γ(f1)(r = 1)))|

≤ Cλ(NM)−(δ+β) + λ
CL2

(NM)βM
,

and in fact, if α ∈ [i 2πN − π
16NM , i 2πN + π

16NM ] with i ∈ Z, then

∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk
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≥ 1

2(NM)β
λf2(N

1−δ(r − 1), N1−δ(α− λ0t̃vα,γ(f1)(r = 1)))

− Cλ(NM)−(δ+β) − λ
CL2

(NM)βM
.

But since f(N1−δ(r−1), N1−δ(α− tλ0vα,γ(f1)(r = 1))) = 1 if (r, α) ∈ [1− N−1+δ

4 , 1+ N−1+δ

4 ]×
[tλ0vα,γ(f1)(r = 1)− N−1+δ

4 , tλ0vα,γ(f1)(r = 1) + N−1+δ

4 ] then defining

Apol =

j=⌊NδM
4 ⌋−1⋃

j=−⌊NδM
4 ⌋

i=⌊Nδ

64 +
Ntλ0vα,γ (f1)(r=1)

2π ⌋⋃
i=⌊−Nδ

64 +
Ntλ0vα,γ (f1)(r=1)

2π ⌋

Apol
i,j

with
Ai,j := (1 +

j

NM
, 1 +

j + 1

NM
]× [i

2π

N
− π

16NM
, i
2π

N
+

π

16NM
]

we have that, for (r, α) ∈ Apol,

∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk
≥ λ

2(NM)β
− Cλ(NM)−(δ+β) − λ

CL2

(NM)βM
.

Furthermore, the sets Ai,j fulfil |Ai,j | ≥ C(NM)−2 for some C > 0. Therefore, if we prove that
there exists a unitary vector u = (u1, u2) such that, if x = (r cos(α), r sin(α)) ∈ A

∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
≈
∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk

in a suitable way, then we are done proving the existence of the desired set A. But

∂f(x)

∂u
= u1[cos(α(x))

∂fpol(r(x), α(x))

∂r
− sin(α(x))

r

∂fpol(r(x), α(x))

∂α
]

+ u2[sin(α(x))
∂fpol(r(x), α(x))

∂r
+

cos(α(x))

r

∂fpol(r(x), α(x))

∂α
]

so that

∂kf(x)

∂uk
=

k∑
i1=0

i1∑
i2=0

gi1,i2(α, r, u1, u2)
∂fpol(r, α)

∂ri2∂i1−i2α

with gi1,i2 C∞ and bounded as long as we only consider r ≥ 1
2 .

Applying this formula to w̄λ,N,M,J,L,t̃ we get

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
− gk,0(α, r, u1, u2)

∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk
|
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≤ Cλ(NM)−(δ+β)

and it is easy to prove that gk,0 =
gk−1,0(cos(α)u2−sin(α)u1)

r , g0,0 = 1 and therefore taking v =
(− sin(α), cos(α)) we get

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
− 1

rk

∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk
| ≤ Cλ(NM)−(δ+β)

and using r ∈ Apol ⇒ r ∈ [1− N−1+δ

4 , 1 + N−1+δ

4 ] plus the bounds for wpol

λ,N,M,J,L,t̃
gives

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
−
∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk
|

≤ Cλ(NM)−(δ+β) + Cλ(NM)−βN−1+δ,

and so, for x ∈ A

∂k(w̄λ,N,M,J,L,t̃(x, t̃)

∂uk
≥ λ

2(NM)β
− λ

CL2

(NM)βM
− Cλ(NM)−(δ+β) − Cλ(NM)−βN−1+δ,

which finishes the proof for the existence of the set A. For the set B, we remember that for r ≥ 1
2

we have

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
− gk,0(α, r, u1, u2)

∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk
|

≤ Cλ(NM)−(δ+β)

and since |gk,0| ≤ 1
rk

we only need to find a sets Bi,j with the desired size and distance to Ai,j

such that |
∂kw̄pol

λ,N,M,J,L,t̃
(r,α,t̃)

∂αk | is small. But

|
∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk
|

≤ |
J∑

j=1

L−1∑
l=0

( 1

JL(NM)β
λf2(N

1−δ(r − 1), N1−δ(α− λ0t̃vα,γ(f1)(r = 1)))

cos(N(Mj + l)α)
)
|+ Cλ(NM)−(δ+β) + λ

CJL2

(NM)βM
.

and using

L−1∑
l=0

cos(N(Mj + l)α) =
sin(LNα

2 )

sin(Nα
2 )

cos(NMjα+
(L− 1)

2
Nα),
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we obtain

J∑
j=1

sin(LNα
2 )

sin(Nα
2 )

cos(NM
j

J
α+NMα+

(L− 1)

2
Nα)

=
sin(LNα

2 )

sin(Nα
2 )

sin(NMα
2 )

sin(NMα
2J )

cos(NM(1 +
1

J
)α+

(L− 1)

2
Nα+

(J − 1)NMα

2J
).

If now we define

fpolL,N,M,J(r, α)

=
sin(LNα

2 )

sin(Nα
2 )

sin(NMα
2 )

sin(NMα
2J )

cos(NM(1 +
1

J
)α+

(L− 1)

2
Nα+

(J − 1)NMα

2J
)

then we have that

• fpolL,N,M,J is 2π
N −periodic in the α variable.

• There exists |α̃| ≤ 2π
NM such that fpolL,N,M,J(r, α̃) = 0.

• |∂f
pol
L,N,M,J (r,α)

∂α | ≤ C̄LMNJ with C̄ a constant,

which means that if α ∈ ∪i∈Z[α̃ + i 2πN − 1
4C̄MN

, α̃ + i 2πN + 1
4C̄MN

] then |fpolL,N,M,J(r, α)| ≤
JL
4 .

Using this we have that, if α ∈ ∪i∈Z[α̃+ i 2πN − 1
4C̄MN

, α̃+ i 2πN + 1
4C̄MN

] then

|
∂kw̄pol

λ,N,M,J,L,t̃
(r, α, t̃)

∂αk
| ≤ λ

4(MN)β
+ λC(NM)−(δ+β) + λ

CJL2

(NM)βM
,

so, for any unitary vector u

|
∂kw̄λ,N,M,J,L,t̃(x, t̃)

∂uk
| ≤ λ

4(MN)β
+ λC(NM)−(δ+β) + λ

CJL2

(NM)βM
,

and defining now

Bi,j := (1 +
j

NM
, 1 +

j + 1

NM
]× [α̃+ i

2π

N
− π

4C̄NM
, α̃+ i

2π

N
+

π

4C̄NM
]

and it is easy to check that Ai,j , Bi,j have the desired properties.

The previous lemma shows that our pseudo-solutions do have a big norm at time t̃, and although
this will be enough to show ill-posedness, for our non-existence result we will build solutions such
that the Ck,β norm will be infinite for a period of time, and this requires us to obtain specific
bounds about how fast our solution can change their Ck,β norm.

Lemma 3.4.7. We have that

d||w̄λ,N,M,J,L,t̃(x1, x2, t)− λ0f1(
√
x21 + x22)||Ck,β

dt
≤ CλM

t̃

with C a constant.
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Proof. First, since rotations do not change the Ck,β norm, it is enough to study the evolution of
the norm of

J∑
j=1

L−1∑
l=0

(
λjf2(N

1−δ(r(x)− 1), N1−δα(x))

cos(N(Mj + l)(α(x)− α1
j ) + α2

j +
kπ
2 + tλ0CγN

γ(Mj + l)γ

JL(NMj)k+β

)

which has time derivative

− λ0CγN
γ(Mj + l)γ

J∑
j=1

L−1∑
l=0

(
λjf2(N

1−δ(r(x)− 1), N1−δα(x))

sin(N(Mj + l)(α(x)− α1
j ) + α2

j +
kπ
2 + tλ0CγN

γ(Mj + l)γ

JL(NMj)k+β

)
,

but since this function has support in r ≥ 1
2 , we can use (3.6) and it is enough to obtain bounds

for the Ck,β norm in polar coordinates. However, using the expression for λ0 we easily obtain

||λ0CγN
γ(Mj + l)γ

J∑
j=1

L−1∑
l=0

(
λjf2(N

1−δ(r − 1), N1−δα)

sin(N(Mj + l)(α− α1
j ) + α2

j +
kπ
2 + tλ0CγN

γ(Mj + l)γ

JL(NMj)k+β

)
||Ck,β

≤ CλM

t̃
.

We only need one last technical result before we can go to prove our ill-posedness result.
Namely, we need to obtain bounds for the error between our pseudo-solution and the real solution
to γ-SQG with our initial conditions. We will, however, prove a slightly stronger result, where we
show that the error remains small even if we compare to a solution to γ-SQG with a small error
in the velocity. This will later on be necessary when we prove the non-existence of solutions in
Ck,β .

Lemma 3.4.8. Given a pseudo-solution w̄λ,N,M,J,L,t̃(x1, x2, t) and a function verror = (v1,error, v2,error)
fulfilling

||verror||Cm ≤ Nm

Nk+β+2

for m = 0, 1, ..., k + 2 and

∂v1,error
∂x1

+
∂v2,error
∂x2

= 0,

we have that, for any fixed T ,λ,M, J, L and t̃, if N is big enough, then the unique Hk+β+1−δ

solution w̃λ,N,M,J,L,t̃(x1, x2, t) to

∂w̃λ,N,M,J,L,t̃

∂t
+ (vγ(w̃λ,N,M,J,L,t̃) + verror) · (∇w̃λ,N,M,J,L,t̃) = 0, (3.17)
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w̃λ,N,M,J,L,t̃(x, 0) = w̄λ,N,M,J,L,t̃(x, 0)

exists for t ∈ [0, T ] and, if we define

W := w̃λ,N,M,J,L,t̃ − w̄λ,N,M,J,L,t̃

then
||W (x, t)||L2 ≤ C(1 +

1

t̃
)tN−k−β−1,

||W (x, t)||Hk+β+1−δ ≤ C(1 +
1

t̃
)tN−δ.

with C depending on T, λ,M, J and L.
Furthermore, by interpolation, for any s ∈ [0, k + β + 1− δ] we have that

||W (x, t)||Hs ≤ C(1 +
1

t̃
)tN−(k+β+1)+s.

Proof. First we note that the evolution equation for W is

∂W

∂t
+ (vγ(w̄λ,N,M,J,L,t̃) + vγ(W ) + verror) · ∇W

+ (vγ(W ) + verror) · ∇w̄λ,N,M,J,L,t̃ − Fλ,N,M,J,L,t̃ = 0.

and (using the properties of Fλ,N,M,J,L,t̃ for N big) this evolution equation has local existence and
uniqueness in Hk+β+1−δ under our assumptions for verror. Furthermore, it is enough to prove
our inequalities under the assumption ||W (x, t)||Hk+β+1−δ ≤ CN−δlog(N), since then using the
continuity in time of ||W ||Hk+β+1−δ and taking N big would give us the result for the desired time
interval.

For the L2 norm, we can use incompressibility to obtain

d||W ||2L2

dt
≤ 2

ˆ
|W
(
vγ(W )∇w̄λ,N,M,J,L,t̃ − Fλ,N,M,J,L,t̃ + verror∇w̄λ,N,M,J,L,t̃

)
|dx

≤
ˆ

2|Wvγ(W )∇w̄λ,N,M,J,L,t̃)dx|+
C

Nk+β+1
(1 +

1

t̃
)||W ||L2 .

To bound the integral term with vγ(W ) we need to use two important properties that will also
be key when working with the Hk+β+1−δ bounds. First, as in [18], using that, for an odd operator
A (which in our case will be v1,γ and v2,γ) we have

ˆ
fA(f)g = −1

2

ˆ
f(A(gf)− gA(f))

and so

|
ˆ
Wvγ(W )∇w̄λ,N,M,J,L,t̃)dx|

=
1

2
|
ˆ
W
(
vi,γ(W

∂w̄λ,N,M,J,L,t̃

∂xi
)− vi,γ(W )

∂w̄λ,N,M,J,L,t̃

∂xi

)
dx|

and using Corollary 1.4 in [81]

|
ˆ
Wvγ(W )∇w̄λ,N,M,J,L,t̃)dx| ≤ ||W ||2L2 ||∇vγ(w̄λ,N,M,J,L,t̃)||L∞ ≤ C||W ||2L2

where we used that

||vγ(w̄λ,N,M,J,L,t̃)||Ck′,β′ ≤ CNk′+β′+γ−k−βlog(N)
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which is obtained by applying Lemmas 2.3.7 and 2.3.8, the definition of vγ and the properties of
w̄λ,N,M,J,L,t̃. Then, after applying Gronwall we get

||W ||L2 ≤ Ct

Nk+β+1
(1 +

1

t̃
)

with C depending on λ,M, J, L and T .
The proof of the inequality for Hk+β+1−δ is very similar to that of Lemmas 2.2.9 and 2.3.9,

so we will skip most of the details and focus on the few differences for the sake of briefness. The
idea is to use that

∂||ΛsW ||2L2

∂t
≤ 2|
ˆ

(ΛsW )Λs(
∂W

∂t
)dx|,

and then bound each of the integrals obtained from the equation for ∂W
∂t . For example, for the

term

|
ˆ
(ΛsW )Λs(vγ(W )∇w̄λ,N,M,J,L,t̃)dx|

we use Lemma 2.2.10 (which is proved in [81]) to get for s = k + β + 1− δ the inequality

|
ˆ
(ΛsW )Λs(vγ(W ) · ∇w̄λ,N,M,J,L,t̃)dx|

≤
∑

|a|≤s−γ

|
ˆ

1

a!
(ΛsW )Λs,a(vγ(W )) · ∇∂aw̄λ,N,M,J,L,t̃)dx|

+
∑
|b|<γ

|
ˆ

1

b!
(ΛsW )∂b(vγ(W )) · ∇Λs,b(w̄λ,N,M,J,L,t̃))dx|

+ C||(ΛsW )||L2 ||vγ(W )||Hs−γ ||Λγ∇w̄λ,N,M,J,L,t̃||L∞ ,

where we used the multi-index notation, c = (c1, c2) , |c| = (c21+c
2
2)

1
2 , c! = c1!c2!, ∂c = ∂cx = ∂c1x1

∂c2x2

and the operator Λs,c is defined via the Fourier transform as

Λ̂s,jf(ξ) = Λ̂s,j(ξ)f̂(ξ)

Λ̂s,j(ξ) = i−|j|∂jξ(|ξ|
s).

Most of these terms can be bounded directly by C||W ||2Hs using the properties of vγ , Λs,c,
and w̄λ,N,M,J,L,t̃ plus the assumptions for W (including the L2 growth) and the interpolation
inequality for Sobolev spaces.

A few terms, however, requires more careful consideration, namely,

|
ˆ
(ΛsW )Λs(vi,γ(W ))

∂w̄λ,N,M,J,L,t̃

∂xi
)dx|, (3.18)

|
ˆ
(ΛsW )Λs(vi,γ(W ))

∂W

∂xi
)dx|

for i = 1, 2, since ||Λs(vγ(W )|| cannot by bounded by ||W ||Hs . We will just focus on (3.18)
since the other term is done in exactly the same way. Here, we need to again act as in the L2

case, rewriting (3.18) as

1

2
|
ˆ
(ΛsW )

(
vi,γ [Λ

s(W )
∂w̄λ,N,M,J,L,t̃

∂xi
]− vi,γ [Λ

s(W )]
∂w̄λ,N,M,J,L,t̃

∂xi

)
dx|.

We can then use again Lemma 2.2.10 to get

1

2
|
ˆ
(ΛsW )

(
vi,γ [Λ

s(W )
∂w̄λ,N,M,J,L,t̃

∂xi
]− vi,γ [Λ

s(W )]
∂w̄λ,N,M,J,L,t̃

∂xi

)
dx|
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≤ C||W ||Hs ||W ||Hs ||vi,γ(
∂w̄λ,N,M,J,L,t̃

∂xi
)||L∞ ≤ C||W ||2Hs .

Combining the bounds for all the terms we obtain

∂||ΛsW ||2L2

∂t
≤ C||W ||Hs(||W ||Hs + (1 +

1

t̃
)
C

Nδ
)

and therefore, for t ∈ [0, T ]

||W (x, t)||Hs ≤ CeCtt||F ||Hs ≤ C(1 +
1

t̃
)tN−δ

with C depending on T, λ,M, J and L.

Combining all the technical results together we obtain the following.

Theorem 3.4.1. Given T, tcrit, ϵ1, ϵ2, ϵ3 > 0 and tcrit ∈ (0, T ], we can find λ,M, J, L and t̃ such
that, if N is big enough, then for any verror satisfying

||verror||Cm ≤ Nm

Nk+β+2

for m = 0, 1, ..., k + 2 and

∂v1,error
∂x1

+
∂v2,error
∂x2

= 0

then the unique Hk+β+1−δ function w̃λ,N,M,J,L,t̃(x, t) satisfying

∂w̃λ,N,M,J,L,t̃

∂t
+ (vγ(w̃λ,N,M,J,L,t̃) + verror) · (∇w̃λ,N,M,J,L,t̃) = 0 (3.19)

w̃λ,N,M,J,L,t̃(x, 0) = w̄λ,N,M,J,L,t̃(x, 0)

exists for t ∈ [0, T ] and has the following properties.

• ||w̃λ,N,M,J,L,t̃(x, 0)||Ck,β ≤ ϵ1,

• ||w̃λ,N,M,J,L,t̃(x, t)||Ck,β ≥ 1
ϵ2

if t ∈ (tcrit − Ctcrit, tcrit) with C depending on ϵ1 and ϵ2,

• ||w̃λ,N,M,J,L,t̃(x, 0)||Hk+β+1− 3
2
δ , ||w̃λ,N,M,J,L,t̃(x, 0)||L1 ≤ ϵ3.

Proof. We first fix some parameters so the pseudo-solutions w̄λ,N,M,J,L,t̃ have some desirable
properties. We fix t̃ = tcrit so that, by Lemma 3.4.6 we have

|w̄λ,N,M,J,L,t̃(x, tcrit)|Ck,β ≥ λ(
1

4(4π)β
−−CL

2

M
− C(NM)−δ − CN−1+δ).

Since we want w̃ to also have a very big Ck,β norm, this suggest taking λ ≈ 1
ϵ2

, and we will
specifically consider λ = 1

ϵ2
32(4π)β .

With λ fixed, we can now focus on assuring that our initial conditions have a norm as small
as required. Using Lemmas 3.4.1, 3.4.3 and 3.4.6 plus our choice for αj

1 we know that

||w̃λ,N,M,J,L,t̃(x, 0)||Ck,β ≤ Cλ0 + Cλ(
1

J
+

1

(NM)δ
+
J

L
+ (NM)−β +

L

M
)

= C
M1−γ

t̃Nγ
+ Cλ(

1

J
+

1

(NM)δ
+
J

L
+ (NM)−β +

L

M
).

and that there are sets A and B (depending on λ,N,M, J and L) such that if x ∈ A then there
exists unitary u depending on x with
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|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
|

≥ λ(
1

2(MN)β
− CL2

(NM)βM
− C(NM)−(δ+β) − C(NM)−βN−1+δ)

and a set B such that if x ∈ B then for all unitary u we have that

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
| ≤ λ(

1

4(MN)β
+ C(NM)−(δ+β) +

CL2

(NM)βM
)

furthermore, there is a set SM,N,δ such that its cardinal fulfils |SM,N,δ| ≥ C1MN2δ and

A = ∪s∈SM,N,δ
As

B = ∪s∈SM,N,δ
Bs

d(x, y) ≤ 4π
NM if x ∈ As, y ∈ Bs, and |As|, |Bs| ≥ C2

(NM)2 , with C1 and C2 constants.
By taking t = tcrit and J2 = L, M = L3 = J6 and fixing J big we can then obtain that

||w̃λ,N,M,J,L,t̃(x, 0)||Ck,β ≤ C
J6(1−γ)

tcritNγ
+
ϵ1
2

and for x ∈ A there exists u unitary such that

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
| ≥ 14

(4π)β

ϵ2(MN)β
(3.20)

and for x ∈ B and any unitary vector u

|
∂k(w̄λ,N,M,J,L,t̃(x, t̃)− λ0f1)

∂uk
| ≤ 10

(4π)β

ϵ2(MN)β
.

Note that, the choice of the parameters J, L and M depend only on ϵ1 and ϵ2.
We would like to obtain similar bounds for w̃, so we need to show that w̃ and w̄ are close to

each other in a useful way. First, using Lemma 3.4.8 we have

k∑
i=0

ˆ
(
∂k(w̃ − w̄)

∂xi1∂x
k−i
2

)2 ≤ C(1 +
1

t̃
)N−2(β+1)

and in particular (including from now on (1+ 1
t̃
) inside of the constant C since it is constant with

respect to N), there exists As, Bs such that

k∑
i=0

ˆ
As

(
∂k(w̃ − w̄)

∂xi1∂x
k−i
2

)2 +

ˆ
Bs

(
∂k(w̃ − w̄)

∂xi1∂x
k−i
2

)2 ≤ CN−2(β+1+δ)

so

infx∈As
|

k∑
i=0

(
∂k(w̃ − w̄)

∂xi1∂x
k−i
2

)2||As| ≤
k∑

i=0

ˆ
As

(
∂k(w̃ − w̄)

∂xi1∂x
k−i
2

)2 ≤ CN−2(β+1+δ)

infx∈Bs |
k∑

i=0

(
∂k(w̃ − w̄)

∂xi1∂x
k−i
2

)2||Bs| ≤
k∑

i=0

ˆ
Bs

(
∂k(w̃ − w̄)

∂xi1∂x
k−i
2

)2 ≤ CN−2(β+δ+1)

and therefore

infx∈As |
k∑

i=0

(
∂k(w̃ − w̄)(x, t)

∂xi1∂x
k−i
2

)2| ≤ CN−2(β+δ)
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infx∈Bs
|

k∑
i=0

(
∂k(w̃ − w̄)(x, t)

∂xi1∂x
k−i
2

)2| ≤ CN−2(β+δ).

Given a time t ∈ [0, tcrit], we dconsider xA(t) ∈ As, xB(t) ∈ Bs points fulfilling

|
k∑

i=0

(
∂k(w̃ − w̄)(xA(t), t)

∂xi1∂x
k−i
2

)2| ≤ CN−2(β+δ)

|
k∑

i=0

(
∂k(w̃ − w̄)(xB(t), t)

∂xi1∂x
k−i
2

)2| ≤ CN−2(β+δ).

Now, if u is the unitary vector given by (3.20) for xB(t), we have that

∣∣∂kw̃(xA, t)− w̃(xB , t)

∂ku

∣∣ 1

|xA − xB |β

≥
∣∣∂kw̄(xA, t)− w̄(xB , t)

∂ku

∣∣ 1

|xA − xB |β
− CN−δ

≥
∣∣∂kw̄(xA, tcrit)− w̄(xB , tcrit)

∂ku

∣∣ 1

|xA − xB |β
− ||w̄(x, t)− w̄(x, tcrit)||Ck,β − CN−δ

≥ 4

ϵ2
− C

λJ6|t− t̃|
t̃

− CN−δ

where we used Lemma 3.4.7 in the last inequality. Then if |C λJ6|t−t̃|
t̃

| ≤ 2
ϵ2

, |CN−δ| ≤ 1
ϵ2

we get

||w̃(x, t)||Ck,β ≥
∣∣∂kw̃(xA, t)− w̃(xB , t)

∂kv

∣∣ 1

|xA − xB |β
≥ 1

ϵ2

and this will be true if we take N big enough and |t− t̃| ≤ t̃
λJ6|t−t̃| = C(ϵ1, ϵ2).

The only thing we need to prove is that we can also obtain

||w̃λ,N,M,J,L,t̃(x, 0)||Ck,β ≤ ϵ1

||w̃(x, 0)||
Hk+β+1− 3

2
δ ≤ ϵ3,

but
||w̃(x, 0)||

Hk+β+1− 3
2
δ ≤ C

Nγ
+

C

N
δ
2

with C depending on J, L and M , so taking N big enough

||w̃(x, 0)||
Hk+β+1− 3

2
δ ≤ ϵ3

and analogously,

||w̃λ,N,M,J,L,t̃(x, 0)||Ck,β ≤ C
J6(1−γ)

tcritNγ
+
ϵ1
2

so again, taking N big enough finishes the proof.
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3.5 Strong ill-posedness and non-existence of solutions
We are now ready to prove ill-posedness and non-existence of solutions. As mentioned earlier,
these results hold for k ∈ N, β ∈ (0, 1], γ ∈ (0, 1) with k + β > 1 + γ and δ is some constant
δ ∈ (0, 12 ) such that k + β + 2δ > 1 + γ.

Theorem 3.5.1. Given T, tcrit,ϵ1, ϵ2 > 0, there exists a function w(x, 0) such that ||w(x, 0)||Ck,β ≤
ϵ1 and the only solution to (3.1) in Hk+β+1−δ with initial conditions w(x, 0) exists for t ∈ [0, T ]
and fulfills that

||w(x, tcrit)||Ck,β ≥ 1

ϵ2
.

Proof. This is just a direct application of Theorem 3.4.1 with

v1,error = v2,error = 0

.

Theorem 3.5.2. Given t0, ϵ > 0, there exist a function w(x, 0) such that ||w(x, 0)||Ck,β ≤ ϵ and
that the only solution to (3.1) in Hk+β+1− 3

2 δ with initial conditions w(x, 0) exists for t ∈ [0, t0]
and fulfills that, for t ∈ (0, t0], ||w(x, t)||Ck,β = ∞.

Proof. To obtain initial conditions with the desired properties, we will consider initial conditions
of the form

∞∑
j=1

G(j,ϵ)∑
i=1

TRi,j
(wi,j(x))

where TR(f(x1, x2)) = f(x1 +R, x2). We will first choose wi,j(x) and afterwards we will pick the
values of Ri,j .

First, fixed j, we will restrict to choices for wi,j such that they are initial conditions given by
Theorem 3.4.1 with 1

ϵ2
= j, ϵ1 = ϵ and T = t0. Then if we choose some tcrit = tcrit,i,j and we

call w̃i,j a solution to (3.17) with the initial conditions given by wi,j(x) and an appropriate vext
fulfilling ||vext||Ck+2 ≤ Ci,j , we would then have that for t ∈ [tcrit,i,j − Ctcrit,i,j , tcrit,i,j ]

||w̃i,j(x, t)||Ck,β ≥ j

for some C depending on ϵ and j. Therefore, we can, by choosing tcrit,i,j appropriately, obtain,
for any t ∈ [ 1j , t0]

supi=1,2,...,G(j,ϵ)||w̃i,j(x, t)||Ckβ ≥ j

with G(j, ϵ) a finite number depending on j.
Furthermore, we can now choose ϵ3 in Theorem 3.4.1 so that

||wi,j(x)||
Hk+β+1− 3

2
δ ≤ c02

−j

G(j, ϵ)

||wi,j(x)||L1 ≤ 2−j

G(j, ϵ)

with c0 a constant small enough so that any solution to γ-SQG with

||w0(x)||
Hk+β+1− 3

2
δ ≤ c0

exists for t ∈ [0, t0] and ||w(x, t)||
Hk+β+1− 3

2
δ ≤ 1 for t ∈ [0, t0]. Therefore we know that, indepen-

dently of the choice of Ri,j , for t ∈ [0, t0] there exists a unique Hk+β+1− 3
2 δ solution to (3.1) with

initial conditions
∞∑
j=1

G(j)∑
i=1

TRi,j (wi,j(x))
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and, furthermore, if we call this solution w∞(x, t) (which still depends on the choice of Ri,j , but
we omit it for simplicity of notation), then we have that there is a constant vmax such that, for
t ∈ [0, t0]

||v1(w∞)||L∞ , ||v2(w∞)||L∞ ≤ vmax.

With this, and using that there exists D ∈ R such that supp(wi,j(x)) ⊂ BD(0), we have that, if
we choose the Ri,j so that |Ri1,j1 −Ri2,j2 | ≥ 4t0vmax +2D+ sup(Pi1,j1 , Pi2,j2) with Pi,j > 0 then
we have that

wi,j,∞(x, t) := 1BD+2t0vmax (−Ri,j ,0)w∞(x, t)

fulfils for t ∈ [0, t0] the evolution equation

∂wi,j,∞

∂t
+ (vγ(wi,j,∞) + v(w∞ − wi,j,∞)) · (∇wi,j,∞) = 0

and
||v(w∞ − wi,j,∞))||Ck+2 ≤ C

P 2+γ
i,j

.

But by the choice of wi,j(x) and using that the supports of the wi,j∞ are disjoint, we have
that if

||v(w∞ − wi,j,∞))||Ck+2 ≤ Ci,j (3.21)

then for t ∈ (0, t0]

||w∞(x, t)||Ck,β = supj∈N,i=1,2,...,G(j,ϵ)||wi,j,∞(x, t)||Ck,β = ∞

and taking Pi,j big enough so that (3.21) is fulfilled finishes the proof.
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Chapter 4

Loss of regularity for 2D Euler

4.1 Introduction
We consider the incompressible Euler equations

∂tv + (v · ∇)v +∇P = 0, (4.1)
div v = 0

in Rd×R+, with d = 2, 3, where v(x, t) = (v1(x, t), .., vd(x, t)) is the velocity field and P = P (x, t)
is the pressure function. In this chapter we study ill-posedness of the initial value problem for
(4.1) with a given initial data v0(x) = v(x, 0).

In order to illustrate the ill-posedness phenomena, we first note that the classical theory of the
Euler equations goes back to the work of Lichtenstein [82] and Gunther [57], who showed local
well-posedness in Ck,α (k ≥ 1, α ∈ (0, 1)). This was extended to global-in-time well-posedness in
the 2D case by Wolibner [97] and Hölder [61]. In the case of Sobolev spaces, Ebin and Marsden
[52] proved, in a compact domain, local well-posedness in Hs for s > d

2 +1, and Bourguignon and
Brezis [10] have generalized it to the space W s,p for s > d

p + 1. Moreover, Kato [68] extended the
local well-posedness to Rd for initial data u0 in Hs for s > d

2 + 1, see the extension to the W s,p

spaces, due to Kato and Ponce [69].
Remarkably, in the 2D case these local-in-time results can be easily extended for all times using

the Beale-Kato-Majda criterion [6], since the vorticity is transported by the flow. The optimal
bound for growth was obtained by Kiselev and Šverák [76] in a disk, see also the work by Zlatoš
[104] and the lecture notes [71] by Kiselev for further results.

Moreover, it can be shown that the equations are not well-posed in some spaces, such as
integer Ck spaces (k ≥ 1). This was recently demonstrated by Bourgain and Li [8], and in-
dependently by Elgindi and Masmoudi [55], who showed strong ill-posedness and non-existence
of uniformly bounded solutions for the initial velocity v0 in Ck. Furthermore, nonexistence of
uniformly bounded solutions in the critical Sobolev space H

d
2+1 was established in another work

of Bourgain and Li [9]. Subsequently, Elgindi and Jeong [54] obtained analogous results with a
different approach, and Jeong [65] gave a simpler proof and similar results for the critical space
W s,p. Recently, Kwon proved in [77] that there is still strong ill-posedness in H2 for a regularized
version of the 2D incompressible Euler equations. We also refer the reader to Misiołek and Yoneda
[85] for a proof of a nonexistence result in critical Besov spaces in d = 3.

These results gave the first methods of studying ill-posedness and nonexistence of solutions to
the Euler equations. Moreover, subsequently Elgindi [53] proved a remarkable result on singularity
formation of the 3D axisymmetric Euler equations without swirl for C1,α velocity, where α > 0
is sufficiently small, and Elgindi, Ghoul, and Masmoudi [56] extended it to the finite energy case.
We also refer the reader to the work of Chen and Hou [22], who provided evidence of a possibility
of nearly self-similar blow near a boundary, as well as their subsequent impressive work [23].

In the case of supercritical Sobolev spaces DiPerna and Lions [49] show that for d = 3 and
for every p ≥ 1, there exists a shear flow solution to (4.1) with v0 ∈ W 1,p and v(x, t) ̸∈ W 1,p for
t > 0. Using the structure of shear flows Bardos and Titi [5] showed the instantaneous loss of
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smoothness of weak solutions for the 3D Euler equations with initial data in the Holder space Cα

with α ∈ (0, 1). Note that these constructions rely strongly in the 2 + 1
2 dimensional structure

of the shear flows. At this point is worth mentioning the ground-breaking work of De Lellis and
Székelyhidi Jr. [46, 47], where they show non-uniqueness of solutions in L2 by the method of
convex integration (see also the work of Wiedemann [96]). Very recently, using similar tools, Khor
and Miao [70] use the method of convex integration to construct infinitely many distributional 3D
solutions in Hβ for 0 < β << 1 which has an instantaneous gap loss of Sobolev regularity.

From now on in the present work we will focus in solutions with sufficient regularity in the two
dimensional case and use the vorticity formulation, which is obtained by taking the curl of the
first equation of (4.1) and denoting the scalar function (vorticity) by ω := curl v = ∂1v2 − ∂2v1,
where ∂1, ∂2 denote partial derivatives with respect to x1, x2, respectively. The equation for the
vorticity reads

∂tω + v · ∇ω = 0. (4.2)

According to the Biot-Savart law, there is a stream function ψ such that v = (−∂2ψ, ∂1ψ) and
−∆ψ = ω which gives that v[ω] = −∆−1∇⊥ω, where ∇⊥ := (−∂2, ∂1). Thus the velocity field v
can be expressed as

v[ω](x, t) =
2

π

ˆ
R2

(x− y)⊥ω(y, t)

|x− y|2
dy (4.3)

where (x1, x2)
⊥ := (−x2, x1), although we will ignore the factor 2

π in our computations since both
velocities produce the exact same qualitative behaviour.

In [103] Yudovich proved the existence and uniqueness of weak solutions for bounded vorticity
in a bounded domain. This statement can be extended to R2 for solutions such that ω ∈ L1 ∩L∞

(see discussions in [83] and [2]). Very recently Vishik [93, 94] showed that although there is
existence of solutions with a force source the uniqueness fails if L∞ is substituted by Lp with
p <∞ (see also [2]).

The main result in this chapter is to construct unique solutions of the 2D incompressible Euler
equations (in vorticity formulation) in R2×[0,∞) with initial vorticity in the super-critical Sobolev
space Hβ , 0 < β < 1, which, at each time t > 0, does not belong to any Hβ′

such that

β′ >
(2− β)β

2− β2
. (4.4)

Moreover these solutions are not in the Yudovich class but are the unique classical solution in the
sense given by Definition 4.1.3.

We note that the only result to-date in the direction of proving instantaneous loss of regularity
for 2D Euler in the supercritical regime with velocity v(t) ∈ H1 for all t ≥ 0 is the result of Jeong
[63], who constructed solutions to the 2D Euler equations which belong to the Yudovich class but
the derivative of the vorticity loses integrability continuously in time, i.e. ω /∈ W 1,p(t), with p(t)
decreasing continuously in t, 1 ≤ p(0) < 2. In fact, it is shown in [54] that for this regularity the
solution cannot have a jump in the regularity class. Furthermore, Alberti, Crippa and Mazzucato
[1] show a gap loss of Sobolev regularity for a passive scalar that is driven by a non-Lipschitz
incompressible velocity field, see also [43].

4.1.1 Main results
We are interested in showing loss of regularity for solutions with vorticity ω ∈ Hβ , but as the first
step we will prove that there are initial conditions ω0 ∈ C∞

c that are not big in Hβ but become
arbitrarily big in Hβ′

for β′ as in (4.4).

Theorem 4.1.1 (Norm inflation for smooth data.). Given T,K > 0, β ∈ (0, 1) and β′ > (2−β)β
2−β2 ,

there exist finite energy initial conditions ω0 ∈ C∞
c with ∥ω0∥Hβ ≤ 1 such that the only classical

solution to 2D Euler with initial condition ω0 fulfils ∥ω∥Hβ′ ≥ K for t ∈ [ 1T , T ].

We then consider an infinite number of rapidly growing solutions and use a gluing argument
to find initial conditions that lose regularity instantly.
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Theorem 4.1.2 (Loss of regularity in the supercritical regime). For any ϵ > 0, β ∈ (0, 1) there
exist finite energy initial conditions ω0 such that there exists a unique global classical solution ω
to the 2D Euler equations (see Definition 4.1.3) with those initial conditions such that

∥ω0∥Hβ ≤ ϵ,

∥ω(x, t)∥Hβ′ = ∞ for t ∈ (0,∞), β′ >
(2− β)β

2− β2
.

Since the initial conditions from Theorem 4.1.1 are chosen so that ω0 ∈ C∞
c , for Theorem 4.1.1

we can use the usual definition of classical solutions for the 2D Euler equations without any trouble.
However, Theorem 4.1.2 requires us to consider initial conditions with very low regularity, and so
we need to be a little more precise regarding what we consider a classical solution to 2D Euler in
such a situation.

Definition 4.1.3. We say that ω ∈ L∞([0, T );L1 ∩Lp), where p > 2, is a classical solution to 2D
Euler with initial conditions ω0(x) if

ω ∈ C1
x,t(K) for every K = Bd(0)× [0, a] ⊂ R2 × [0, T )

and

∂tω + v[ω] · ∇ω = 0,

ω(x, 0) = ω0(x).

Since ω is C1
x,t on each compact set this assures that the transport equation makes sense,

that the Lp norms are conserved (whenever they are well defined) and that the support of ω is
transported with the velocity v[ω].

Note that the initial conditions considered will in general not be in the Yudovich class (but in
L1 ∩ Lp for some ∞ > p > 2), so it is unclear whether we have have locally in time a classical
solution, much less if it is also global and unique, and we will resolve these problems by hand.

4.1.2 Ideas of the proof
In order to prove the norm inflation result, Theorem 4.1.1, we start by considering ω0 consisting
of a stationary radial function and a perturbation involving highly oscillatory angular behaviour

ω0(x) = f(r) + g(r)
cos(Nα)

Nβ
. (4.5)

As N grows, the effects of the velocity produced by g(r)N−β cos(Nα) become less and less
relevant, and thus we can approximate the solution by

∂tω(x, t) + v[f(r)] · ∇ω(x, t) = 0,

see Figure 4.1 below.
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Figure 4.1: A sketch of the initial vorticity ω0. Here the inner vorticity depends
only on r, and so the resulting velocity field is only angular, which causes
rotation of the outer part (here denoted by the arrows). The high frequency
N in α of the outer part improves the control over the solution. We note that
except for the inner part, the radial part of the vorticity must also include an
outer part (supported far from the origin), which would guarantee zero average
of ω0.

This already allows us to obtain, in a fairly straightforward way, strong ill-posedness in Hβ ,
β ∈ (0, 1), by choosing f to be small in Hβ , but such that ∥v[f(r)]∥C1 is large. However, in order
to obtain Hβ′

norm growth for some β′ < β (as in (4.4)), rather than merely for β′ = β, we need
to consider a more general family of initial conditions

ω0(x) = ωrad(0) + ωosc(0) := λ1−βf(λr) + λ1−βN−βg(λr) cos(Nα). (4.6)

Note that such scaling with respect to λ > 0 preserves the Ḣβ norm. As in (4.5), the periodicity
parameter N allows us to improve our control over the behaviour of the solution and now the scal-
ing parameter λ is compressing the timescale so that the growth happens faster. The appearance
of the new parameter λ makes the control of the errors more challenging than in the case of SQG
(chapter 2) . We will approximate the solution by a function of the form

ω(t) = ωrad(t) + ωosc(t)

:= λ1−βf(λr) + λ1−βg(λr)N−β cos

(
N

(
α− 1

r

ˆ t

0

vα
[
f(λr)λ1−β + (error)

]
ds

))
.

(4.7)

We note that λ is related to N by a power law, which we describe in (4.10) below. We note that
we will have that N ≫ λ for β close to 0 and λ≫ N for β close to 1.

In order to keep track of the regularity of the solution ω(t) of the Euler equations (4.2) with initial
data (4.6), we first show (in Section 4.4.1) that for any T > 0 we can choose λ large enough so
that

ω(t) = ωosc(t) + ωrad(t) for t ∈ [0, T ],

where ωosc and ωrad remain localized in space. We also show that the influence of ωosc on ωrad is
exponentially small in N , so that ωrad approximates ωrad,

∥ωrad − ωrad∥L2 ≤ e−
N
2 on [0, T ].

This can be proved by an energy estimate on W := ωrad − ωrad, which shows that ∥W∥L2 grows
exponentially in time of order eλ

1−βt, as well as by the localization of ωosc and ωrad, and a
Paley-Wiener-type estimate, which shows that the growth of ∥W∥L2 is dominated, on time in-
terval [0, T ], by an O(e−N ) smallness of the influence of ωosc onto ωrad, see Lemma 4.4.1 for details.

Next, in order to make sure that the evolution of ωosc is governed, to a leading order, by v[ωrad]
(i.e. that ωosc can be approximated by ωosc), we need to show that v[ωrad] can be approximated
by v[ωrad], and that its effect is not overpowered by v[ωosc]. We address the latter issue by proving
that

∥ωosc(t)∥C1 ≤ λ2−βN1−β exp(Cλ1−β) (4.8)

(see Lemma 4.4.2). We then show that ωosc can be approximated by ωosc by noting that the
oscillatory part ωosc of the pseudosolution (4.7) satisfies the same PDE as ωosc, except that the
velocity field is averaged over α, which allows us to use Lagrangian trajectories to show that

∥ωosc − ωosc∥L2 ≤ Cλ2−3βN−2β logN. (4.9)

Indeed, the above estimate can be obtained by noting that the radius of the Lagrangian
trajectory of ωosc remains constant throughout the flow, as well as using a version of the classical
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Log-Lipschitz velocity estimate in polar coordinates (4.22)–(4.23), a resulting L∞ radial velocity
estimate (4.24) and the C1 estimate (4.8).

At this point we pick any sufficiently small δ > 0 such that

βδ :=
(2 + δ − β)β

2 + δ − β2
>

(2− β)β

2− β2

and we relate λ and N by
λ2−2β+δ = Nβ . (4.10)

Such choice suffices for the above arguments, as well as lets us observe the norm inflation claimed
by Theorem 4.1.1.
Indeed, it shows that the right-hand side of (4.9) can be estimated by C∥ωosc∥L2λ−δ/2, and
consequently we can use a Sobolev interpolation argument to show that, for any β′ > βδ and
sufficiently large λ,

∥ωosc(t)∥Ḣβ′ ≥ Cλβ
′(2−β)−βNβ′−β ≥ Cλϵ̃ for t ∈ [1/T, T ],

where ϵ̃ > 0 is a positive (and small) number, and so the claim of Theorem 4.1.1 follows by taking
λ sufficiently large.
We note that, in order to obtain the last inequality, one needs to be able to estimate from below
the size of the Hs norms of the pseudosolution ω(t) for s ∈ (0, 1). While we can use the explicit
formula (4.7) for the pseudosolution, we note that it is merely “almost explicit”, which makes the
issue nontrivial. We show that the error term can be estimated in C1 by a fractional power of
the C1 norm of the leading order term f(λr)λ1−β , but this by itself still does not suggest a way
of computing a lower bound on ∥ω∥Hs using an explicit formula, i.e. the Sobolev-Slobodeckij

representation. Instead, we use the Sobolev interpolation ∥ · ∥Ḣr ≤ c∥ · ∥
r−q
s−q

Ḣs
∥ · ∥

s−r
s−q

Ḣq
, and we

choose r = 0 and q < 0. This way we can make use of the L2 conservation of ω to obtain a lower
bound, and we need to estimate a negative Sobolev norm of ω from above. We provide a subtle
argument that provides robust estimate of such form, which can also take into account the error
term, see Lemma 4.3.5 for details.

As for Theorem 4.1.2 we note that taking λ larger in the above argument increases the norm
inflation, and ensures that it occurs on a larger time interval. Moreover, it also makes the solution
more localized. Thus, for each j we can construct a solution ωj to the 2D Euler equations (4.2)
such that

∥ωj(·, t)∥Hs ≥ 4j for s >
(2− β)β

2− β2
+

1

j
, t ∈ [4−j , 1], (4.11)

| supp ωj | ≤ 2−j for t ≥ 0, with supp ωj ⊂ B1(0) for t ∈ [0, 2j ] (4.12)

and
∥ωj(·, t)∥Lp = C for all t ∈ [0, 1], p ∈ [1, 2/(1− β)] ⊃ [1, 2]. (4.13)

Thus considering the rescalings
1

2j
ωj

(
x,

t

2j

)
, (4.14)

we obtain the norm inflation of order 2j on time interval [2−j , 2j ], which expands to (0,∞) as
j → ∞. We can therefore consider a series of the rescalings (4.14), translated in the x1 direction
by a rapidly increasing sequence distances Rj , defined by R0 := 0, Rj+1 := Rj +Dj +Dj+1 for
some large Dj ’s, see Figure 4.2 below and (4.64). Let us denote the corresponding translations of
(4.14) by ω̃j(x, t).
In order to obtain the claimed gap loss of Sobolev regularity, we first perform a subtle limiting
argument to show existence of a solution to the 2D Euler equations (4.2) with the corresponding
initial data. In fact, we show strong convergence of the classical solution for a truncated initial
condition (i.e. consisting of the first J pieces, J ≥ 0) in C0

tH
4
x(K) for any compact set K ⊂

R2 × [0,∞), which gives us a limit ω∞ that is a classical solution in the sense of Definition 4.1.3
above, see (4.66) for details.
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x1

x2

supp ω̃2(t)
B((R2, 0), 1)

Figure 4.2: A sketch of the gluing argument. This shows the support of the
first few individual pieces ω̃j at some time t ∈ (2−j , 2j), where j = 4. Note
that, given j and t ∈ [0, 2j ], supp ω̃k(t) ⊂ B1(Rk, 0) for k ≥ j.

We can then observe that, given t > 0 and β′ > (2− β)β/(2− β2), we can pick a sufficiently large
j so that the norm inflation (4.11) implies arbitrarily large Hβ′

norm of a j-th piece of ω∞, and
we need to make sure that the pieces do not interact with each other too much to affect this norm
inflation.
To this end we note that the pieces are localized, in the sense that, given t ∈ [0, 2j), the support of
ω̃j is contained within B1(Rj , 0). This, together with (4.12) gives us an increasingly better control
as j → ∞. On the other hand, for the small values of j, we lose the control of the individual
pieces (which can, for example, leave B1(Rj , 0) and interact with each other), but the support
of all pieces has measure bounded by 1 and is included in BRj+Dj

(0), which implies that it is
separated from further pieces, see Fig. 4.2 for a sketch. This can be obtained thanks to the Lp

norm control (4.13), which implies a finite maximal speed vmax, and a choice of the Dj ’s (see
(4.64)), as well as the fact that our C0

tH
4
x-loc argument lets us obtain property of our constructed

limit ω∞.
This control of the distances between pieces of ω∞ lets us show that, given t ∈ (2−j , 2j), the norm
inflation of the j-th piece of ω∞ is not affected by either the following pieces or by the sum of
the previous pieces, see (4.70) for details. We emphasize that this argument implies not only that
Hβ′

regularity is lost instantly at t = 0, but also remains lost for all t > 0.
A similar argument can be used to show uniqueness of ω∞, except that we need to make use
of the both properties of the localization: the control of the distances between pieces and the
measure of their supports. Moreover, we need to use Lagrange trajectories to keep track of the
trajectories of the particles originating from each piece (see (4.71)). These facts, together with the
C1 bounds of each of the pieces at t = 0 (see (4.75)) and estimates of the Biot-Savart law (4.3),
let us estimate the C1 norm of the vorticity evolving from each piece (see (4.76) for details), given
any solution in the sense of Definition 4.1.3, and establish a minimal growth of the Rj ’s (which
involves 4 exponential functions in j, see (4.78)), that allows an L2-based uniqueness proof (see
(4.81)–(4.84) for the main setup). In fact, supposing there are two distinct solutions that coincide
until some time T ≥ 0, we pick a j0 ∈ N (dependent on T ) that identifies the piece after which
the uniqueness is unlikely to occur. Namely we pick j0 such that 2j0 ∼ T (e.g. j0 = 4 in Fig. 4.2),
which, for each j ≥ j0, allows us to efficiently control the C1 norm of the vorticity originating
from the j-th piece. As a result we can make the final choice of the initial distances between
pieces (see (4.78)), such that, for each such j, the L2 norms of the differences between the j-th
pieces of the two distinct solutions can be estimated by a constant that is arbitrarily small with
respect to j (see (4.82)). In order to make the resulting sum convergent, we simply pick j−2 (see
(4.83)). On the other hand, we apply a rougher estimate for j < j0 (see (4.84)) to obtain an L2
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estimate covering all such pieces at the same time. This gives uniqueness by a simple argument
by contradiction (see (4.85) for details).

4.1.3 Outline of the chapter
In Section 4.2 we give some basic notation that we will use throughout the chapter, as well as some
preliminary facts. In Section 4.3 we obtain some technical bounds related to the Biot-Savart law
(4.3) as well as an upper bound on a negative Sobolev norm of functions used our construction. In
section 4.4 we give the family of initial conditions that allows us to show Sobolev norm inflation
and we prove such growth. Finally, in section 4.5, we show that a gluing argument allows us to
build a global in time solution that losses regularity, and we show that it is the unique classical
solution with the given initial conditions.

4.2 Notation and preliminaries
Throughout the chapter we will use functional norms, such as Hβ for example, which refers to
the spatial variables, that is ∥f(x, t)∥Hβ will refer to the spatial Hβ norm for the specific time (or
times) considered. We denote by ∂t the partial derivative with respect to t, and by ∂i the partial
derivative with respect to xi, i = 1, 2.
The only exception to this rule appears in Section 4.5 below, where we prove loss of regularity
in a way that requires different treatment of of the space and time regularity. In order to avoid
confusion, we will use sub-indexes to indicate the relevant variable for a norm; for example
∥f(x, t)∥C1

x
would denote the spatial C1 norm (for a fixed t) and ∥f(x, t)∥C1

x,t
would denote the

C1 in both space and time.

We will use the following ODE fact:

If f ′(t) ≤ cf(t) + b and f(0) = 0 then f(t) ≤ b

c

(
ect − 1

)
≤ btect. (4.15)

We will make use of polar coordinates, namely, given (x1, x2) ∈ R2, we define (r, α) ∈ [0,∞) ×
(−π, π] by x1 = r cos(α), x2 = r sin(α).
Moreover, given f(r, α) : R2 → R, we denote by

Af(r) :=
1

2π

ˆ π

−π

f(r, α) dα

the average of f with respect to α.
Since most of the specific computations will be performed in polar coordinates, we will often say
that a function is 2π

N −periodic if, in polar coordinates, f(r, α) = f(r, α+ 2π
N ).

Moreover, we will use vr and vα to denote the radial and angular components of the velocity
respectively.

Furthermore, we recall that,

∥v[ω]∥W 1,∞ ≲ ∥ω∥∞ log ∥ω∥W 1,∞ (4.16)

for compactly supported ω, and so, if ω0 ∈ C∞
0 (R2), then the unique solution ω of the Euler

equations (4.2) satisfies

∥ω(t)∥C1 ≤ ∥ω0∥C1 + C

ˆ t

0

∥v[ω]∥C1∥ω∥C1 ≤ ∥ω0∥C1 + C

ˆ t

0

∥ω∥C1∥ω∥L∞ log ∥ω∥C1

for every t > 0 (which can be proved by considering ∥∇ω∥Lp and taking p → ∞). Thus, since
∥ω(t)∥L∞ ≤ ∥ω0∥L∞ ≤ ∥ω0∥C1 , we obtain in particular that

∥ω(t)∥C1 ≲ eMeCMt

, (4.17)
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where M := ∥ω0∥C1 .
Finally, we recall the Sobolev-Slobodeckij characterization

∥f∥2
Ḣs = Cs

ˆ
R2

ˆ
R2

|f(x)− f(y)|2

|x− y|2+2s
dx dy for s ∈ (0, 1),

see [48, Proposition 3.4] for a proof. In particular, if {fj}j is a family of disjointly supported
functions in R2, then ∥∥∥∥∥∥

∑
j

fj

∥∥∥∥∥∥
2

Ḣs

≥
∑
j

∥fj∥2Ḣs . (4.18)

4.3 Velocity and vorticity estimates
In this section we study some properties of the vorticity function and the velocity fields given by
the Biot-Savart law (4.3). We also estimate Hβ norms of vorticity functions given in terms of an
oscillatory ansatz.
First we note that if ω is a smooth solution of the Euler equations (4.2) with initial data ω0, then

ω(t) is 2π/N -periodic for all t > 0 if ω0 is. (4.19)

Indeed, if ω(t) is not 2π/N -periodic at any time t > 0 then ω(R2π/Nx, t) is another solution to the
Euler equations with the same (2π/N -periodic) initial data, which contradicts uniqueness, where
Rα denotes the rotation operation by α ∈ [0, 2π) in R2.

4.3.1 The Log-Lipschitz estimate
Lemma 4.3.1 (Log-Lipschitz continuity of vr and vα). Suppose that supp f ⊂ Ω := BR(0) \
BR/2(0). Then

|vr[f ](x)− vr[f ](y)| ≤ C∥f∥∞|x− y| (1 + log(R/|x− y|)) (4.20)

and
|vα[f ](x)− vα[f ](y)| ≤ C∥f∥∞|x− y| (1 + log(R/|x− y|)) (4.21)

for any x, y ∈ Ω.

Proof of Lemma 4.3.1. The proof is a modification of the classical proof (due to Yudovich [103])
of the log-Lipschitz bound on v[f ].
We first recall that by (4.3)

vr[f ](x) =

ˆ
R2

x̂
(x− y)⊥f(y)

|x− y|2
dy

Let x1, x2 ∈ Ω and δ := |x1 − x2|. Then

|vr[f ](x1)− vr[f ](x2)| ≤
ˆ
B2δ(x1)

|f(y)|
|x1 − y|

dy +

ˆ
B2δ(x1)

|f(y)|
|x2 − y|

dy

+

ˆ
Ω\B2δ(x1)

|f(y)|
∣∣∣∣x̂1 (x1 − y)⊥

|x1 − y|2
− x̂2

(x2 − y)⊥

|x2 − y|2

∣∣∣∣ dy
≲ ∥f∥∞

(ˆ
B2δ(0)

|y|−1dy +

ˆ
B3δ(0)

|y|−1dy

+

ˆ
Ω\B2δ(x1)

(
|x̂1 − x̂2|
|x1 − y|

+

∣∣∣∣ (x1 − y)⊥

|x1 − y|2
− (x2 − y)⊥

|x2 − y|2

∣∣∣∣) dy

)

≲ ∥f∥∞

(
δ +

ˆ
Ω\B2δ(x1)

(
δ

R|x1 − y|
+

δ

|x∗ − y|

)
dy

)
,
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where x∗ is a point between x1, x2. We now note that R ≳ |x1 − y| and that |x∗ − y| ∼ |x1 − y|
to obtain

|vr[f ](x1)− vr[f ](x2)| ≲ ∥f∥∞δ

(
1 +

ˆ
Ω\B2δ(x1)

|x1 − y|−2dy

)
≲ ∥f∥∞δ (1 + log(R/δ)) ,

as required.
A similar argument gives the same result for vα.

Corollary 4.3.2. Suppose that supp f ⊂ Ω := BR(0) \BR/K(0) for some K > 1. Then

|vr[f ](x)− vr[f ](y)| ≤ C∥f∥∞|x− y| (1 + log(R/|x− y|)) (4.22)

and
|vα[f ](x)− vα[f ](y)| ≤ C∥f∥∞|x− y| (1 + log(R/|x− y|)) (4.23)

for any x, y ∈ Ω.

This allows us to prove some improved control over the L∞ bounds of velocities produced by
2π
N −periodic functions.

Lemma 4.3.3. If suppω ⊂ Ω := BR(0) \BR/K(0) for some K > 1, ω is 2π/N -periodic then

∥vr[ω]∥L∞(Ω) ≤ CR∥ω∥L∞ log(N)/N. (4.24)

Given Corollary 4.3.2, we can prove (4.24) by noting that

A(vr[ω]) = 0

for any ω (by incompressibility). Moreover, ω is 2π/N -periodic, which implies the same for vr[ω].
This means that, given x ∈ Ω there exists y ∈ Ω such that vr[ω](y) = 0 and |x−y| ∼ C diam (Ω)/N .
Thus an application of Corollary 4.3.2 gives

|vr[ω](x)| = |vr[ω](x)− vr[ω](y)| ≤ C∥ω∥∞|x− y| (1 + log(R/|x− y|))
≤ CR∥ω∥∞ log(N)/N,

(4.25)

as required.

4.3.2 An exp(−N) decay of the radial velocity of 2π/N-periodic vortici-
ties

Here we show that a compactly supported vorticity function that is 2π/N -periodic generates a
velocity field whose radial part decays exponentially fast as N → ∞.

Lemma 4.3.4. Let ω ∈ L∞(R2) be 2π/N -periodic and such that supp ω ⊂ Ba2(0)\Ba1(0). Then

|vr[ω](r, α)| ≲ (a2 − a1)∥ω∥L∞e−N (4.26)

for r ∈ [0, a21/12a2] ∪ [40a2,∞).

Proof. First note that if ω(r, α) = g(r) sin(Nα)

vr[ω](r, α) = cos(Nα)p.v.

ˆ
R

ˆ π

−π

(r + h)2
sinα′g(r + h) sin(Nα′)

h2 + 2(r + h)r(1− cosα′)
dα′dh, (4.27)

and a similar formula holds if sin(Nα) is replaced by cos(Nα).
In order to analyze (4.27), we first consider

f(z) :=
sin z

C + (1− cos z)
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where C > 0, and we note that f is holomorphic in C \ {x + iy : x = 2kπ, y = − log(1 + C ±√
C2 + 2C)} and 2π-periodic in the real direction. Thus, by the Cauchy Theorem,∣∣∣∣ˆ π

−π

f(z)eiNzdz

∣∣∣∣ = ∣∣∣∣ˆ π

−π

f(iγ + z)eiN(iγ+z)dz

∣∣∣∣ ≤ 2πe−γN sup
R×{|Im|≤γ}

|f |,

where
γ :=

1

2
log(1 + C +

√
C2 + 2C), (4.28)

and we used the fact that − log(1+C−
√
C2 + 2C) = log(1+C+

√
C2 + 2C). Since for y ∈ [−γ, γ]

we have | cos z| ≤ cosh y ≤ eγ ≤
√
1 + C +

√
C2 + 2C, and so

|C + 1− cos z| ≥ C + 1− eγ ≥ C + 1−
√
1 + C +

√
C2 + 2C ≥ 1

for C ≥ 5, we obtain that |f | ≲ 1 for such C. In particular, since also γ ≥ 1 for C > 5, we obtain
that ∣∣∣∣ˆ π

−π

f(x) sin(Nx)dx

∣∣∣∣ ≤ 2πe−N (4.29)

for such C.

Given r > 0 we expand ω(r, α) into Fourier series in α. Due to to 2π/N -periodicity we have

ω(r, α) =
∑
k≥N

(g(r, k) cos(kα) + h(r, k) sin(kα)) ,

where
g(r, k) + ih(r, k) :=

ˆ π

−π

ω(r, α)eikαdα.

Clearly |g(r, k)|, |h(r, k)| ≤ 2π∥ω∥∞ for each r, k. Moreover, since r ∈ [0, a21/12a2] ∪ [40a2,∞), a
direct computation shows that

C :=
h2

2(r + h)r
≥ 5

for each h ∈ [a1 − r, a2 − r]. Thus, given k ≥ N , we can apply (4.29) (and an analogous estimate
for cos) to obtain

|vr[ω](r, α)| ≤
ˆ a2−r

a1−r

r + h

2r

∑
k≥N

(∣∣∣∣ˆ π

−π

sinα′g(r + h, k) cos(kα′)

C + 1− cosα′ dα′
∣∣∣∣

+

∣∣∣∣ˆ π

−π

sinα′h(r + h, k) sin(kα′)

C + 1− cosα′ dα′
∣∣∣∣)dh

≲ ∥ω∥∞
ˆ a2−r

a1−r

r + h

2r

∑
k≥N

e−k

 dh

≲ (a2 − a1)∥ω∥∞e−N ,

as required.

4.3.3 Sobolev norms for high frequency ansatz
In this section we prove a technical lemma that allows us to bound from above a negative-order
homogeneous Sobolev norm of certain functions supported in an annulus in R2.

Lemma 4.3.5. Given ϵ ∈ (0, 1), δ ∈ (0, ϵ), and f ∈ C2([1/2, 4]) with f ′ > 0 in [1/2, 4], there exist
C,K0 ≥ 1 such that

ωK(r, α) := g(r) cos(Nα−Kf(r) + ferr(r))

satisfies
∥ωK∥Ḣ−δ ≤ CK−δ∥g∥C1

for every g ∈ C2
c ((1/2, 4)), K ≥ K0, N ∈ N and ferr ∈ C1([1/2, 4]) such that ∥ferr∥C1 ≤ K1−ϵ.
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Proof. We first show that for r ∈ ( 14 , 6)

|Λ−δωK | ≤ CK−δ∥g∥L∞ . (4.30)

We note that

Λ−δωK(r, α) = Cδ

ˆ π

−π

ˆ ∞

0

ωK(r′, α′)

|(r − r′)2 + 2rr′(1− cos(α− α′))| 2−δ
2

r′dr′ dα′.

Using the change of variables h = r′ − r, α̃ = α′ − α, we can estimate the integral over the region
{|α′ − α| ≤ 1/K}, by noting that r, r + h = O(1), which implies that∣∣∣∣∣

ˆ α+ 1
K

α− 1
K

ˆ ∞

0

ωK(r′, α′)

|(r − r′)2 + 2rr′(1− cos(α− α′))| 2−δ
2

r′ dr′dα′

∣∣∣∣∣
≤ C∥g∥L∞

ˆ 1
K

− 1
K

ˆ ∞

−∞

1

|h2 + Cα̃2| 2−δ
2

dhdα̃

≤ C∥g∥L∞

ˆ 1
K

− 1
K

ˆ ∞

|α|

1

|h|2−δ
dhdα̃

≤ C∥g∥L∞

ˆ 1
K

− 1
K

|α̃|−(1−δ)dα̃ ≤ C∥g∥L∞K−δ,

as claimed.
As for |α̃| > 1/K, we first consider h ∈ [0, 4] and we divide this interval into O(K) pieces of the
form [a, a+ 2π/(Kf ′(a+ r))] and integrate by parts on each of them. Namely, given a ∈ [0, 4] we
set

u(h̃) :=

ˆ h̃

a

(r + h)g(r + h) cos(Nα′ −Kf(r + h) + ferr(r + h))dh,

v(h) := |h2 + 2r(r + h)(1− cos α̃)|−
2−δ
2 ,

so that

|v′(h)| ≤ C
|2h+ 2r(1− cos α̃)|

|h2 + 2r(r + h)(1− cos α̃)|
4−δ
2

≤ C
∣∣h2 + 2r(r + h)(1− cos α̃)

∣∣− 3−δ
2 ,

u′(h) = (r + h)g(r + h) cos(Nα′ −Kf(r + h) + ferr(r + h)),

u(a) = 0, and we can estimate u(h) for each h ∈ (a, a+ 2π/(Kf ′(a+ r))] by the brutal bound

|u(h)| ≤ CK−1∥g∥L∞ .

This gives that

∣∣∣∣∣
ˆ a+ 2π

Kf′(a+r)

a

g(r + h) cos(Nα̃−Kf(r + h) + ferr(r + h))

|h2 + 2r(r + h)(1− cos(α̃))| 2−δ
2

(r + h)dh

∣∣∣∣∣
=

∣∣∣∣∣
ˆ a+ 2π

Kf′(a+r)

a

u′(h)v(h)dh

∣∣∣∣∣
≤ C∥g∥L∞

K

ˆ a+ 2π
Kf′(a+r)

a

v(h)dh+ v

(
a+

2π

Kf ′(a+ r)

) ∣∣∣∣u(a+ 2π

Kf ′(a+ r)

)∣∣∣∣
≤ C∥g∥L∞

K

ˆ a+ 2π
Kf′(a+r)

a

|h2 + Cα̃2|−
3−δ
2 dh+

C∥g∥C1K−1−ϵ

|(a+ 2π
Kf ′(a+r) )

2 + Cα̃2| 2−δ
2

,
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where we used the fact that 1− cos α̃ ≥ C(α̃)2 as well as the fact that∣∣∣∣u(a+ 2π

Kf ′(a+ r)

)∣∣∣∣ =
∣∣∣∣∣
ˆ a+ 2π

Kf′(a+r)

a

(
g(r + h) cos(Nα′ −Kf(r + h) + ferr(r + h))

−g(r) cos(Nα′ −Kf(r + a)− hKf ′(r + a) + ferr(r + a))
)
dh
∣∣∣

≤ C∥g∥C1K−1−ϵ,

by adding and subtracting the mixed terms, and noting that the difference of the g’s gives
C∥g∥C1K−2, the second order Taylor expansion of f gives the bound C∥g∥L∞K−2, and the
assumption on ferr gives C∥g∥L∞K−1−ϵ.
Thus, letting a := hi, where h0 := 0, hi+1 := hi +

2π
Kf ′(hi+r) for i = 0, . . . , i0, where i0 is the

largest integer such that hi0 ≤ 4, we obtain that h ∈ (hi, hi+1) for some i ∈ {0, . . . , i0} whenever
r + h ∈ supp g ∩ [r,∞), and∣∣∣∣∣

ˆ 4

0

g(r + h) cos(Nα′ −Kf(r + h) + ferr(r + h))

|h2 + 2r(r + h)(1− cos α̃)| 2−δ
2

(r + h)dh

∣∣∣∣∣
≤ C

i0∑
i=0

(
∥g∥L∞

K

ˆ hi+1

hi

1

|h2 + Cα̃2| 3−δ
2

dh+
∥g∥L∞K−1−ϵ

|h2i+1 + Cα̃2| 2−δ
2

)

≤ C∥g∥L∞

K

ˆ 4+ 1
K

0

1

|h2 + Cα̃2| 3−δ
2

dh+
C∥g∥C1K−ϵ

|α̃|1−δ

and a similar computation can be done for h ∈ (−(r − 1/8), 0], which allows us to cover r + h ∈
supp g ∩ (0, r). With this, in particular

∣∣∣∣∣
ˆ
π≥|α̃|≥ 1

K

ˆ 4

−r+ 1
8

g(r + h) cos(Nα′ −Kf(r + h) + ferr(r + h))

|h2 + 2r(r + h)(1− cos(α̃))| 2−δ
2

(r + h)dhdα̃

∣∣∣∣∣
≤ C

ˆ
π≥|α̃|≥ 1

K

(
∥g∥L∞

K

ˆ 4+ 1
K

0

1

|h2 + Cα̃2| 3−δ
2

dh+
∥g∥C1K−ϵ

|α̃|1−δ

)
dα̃

≤ C∥g∥C1

ˆ
π≥|α̃|≥ 1

K

(
1

K|α̃|2−δ
+

1

Kϵ|α̃|1−δ

)
dα̃ ≤ C∥g∥C1(K−1K1−δ +K−ϵ)

≤ C∥g∥C1K−δ.

Next we need to show some bounds for r ≤ 1
4 and r ≥ 6. For r ∈ (0, 1/4) we need h ∈ (1/4, 4)

(so that r + h ∈ supp g). Thus letting h0 := 1
4 , hi+1 := hi +

2π
Kf ′(r+hi)

and letting i0 ∈ N be the
largest integer such that r + hi0 ≤ 4, and applying integration by parts as before, we have∣∣∣∣∣

ˆ hi+1

hi

g(r + h) cos(Nα′ −Kf(r + h) + ferr(r + h))

|h2 + 2r(r + h)(1− cos α̃)| 2−δ
2

(r + h)dh

∣∣∣∣∣
≤ C∥g∥L∞

K

ˆ hi+1

hi

1

|h2 + Crα̃2| 3−δ
2

dh′

+

(
C

|h2i+1 + Crα̃2| 2−δ
2

ˆ hi+1

hi

g(r′) cos(Nα′ −Kf(r + h) + ferr(r + h))dh

)

≤ C∥g∥L∞

K

ˆ hi+1

hi

1

|h2 + Crα̃2| 3−δ
2

dh+
C∥g∥C1K−1−ϵ

|h2i+1 + Crα̃2| 2−δ
2

.

Thus, summing in i, and integrating in α̃ ∈ {|α̃| ∈ (1/K, π)} (recall that α̃ = α′ − α), we obtain

|Λ−δ(ωK)(r, α)| ≤ C∥g∥C1(K−1 +K−ϵ) ≤ C∥g∥C1K−δ for r ∈ (0, 1/4).
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Similarly, for r ∈ (6,∞) we need h ∈ (r − 1/2, r − 6), which gives the final bound of the form

|Λ−δ(ωK)(r, α)| ≤ C∥g∥C1

(
K−1

(r − 4)3−δ
+

K−ϵ

(r − 4)2−δ

)
≤ C∥g∥C1

K−δ

(r − 4)2−δ
for r > 6.

Integrating the squares of the above pointwise estimates on Λ−δωK gives the claimed L2 bound.

4.4 Initial conditions and growth for smooth functions
Here we prove Theorem 4.1.1, that is we fix β ∈ (0, 1), β′ > (2− β)β/(2− β2), and K,T > 0 and
we construct ω0 ∈ C∞

c (R2) such that ∥ω0∥Hβ ≤ 1 and that the unique classical solution ω to the
Euler equations admits growth ∥ω∥Hβ′ ≥ K for t ∈ [1/T, T ].
To this end, we fix δ > 0 sufficiently small so that

βδ :=
(2 + δ − β)β

2 + δ − β2
>

(2− β)β

2− β2
(4.31)

satisfies βδ < β′.
We will consider radial functions f(r), g(r) such that g ∈ C∞

c ( 12 , 4) and f ∈ C∞
c ((a, b) ∪ (c, d))

and fulfilling

• a ≥ 103, d ≤ 10−4

• ∂r
vα[f ](r)

r ∈ ( 1
M ,M) for some M > 1 when r ∈ ( 12 , 4),

• ∥f∥H1 , ∥g∥H1 ≤ 1/20

•
´∞
0
f(r)r dr = 0.

A function g fulfilling the requirement is trivial to obtain, but we need to justify that f with the re-
quired properties exists. For this, we first consider some arbitrary, positive f̃(r) ∈ C∞

c (10−5, 10−4).
We will study, for r ∈ ( 12 , 4), ∂r

vα[λ2f̃(λ·)](r)
r . First, we note that

vα[λ
2f̃(λ·)](r) =

ˆ π

−π

ˆ ∞

0

r′
λ2f̃(λr′)(r − r′ cos(α))

r2 + (r′)2 + 2rr′(1− cos(α))
dr′ dα

so using the location of the support of f̃(λr) we have vα(f̃(λr)) ≥ 0. Furthermore, for r ∈ ( 12 , 4),

∂rvα[λ
2f̃(λ·)](r)

=

ˆ π

−π

ˆ ∞

0

r′f̃(λr′)

(
λ2

r2 + (r′)2 + 2rr′(1− cos(α))
− 2λ2(r − r′ cos(α))2

(r2 + (r′)2 + 2rr′(1− cos(α)))2

)
dr′ dα

and thus

lim
λ→∞

∂rvα[λ
2f̃(λ·)](r) = −1

r

ˆ ∞

0

2πf̃(s)sds

so, if we take λ big enough then ∂rvα[λ2f(λ·)](r) < 0, and thus

∂r
vα[λ

2f̃(λ·)](r)
r

< 0

for r ∈ ( 12 , 4), which implies that −λ2f̃(λr) gives us the desired effect on the velocity for λ big,
but this f would clearly not have zero average. To compensate for that, we now consider λ−2f̃( rλ )
for λ ≥ 108. It is easy to check that, as λ→ ∞, we have, for any r ∈ ( 12 , 4)

vα[λ
−2f̃( ·

λ )](r) → 0 ∂rvα[λ
−2f̃( ·

λ )](r) → 0 so that, for λ big enough
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−λ2f̃(λ·) + λ−2f̃(·/λ)

has the desired properties for the velocity and average value. Then, multiplication by some small
constant c > 0 allows us to make the H1 norm as small as we want.
We will thus consider some f and g with the desired properties and f and g will be fixed from
now on, so in particular anything that depends only on the specific choice of f and g will just be
a constant.
Given λ > 0 we now set

ω0 := λ1−βf(λr) + λ1−βg(λr)N−β cos(Nα), (4.32)

where f, g ∈ C∞
c (1/4, 2) are as above and N is related to λ via

λ2−2β+δ = Nβ . (4.33)

Note that in particular ∥ω0∥Hβ ≤ 1 for any λ ≥ 1.
We denote by ω : R2× [0,∞) → R the unique solution of (4.2) with initial data ω0. Before we can
show the rapid growth of ∥ω∥Hβ′ , we need to prove some basic properties of ω, which we discuss
in Steps 1–3 below. We will keep in mind that λ > 0 is a large parameter that will be fixed in
Step 4 (Section 4.4.4), where we will prove the growth of the Hβ′

norm.

4.4.1 Step 1 - localization and control of ωrad

We decompose ω into two parts, one that is mostly composed of highly oscillatory terms ωosc and
one that remains mostly radial ωrad, namely, if ϕ(x, t) is the flow map given by v[ω] we define

ωrad(x, t) := ωrad(ϕ
−1(x, t), 0), ωrad(x, 0) = λ1−βf(λr)),

ωosc(x, t) := ωosc(ϕ
−1(x, t), 0), ωosc(x, 0) = λ1−βg(λr)N−β cos(Nα).

Note that, with those definitions, we indeed have that

ω(t) = ωrad(t) + ωosc(t). (4.34)

We now show that these two parts barely change their support and, furthermore, ωrad stays almost
stationary.

Lemma 4.4.1. For sufficiently large λ and t ∈ [0, T ], we have

supp ωosc ⊂ B6λ−1(0) \B(4λ)−1(0),

supp ωrad ⊂ B2bλ−1(0) \Baλ−1/2(0) ∪B2cλ−1(0) \Bdλ−1/2(0),
(4.35)

and furthermore
∥ωrad − ωrad∥L2 ≤ e−

N
2 (4.36)

with ωrad := λ1−βf(λr).

Proof. We first note that the claim of the lemma is valid at least for small times. We start by
proving the localization, i.e., the bounds for the support of ωrad and ωosc. Noting that ω remains
2π/N -periodic for all times, we can using Lemma 4.3.3 to deduce that for t such that (4.35) is
satisfied, we have, for r ∈ B2bλ−1(0)

|vr[w](r)| ≤ C log(N)(Nλ)−β

and, using the relationship between N and λ,

|vr[w](r)| ≤ C log(N)λ−2+β−δ.

Thus (4.35) remains valid at least for t ∈ [0, Cλ1−β+δ(log λ)−1], and so taking λ large ensures that
(4.35) holds until T .
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As for (4.36), we note that, since a ≥ 103, d ≤ 10−4, the assumption of Lemma 4.3.4 holds, and
thus

∥vr[ωosc]∥L∞(supp ωrad) ≤ ∥ωosc∥∞e−N ≤ ∥ωosc,0∥∞e−N .

Moreover, since
∂tωrad + v(ωrad) · ∇ωrad + v(ωosc) · ∇(ωrad) = 0

letting W := ωrad − ωrad we see that

∂tW + v[W ] · ∇W + v[W ] · ∇ωrad + v[ωrad] · ∇W + v[ωosc]∇(W + ωrad) = 0,

which gives us an evolution for the L2 norm

d∥W∥L2

dt
≤ C

(
∥v[W ]∥L2λ2−β + e−N λ

3−2β

Nβ

)
≤ C

(
∥W∥L2λ1−β + e−N λ

3−2β

Nβ

)
,

where we used that ∥v[W ]∥L2 ≤ C
λ ∥W∥L2 , since W is supported in a disc of radius 2b

λ . In light of
the ODE fact (4.15), this gives us a bound for the L2 norm of

∥W (t)∥L2 ≤ Ceλ
1−βt−N λ

2−β

Nβ
(4.37)

which proves the second claim by taking λ large.

4.4.2 Step 2 - L∞ control of ∇ωosc

The Hs growth for our solutions will come from the effect of the velocity generated by ωrad acting
on ωosc. However, we need to prove that this effect is not overpowered by the velocity generated
by ωosc. For that, we have the following lemma.

Lemma 4.4.2. For sufficiently large λ

∥ωosc(t)∥C1 ≤ λ2−βN1−β exp(Cλ1−β) for t ∈ [0, T ]. (4.38)

Proof. We first note that for any C > 1 (4.38) holds for some short time interval, say for t ∈ [0, t0].
Moreover, observe that, for t ∈ [0, t0],

∂tωosc + v[ωosc] · ∇ωosc + v[f(λr)λ1−β + ωrad,err] · ∇ωosc = 0,

with ωrad,err := ωrad − f(λr)λ1−β , and by Lemma 4.4.1 we have

d∥ωosc∥C1

dt
≤ C(∥v[ωosc]∥C1 + λ1−β)∥ωosc∥C1

≤ C(log(∥ωosc∥C1)∥ωosc∥L∞ + λ1−β)∥ωosc∥C1

≤ C(log(∥ωosc∥C1)
λ1−β

Nβ
+ λ1−β)∥ωosc∥C1 ,

≤ Cλ1−β∥ωosc∥C1 ,

where we used the C1 velocity estimate (4.16) in the second line, the L∞ conservation of the
vorticity in the third line, and the assumed bound of the C1 norm in the last line. Thus

∥ωosc(t)∥C1 ≤ ∥ωosc(t = 0)∥C1eCλ1−βt ≤ λ2−βN1−βeCλ1−β

for all t ∈ [0, t0], and a continuity argument completes the proof of (4.38).
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4.4.3 Step 3 - L2 control of the difference between ωosc and the pseu-
dosolution

In this section we show that the function

ωosc(r, α, t) := λ1−βg(λr)N−β cos

(
N

(
α− 1

r

ˆ t

0

vα
[
f(λr)λ1−β +A(ωosc + ωrad,err)

]
ds

))
,

(4.39)
where

ωrad,err := ωrad − ωrad,

which is our guess for the behaviour of ωosc, is actually a good approximation (in L2) of ωosc.
We note that ωosc + ωrad is the pseudosolution (4.7), which was discussed heuristically in the
introduction (Section 4.1.2).
Note that this function corresponds to ωosc advected with an averaged velocity, i.e.

∂tωosc + v[Aωosc] · ∇ωosc + v[Aωrad] · ∇ωosc = 0.

More precisely, we have the following lemma.

Lemma 4.4.3. For λ big enough we have

∥ωosc,err(t)∥L2 ≤ C
1

(λN)β
λ2−2β logN

Nβ
≤ C∥ωosc(t)∥L2λ−

δ
2 for all t ∈ [0, T ], (4.40)

where ωosc,err := ωosc − ωosc.

Proof. To this end we define the flow maps between time s and time t (in polar coordinates)

∂tϕ(r, α, s, t) = (v[ω] ◦ ϕ)(r, α, s, t)
ϕ(r, α, s, s) = (r cos(α), r sin(α))

∂tϕ(r, α, s, t) = (v[Aω] ◦ ϕ)(r, α, s, t)
ϕ(r, α, s, s) = (r cos(α), r sin(α)).

Note that this definition allows for any s, t ∈ R, but we will only be concerned with t ∈ [0, s].
We will denote the polar coordinates of ϕ by ϕr, ϕα (and analogously for ϕ), so that in particular,
when we consider ωosc in polar coordinates

ωosc(r, α, s) = ωosc(ϕr(r, α, s, 0), ϕα(r, α, s, 0), 0),

ωosc(r, α, s) = ωosc(ϕr(r, α, s, 0), ϕα(r, α, s, 0), 0).

We first note that, since v[Aω] has no radial part,

ϕr(r, α, s, t) = r

for all t. On the other hand, for ϕr we can use the L∞ estimate (4.24) on vr[ω] to obtain, for
r ∈ B6λ−1(0),

|ϕr(r, α, s, t)− r| ≤
∣∣∣∣ˆ t

s

∥vr[ω]∥L∞(B6λ−1 (0))

∣∣∣∣ ≤ Cλ−βN−1−β log(N) (4.41)

for all s, t ∈ [0, T ].
As for the angular component we have

∂t(ϕ̄α − ϕα)(r, α, s, t) =
vα[Aω − ω] ◦ ϕ
ϕr(r, α, s, t)

+
vα[Aω] ◦ ϕ
ϕr(r, α, s, t)

− vα[Aω] ◦ ϕ
ϕr(r, α, s, t)

. (4.42)

Noting that Aω − ω has α-average zero, we can use Lemma 4.3.1 in the same way as in (4.25) to
obtain that

∥vα[Aω − ω]∥∞ ≤ C∥ω∥∞
log(N)

λN
≤ Cλ−βN−1−β log(N).
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Moreover, since vα[Aω] does not depend on α we have

|vα[Aω] ◦ ϕ− vα[Aω] ◦ ϕ| ≤ |vα[Aω](ϕr, 0)− vα[Aω](ϕr, 0)|
≤ ∥v[Aω]∥W 1,∞(B6λ−1 (0))|ϕr − ϕr|

≤ C
(
∥ωosc∥L∞ log(∥ωosc∥W 1,∞) + ∥v[ωrad]∥W 1,∞(B6λ−1 (0))

)
λ−βN−1−β log(N)

≤ C
(
λ1−βN−βλ1−β−δ/2 + λ1−β

)
λ−βN−1−β log(N)

≤ Cλ1−2βN−1−β log(N),

where we used (4.16) and (4.41) in the 3rd line, (4.36),(4.38) and the support separation (4.35) in
the fourth line.
Finally, we have that, for r ∈ ( 1

4λ ,
6
λ )

vα[Aω] ◦ ϕ
ϕr(r, α)

− vα[Aω] ◦ ϕ
ϕr(r, α)

≤ Cλ2λ−βN−1−β log(N)λ−β

≤ Cλ2−2βN−1−β log(N)

Thus, combining these bounds with (4.42) gives that∣∣∂t(ϕα − ϕα)
∣∣ ≤ Cλ2−2βN−1−β log(N) (4.43)

for all s, t ∈ [0, T ], and in particular

|ϕα(r, α, s, t)− ϕα(r, α, s, t))| ≤ Cλ2−2βN−1−β log(N)

Thus, since

ωosc(r, α, s) = g(λϕr(r, α, s, 0))λ
1−βN−β cos(Nϕα(r, α, s, 0))

ωosc(r, α, s) = g(λr)λ1−βN−β cos(Nϕ̄α(r, α, s, 0))

we can apply both (4.41) and (4.43) to obtain

|ωosc − ωosc|

≤ C
λ1−β

Nβ
N · λ2−2βN−1−β log(N) + C

λ1−β

Nβ
λ · λ−βN−1−β log(N)

≤ C
λ1−β

Nβ

λ2−2β log(N)

Nβ
,

so integrating over the support of ωosc − ωosc we get

∥ωosc − ωosc∥L2 ≤ C∥ωosc∥L2

λ2−2β log(N)

Nβ

which proves (4.40), as required.

4.4.4 Step 4 - Hs norm inflation
Here we finish the proof of Theorem 4.1.1. Namely, we show that for sufficiently large λ the only
solution to the 2D Euler equations (4.2) with initial conditions ω0 given by (4.32) satisfies

∥ω∥Hβ′ ≥ K for t ∈ [1/T, T ]. (4.44)

Remark 1. Note that since ∥ω∥L2 ≤ 1, if K > 1 then ∥ω∥Hs ≥ K for s ≥ β′. Furthermore,
note since ∥ω0∥Hβ ≤ 1, independently of λ > 0, we are showing strong ill-posedness in Hβ by
considering ϵω for small ϵ > 0.
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In order to see (4.44), we first recall that, by energy conservation and the form (4.32) of initial
data

∥ωosc∥L2 = ∥ωosc∥L2 =
1

2
∥g∥L2(λN)−β (4.45)

We set γ := (βδ + β′)/2.
By interpolation and using Lemma 4.4.3

∥ωosc,err∥β
′

Hγ ≲ ∥ωosc,err∥β
′−γ

L2 ∥ωosc,err∥γHβ′

≲ ∥ωosc∥β
′−γ

L2 λ−δ(β′−γ)/2 (∥ωosc∥Hβ′ + ∥ωosc∥Hβ′ )
γ

≲
(
λ−β− δ

2N−β
)β′−γ (

∥ωosc∥γHβ′ + ∥ωosc∥γHβ′

)
.

(4.46)

We now show that, for some η > 0,

∥ωosc∥Ḣ−η ≤ C∥ωosc∥L2(Nλ(2−β))−η (4.47)

for t ∈ [1/T, T ]. To this end, we first recall the definition (4.39) of ωosc,

ωosc = λ1−βg(λr)N−β cos

(
N

(
α− 1

r

ˆ t

0

(
vα[f ](λr)λ

−β + vα [A(ωosc + ωrad,err)]
)
ds

))
.

In order to apply Lemma 4.3.5, we note that

∥v[ωosc]∥L∞(B(0,4/λ)) ≤ C∥ωosc∥L∞

ˆ
B8/λ(0)

|y|−1dy ≤ C(Nλ)−β , (4.48)

and we use the C1 velocity estimate (4.16) together with the C1 estimate (4.38) of ωosc to obtain
that

∥v[ωosc]∥C1 ≤ C∥ωosc∥L∞ log ∥ωosc∥C1 ≤ Cλ1−βN−βλ1−β log(λ2−βN1−β) ≤ λ1−β−δ, (4.49)

recall (4.33) for the relation between λ and N . Moreover, since the supports of ωrad,err and g(λ·)
are at least C/λ apart (recall (4.35)), we can use (4.36) to obtain

|v[ωrad,err]| , |∇v[ωrad,err]| ≤ C∥ωrad,err∥L2 ≤ λ−β−δ in supp ωosc (4.50)

Thus, given t ∈ [1/T, T ], letting W (r), G(r), Gerr(r) be defined by

W (λr) := ωosc(r, t),

G(λr) := (λr)−1vα[f ](λr),

Gerr(λr) := −Nr−1

ˆ t

0

vα[A(ωosc + ωrad,err)](r, s)ds,

we observe that
W = λ1−βN−βg cos

(
Nα−Ntλ1−βG+Gerr

)
.

Hence, since W ∈ C2
c ([1/2, 4]) and since (4.48)–(4.50) we get that

∥Gerr∥C1([1/2,4]) ≤ CNtλ1−β−δ ≤ (Ntλ1−β)1−σ

for some small σ > 0, where we used the fact that t ∈ [1/T, T ] and λ is sufficiently large (and
depends on T ). This lets us use Lemma 4.3.5 to obtain that

∥W∥Ḣ−η ≤ C(Nλ1−β)−ηλ1−βN−β ,

where the Sobolev norm is considered on R2, treating W as a radial function. This, together with
the fact that ∥W∥Ḣ−η = λ1+η∥ωosc∥Ḣ−η , gives (4.47), as required.
The upper bound (4.47), together with the L2 conservation of ωosc, let us use Sobolev interpolation
(of L2 in terms of Ḣ−η and Ḣs) to obtain a lower bound for ∥ωosc∥Ḣs for s ∈ (0, 1]. On the other

118



hand, a direct calculation shows that ∥ωosc∥Ḣ1 ≤ CNλ2−β∥ωosc∥L2 for t ∈ [1/T, T ], and so we
can interpolate Ḣs between L2 and Ḣ1 to obtain an upper bound on ∥ωosc∥Ḣs . Altogether we
obtain

∥ωosc∥Hs ≈ ∥ωosc∥L2(Nλ2−β)s for each s ∈ [0, 1]. (4.51)

Applying interpolation again for ωosc we obtain

∥ωosc∥γHβ′ ≥
∥ωosc∥β

′

Hγ

∥ωosc∥β
′−γ

L2

≥ 1

∥ωosc∥β
′−γ

L2

(
C∥ωosc∥β

′

Hγ − C∥ωosc,err∥β
′

Hγ

)
≥ C∥ωosc∥γHβ′ − Cλ−δ(β′−γ)/2

(
∥ωosc∥γHβ′ + ∥ωosc∥γHβ′

)
,

where, in the last inequality, we used (4.51) twice (with s = γ and with s = β′) to estimate
∥ωosc∥Hγ , as well as (4.46) to bound ∥ωosc,err∥Hγ from above. Since the ∥ωosc∥Hβ′ norm on the
right-hand side can be absorbed by the left-hand side, and the last ∥ωosc∥Hβ′ norm is negligible
in comparison with the first term on the right-hand side, we thus obtain that

∥ωosc∥Hβ′ ≥ C∥ωosc∥Hβ′

for each t ∈ [1/T, T ]. Hence, applying (4.51) again with s = β′ we obtain

∥ωosc∥Hβ′ ≥ C
(Nλ2−β)β

′

(λN)β
≥ Cλϵ̃,

where ϵ̃ > 0 is a small constant. Thus, choosing sufficiently large λ shows growth of ∥ωosc∥Hβ′ ,
and hence also of ∥ω∥Hβ′ , due to the localization (4.35) and (4.18). In particular we obtain (4.44),
as required.

4.5 Gluing: Loss of regularity
We are now ready to prove Theorem 4.1.2, that is, to show existence of a solution that loses
regularity instantly, and furthermore it is the unique classical solution (as in Definition 4.1.3) and
it is global in time.
By rescaling the initial data we can assume that ϵ = 1; thus, given β ∈ (0, 1), we need to find
ω(x, 0) such that there exists a unique global classical solution to 2D Euler (as in Definition 4.1.3)
with this initial condition which satisfies

∥ω(x, 0)∥Hβ ≤ 1,

∥ω(x, t)∥Hβ′ = ∞ for t ∈ (0,∞), β′ >
(2− β′)β

2− β2
. (4.52)

First, given j ≥ 1, we will denote by ωj(x, t) a smooth solution to 2D Euler equation given by
Theorem 4.1.1 such that

∥ωj(x, t)∥Hs ≥ 4j for s >
(2− β)β

2− β2
+

1

j
, t ∈

[
1

4j
, 1

]
. (4.53)

Note also that by construction, we can choose the ωj so that, for all t ∈ [0, 1],

| supp ωj | ≤ 2−j , supp ωj ⊂ B1(0). (4.54)

Moreover, setting p := 2/(1− β) we can assume that ∥ωj(·, t)∥Lp = C for all t ≥ 0, where C > 0
is a constant, by the Lp conservation and the form (4.32) of the initial data.
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We will consider initial conditions ω(x, 0) of the form

ω(x, 0) :=

∞∑
j=1

TRj

(
ωj(x, 0)

2j

)
, (4.55)

where TR(f(x1, x2)) = f(x1 −R, x2). For brevity, we will use the notation

ω̃j(x, t) := TRj

(
ωj(x, t/2

j)

2j

)
,

where the Rj ’s remain to be fixed. Some properties to keep in mind are:

• ω̃j is a smooth global solution to 2D Euler with

∥ω̃j(·, t)∥Hs ≥ 2j for s >
(2− β)β

2− β2
+

1

j
, t ∈ [2−j , 2j ], (4.56)

due to (4.53). Furthermore, we have

∥ω̃j(x, 0)∥Hβ ≤ 2−j , ∥ω̃j(x, 0)∥L1∩Lp ≤ C2−j , (4.57)

where we set ∥ · ∥L1∩Lp := ∥ · ∥L1 + ∥ · ∥Lp (recall p = 2/(1− β) > 2), as well as

| supp ω̃j | ≤ 2−j , supp ω̃j ⊂ B1(Rj , 0) for t ∈ [0, 2j ]. (4.58)

• Given the truncated initial conditions

J∑
j=1

ω̃j(x, 0), (4.59)

we will refer to the unique global-in-time solution to the 2D Euler equations (4.2)–(4.3) with
initial conditions given by (4.59) as ωtr,J , and, for any t ∈ [0, T ], m,J ∈ N, there exists a
constant Cm,J,T , independent of the choice of (Rj)j∈N such that

∥ωtr,J(·, t)∥Hm ≤ Cm,J,T , ∥ω̃J(·, t)∥Hm ≤ Cm,J,T . (4.60)

• Furthermore, noting that ∥v[f ]∥L∞ ≤ Cq(∥f∥L1 + ∥f∥Lq ) for any f and q > 2 we deduce
from (4.57) that

∥v[ωtr,J ]∥L∞ , ∥v[ω̃J ]∥L∞ ≤ vmax

for all t ≥ 0, where vmax is some constant independent of J and of the choice of (Rj)j∈N.
We also deduce from (4.60) that

|∇kv[ωtr,J ](x, t)| ≤
Ck,J,T

(1 + dist (x, supp ωtj,J))k+1
,

|∇kv[ω̃J(x, t)]| ≤
Ck,J,T

(1 + dist (x, supp ω̃J))k+1

(4.61)

for all x ∈ R2, t ∈ [0, T ].

• Moreover,
| supp ωtr,j | = 1− 2j+1 ≤ 1 for all j ≥ 1, (4.62)

as a property of the 2D Euler equations.

We will define R1 = 0, Rj+1 = Dj+1 + Dj + Rj and show that if Dj > 0 are big enough, then
there exists a global solution ω∞ with loss of regularity.
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We first construct ω∞ as a limit of ωtr,j as j → ∞. To this end, for any fixed (Dj)j=1,...,J , we
define inductively the “J + 1-th approximation” by

ωtr,J+1 := ωtr,J + ω̃J+1.

It fulfils an evolution equation of the form

∂tωtr,J+1 + v[ωtr,J+1] · ∇ωtr,J+1 + F = 0,

where
F := −v[ωtr,J ] · ∇ω̃J+1 − v [ω̃J+1] · ∇ωtr,J

and since, for t ∈ [0, 2J+1],

dist (supp ωtr,J , supp ω̃J+1) ≥ DJ+1 − 2vmax2
J+1 − 2

the Hm boundedness of the vorticity functions (4.60) and the decay (4.61) of the corresponding
velocity fields v implies that

∥F (·, t)∥H4 ≤ CJ(DJ+1 − 2vmax2
J+1 − 2)−1 → 0 as DJ+1 → ∞, (4.63)

uniformly in t ∈ [0, 2J+1]. We set

WJ+1 := ωtr,J+1 − ωtr,J+1,

and we use the evolution equation for WJ+1,

∂tWJ+1 = v[WJ+1] · ∇WJ+1 − v[WJ+1] · ∇ωtr,J+1 + v [ωtr,J+1] · ∇WJ+1 − F

to obtain that

d∥WJ+1∥H4

dt
≤ C(∥WJ+1∥2H4 + ∥WJ+1∥H4∥ωtr,J+1∥H5 + ∥F∥H4),

where we used the velocity estimates

∥v[WJ+1]∥H4(supp ωtr,J+1) ≲ ∥v[WJ+1]∥L∞(supp ωtr,J+1) + ∥D4v[WJ+1]∥L2 ≤ ∥WJ+1∥H3

∥v[ωtr,J+1]∥C4(supp WJ+1) ≲ ∥ωtr,J+1∥H7

and that | supp ωtr,J+1| ≤ 1 and | supp WJ+1| ≤ 2, due to (4.62). Thus, since WJ+1(·, 0) = 0, and
∥ωtr,J+1∥H7 ≤ ∥ωtr,J∥H7 + ∥ω̃J+1∥H7 ≤ CJ for t ∈ [0, 2J+1] (due to (4.60)) and since F vanishes
in the limit DJ+1 (recall (4.63)), we can find

D̃J+1 ≥ 4J+1(vmax + 1) + 2 (4.64)

such that
∥ωtr,J+1(·, t)− ωtr,J(·, t)− ω̃J+1∥H4 ≤ 2−J−1 (4.65)

for DJ+1 ≥ D̃J+1 and all t ∈ [0, 2J+1].
Given a, d > 0 we denote by

K = Bd(0)× [0, a]

an arbitrary compact set in space-time. Note that, for each such K the support of ω̃J+1 is disjoint
with K for sufficiently large J . Thus (4.65) implies that {ωtr,J}J≥1 is Cauchy in C0

tH
4
x(K), and

so there exists ω∞ ∈ C([0,∞);H4
loc(R2)) such that we have that

∥ωtr,J − ω∞∥C0
t H

4
x(K) → 0 as J → ∞ (4.66)
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for every K. Note that in particular ω∞ ∈ C0
t C

2
x(K), and so, since ω∞ ∈ C0([0, a];L1(R2)) (a

consequence of (4.65) and (4.57)) we see that, for each K, Dαv[ω∞] exists at each point of K and
each multiindex α with |α| ≤ 2, and

∥v[ω∞]− v[ωtr,J ]∥C0
t C

2
x(K)

≤ CK

(
∥χB2d(0)c(ω∞ − ωtr,J)∥C0([0,a];L1) + ∥ω∞ − ωtr,J∥C0([0,a];C2(B2d(0)))

)
≤ CK

∑
j≥J

∥∥χB2d(0)c(ωtr,j+1 − ωtr,j)
∥∥
C0([0,a];L1)

+ o(1)

≤ CK

∑
j≥J

(
2−j + ∥ω̃j+1∥C0([0,a];L1)

)
+ o(1)

≤ o(1)

(4.67)

as J → ∞, where we used the Biot-Savart law (4.3) in the first inequality, (4.66) in the second
inequality, (4.65) in the third and (4.57) in the fourth.

Having found the limit ω∞ with convergence properties (4.66), (4.67), we can now take the
limit J → ∞ in the weak formulation of ∂tωtr,J + v[ωtr,J ] · ∇ωtr,J = 0 (which is obtained by
multiplying by a smooth function that is compactly supported in K, and integrating) to obtain
that ∂tω∞ = −v[ω∞] · ∇ω∞ ∈ C0

t C
1
x(K). In particular ω∞ ∈ C1

x,t(K), which gives that ω∞ is a
classical solution of the Euler equations in the sense of Definition 4.1.3.

We now show that ω∞ instantly loses regularity. Namely we show (4.52), for which it is sufficient
to consider only s ∈

(
(2−β)β
2−β2 , 1

)
. Given such s, and τ > 0 we fix J ≥ 1 such that

s >
(2− β)β

2− β2
+

1

J
and 2J+1 ≥ τ. (4.68)

Using the short-hand notation
Bj := BDj (Rj , 0) (4.69)

we obtain

∥ω∞(·, τ)∥Hs ≥

∥∥∥∥∥∥
∑

j≥J+1

ω̃j(·, τ)

∥∥∥∥∥∥
Hs

− ∥ωtr,J∥Hs −
∑
j≥J

∥ωtr,j+1(·, τ)− ωtr,j(·, τ)− ω̃j+1(·, τ)∥Hs

≥

∥∥∥∥∥∥
∑

j≥J+1

ω̃j(·, τ)

∥∥∥∥∥∥
Ḣs

− Cs,τ

≥ ∥ω̃k(·, τ)∥Ḣs − Cs,τ ≥ 2k − Cs,τ

(4.70)

for any k ≥ J + 1, where we used (4.65) in the second inequality, as well as (4.18) and the fact
that supp ω̃j(·, τ) ⊂ B1(Rj , 0) for all j ≥ J + 1 (recall (4.54)) in the third inequality. Since
k ≥ J + 1 is arbitrary, we obtain (4.52), as required.

In order to show that ω∞ is the unique solution in the sense of Definition 4.1.3, we first denote by
ϕ(x, t) the flow map of ω∞, and we set

ω∞,j(x, t) := ω̃j(ϕ
−1(x, t)), ω∞,≤J :=

J∑
j=1

ω∞,j . (4.71)

This allows us to decompose ω∞ into pieces,

ω∞ =

∞∑
j=1

ω∞,j ,
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where each piece satisfies
∂tω∞,j + v[ω∞] · ∇ω∞,j = 0. (4.72)

In particular (recall (4.54))

| supp ω∞,j | ≤ 2−j for all times t ≥ 0. (4.73)

We now show that, for each fixed a > 0

∥ω∞,j∥C1 ≤ eMje
C̃Mja and ∥ω∞,≤j∥C1 ≤ eSje

C̃Sja (4.74)

for all t ∈ [0, a] and j such that 2j−1 ≥ a, where C̃ > 1 is a universal constant and

Mj := max (1, ∥ω̃j(·, 0)∥C1) , Sj :=

j∑
i=1

Mi. (4.75)

To this end, we first apply the C1 estimate (4.17) to ω̃j and ωtr,j , j ≥ 1, to obtain

∥ω̃j∥C1 ≤ eMje
C̃Mja and ∥ωtr,j∥C1 ≤ eSje

C̃Sja (4.76)

for all j and all t ∈ [0, a], where C̃ > 1 is a constant. Thus, since for 2j ≥ a

ω∞,≤j(t) and ωtr,j(t) remain supported in BRj+Dj (0),

ω∞,j(t) and ω̃j(t) remain supported in Bj

(4.77)

for t ∈ [0, a] (recall (4.69) and (4.64)), we obtain that

∥ω∞,j − ω̃j∥H4 =

∥∥∥∥∥∥ω∞ − ωtr,j−1 −
∑
k≥j

ω̃k

∥∥∥∥∥∥
H4(Bj)

=

∥∥∥∥∥∥
∑
k≥j

(ωtr,k − ωtr,k−1 − ω̃k)

∥∥∥∥∥∥
H4(Bj)

≤
∑
k≥j

∥ωtr,k − ωtr,k−1 − ω̃k∥H4 ≤
∑
k≥j

2−k = 2−(j−1)

for all t ∈ [0, a] and j such that 2j−1 ≥ a, where we used (4.65) in the last line. This and the
first claim of (4.76) proves the first claim of (4.74), upon possibly taking C̃ larger. A similar
calculation,

∥ω∞,≤j − ωtr,j∥H4 =

∥∥∥∥∥∥ω∞ − ωtr,j −
∑

k≥j+1

ω̃k

∥∥∥∥∥∥
H4(BRj+Dj

(0))

≤
∑

k≥j+1

∥ωtr,k − ωtr,k−1 − ω̃k∥H4(BRj+Dj
(0)) ≤

∑
k≥j+1

2−k = 2−j

for t ∈ [0, a] and j such that 2j ≥ a, together with (4.76) shows the second claim of (4.74), as
required.
We emphasize that all of the above claims hold for each choice of the sequence {Dj}j≥1 satisfying
Dj ≥ D̃j , where D̃J was defined by (4.64)–(4.65). We now prove uniqueness of ω∞, provided that
each Dj is chosen larger, namely that

Dj ≥ D̃j + exp
(
exp

(
2Mj exp

(
C̃Mj2

j
)))

. (4.78)

Indeed, suppose that there exists another classical solution ω̃∞ of the Euler equations with initial
data (4.55), and let ω̃∞,j be defined in the same way as ω∞,j , but with the flow map given by ω̃∞
so that

ω̃∞(x, t) =

∞∑
j=1

ω̃∞,j(x, t), ∂tω̃∞,j + v[ω̃∞] · ∇ω̃∞,j = 0. (4.79)
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Note that ω̃∞ conserves its Lp norms with time and in particular, it moves at most with speed
vmax.
We let

T := sup{T ′ ≥ 0: ω∞(t) = ω̃∞(t) for all t ∈ [0, T ′]}
and we set

W := ω∞ − ω̃∞, Wj := ω∞,j − ω̃∞,j and W≤j :=

j∑
k=1

Wk.

Clearly
∂tWj + v[ω̃∞] · ∇Wj + v[W ] · ∇ω∞,j = 0. (4.80)

In order to estimate v[W ] in L2 we fix j0 such that

2j0−1 ≥ T + 1.

Note that, since supp W≤j−1 ⊂ BRj−1+Dj−1
(0) and supp Wk ⊂ Bk for k ≥ j ≥ j0 (a consequence

of (4.77)), and since |x− y| ≥ Dj − 2Tvmax − 2 for x ∈ Bj and y ∈ BRj−1+Dj−1
(0) ∪

⋃
k≥j+1Bk

we have

∥v[W ]∥L2(supp ω∞,j) ≲

ˆ
supp ω∞,j

(ˆ
supp Wj

|Wj(y)|
|x− y|

dy

)2

dx

1/2

+
∥W∥L2

Dj − 2(T + 1)vmax − 2

≲ ∥Wj∥L2 +
∥W∥L2

Dj − 2(T + 1)vmax − 2

for each t ∈ [T, T +1], where we used (4.73), as well as the fact that 1 = χB2(y)(x) under the first
integral and Young’s inequality ∥f ∗ g∥2 ≤ ∥f∥2∥g∥1 in the last line. Thus multiplying (4.80) by
Wj and integrating we obtain the energy estimate

d

dt
∥Wj∥L2 ≤ C∥Wj∥L2∥ω∞,j∥C1 +

∥W∥L2

Dj − 2(T + 1)vmax − 2
∥ω∞,j∥C1

≤ C∥Wj∥L2∥ω∞,j∥C1 + e−eMje
C̃Mj2

j

F

(4.81)

for t ∈ [T, T + ϵ], j ≥ j0, where ϵ ∈ (0, 1),

U(t) := sup
s∈[T,t]

∥W (·, s)∥L2 for t ∈ [T, T + ϵ],

and we used the lower bound on Dj (4.78) (recall also (4.64)); note that the factor of 2 in (4.78)
is used to absorb the upper bound (4.74) on ∥ω∞,j∥C1 norm. Thus, using the upper bound (4.74)
again, the ODE fact (4.15) shows that

∥Wj∥L2 ≤ ϵ eCϵeMje
C̃Mj2

j

e−eMje
C̃Mj2

j

U (4.82)

for all t ∈ [T, T + ϵ), j ≥ j0. Thus, taking ϵ ∈ (0, 1) small enough so that, for each j ≥ j0, the
product of the two exponential functions above is bounded by j−2, we obtain

∥Wj∥L2 ≤ ϵ

j2
U (4.83)

for t ∈ [T, T + ϵ], j ≥ j0.
As for j < j0 we have

d

dt
∥W<j0∥L2 ≤ C ∥W<j0∥L2 ∥ω<j0∥C1 +

∥W∥L2

Dj0 − 2(T + 1)vmax − 2
∥ω<j0∥C1 , (4.84)

since supp W<j0 ⊂ BRj0
+Dj0

(0). Thus, applying the ODE fact (4.15) again, we obtain
∥W<j0∥L2 ≤ CT ϵU , where CT > 0 depends on T . Adding this inequality to (4.83), for j ≥ j0,
gives that ∥W∥L2 ≤ (CT + C)ϵU for all t ∈ [T, T + ϵ], and so, taking sup gives

U(T + ϵ) ≤ (CT + C)ϵU(T + ϵ). (4.85)

Taking ϵ sufficiently small, we thus obtain U(T + ϵ) = 0, which proves uniqueness, as required.
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Chapter 5

Loss of regularity for SQG with
fractional diffusion

5.1 Introduction
As mentioned in chapter 2, the (inviscid) Surface Quasi-Geostrophic (SQG) equation is a significant
active scalar model with various applications in atmospheric modeling [88], owing to its similarities
with the 3D incompressible Euler equations (see [27]). In this chapter we consider the initial value
problem for the dissipative 2D Surface Quasi-geostrophic equations (α-SQG) in the space-time
domain R2 ×R+ which has the following form

∂w

∂t
+ v · ∇w + Λαw = 0 α ∈ (0, 2] (5.1)

v = (− ∂ψ

∂x2
,
∂ψ

∂x1
), ψ = Λ−1w

and as usual we denote Λαf ≡ (−∆)
α
2 f by the Fourier transform Λ̂αf(ξ) = |ξ|αf̂(ξ). Here the

function w = w(x, t) represents the potential temperature in a rapidly rotating and stratified
flow driven by an incompressible velocity v (in chapter 2 we used θ for the scalar, which is the
standard notation, but unfortunately here we need to use θ for the angle when working in polar
coordinates). The velocity field can be written as v = (−R2w,R1w), where Ri are the Riesz
transforms in 2 dimensions, with the integral expression

Rjw(x, t) =
Γ(3/2)

π3/2
P.V.

ˆ
R2

(xj − yj)w(y, t)

|x− y|3
dy1dy2

for j = 1, 2.
The equation (5.1) has been extensively studied since its introduction in [89]. In that work, the
global existence of weak solutions in L2 (finite energy) was demonstrated for 0 ≤ α ≤ 2. Further
research on global existence of weak solutions in other spaces can be found in [84] and [4]. However,
it should be noted that weak solutions are not unique below a certain regularity threshold [12].
The equation’s scaling leads to three regimes to consider: sub-critical (1 < α ≤ 2), critical (α = 1),
and super-critical (0 < α < 1). The global existence of unique smooth solutions in the sub-critical
case has been established in [32], while the global well-posedness for the critical case with α = 1
has been shown in [75], [13] and [31] using different techniques (see also [74], [45] and [30]).

5.1.1 Regularity in the Super-critical regime α ∈ (0, 1)

The problem of global regularity in the supercritical regime remains unresolved, despite the exis-
tence of eventual regularity results in [44], [42], [72], [80], [91] and [92]. The local well-posedness
has been established for large data in Hs for s ≥ 2− α (see [86]) and for a number of functional
spaces global well-posedness is present for small data (see [36], [20], [24], [34] [50], [51], [62], [67],
[86], [91], [99], [100], [101] and [102]). In the case of large initial data global existence as α → 1−
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is shown in [42] (see also [25]). Additionally, there is a corresponding instant parabolic smoothing
effect for sufficiently regular initial data [33], [34], [7], [50] and [51].
Recently in [25], a bound is obtained on the dimension of the spacetime singular set of the suitable
weak solutions of (5.1) for a range of α’s in the super-critical regime.

5.1.2 Main result
Our main result is to construct global unique solutions of (5.1) that lose regularity instantly in
the super-critical regime.

Theorem 5.1.1. Given ϵ > 0, α ∈ (0, 1), β ∈ (1, 2− α), there exist initial conditions w0(x) with
||w0||Hβ ≤ ϵ such that there exists a unique solution w(x, t) to (5.1) with w(x, t) ∈ L∞

t H
1
x. This

solution is global and smooth for any t > 0 and it fulfils

limn→∞||w(x, tn)||Hβ = ∞
for some sequence of times (tn)n∈N that tends to zero.

Remark 8. One expects that, as α becomes bigger, instant loss of regularity should become
harder and, in fact, if we consider L∞ initial conditions the result obtained in [80] (see also [79])
shows that, in the critical case α = 1, for s ∈ (0, 1), there exists at least one local weak solution
that does not lose regularity, which suggests that there might not be instant loss of regularity for
L∞ functions in the case α ≥ 1. This is also supported by the global existence results for α = 1
[13], [75] and [31].

Remark 9. The growth around the origin is at least logarithmic, i.e., there is an exponent a > 0
such that

limn→∞
||w(x, tn)||Hβ

| ln(tn)|a
> 0.

We will however omit the proof of this fact in order to obtain a more readable chapter.

Remark 10. The solution w(x, t) converges to the initial conditions w(x, 0) in the space
C3

x(BJ(0)) for any J as t tends to 0. This is a trivial consequence of (5.41).

5.1.3 Strategy of the proof
The motivation for studying this problem comes from the results obtained in chapter 2 where
instant loss of regularity is shown in the inviscid case (see also [65] for a different proof): Since
loss of regularity is possible in the inviscid case, maybe this phenomenon is still possible with some
(possibly small) viscosity added, although this is not necessarily the case since the diffusion will
fight the norm growth.
In order to obtain norm inflation in Hs with diffusion we need to consider similar (but more
general) initial conditions in polar coordinates (r, θ) as in chapter 2, namely

w(r, θ, 0) ≡ wrad(r, 0) + wpert(r, θ, 0) =
f(λr)

λβ−1
+ g(λr)

cos(Nθ)

Nβλs−1

where N ∈ N, λ ∈ R are parameters to be fixed later and f, g are smooth radial functions and r, θ
are the radius and angle in polar coordinates.
To obtain a reliable pseudo-solution, we aim to find an approximation of α-SQG that is simple
enough to be solved explicitly, and the pseudo-solution will be obtained by solving the simplified
evolution equation. This simplified evolution equation needs to be precise enough that the pseudo-
solutions stay close to the actual solutions to α-SQG. When fractional dissipation is absent and λ
is sufficiently large, we can rely on the following equations

∂

∂t
wrad = 0

∂

∂t
wpert + v(wrad) · ∇wpert = 0
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to obtain a pseudo-solution that grows rapidly in time, and taking N big makes this pseudo-
solution a good approximation of SQG. Unfortunately, this ansatz for the evolution would com-
pletely ignore the diffusion in the case α > 0, which would make the pseudo-solution a very poor
approximation of α-SQG. On the other hand, including the fractional diffusion in our simplified
evolution equation already produces an equation that is too complicated for our purposes, and in
particular it is hard to deal with the non-locality of Λα. Before we explain in some detail how to
circumvent this, we will study what we call the naive pseudo-solution:

w̄naive(r, θ, t) = e−Cλαt g(λr)

λs−1
+ e−C(Nλ)αtf(λr)

cos(N(θ − vθg(λr)
r

´ t
0
e−Cλαsds))

Nsλs−1

with vθ(g(λr)) = θ̂ · v(g(λr)), which is obtained by using the (fully local) approximation

Λαwrad ≈ Cλαwrad,

Λαwpert ≈ C(λN)αwpert.

This ansatz (which is NOT a good approximation of α-SQG) actually gives some basic ideas of
what the behaviour for the real solution is going to be. Namely, we see that the characteristic
time for the decay of wpert is (λN)−α, while the "deformation time" (i.e., the time it would take
for ||wpert||Hβ to grow in the absence of diffusion) is of order λ−2+β , which suggests considering
(λN)−α ≈ λ−2+β , so that the smoothing effects and the deformation effects have roughly the same
strength. Note, in particular, that this already suggests that we can only have instantaneous loss
of regularity if β < 2 − α, which is consistent with the fact that there is local well posedness in
Hβ for β ≥ 2− α.
However wnaive is not the right approximation, so to actually include the diffusion in our simplified
evolution equation we will compute Λ̄α, a local approximation of the diffusion, as well as v̄, a local
approximation of the velocity operator, to obtain the final version of our simplified equations

∂

∂t
w̄rad(r, t) + Λαw̄rad(r, t) = 0

∂w̄pert

∂t
+ v(w̄rad(r, t)) · ∇(w̄pert) + v̄(w̄pert) · ∇w̄rad(r, t) + Λ̄α(w̄pert) = 0,

which can be solved explicitly. This pseudo-solution, which depends on λ, N , β and α, grows very
rapidly in Hβ as long as N and λ are chosen correctly and β < 2 − α. Furthermore, if β > 1
(and again, N and λ chosen correctly), the pseudo-solution is a good approximation of α-SQG for
all time t > 0. A gluing argument then allows us to combine an infinite number of these rapidly
growing solutions to obtain the desired instant loss of regularity.

5.1.4 Outline of the chapter
This chapter is structured as follows. In Section 2, we introduce the basic notation that will be
utilized throughout the chapter and derive necessary technical bounds to approximate the diffusion
operator and to find and control the pseudo-solution. In Section 3, we present the pseudo-solution
and analyze its essential properties. In Section 4, we demonstrate how a gluing argument can be
employed to construct a unique global in time solution, despite a loss of regularity.

5.2 Technical lemmas

5.2.1 Notation and preliminaries
When a constant depends on several parameters (such as α, β, and γ), we will use the notation
Cα,β,γ to indicate this dependence in this chapter.
We will, however, omit the sub-index if the parameter has been fixed at the time.
For many lemmas it will be necessary to work in polar coordinates, i.e., we will consider the change
of coordinates
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x1 = r cos(θ), x2 = r sin(θ).

Furthermore, if we call Fpolar the function that gives us the change of coordinates from polar to
cartesian coordinates, for some function f(x) we will use the abuse of notation

f(r, θ) = f(Fpolar(r, θ)).

Since θ will be our angle in polar coordinates, we will use w to refer to the scalar instead of θ.
For s ≥ 0, we will consider the Hs norms, which we will define as

||f ||Hs = ||f ||L2 + ||Λsf ||L2 ,

and sometimes we will use the fact that, for s an integer

||f ||Hs ≈
s∑

j=0

j∑
i=0

|| ∂j

∂xi1∂x
j−i
2

f ||L2 .

Finally, we will sometimes consider the homogeneous Sobolev norms, defined as

||f ||Ḣs = ||Λsf ||L2 .

5.2.2 Approximations for the fractional diffusion
As we mentioned in the introduction, in order to obtain an appropriate pseudo-solution, we need
an approximation for the diffusion operator that is easier to work with. In particular we would
like a local approximation for the operator. Doing this directly for Λα posses some difficulties due
to the lack of integrability of the kernel of Λα, so we will first approximate Λ−α and then use that
to obtain information about Λα.

Lemma 5.2.1. For any fixed parameters α ∈ (0, 1], P, ϵ > 0 there exists N0 such that if N > N0,
then for any functions f(r), g(r) and p(r) fulfilling suppf(r) ⊂ ( 12 ,

3
2 ) and

||g||C5 ≤ ln (N)
P
, ||f(r)||C5 ≤ ln (N)

P ||f ||L∞ , ||p(r)||C5 ≤ ln (N)
P

then if we define
w(r, θ) := f(r) cos(N(θ + g(r)) + p(r))

we have that for β ∈ [0, 3] there exist constants Kα > 0 and Cϵ,α,P such that

||Λ−αw(r, θ)−Kα
w(r, θ)

|(Nr )2 + (N)2g′(r)2|α/2
||Hβ ≤ Cϵ,α,PN

−1−α+ϵ+β ||f ||L∞ .

Furthermore if we have f(r), g(r), p(r) with suppf(r) ⊂ ( 1
2λ ,

3
2λ ) for some λ ≥ 1 and such that we

have

||g( r
λ
)||C5 ≤ ln (N)

P
, ||f( r

λ
)||C5 ≤ ln (N)

P ||f( r
λ
)||L∞ , ||p( r

λ
)||C5 ≤ ln (N)

P

then for β ∈ [0, 3] there exist constants Kα > 0 and Cϵ,α,P such that

||Λ−αw(r, θ)−Kα
w(r, θ)

|(Nr )2 + (N)2g′(r)2|α/2
||Hβ ≤ Cϵ,α,P,Mλ

β−α−1N−1−α+ϵ+β ||f ||L∞ .

Proof. We will just consider P = 1 for simplicity since the proof is the same for other values of
P . We start by proving the result for β = 0 and λ = 1. We will consider from now on that α is
fixed with α ∈ (0, 1), so we will omit the dependence of the contants with respect to α. First, we
have that, in polar coordinates

Λ−αw(r, θ) =

ˆ π

−π

ˆ ∞

0

w(r′, θ′)

|(r − r′)2 + 2rr′(1− cos(θ − θ′))| 2−α
2

r′dr′dθ′
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=

ˆ π

−π

ˆ ∞

−r

f(r + h) cos(Nθ̃) cos(Nθ +Ng(r + h) + p(r + h))

|h2 + 2r(r + h)(1− cos(θ̃))| 2−α
2

(r + h)dhdθ̃.

Since

||Λ−αw(r, θ)−Kα
w(r, θ)

|(Nr )2 +N2g′(r)2|α/2
||L2

≤ ||(Λ−αw(r, θ)−Kα
w(r, θ)

|(Nr )2 +N2g′(r)2|α/2
)1r∈( 1

4 ,2)
||L2

+ ||(Λ−αw(r, θ)−Kα
w(r, θ)

|(Nr )2 +N2g′(r)2|α/2
)1r/∈( 1

4 ,2)
||L2 = I1 + I2

we will study the operator when r ∈ ( 14 , 2), so that we can bound I1. First, using integration by
parts with respect to θ̃ and induction we get, for k ≥ 1

ˆ π

−π

cos(Nθ̃)

|h2 + 2r(r + h)(1− cos(θ̃))| 2−α
2

dθ̃ (5.2)

=

ˆ π

−π

cos(Nθ̃ + k π
2 )

Nk

k∑
i=1

((r + h)r)iPk,i(θ̃)

|h2 + 2r(r + h)(1− cos(θ̃))| 2+2i−α
2

dθ̃

with
Pk,i(θ̃) =

∑
(j,l)∈Sk,i

ck,i,j,l(cos(θ̃))
j(sin(θ̃))l,

Sk,i := {(j, l) ∈ (0 ∪N)2 : l ≥ i− (k − i), j + l = i}

and this, combined with the fact that, for r ∈ ( 12 , 4), (r + h) ∈ supp(f), we have

| sin(θ̃)|
|h2 + 2r(r + h)(1− cos(θ̃))| 12

≤ C| sin(θ̃)|
|1− cos(θ̃)| 12

≤ C,

implies that, for (r + h) ∈ supp(f)

k∑
i=0

((r + h)r)iPk,i(θ̃)

|h2 + 2r(r + h)(1− cos(θ̃))| 2+2i−α
2

≤ Ck

|h2 + 2r(r + h)(1− cos(θ̃))| 2+k−α
2

.

Therefore we get, for any ϵ′ > 0

|
ˆ π

−π

ˆ
[−r,∞]\[−N−1+ϵ′ ,N−1+ϵ′ ]

f(r + h) cos(Nθ̃) cos(Nθ +Ng(r + h) + p(r + h))

|h2 + 2r(r + h)(1− cos(θ̃))| 2−α
2

(r + h)dhdθ̃|

≤ Ck
||f ||L∞

Nk
N (1−ϵ′)(2+k−α)

and this can be bounded by Cϵ′N
−1−α by taking k big enough.

We can therefore focus only on the integral when (h, θ̃) ∈ [−N−1+ϵ′ , N−1+ϵ′ ]× [−π, π], and in fact
by symmetry it is enough to study (h, θ̃) ∈ [−N−1+ϵ′ , N−1+ϵ′ ]× [0, π]. For this set, we will make
a couple of approximations for our kernel that will only produce a small error, namely, we note
that, using integration by parts with respect to θ̃

|
ˆ π

0

ˆ N−1+ϵ′

−N−1+ϵ′
f(r + h) cos(Nθ̃)

(cos(Nθ +Ng(r + h) + p(r + h))

|h2 + 2r(r + h)(1− cos(θ̃))| 2−α
2
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− cos(Nθ +Ng(r + h) + p(r + h))

|h2 + r(r + h)θ̃2| 2−α
2

)
(r + h)dhdθ̃|

≤ C
||f ||L∞

N

ˆ N−1+ϵ′

−N−1+ϵ′

ˆ π

0

∣∣∣ 2r(r + h) sin(θ̃)

|h2 + 2r(r + h)(1− cos(θ̃))| 4−α
2

− 2r(r + h)θ̃

|h2 + r(r + h)θ̃2| 4−α
2

∣∣∣dθ̃dh
≤ C

||f ||L∞

N

( ˆ N−1+ϵ′

−N−1+ϵ′

ˆ π

0

1

|h2 + θ̃2| 1−α
2

dθ̃dh
)

≤ C||f ||L∞N−2+ϵ′

We also have, for large N ,

|
ˆ π

0

ˆ N−1+ϵ′

−N−1+ϵ′
f(r + h)

( (r + h) cos(Nθ̃) cos(Nθ +Ng(r + h) + p(r + h))

|h2 + r(r + h)θ̃2| 2−α
2

− rcos(Nθ̃) cos(Nθ +Ng(r + h) + p(r + h))

|h2 + r2θ̃2| 2−α
2

)
dhdθ̃|

≤ ||f ||L∞C

ˆ π

0

ˆ N−1+ϵ′

−N−1+ϵ′

(
hθ̃2

|h2 + r(r + h)θ̃2| 4−α
2

+
h

|h2 + r(r + h)θ̃2| 2−α
2

)
dhdθ̃

≤ ||f ||L∞CN−1+ϵ′
ˆ N−1+ϵ′

−N−1+ϵ′

1

h1−α
dh ≤ ||f ||L∞CN (−1+ϵ′)(1+α).

All these inequalities combined already give us

|Λ−αw(r, θ)−
ˆ π

−π

ˆ N−1+ϵ′

−N−1+ϵ′

f(r + h) cos(Nθ̃) cos(Nθ +Ng(r + h) + p(r + h))

|h2 + r2θ̃2| 2−α
2

rdhdθ̃|

≤ Cα,ϵ′ ||f ||L∞N−(1+α)(1−ϵ′),

and furthermore, we have that

|
ˆ π

−π

ˆ N−1+ϵ′

−N−1+ϵ′

f(r + h) cos(Nθ̃)(cos(Nθ +Ng(r + h) + p(r + h))− cos(Nθ +Ng(r + h) + p(r)))

|h2 + r2θ̃2| 2−α
2

rdhdθ̃|

≤ C||f ||L∞ ln (N)N−1+ϵ′
ˆ π

0

ˆ N−1+ϵ′

0

1

(h+ θ̃)2−α
dhdθ̃ ≤ C||f ||L∞ ln (N)N (1+α)(1−ϵ′),

and

|
ˆ π

−π

ˆ N−1+ϵ′

−N−1+ϵ′

(f(r + h)− f(r)) cos(Nθ̃) cos(Nθ +Ng(r + h) + p(r))

|h2 + r2θ̃2| 2−α
2

rdhdθ̃|

≤ C||f ||L∞ ln (N)N−1+ϵ′
ˆ π

0

ˆ N−1+ϵ′

0

1

(h+ θ̃)2−α
dhdθ̃ ≤ C||f ||L∞ ln (N)N (1+α)(1−ϵ′),

and

|
ˆ π

−π

ˆ N−1+ϵ′

−N−1+ϵ′
f(r)) cos(Nθ̃)

1

|h2 + r2θ̃2| 2−α
2

r

(cos(Nθ +Ng(r + h) + p(r))− cos(Nθ +Ng(r) +Nhg′(r) + p(r))dhdθ̃|

≤ C ln (N)N−1+2ϵ′
ˆ π

0

ˆ N−1+ϵ′

0

1

(h+ θ̃)2−α
dhdθ̃ ≤ C ln (N)N (1+α)(1−ϵ′)+ϵ′ .
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Therefore, we just need to study
ˆ π

−π

ˆ N−1+ϵ′

−N−1+ϵ′

f(r) cos(Nθ̃) cos(Nθ +Ng(r) +Nhg′(r) + p(r))

|h2 + r2θ̃2| 2−α
2

rdhdθ̃

=

ˆ rπ

−rπ

ˆ N−1+ϵ′

−N−1+ϵ′

f(r) cos(Nr θ̄) cos(Nθ +Ng(r) +Nhg′(r) + p(r))

|h2 + θ̄2| 2−α
2

dhdθ̄

= N−α

ˆ rπN

−rπN

ˆ Nϵ′

−Nϵ′

f(r) cos( 1r s2) cos(Nθ +Ng(r) + s1g
′(r) + p(r))

|s21 + s22|
2−α
2

ds1ds2

= N−α cos(Nθ +Ng(r) + p(r))

ˆ rπN

−rπN

ˆ Nϵ′

−Nϵ′

f(r) cos( 1r s2) cos(s1g
′(r))

|s21 + s22|
2−α
2

ds1ds2,

With this in mind, we want to show that

H∗ := limN→HN := limN→∞

ˆ rπN

−rπN

ˆ Nϵ′

−Nϵ′

cos( 1r s2) cos(s1g
′(r))

|s21 + s22|
2−α
2

ds1ds2

=
Kα((

1
r

)2
+ g′(r)2

)α
2

(5.3)

with Kα > 0 and also that, for N2 ≥ N1,

|HN1
−HN2

| ≤ Cϵ′,αN
−1+ϵ′

1 , (5.4)

so in particular |H∗ −HN | ≤ Cϵ′N
−1+ϵ′ . We start by obtaining (5.4). Note that

HN2 −HN1 =

ˆ
AN1,N2

∪BN1,N2

cos( 1r s2) cos(s1g
′(r))

|s21 + s22|
2−α
2

ds1ds2

with
AN1,N2

:= [N ϵ′

1 , N
ϵ′

2 ]× [−rπN2, rπN2] ∪ [−N ϵ′

2 ,−N ϵ′

1 ]× [−rπN2, rπN2]

BN1,N2 := [−N ϵ′

1 , N
ϵ′

1 ]× [−rπN2,−rπN1] ∪ [−N ϵ′

1 , N
ϵ′

1 ]× [rπN1, rπN2].

We now bound the integral over AN1,N2
, we will focus on the part with s1 > 0, the other half

being analogous.
Applying integration by parts k times with respect to the variable s2 we get

|
ˆ Nϵ′

2

Nϵ′
1

ˆ rπN2

−rπN2

cos( 1r s2) cos(s1g
′(r))

|s21 + s22|
2−α
2

ds2ds1|

≤
(CkN

ϵ′

2

N2−α
2

+ Ck

ˆ Nϵ′
2

Nϵ′
1

ˆ rπN2

−rπN2

1

|s21 + s22|
2−α+k

2

ds2ds1

)
≤
(CkN

ϵ′

2

N2−α
2

+ Ck

ˆ Nϵ′
2

Nϵ′
1

ˆ rπN2

−rπN2

1

|s1 + s2|2−α+k
ds2ds1

)
≤ CkN

−2+α+ϵ′

2 + CkN
−ϵ′(k−α)
1

and by taking k big enough we can bounds this quantity by Cϵ′N
−2+α+ϵ′

1 and in particular by
Cϵ′N

−1+ϵ′

1 .
For the integral over BN1,N2 , this time focusing on the part with s2 > 0 and again applying
integration by parts once with respect to s2 we have

|
ˆ Nϵ′

1

−Nϵ′
1

ˆ rπN2

rπN1

cos( 1r s2) cos(s1g
′(r))

|s21 + s22|
2−α
2

ds2ds1|
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≤ CN ϵ′

1

N2−α
1

+ C

ˆ Nϵ′
1

−Nϵ′
1

ˆ rπN2

rπN1

1

|s1 + s2|3−α
ds2ds1 ≤ CN ϵ′−2+α.

Next we need to show the last equality in (5.3).
But

ˆ rπN

−rπN

ˆ Nϵ′

−Nϵ′

cos( 1r s2) cos(s1g
′(r))

|s21 + s22|
2−α
2

ds1ds2

= 4

ˆ rπN

0

ˆ Nϵ′

0

cos( 1r s2 + s1g
′(r))

|s21 + s22|
2−α
2

ds1ds2

= 4

ˆ LN,r(A)

0

ˆ π
2

0

cos( 1rR sin(A) +Rcos(A)g′(r))

R2−α
RdAdR

where we made the change of variables s11+s22 = R2, A = arctan
(

s2
s1

)
and LN,r(A) is (given values

A,N and r) the maximum value of R that is still in our domain of integration. The expression
for LN,r(A) is complicated but we will just need to use that LN,r(A) ≥ min(N ϵ′ , rπN). Note
also that we can rewrite 1

rR sin(A) + R cos(A)g′(r) = Rλcos(A + θ0) with λ = ( 1
r2 + g′(r)2)

1
2 ,

θ0 = arctan(− 1
rg′(r) ). But

ˆ LN,r(A)

0

ˆ π
2

0

cos(λR cos(A+ θ0))

R1−α
dAdR

=

ˆ LN,r(Ã−θ0−π
2 )

0

ˆ π
2

δ

cos(λR sin(Ã))

R1−α
dÃdR

+

ˆ LN,r(Ã−θ0−π
2 )

0

ˆ δ

0

cos(λR sin(Ã))

R1−α
dAdR

so then, using that, for any S2 ≥ S1 ≥ 0, Γ ̸= 0, since α ∈ (0, 1), we have

|
ˆ S1

0

cos(ΓR)

R1−α
dR| ≤ Γ−αCmax, |

ˆ S2

S1

cos(R)

R1−α
dR| ≤ Cmax

S1−α
1

,

we get

|
ˆ δ

0

ˆ LN,r(Ã−θ0−π
2 )

0

cos(λR sin(Ã))

R1−α
dRdÃ| ≤

ˆ δ

0

Cmax(λ sin(Ã))
−αdÃ ≤ CCmaxδ

(λδ)α

and also

limN→∞

ˆ π
2

δ

ˆ LN,r(Ã−θ0−π
2 )

0

cos(λR sin(Ã))

R1−α
dRdÃ =

ˆ π
2

δ

P.V.

ˆ ∞

0

cos(λR sin(Ã))

R1−α
dRdÃ.

Thus

H
∗

4
= limN→∞

ˆ π
2

0

ˆ LN,r(A)

0

cos(λRcos(A+ θ0))

R1−α
dRdA

= limδ→0(limN→∞

ˆ π
2

δ

ˆ LN,r(Ã−θ0−π
2 )

0

cos(λR sin(Ã))

R1−α
dRdÃ)

+ limδ→0(limN→∞

ˆ δ

0

ˆ LN,r(Ã−θ0−π
2 )

0

cos(λR sin(Ã))

R1−α
dRdÃ)

= limδ→0

ˆ π
2

δ

P.V.

ˆ ∞

0

cos(λR sin(Ã))

R1−α
dRdÃ
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= limδ→0

ˆ π
2

δ

(λ sin(Ã))−α

ˆ ∞

0

cos(R)

R1−α
dRdÃ

=
1

( 1
r2 + g′(r)2)

α
2

ˆ π
2

0

sin(Ã)−αdÃ

ˆ ∞

0

cos(R)

R1−α
dR,

so, if we prove that
´∞
0

cos(R)
R1−α dR is positive we are done.

For this, we note that, for n ∈ N
ˆ 2π(n+1)

2πn

cos(R)

R1−α
dR =

ˆ 2π(n+1)

2πn

sin(R)(1− α)

R2−α
dR > 0,

where we used integration by parts for the equality and the fact that the denominator is increasing
and sin(x + π) = − sin(x) for the inequality. In fact, the integral is also positive for n = 0 by
taking the integral in [δ, 2π], applying integration by parts there and then taking δ small.
But then since, for d ≤ 2π

ˆ 2πn+d

2πn

cos(R)

R1−α
dR ≤ C

(2πn)1−α

the limit trivially exists and is positive.
Combining all these bounds we have, for any ϵ′ > 0,

I1 ≤ Cϵ′ ||f ||L∞N (−1−α)(1−ϵ′),

so we just need to bound I2. In order to bound the L2 norm for r /∈ ( 14 , 2), we can use integration
by parts twice and h ≳ r, r + h ≈ 1 to get

|
ˆ π

−π

f(r + h) cos(Nθ̃) cos(Nθ +Ng(r + h) + p(r))

|h2 + 2r(r + h)(1− cos(θ̃))| 2−α
2

(r + h)dθ̃|

≤ C||f ||L∞

N2

ˆ π

−π

r

|h2 + 2r(r + h)(1− cos(θ̃))| 2−α
2 +1

(
1 +

r

|h2 + 2r(r + h)(1− cos(θ̃))|
)
dθ̃

≤ C||f ||L∞

N2|h|3−α

(
1 +

1

|h|
)

which gives us

||(Λ−αw(r, θ))1r∈(0, 14 )
||L2 ≤ C||(Λ−αw(r, θ))1r∈(0, 14 )

||L∞ ≤ C||f ||L∞

N2

and, for r ≥ 2

|Λ−αw(r, θ)| ≤ C||f ||L∞

N2r3−α

so that
||(Λ−αw(r, θ))1r∈(2,∞)||L2 ≤ C||f ||L∞

N2

which finally gives us

||Λ−αw(r, θ)−Kα
w(r, θ)

|(Nr )2 +N2g′(r)2|α/2
||L2 ≤ I1 + I2 ≤ Cϵ′N

(−1−α)(1−2ϵ′).

Now, taking for example ϵ′ = ϵ
4 finishes the proof for L2. Note also that we only needed the C2

bounds of f and g to obtain this result. Next to obtain the bound for H3 it is enough to check
that we have a small L2 norm for some arbitrary second derivative, that is to say, we want to
show that

||∂
3Λ−αw(r, θ)

∂xi∂xj∂xk
−
∂3Kα

w(r,θ)

|(N
r )2+N2g′(r)2|α/2

∂xi∂xj∂xk
||L2 ≤ Cϵ,βN

−1−α+ϵ+3||f ||L∞ .
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We will consider i = j = k = 1 for simplicity of notation. To bound this norm, we divide it in two
different contributions

||∂
3Λ−αw(r, θ)

∂x31
−
∂3Kα

w(r,θ)

|(N
r )2+N2g′(r)2|α/2

∂x31
||L2

≤ ||Λ−α ∂
3w(r, θ)

∂x31
− Kα

|(Nr )2 +N2g′(r)2|α/2
∂3w(r, θ)

∂x31
||L2

+ ||
∂2 Kα

|(N
r )2+N2g′(r)2|α/2

∂x21

∂w(r, θ)

∂x1
||L2 + ||

∂ Kα

|(N
r )2+N2g′(r)2|α/2

∂x1

∂2w(r, θ)

∂x21
||L2

+ ||
∂3 Kα

|(N
r )2+N2g′(r)2|α/2

∂3x1
w(r, θ)||L2

≤ ||Λ−α ∂
3w(r, θ)

∂x31
− Kα

|(Nr )2 +N2g′(r)2|α/2
∂3w(r, θ)

∂x31
||L2

+

3∑
i=1

N−α|| Kα

|( 1r )2 + g′(r)2|α/2
||Ci(r∈( 1

2 ,
3
2 ))

||w||H3−i .

The first term of the contribution can be bounded by writing the derivatives in polar coordinates,
dividing it in its different frequencies in θ (which now includes frequencies N±1, N±2 and N±3,
which does not change the bounds for N big ) and using the exact same bounds we obtained in
L2. The other term can be bound easily by direct computation by again writing the derivatives in
polar coordinates, obtaining the desired bound for β = 3. The interpolation inequality for Sobolev
spaces then gives the result for β ∈ [0, 3].
Finally, the result for λ > 1 follows directly from a scaling argument plus applying the lemma for
w( rλ , θ) since

||Λ−αw(r, θ)−Kα
w(r, θ)

|(Nr )2 +N2g′(r)2|α/2
||Hβ

≤ λ−1−α+β ||Λ−αw(
r

λ
, θ)−Kα

w( rλ , θ)

|(Nr )2 +N2g′( rλ )
2|α/2

||Hβ

≤ CP,ϵ,αMλ−1−α+βN−1−α+ϵ+β ||f ||L∞

Corollary 5.2.2. For any fixed parameters α ∈ (0, 1], P, ϵ > 0 there exists N0 such that if
N > N0, then for any λ ≥ 1 and functions f(r), g(r) and p(r) fulfilling suppf ⊂ ( 1

2λ ,
3
2λ ) and

||g( r
λ
)||C6 ≤ ln (N)

P
, ||f( r

λ
)||C5 ≤ ln (N)

P ||f ||L∞ , ||p( r
λ
)||C5 ≤ ln (N)

P

then for
w(r, θ) := f(r) cos(N(θ + g(r)) + p(r))

we have that for β ∈ [0, 3−α] there exist constants Kα > 0 and CP,ϵ,α,β (depending on α and P, ϵ
and α respectively) such that

||Λαw(r, θ)−K−1
α w(r, θ)|(N

r
)2 +N2g′(r)2|α/2||Hβ ≤ CP,ϵ,αλ

−1+α+βN−1+α+ϵ+β ||f ||L∞ .

Proof. This follows from the previous lemma. If we define, for w as in our statement, the operators

Λ̄α(w(r, θ)) := K−1
α w(r, θ)|(N

r
)2 +N2g′(r)2|α/2 (5.5)

Λ̄−α(w(r, θ)) := Kα
w(r, θ)

|(Nr )2 +N2g′(r)2|α/2
(5.6)
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we have that Λ̄−α(Λ̄αw) = w, Λ−α(Λαw) = w, so

(Λα − Λ̄α)(w) = −Λα(Λ−α − Λ̄−α)Λ̄αw

and since, for our choice of w, Λ̄αw fulfils the hypothesis of Lemma 5.2.1, we can apply it and get,
for β ∈ [0, 3]

||(Λ−α − Λ̄−α)Λ̄αw||Hβ ≤ Cϵ,α,β,Pλ
−1+βN−1+ϵ+β ||f ||L∞

and therefore

||(Λα − Λ̄α)w||Hβ−α = ||Λα(Λ−α − Λ̄−α)Λ̄αw||Hβ−α ≤ Cϵ,α,β,Pλ
−1+βN−1+ϵ+β ||f ||L∞ ,

which finishes the proof.

5.2.3 Other relevant bounds
Even though the most crucial technical bounds in this chapter are the ones we obtained for the
fractional dissipation, we need some other technical lemmas in order to obtain a suitable pseudo-
solution and control the errors between the pseudo-solution and the real solution to (5.1). Corollary
5.2.3 and Lemma 5.2.4 give useful local approximations for v. Lemma 5.2.5 and Corollary 5.2.6 give
commutator estimates for the velocity of a highly oscillatory function, which will be useful when
propagating the L2 error between our pseudo-solution and the actual solution to (5.1). Lemma
5.2.7 proves some general decay bounds for radial functions, and finally Lemma 5.2.8 shows that
we can find a radial function with several useful properties, that we will use to construct the initial
conditions for our pseudo-solution.

Corollary 5.2.3. For any fixed parameters P, ϵ > 0 there exists N0 such that if N > N0, then
for any λ ≥ 1 and functions f(r), g(r) and p(r) fulfilling suppf(r) ⊂ ( 1

2λ ,
3
2λ ) and

||g( r
λ
)||C5 ≤ ln (N)

P ||f( r
λ
)||C5 ≤ ln (N)

P ||f ||L∞ , ||p( r
λ
)||C5 ≤ ln (N)

P

if we define
w(r, θ) := f(r) cos(N(θ + g(r)) + p(r))

we have that for β ∈ [0, 2] there exist constants C0 > 0 and Cϵ,β,P (depending on β, P and ϵ) such
that

||v1(w(r, θ)) +
∂

∂x2
Λ̄−1(w)(r, θ)||Hβ ≤ Cϵ,β,PN

−1+ϵ+β ||f ||L∞ ,

||v2(w(r, θ))−
∂

∂x1
Λ̄−1(w)(r, θ)||Hβ ≤ Cϵ,β,PN

−1+ϵ+β ||f ||L∞ ,

with Λ̄−1 defined as in (5.6).

Proof. This is a direct consequence of Lemma 5.2.1, since

v1(w(r, θ)) = − ∂

∂x2
Λ−1(w(r, θ)), v2(w(r, θ)) =

∂

∂x1
Λ−1(w(r, θ))

and applying Lemma 5.2.1, we have

|| ∂
∂xi

Λ−1(w(r, θ))− ∂

∂xi
Λ̄−1(w(r, θ))||Hβ ≤ ||Λ−1(w(r, θ))− Λ̄−1(w(r, θ))||Hβ+1

≤ Cϵ,Pλ
−1+βN−1+ϵ+β ||f ||L∞ .
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Lemma 5.2.4. For any fixed parameters P, ϵ > 0 there exists N0 such that if N > N0, then for
any λ ≥ 1 and functions f(r),g(r) and p(r) fulfilling suppf(r) ⊂ ( 1

2λ ,
3
2λ ) and

||g( r
λ
)||C5 ≤ ln (N)

P ||f( r
λ
)||C5 ≤ ln (N)

P ||f( r
λ
)||L∞ , ||p( r

λ
)||C5 ≤ ln (N)

P

if we define
w(r, θ) := f(r) cos(N(θ + g(r)) + p(r))

we have that for β ∈ [0, 2] there exist constants C0 > 0 and CP,ϵ (depending on α and P and ϵ
respectively) such that for N big enough,

||vr(w(r, θ)) + C0
1

(1 + r2g′(r)2)
1
2

f(r) sin(N(θ + g(r)) + p(r))||Hβ ≤ Cϵ,β,Pλ
−1+βN−1+ϵ+β ||f ||L∞

Proof. This proof is very similar to that of Lemma 5.2.1, but now we study the operator

vr(w)(r, θ) = v · r̂

=

ˆ
[−r,∞]×[−π,π]

(r + h)2 sin(θ′)(w(r + h, θ′ + θ)− w(r, θ))

|h2 + 2r(r + h)(1− cos(θ′))|3/2
dθ′dh

so we will not delve too deeply into the details and mostly mention the key differences. Again,
as before, we consider P = 1 for simplicity, and we start dealing with the case β = 0, λ = 1.
First, using integration by parts k times with respect to θ′ as in Lemma 5.2.1, we note that, for
r ∈ ( 14 , 2) we have that,

ˆ
(−r,∞)\[−N−1+ϵ′ ,N−1+ϵ′ ]

ˆ π

−π

(r + h)2 sin(θ′)(w(r + h, θ′ + θ)− w(r, θ))

|h2 + 2r(r + h)(1− cos(θ′))|3/2
dθ′dh| ≤ Cϵ′N

−1||f ||L∞ ,

and furthermore, integrating by parts 2 times with respect to θ′ we obtain

|
ˆ N−1+ϵ′

−N−1+ϵ′

ˆ
[N− 1

2 ,π]∪[−π,−N− 1
2 ]

(r + h)2 sin(θ′)(w(r + h, θ′ + θ)− w(r, θ))

|h2 + 2r(r + h)(1− cos(θ′))|3/2
dθ′dh|

= |
ˆ
[N− 1

2 ,π]∪[−π,−N− 1
2 ]

ˆ N−1+ϵ′

−N−1+ϵ′

f(r + h) sin(Nθ′) sin(θ′) sin(Nθ +Ng(r + h) + p(r + h))

|h2 + 2r(r + h)(1− cos(θ′))| 32
(r + h)2dhdθ′|

≤ C
( 1

N

ˆ N−1+ϵ′

−N−1+ϵ′

||f ||L∞

|(1− cos(N− 1
2 ))|

dh+

ˆ π

N− 1
2

ˆ N−1+ϵ′

−N−1+ϵ′

1

N2

||f ||L∞

|(1− cos(θ′))|2
dhdθ′

)
≤ C||f ||L∞N−1+ϵ′ .

So we can focus on the integral over A := [−N−1+ϵ, N−1+ϵ]× [−N− 1
2 , N− 1

2 ]. Then, we check that

|
ˆ
A

( (r + h)2 sin(θ′)(w(r + h, θ′ + θ)− w(r, θ))

|h2 + 2r(r + h)(1− cos(θ′))|3/2
− r2θ′(w(r + h, θ′ + θ)− w(r, θ))

|h2 + r2(θ′)2)|3/2
)
dθ′dh|

≤ C||f ||L∞N−1+ϵ′

so that we can work with the simplified version of the kernel, and we also have

|
ˆ
A

r2θ′(w(r + h, θ′ + θ)− f(r) sin(Nθ′) sin(Nθ +Ng(r) +Nhg′(r) + p(r)))

|h2 + r2(θ′)2)|3/2
dθ′dh|

≤ C||f ||L∞N−1+3ϵ′ .

Altogether, we obtain, for r ∈ ( 14 , 2),
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|vr(w) + f(r) sin(Nθ +Ng(r) + p(r))

ˆ
A

r2θ′ sin(Nθ′ +Nhg′(r)))

|h2 + r2(θ′)2)|3/2
dθ′dh| ≤ Cϵ′N

−1+3ϵ′ ||f ||L∞ .

Next, defining HN as

HN :=

ˆ
A

r2θ′ sin(Nθ′ +Nhg′(r)))

|h2 + r2(θ′)2)|3/2
dθ′dh =

ˆ Nϵ′

r

−Nϵ′
r

ˆ N
1
2

−N
1
2

s1 sin(s1) cos(rs2g
′(r))

|s21 + s22|3/2
ds1ds2.

We want to show that

H∗ := limN→∞HN =
C0

|1 + r2g′(r)2|1/2
(5.7)

and that

|H∗ − limN→∞HN | ≤ Cϵ′N
−1+ϵ′ ||f ||L∞ . (5.8)

(5.8) is obtained exactly as in Lemma 5.2.1, by getting bounds for |HN2
−HN1

| using integration
by parts in the domain that remains after canceling out the integrals from HN1

and HN2
. As for

(5.7), using that, for any K ∈ R

|
ˆ K

0

sin(x)

x
dx| ≤ C,

and that, for λ ̸= 0

ˆ ∞

0

sin(λx)

x
dx = sign(λ)

ˆ ∞

0

sin(x)

x
dx = sign(λ)

C0

4

we get that, using the change of variables s1 = R sin(A), s2 = R cos(A), basic trigonometric
identities, checking carefully the convergence of the integrals, and using

sin(tan−1(x)) =
x

(1 + x2)
1
2

we get

H∗ = limN→∞

ˆ Nϵ

r

−Nϵ′
r

ˆ N
1
2

−N
1
2

s1 sin(s1) cos(rs2g
′(r))

|s21 + s22|3/2
ds1ds2

=

ˆ π

−π

sin(A)

ˆ ∞

0

sin(R(sin(A) + cos(A)rg′(r)))

R
dRdA

=
C0

4

ˆ π

−π

sin(A)sign(sin(A) + cos(A)rg′(r))dA

=
C0

4

ˆ π

−π

sin(A)sign(cos(A+ tan−1(
−1

rg′(r)
)))dA

= −C0

4
sin(tan−1(

−1

rg′(r)
))

ˆ π

−π

cos(A+ tan−1(
−1

rg′(r)
)))sign(cos(A+ tan−1(

−1

rg′(r)
)))dA

= C0
1

(1 + r2g′(r)2)
1
2

as we wanted to prove. The rest of the proof does not have any meaningful differences with
Lemma 5.2.1, a bound for the decay of vr(w) is obtained for r /∈ ( 14 , 2) to obtain the L2 bound and
then taking three derivatives, applying Leibniz rule and bounding each term gives us the bound
for H3. Then, the interpolation inequality gives then the result for β ∈ (0, 3).
For the case λ > 1,

137



||vr(w(r, θ)) + C0
1

(1 + r2g′(r)2)
1
2

f(r) sin(N(θ + g(r)) + p(r))||Hβ

≤ λ−1+β ||vr(w(
r

λ
, θ)) + C0

1

(1 + r2g′( rλ )
2)

1
2

f(
r

λ
) sin(N(θ + g(

r

λ
)) + p(

r

λ
))||Hβ

≤ Cϵ,β,PMλ−1+βN−1+ϵ+β ||f ||L∞ .

Lemma 5.2.5. Given ϵ > 0, N ∈ N > 3, A > 0 then for any functions g(r), f(r), p(r) ∈ C1,
f(r) ∈ L2 and if we define

w(r, θ) := f(r) cos(Nθ + p(r))

then we have that for i = 1, 2

||1r∈[N−A,2][vi(g(r) sin(θ)w(r, θ))− g(r) sin(θ)vi(w(r, θ))]||L2 ≤ Cϵ,AN
−1+ϵ||g||C1 ||w||L2 ,

||1r∈[N−A,2][vi(g(r) cos(θ)w(r, θ))− g(r) cos(θ)vi(w(r, θ))]||L2 ≤ Cϵ,AN
−1+ϵ||g||C1 ||w||L2 .

Proof. We will only consider the first inequality and with i = 1, since the other cases are analogous.
We note now that

v1(W (r, θ)) = P.V.

ˆ ∞

−r

ˆ π

−π

(r + h) sin(θ + θ′)− r sin(θ)

|h2 + 2r(r + h)(1− cos(θ′))| 32
(r + h)W (r + h, θ + θ′)dhdθ′.

Now, since the principal value integral is defined using cartesian coordinates, we would like to
show that for C1 functions, there is a more suitable expression using polar coordinates, namely
we would like to show that

limϵ→0

(ˆ
R\Bϵ(x)

y2 − x2
|x− y|3

w(y)dy −
ˆ
||x|−|y||≥ϵ

y2 − x2
|x− y|3

w(y)dy
)

= limϵ→0

ˆ
{|x|+ϵ≥|y|≥|x|−ϵ}\Bϵ(x)

y2 − x2
|x− y|3

w(y)dy = 0

but, writing the integrals in polar coordinates and cancelling all the terms with the wrong parity
with respect to h or θ′

|
ˆ
{|y|+ϵ≥|x|≥|y|−ϵ}\Bϵ(x)

y2 − x2
|x− y|3

w(x)dy|

≤ C||w||L∞

ˆ
{|h|≥ϵ}\Bϵ(x)

h2 + θ2

|h2 + 2r(r + h)(1− cos(θ′))| 32
dhdθ′ ≤ C||w||L∞ϵ ln(ϵ)

and

|
ˆ
|y|+ϵ≥|x|≥|y|−ϵ\Bϵ(x)

y2 − x2
|x− y|3

(w(y)− w(x))dy|

≤ ||w||C1 |
ˆ
|y|+ϵ≥|x|≥|y|−ϵ\Bϵ(x)

1

|x− y|
dy| ≤ C||w||C1ϵ ln(ϵ),

so in particular we can write

v1(W (r, θ)) = P.V.

ˆ ∞

−r

ˆ π

−π

(r + h) sin(θ + θ′)− r sin(θ)

|h2 + 2r(r + h)(1− cos(θ′))| 32
(r + h)W (r + h, θ + θ′)dhdθ′

= limϵ→0

ˆ
[−r,∞]\[−ϵ,ϵ]

ˆ π

−π

(r + h) sin(θ + θ′)− r sin(θ)

|h2 + 2r(r + h)(1− cos(θ′))| 32
(r + h)W (r + h, θ + θ′)dhdθ′.
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Now, using integration by parts k times with respect to θ′, we have that, for |hr | ≥
1
2

|
ˆ π

−π

(r + h) sin(θ + θ′)− r sin(θ)

|h2 + 2r(r + h)(1− cos(θ′))|3/2
(r + h) cos(Nθ′ + C)dθ′|

= |1
r

ˆ π

−π

(1 + h
r ) sin(θ + θ′)− sin(θ)

|(hr )2 + 2(1 + h
r )(1− cos(θ′))|3/2

(1 +
h

r
) cos(Nθ′ + C)dθ′|

≤ 1

r

ˆ π

−π

Ck

Nk

1

|(hr )2 + 2(1 + h
r )(1− cos(θ′))| 12

dθ′

≤ rCk

h2Nk
.

Analogously if 1
2 ≥ |hr | ≥ N−1+ϵ, we can also perform integration by parts k times

|1
r

ˆ π

−π

(1 + h
r ) sin(θ + θ′)− sin(θ)

|(hr )2 + 2(1 + h
r )(1− cos(θ′))|3/2

cos(Nθ′ + C)dθ′|

≤ Ck

rNk

ˆ π

−π

k∑
i=0

1

|(hr )2 + 2(1 + h
r )(1− cos(θ′))| 2+i

2

dθ′

≤ CkrN
(1−ϵ)k

h2Nk
≤ CkrN

−kϵ

h2

for any k ∈ N for some Ck.
Using this, for any H(r) ∈ L2 and p(r) ∈ C1 we get, for r ∈ [N−A, 2], and defining v1,1

v1,1(H(r) cos(Nθ + p(r))) :=
´ rN−1+ϵ′

−rN−1+ϵ′
´ π
−π

(r+h) sin(θ+θ′)−r sin(θ)

|h2+2r(r+h)(1−cos(θ′))|3/2 (r + h) cos(Nθ + p(r))H(r + h)dθ′dh

≤
ˆ
|h|≥rN−1+ϵ′

(
Ckr

h2Nk
+

Ckr

h2Nkϵ
)|H(r + h)|dh ≤ Cϵ′,A

N
||H||L2

which in particular implies ||1r∈[N−A,2]g(r) sin(θ)v1,1(w(r, θ))||L2 ≤ Cϵ′,A
N ||g||L∞ ||w||L2 and by

decomposing sin(θ)w(r, θ) in its different Fourier modes and applying the previous inequality,
||1r∈[N−A,2]v1,1(g(r) sin(θ)w(r, θ))||L2 ≤ Cϵ′,A

N ||g||L∞ ||w||L2 .
If we now further divide the operator v1(W ) as v1(W ) = v1,1(W ) + v1,2(W ) + v1,3(W ), with

v1,2(W ) :=

ˆ N−1+ϵ′

−N−1+ϵ′

ˆ rN−1+ϵ′

−rN−1+ϵ′

(r + h) sin(θ + θ′)− r sin(θ)

|h2 + 2r(r + h)(1− cos(θ′))| 32
(r + h)w(r + h, θ + θ′)dhdθ′

v1,3(W ) :=

ˆ 2π−N−1+ϵ′

N−1+ϵ′

ˆ rN−1+ϵ′

rN−1+ϵ′

(r + h) sin(θ + θ′)− r sin(θ)

|h2 + 2r(r + h)(1− cos(θ′))| 32
(r + h)w(r + h, θ + θ′)dhdθ′

using the previous bound it is enough to show that, for i = 2, 3

||1r∈[N−A,2][v1,i(g(r) sin(θ)w(r, θ))− g(r) sin(θ)v1,i(w(r, θ))]||L2 ≤ CϵN
−1+ϵ||g||C1 ||f ||L2 .

But, for i = 2

||1r∈[N−A,2]g(r) sin(θ)v1,2(w(r, θ))− v1,2(g(r) sin(θ)w(r, θ))||2L2

≤ ||1r∈[0,2]

ˆ N−1‘+ϵ

−N−1+ϵ

ˆ N−1+ϵ

−N−1+ϵ

(r + h) sin(θ + θ′)− r sin(θ)

|h2 + 2r(r + h)(1− cos(θ′))| 32
(r + h)
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[g(r + h) sin(θ + θ′)− g(r) sin(θ)]w(r + h, θ + θ′)dhdθ′||2L2

≤ C||g||2C1

ˆ 2

0

ˆ 2π

0

(ˆ
|h|≤rN−1+ϵ′

ˆ
|θ′|≤N−1+ϵ′

(r + h)2(|θ′|+ |h|)2|f(r + h)|
|h2 + 2r(r + h)(1− cos(θ′))|3/2

dθ′dh
)2
rdrdθ

≤ C||g||2C1

ˆ 2

0

(ˆ
|h|≤rN−1+ϵ′

ˆ
|θ′|≤N−1+ϵ′

|f(r + h)|
|h2 + r2(θ′)2|1/2

dθ′dh
)2
rdr

= C||g||2C1

ˆ 2

0

(ˆ
|h̃|≤N−1+ϵ′

ˆ
|θ′|≤N−1+ϵ′

|f(r + rh̃)|
|h̃2 + (θ′)2|1/2

dθ′dh̃
)2
rdr

≤ C||g||2C1

ˆ
|h̃1|≤N−1+ϵ′

ˆ
|θ′

1|≤N−1+ϵ′

1

|h̃21 + θ21|1/2

ˆ
|h̃2|≤N−1+ϵ′

ˆ
|θ′

2|≤N−1+ϵ′

1

|h̃22 + θ22|1/2ˆ 2

0

|f(r + rh̃1)||f(r + rh̃2)|rdrdθ′2dh̃2dθ′1dh̃1

≤ CN−2+2ϵ′ ||g||2C1 ||f ||2L2

and similarly

||1r∈[N−A,2]f(r)v1,3(g(r) cos(Nθ))− v1,3(f(r)g(r) cos(Nθ))||2L2

≤ C||g||2C1

ˆ 2

0

(ˆ
|h̃|≤N−1+ϵ′

ˆ
π≥|θ′|≥N−1+ϵ′

|f(r + rh̃)|
|h̃2 + (θ′)2|1/2

dθ′dh̃
)2
rdr

≤ C||g||2C1

ˆ 2

0

(ˆ
|h̃|≤N−1+ϵ′

|f(r + rh̃)| ln(|h|+N−1+ϵ)dh̃
)2
rdr

≤ C||g||2C1

ˆ
|h̃1|≤N−1+ϵ′

ln(|h1|+N−1+ϵ)

ˆ
|h̃2|≤N−1+ϵ′

ln(|h2|+N−1+ϵ)

ˆ 2

0

|f(r + rh̃1)||f(r + rh̃2)|rdrdh̃2dh̃1

≤ C ln(N)2N−2+2ϵ′ ||g||2C1 ||f ||2L2 .

We obtain now our result from combining all our inequalities since

||1r∈[N−A,2]v1(f(r)g(r) cos(Nθ))− f(r)v1(g(r) cos(Nθ))||L2

≤
3∑

i=1

||1r∈[N−A,2]v1,i(f(r)g(r) cos(Nθ))− f(r)v1,i(g(r) cos(Nθ))||L2

≤ Cϵ′ ||f ||L2 ||g||C1(N−1 +N−1+ϵ′ + ln (N)N−1+ϵ′).

Corollary 5.2.6. Given ϵ > 0, N ∈ N > 3, λ > 1, A > 0 then for any functions g(r), f(r), h(r) ∈
C1, f(r) ∈ L2 and we have that for i = 1, 2, if we define

w(r, θ) := f(r) cos(Nθ + h(r))

||1r∈[N−Aλ,2λ][vi(g(r) sin(θ)w(r, θ))− g(r) sin(θ)vi(w(r, θ))]||L2 ≤ Cϵ,AλN
−1+ϵ||g||C1 ||w||L2 ,

||1r∈[N−Aλ,2λ][vi(g(r) cos(θ)w(r, θ))− g(r) cos(θ)vi(w(r, θ))]||L2 ≤ Cϵ,AλN
−1+ϵ||g||C1 ||w||L2 .

Proof. To prove it is enough to note that, for f(r), g(r) as in our hypothesis, f(λr), g(λr) would
fulfil the hypothesis of Lemma 5.2.5, so again focusing on i = 1 and g(r) sin(θ), using the scaling
properties of v and of the L2 and C1 norms we have

||1r∈[N−Aλ,2λ][v1(g(r) sin(θ)w(r, θ))− g(r) sin(θ)v1(w(r, θ))]||L2
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= λ||1r∈[N−A,2][v1(g(λr) sin(θ)w(λr, θ))− g(λr) sin(θ)v1(w(λr, θ))]||L2

≤ CϵλN
−1+ϵ||g(λr)||C1 ||w(λr, θ)||L2 ≤ CϵλN

−1+ϵλ||g(r)||C1λ−1||w(r, θ)||L2

= CϵλN
−1+ϵ||g(r)||C1 ||w(r, θ)||L2 .

Lemma 5.2.7. Given a radial function f(r) ∈ H6 we have that

|∂f
∂r

(r = r0)| ≤ C||f(r)||H5r
− 2

5
0 .

Furthermore, if f(r) ∈ H6+2n, with n a natural number, we have that

|∂f
∂r

(r = r0)| ≤ Cn||f(r)||H5+2nr−an
0 . (5.9)

where an = an−1
2
5 + 2

5 , a0 = 2
5 .

Proof. Fixed r0, we define

r0,+ := inf{r : r ≥ r0, |f ′(r)| ≤
|f ′(r0)|

2
}

r0,− := sup{r : r ≤ r0, |f ′(r)| ≤
|f ′(r0)|

2
}

so in particular

||f(r)||2H1 ≥ r0
8
(r0 − r0,−)f

′(r0)
2, (5.10)

||f(r)||2H1 ≥ r0
8
(r0,+ − r0)f

′(r0)
2.

We assume that f ′(r0), f ′′(r0) ≥ 0, the other cases being analogous. Using that |∂
3f(r)
∂r3 | ≤

||f(r)||H6 , we have that, for h > 0,

f ′(r0 + h) ≥ f ′(r0) + hf ′′(r0)− ||∂
3f(r)

∂r3
||L∞

h2

2
≥ f ′(r0)− ||f(r)||H5

h2

2
,

and thus

r0,+ − r0 ≥
( f ′(r0)

||f(r)||H5

) 1
2

,

so

||f(r)||2H1 ≥ r0
8

( f(r0)

||f(r)||H5

) 1
2

f ′(r0)
2,

and in particular

8

r0
||f(r)||

5
2

H5 ≥ f ′(r0)
5
2 .

To obtain the bound for other spaces H5+2n, we first note that we can assume that r0−r0,−, r0,+−
r0 ≤ r0

2 , since for the points where r0 − r0,− ≥ r0
2 using (5.10) we have

|f ′(r0)| ≤
C

r0
||f ||H1 .

With this in mind, we can finish the proof by induction using that if (5.9) is fulfilled for some
n, since |∂

3f(r)
∂r3 | ≤ Cnr

−an ||f(r)||H7+2n , then (again dealing with the case f ′(r0), f ′′(r0) ≥ 0, the
other cases being analogous),
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f ′(r0 + h) ≥ f ′(r0) + hf ′′(r0)− ||∂
3f(r)

∂r3
||
L∞(r∈(r0,

3r0
2 ))

h2

2
≥ f ′(r0)− Cn

(
r0
)−an ||f(r)||H7+2n

h2

2
,

and thus

r0 − r0,+ ≥
( f ′(r0)

Cn||f(r)||H5+2(n+1)r−an
0

) 1
2

,

so

||f(r)||2H1 ≥ r0
8

( f ′(r0)

Cn||f(r)||H5+2(n+1)r−an
0

) 1
2

f ′(r0)
2,

which implies that

Cn+1||f(r)||H5+2(n+1)r
− 2

5
0 r

2
5 (−an)
0 ≥ f ′(r0).

Before we can define our pseudo-solution, we need one last technical lemma.

Lemma 5.2.8. Given any ai for i = 1, 2, there exists a C∞ function g(r) such that ĝ(r̂) has
support in r̂ ∈ (c,∞) for some c > 0 and

∂

∂r

vα(g(r))

r
(r = 1) = a1

∂2

∂r2
vα(g(r))

r
(r = 1) = a2,

∂3

∂r3
vα(g(r))

r
(r = 1) = a3,

where ĝ is the Fourier transform of g and r̂ is the radial variable in the frequency domain.

Proof. We start by choosing h1(r) smooth function with support in r ∈ ( 14 ,
1
2 ) fulfilling

ˆ 1
2

0

sh1(s)ds = 1,

and then we define

h2(r) :=
1

r

∂2

∂r2
rh1(r),

h3(r) :=
1

r

∂4

∂r4
rh1(r).

Now, since for a generic radial function h(r) we have

vα(h(·))(r, α) = P.V.

ˆ
R+×[−π,π]

r′
r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2
(h(r′)− h(r))dα′dr′,

then for r ∈ ( 12 ,
3
2 ) we have

limλ→∞vα(λ
2h1(λ·)) = limλ→∞2π

ˆ
R+

r

|r2|3/2
λ2r′h1(λr

′)dr′ =
2π

r2
, (5.11)

and furthermore there is strong convergence in Ck for r ∈ ( 12 ,
3
2 ) for any fixed k. On the other

hand, using integration by parts twice with respect to r′, we have that, for r ∈ ( 12 ,
3
2 ), λ > 3,

vα(λ
4h2(λ·))(r, α) = P.V.

ˆ
R+×[−π,π]

r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2
λ4r′h2(λr

′)dα′dr′
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= P.V.

ˆ
R+×[−π,π]

(
∂2

∂(r′)2
r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2

)
λ2r′h1(λr

′)dα′dr′

and similarly, using integration by parts four times with respect to r′,

vα(λ
6h3(λ·))(r, α) = P.V.

ˆ
R+×[−π,π]

r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2
λ6r′h3(λr

′)dα′dr′

= P.V.

ˆ
R+×[−π,π]

(
∂4

∂(r′)4
r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2

)
λ2r′h1(λr

′)dα′dr′.

Direct computation then gives us that

limr′→0

ˆ 2π

0

∂2

∂(r′)2
r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2
dα′ =

3π

r4
,

limr′→0

ˆ 2π

0

∂4

∂(r′)4
r − r′cos(α′)

|r2 + (r′)2 − 2rr′cos(α′))|3/2
dα′ =

135π

4r6
,

and there is strong convergence in Ck for r ∈ ( 12 ,
3
2 ) for any fixed k, so

limλ→∞vα(λ
4h2(λ·))(r, α)′ =

ˆ
R+

3π

r4
λ2r′h1(r

′)dr′ =
3π

r4
, (5.12)

limλ→∞vα(λ
6h3(λ·))(r, α) =

ˆ
R+

135π

4r6
λ2r′h1(λr

′)dr′ =
135π

4r6
, (5.13)

with, again, strong convergence in Ck for r ∈ ( 12 ,
3
2 ) for any fixed k. Furthermore, if we now

consider some C∞ radial function p(r) such that p(r) = 1 if r ≥ 2, p(r) = 0 if r ≤ 1, 1 ≥ p(r) ≥ 0,
and define Hc as

̂Hc(f(r)) = p(
r̂

c
)f̂(r̂),

we have that for any C∞ function Hc(f(r)) tends strongly in Ck to f(r) as c tends to 0, and
furthermore Hc(f(r)) is radial and with Fourier transform supported in r̂ ∈ (c,∞). Using this
plus (5.11),(5.12) and (5.13), we have that we can find smooth functions g1(r), g2(r), g3(r) with ĝi
supported in r̂ ∈ (c,∞) such that, for r ∈ ( 12 ,

3
2 )

∂

∂r

vα(g1)

r
(r = 1) =

1

r4
+ ϵ,

∂2

∂r2
vα(g1)

r
(r = 1) = − 4

r5
+ ϵ,

∂3

∂r3
vα(g1)

r
(r = 1) =

20

r6
+ ϵ,

∂

∂r

vα(g2)

r
(r = 1) =

1

r6
+ ϵ,

∂2

∂r2
vα(g2)

r
(r = 1) = − 6

r7
+ ϵ,

∂3

∂r3
vα(g2)

r
(r = 1) =

42

r8
+ ϵ,

∂

∂r

vα(g3)

r
(r = 1) =

1

r8
+ ϵ,

∂2

∂r2
vα(g3)

r
(r = 1) = − 8

r9
+ ϵ,

∂3

∂r3
vα(g3)

r
(r = 1) =

72

r10
+ ϵ,

and since the vectors (1, 4, 20), (1, 6, 42) and (1, 8, 72) are independent, evaluating at r = 1 and
taking ϵ small finishes the proof.

5.3 The pseudo-solution
We are now ready to define our pseudo-solution and obtain the necessary properties about it.
First, taking

Nα ln (N) = λ2−β−α (5.14)

for t ∈ [0, λ−2+β ln (N)
3
] = [0, (Nλ)−α ln (N)

2
], we define

w̄N,β(r, θ, t) := ḡ(r, t) + w̄pert(r, θ, t), (5.15)

where
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ḡ(r, t) := λ
g(rλ, tλα)

λβ
,

∂g(r, t)

∂t
= −Λαg(r, t),

g(r, 0) = g(r),

w̄pert(r, θ, t) := f(λr)λ
cos(N(θ +Θ(r, t))−

´ t
0

∂ḡ(r,s)
∂r

C0

|1+r2(∂rΘ(r,s))2|1/2 ds)

Nβλβ
e−G(r,t)

with

Θ(r, t) := K
vα(g(λr, 0))

λr
+

ˆ t

0

vα(ḡ(r, s))

r
ds,

G(r, t) := K−1
α Nα

ˆ t

0

( 1

r2
+ (

∂

∂r
Θ(r, s))2

)α
2

ds,

where we need to choose K, g(r) and f(r). First, we choose a smooth radial function g(r) with
supp(ĝ) ⊂ {r̂ ∈ (c,∞)} for some small c > 0 such that

∂

∂r

vα(g(r))

r
(r = 1) = 1,

∂2

∂r2
vα(g(r))

r
(r = 1) = 0,

∂3

∂r3
vα(g(r))

r
(r = 1) = 1,

which exists thanks to Lemma 5.2.8. Note that this means that there is a small 1
2 > ϵ̃ > 0 such

that r0 ∈ [1− ϵ̃, 1 + ϵ̃], implies that

( ∂
∂r

vα(g(r))

r

)
(r = r0)−

( ∂
∂r

vα(g(r))

r

)
(r = 1) ≥ 1

10
(1− r0)

2. (5.16)

We would now like to choose K so that, if N is big enough, G(r, t) is such that, for t ∈
[0, (λN)−α ln(N)2], r ∈ [ 1−ϵ̃

λ , 2−ϵ̃
2λ ] ∪ [ 2+ϵ̃

2λ ,
1+ϵ̃
λ ]

G(
1

λ
, t) ≤ G(r, t). (5.17)

For this, we note that it is enough to show that, for t ∈ [0, (λN)−α ln(N)2], r ∈ [ 1−ϵ̃
λ , 2−ϵ̃

2λ ] ∪
[ 2+ϵ̃
2λ ,

1+ϵ̃
λ ],

λ2 + (
∂

∂r
Θ(r, t)(r =

1

λ
))2 ≤ 1

r2
+ (

∂

∂r
Θ(r, t))2.

But, using the definition of ḡ

ˆ t

0

∂

∂r

vα(ḡ(·, τ))(r)
r

dτ = tλ3−β ∂

∂(rλ)

vα(g(rλ, 0))

λr
+

ˆ t

0

∂

∂r

vα(ḡ(·, τ)− ḡ(·, 0))(r)
r

dτ (5.18)

and using t ∈ [0, (λN)−α ln(N)2], r ∈ [ 1−ϵ̃
λ , 1+ϵ̃

λ ] we have,

|
ˆ t

0

∂

∂r

vα(ḡ(·, τ)− ḡ(·, 0))(r)
r

dτ | = λ3−β |
ˆ t

0

∂

∂(λr)

vα(g(λ·, λατ)− g(λ·, 0))(r)
λr

dτ |

≤ Cλ3−βλαt2 ≤ Ctλ3−βN−α ln(N)2,

so, for big N , r ∈ [ 1−ϵ̃
λ , 2−ϵ̃

2λ ] ∪ [ 2+ϵ̃
2λ ,

1+ϵ̃
λ ], using the definition of Θ(r, t), (5.18) and (5.16) we have

1

r2
+ (

∂

∂r
Θ(r, t))2 ≥ λ2(1− ϵ̃)−2 + ((Kλ+ tλ3−β)(1 +

ϵ̃2

40
)− Ctλ3−βN−α ln(N)2)2
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and also

λ2 + (
∂

∂r
Θ(r, t))2(r =

1

λ
) ≤ λ2 + (Kλ+ tλ3−β + Ctλ(3−β)N−α ln(N)2)2

so by taking K,N big (and therefore λ big), gives us that (5.17) is fulfilled.
We now take f(r) a smooth function with support in r ∈ [1− ϵ̃, 1 + ϵ̃] the small interval fulfilling
(5.17), and such that f(r) = 1 if r ∈ [1 − ϵ̃

2 , 1 +
ϵ̃
2 ], f(r) ≤ 1. Note that, since the maximum of

G(r, t)1r∈[ 1λ (1−ϵ̃), 1λ (1+ϵ̃)] is in the interval r ∈ [ 1λ (1−
ϵ̃
2 ),

1
λ (1 +

ϵ̃
2 )], this ensures that

||w̄pert||L∞ =
||f(λr)||L∞

Nβλβ−1
||1suppf(λr)e

−G(r,t)||L∞ . (5.19)

This pseudo-solution fulfills the evolution equation

∂w̄N,β

∂t
+ v(ḡ(r, t)) · ∇(w̄N,β) + v̄r(w̄pert)

∂

∂r
ḡ(r, t) + Λα(ḡ(r, t)) + Λ̄α(w̄pert) = 0

with
Λ̄αh1(r) cos(Nθ +Nh2(r)) := K−1

α h1(r) cos(Nθ + h2(r))|(
N

r
)2 +N2h′2(r)

2|α/2

and
v̄r(h1(r) cos(Nθ + h2(r)) := −C0

h1(r) sin(Nθ +Nh2(r))

|1 + r2h′2(r)
2|1/2

so that
∂w̄N,β

∂t
+ v(w̄N,β) · ∇(w̄N,β) + Λα(w̄N,β) + FN,β(x, t) = 0 (5.20)

with
FN,β(x, t) := F1(x, t) + F2(x, t) + F3(x, t) (5.21)

F1(x, t) = (Λ̄α − Λα)(w̄pert),

F2(x, t) = −v(w̄pert) · ∇(w̄pert)

F3(x, t) = (v̄(w̄pert)− v(w̄pert)) · ∇ḡ(r, t).

Next we need to show that FN,β is small in suitable Sobolev spaces.

5.3.1 Bounds on the error term FN,β

Lemma 5.3.1. For any given ϵ > 0, there is N0 such that if N ≥ N0, then for FN,β given by
(5.20) and s ∈ [0, 2], we have that

||FN,β ||Hs ≤ Cϵ
N ϵ(λN)s+α

Nβ+1λβ

with N,λ as in (5.14).

Proof. To prove this, we will just show that

||Fi||Hs ≤ Cϵ
N ϵ(λN)s+α

Nβ+1λβ
.

for i = 1, 2, 3, with Fi defined as in (5.21). We first focus on F1(x, t). To bound the Hs norms of
this function, we will use Corollary 5.2.2, so for that we need to check if w̄pert fulfils the hypothesis
of the lemma. For this we note that

w̄pert(
r

λ
, θ, t) = f(r)λ

cos(N(θ +Θ( rλ , t))−
´ t
0
λ2−β ∂g(r,λαs)

∂r
C0

|1+(r∂rΘ( r
λ ,s))2|1/2 ds)

Nβλβ
e−G( r

λ ,t)

G(
r

λ
, t) = K−1

α (Nλ)α
ˆ t

0

( 1

r2
+ (K

∂

∂r

vα(g(r, 0))

r
+

ˆ s

0

λ2−β ∂

∂r

vα(g(·, λατ))(r)
r

dτ)2
)α

2

ds,
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Θ(
r

λ
, t) = K

vα(g(r, 0))

r
+ λ2−β

ˆ t

0

vα(g(r, λ
αs))

r
ds.

Since f(r)e−G( r
λ ,t) has support in r ∈ ( 12 ,

3
2 ), if we show that

||f(r)e−G( r
λ ,t)||C5 ≤ ||f(r)e−G( r

λ ,t)||L∞ ln (N)
P
, (5.22)

||Kvα(g(r, 0))

r
+

ˆ t

0

λ2−βvα(g(r, λ
αs))

r
ds|| ≤ ln (N)

P

||
ˆ t

0

λ2−β ∂g(r, λ
αs)

∂r

C0

|1 + (r∂rΘ( rλ , s))
2|1/2

ds)||C5 ≤ ln(N)P

we can apply Corollary 5.2.2.
For (5.22) we note that, for a function of the form h̃(x) = h1(x)e

h2(x), we have the bound

||h̃(x)||Ci ≤ Ci||1supp(h1(x))e
h2(x)||L∞ ||h1||Ci(1 + ||h2(x)||Ci)i

but, using also that f(r) is a fixed C∞ function and (5.19)

||f(r)e−G( r
λ ,t)||C5

||f(r)e−G( r
λ ,t)||L∞

≤ C
||1suppf(r)e

−G( r
λ )(x)||L∞ ||f(r)||C5(1 + ||G( rλ , t)||C5(1suppf(r)))

5

||f(r)||L∞ ||1suppf(r)e
−G( r

λ ,t)||L∞

≤ C(1 + ||G( r
λ
, t)||C5(1suppf(r)))

5

so it is enough to obtain bounds for ||G( rλ , t)||C5(1suppf(r)). But, for t ∈ [0, (λN)−α ln(N)2]

||G( r
λ
, t)||C5(1suppf(r))

= ||K−1
α (Nλ)α

ˆ t

0

( 1

r2
+ (K

vα(g(r, 0))

r
+

ˆ s

0

λ2−β ∂

∂r
vα(g(·, λατ))(r)dτ)2

)α
2 ||C5(1suppf(r))

≤ C ln(N)2×

sups∈[0,(Nλ)−α ln(N)2]||
( 1

r2
+ (K

vα(g(r, 0))

r
+

ˆ s

0

λ2−β ∂

∂r
vα(g(·, λατ))(r)dτ)2

)α
2 ||C5(1suppf(r)))

≤ C ln(N)2×

sups∈[0,(Nλ)−α ln(N)2](1 + || 1
r2

+ (K
vα(g(r, 0))

r
+

ˆ s

0

λ2−β ∂

∂r
vα(g(·, λατ))(r)dτ)2||C5(1suppf(r))))

5

≤ C ln (N)
32
,

where we used that 1
r2 + (K vα(g(r,0))

r +
´ s
0
λ2−β ∂

∂rvα(g(·, λ
ατ))(r)dτ)2 > 1

4 for r ∈ supp(f(r)) in
the fifth line.
On the other hand, for t ∈ [0, (λN)−α ln(N)2] we have

||Kvα(g(r, 0))

r
+

ˆ t

0

λ2−βvα(g(r, λ
αs))

r
ds||C5 ≤ C ln (N)

3
,

||
ˆ t

0

λ2−β ∂g(r, λ
αs)

∂r

C0

|1 + r2(∂rΘ( rλ , s))
2|1/2

ds||C5

≤ C ln(N)3sups∈[0,(λN)−α ln(N)2]||
C0

|1 + r2(∂rΘ( rλ , s))
2|1/2

||C5 ≤ C ln(N)33,

so we can apply Corollary 5.2.2 and obtain that
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||(Λα − Λ̄α)w̄pert(r, θ)||Hs ≤ Cλ−1+s+αN−1+α+ϵ+s|| f(λr)

Nβλβ−1
e−G(r,t)||L∞ ≤ C

λs+αN ϵ+α+s

λβNβ+1
.

Note also that, all the bounds we have obtained also give us, for any ϵ > 0, s ∈ [0, 5] and N big

||w̄pert(r, θ)||Hs ≤ C
λsN ϵ+s

λβNβ
, ||w̄pert(r, θ)||Cs ≤ C

λsN ϵ+s

λβ−1Nβ
. (5.23)

Next, for F2(x, t), we note that

||F2(x, t)||Hs ≤ ||(v̄ − v)(w̄pert) · ∇(w̄pert)||Hs + ||v̄(w̄pert) · ∇(w̄pert)||Hs .

But, since we already checked the hypothesis for Lemma 5.2.3, we have, for s = 0, 2 and any ϵ > 0

||(v̄ − v)(w̄pert) · ∇(w̄pert)||Hs ≤ C

s∑
i=0

||(v̄ − v)(w̄pert)||Hi ||∇(w̄pert)||Cs−i ≤ C
N2ϵ(λN)s

Nβ+1λβ
λ2−β

= C
N2ϵ(λN)s+α

Nβ+1λβ
ln (N) ≤ C

N3ϵ(λN)s+α

Nβ+1λβ

and interpolation gives the bound for s ∈ (0, 2). On the other hand we have

v̄(w̄pert) · ∇(w̄pert) = K1

( ∂

∂x1

1

|(Nr )2 + (N∂rΘ(r, t))2|1/2
)
w̄pert(r, θ, t)

∂

∂x2
w̄pert(r, θ, t)

−K1

( ∂

∂x2

1

|(Nr )2 + (N∂rΘ(r, t))2|1/2
)
w̄pert(r, θ, t)

∂

∂x1
w̄pert(r, θ, t)

and therefore, for s ∈ [0, 2],

||v̄(w̄pert) · ∇(w̄pert)||Hs

≤ C

s∑
i=0

||∇
( 1

|(Nr )2 + (N∂rΘ(r, t))2|1/2
)
w̄pert(r, θ)||Ci ||w̄pert(r, θ)||Hs+1−i

≤ C

s∑
i=0

λi+1−βN i−β−1+2ϵ(λN)s+1−i−β+ϵ = Cλ1−βN−β−1+2ϵ(λN)s+1−β+ϵ

= C
(λN)sN3ϵ

λβNβ+1
λ2−βN1−β ≤ C

(λN)s+αN3ϵ

λβNβ+1
.

Finally, for F3(x, t), we just have, for any s ∈ [0, 2], ϵ > 0, for N big enough

||(v̄ − v)(w̄pert) · ∇ḡ(r, t)||Hs ≤ C

s∑
i=0

||(v̄ − v)(w̄pert)||Hi ||ḡ||Cs+1−i

≤ C
N ϵ(Nλ)i

λβNβ+1
λs+2−i−β ≤ C

N ϵ(Nλ)s

λβNβ+1
λ2−β ≤ C

N2ϵ(Nλ)s+α

λβNβ+1

and this finishes the proof.

5.3.2 Using the pseudo-solution to control the solution
For the pseudo-solution w̄N,β to be a useful tool, we need to show that, if we define wN,β , the
solution to (5.1) with the same initial conditions as w̄N,β , then wN,β ≈ w̄N,β . This sub-section
will be devoted to show this.
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Lemma 5.3.2. There is N0, ϵ0, δ > 0 such that if N ≥ N0, 0 < ϵ ≤ ϵ0 then for any t ∈
[0, (Nλ)−α ln(N)2] we have that

||wN,β(x, t)− w̄N,β(x, t)||L2 ≤ Cϵ
N ϵ

Nβ+1λβ
, (5.24)

||wN,β(x, t)− w̄N,β(x, t)||H2−α+δ ≤ 1, (5.25)

with w̄N,β as in (5.15) and wN,β a solution to (5.1) with the same initial conditions as w̄N,β.

Proof. We first note that, since (5.1) is locally well-posed in H2−α+δ, using continuity of
||wN,β(x, t)− w̄N,β(x, t)||H2−α+δ we know that (5.25) will hold for at least some short time period
[0, Tcrit]. We start by showing that, for t ∈ [0, Tcrit] ∩ [0, (Nλ)−α ln(N)2], (5.24) holds.
For this, we define W := wN,β(x, t)− w̄N,β(x, t) and note that the evolution equation for W is

∂W

∂t
+ v(W ) · ∇(W + w̄N,β(x, t)) + v(w̄N,β(x, t)) · ∇W + ΛαW − F (x, t) = 0

so that, after using incompressibility,

∂

∂t
||W ||2L2 = −

(
2

ˆ
R2

W (v(W ) · ∇w̄N,β − F (x, t))dx+ ||W ||2
Ḣ

α
2

)
(5.26)

≤ −
(
2

ˆ
R2

W (v(W ) · ∇(ḡ(r, t)− ḡ(0, t)))− F (x, t))dx
)
+ Cλ2−βNβ−1 ln (N)||W ||2L2 .

where we used that ||w̄pert(r, θ, t)||C1 ≤ Cλ2−βNβ−1 ln (N). Now, we consider f̃(r) a smooth
function fulfilling 0 ≤ f̃(r) ≤ 1, f̃(r) = 1 if r ≥ 2, f̃(r) = 0 if r ≤ 1 and we define

f1(r) = (1− f̃(λ3−βr)), f2(r) = 1− f̃(r)− f1(r),

f3(r) = f̃(r)− f4(r), f4(r) = f̃(λ−
1
2 r)

so in particular f1 + f2 + f3 + f4 = 1.
Now, by using the smoothness of ḡ(r, t) and f̃(r) (which in particular implies ∂rf̃(0) = ∂r ḡ(0, t) =
0) and the scaling properties of the Ck norms, we get that

||f1(r)(ḡ(r, t)− ḡ(0, t))||C1 ≤ Cλ−3+β ||ḡ(r, t)||C2 + ||f1(r)||C1C(λ−3+β)2||ḡ(r, t)||C2 ≤ C,

||f2(r)(ḡ(r, t)− ḡ(0, t))||C1 ≤ ||f1(r)(ḡ(r, t)− ḡ(0, t))||C1 + ||(1− f̃(r))(ḡ(r, t)− ḡ(0, t))||C1 ≤ Cλ2−β

and applying Lemma 5.2.7 to g(r, t) we get

||f3(r)ḡ(r, t)||C1 ≤ Cϵλ
− 2

3+ϵλ2−β , ||f4(r)ḡ(r, t)||C1 ≤ Cϵλ
3
2 (−

2
3+ϵ)λ2−β = Cϵλ

3
2 ϵλ1−β ≤ C,

and thus

||f3(r)(ḡ(r, t)− ḡ(0, t))||C1 ≤ Cϵλ
− 2

3+ϵλ2−β , ||f4(r)(ḡ(r, t)− ḡ(0, t))||C1 ≤ C.

Therefore

|
ˆ
R2

W (v(W ) · ∇(f1(r) + f4(r)(ḡ(r, t)− ḡ(0, t)))dx| ≤ C||W ||2L2

and by using Corollary 5.2.6, and the parity of the operator vi for i = 1, 2,

ˆ
R2

Wvi(W )
∂

∂xi
(f2(r)(ḡ(r, t)− ḡ(0, t)))dx =

1

2

ˆ
R2

W [vi(W )
∂

∂xi
(f2(r)(ḡ(r, t)− ḡ(0, t)))− vi(W

∂

∂xi
(f2(r)(ḡ(r, t)− ḡ(0, t))))]dx
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≤ CN−1λ2−β ||W ||2L2 ≤ CλαN−1+α||W ||2L2 ,

ˆ
R2

Wvi(W )
∂

∂xi
(f3(r)(ḡ(r, t)− ḡ(0, t)))dx

=
1

2

ˆ
R2

W [vi(W )
∂

∂xi
(f3(r)(ḡ(r, t)− ḡ(0, t)))− vi(W

∂

∂xi
(f3(r)(ḡ(r, t)− ḡ(0, t))))]dx

≤ Cλ
1
2N−1λ−

2
3+ϵλ2−β ||W ||2L2 ≤ CλαN−1+α||W ||2L2 .

Combining all this we get that

∂

∂t
||W ||2L2 = −2

(ˆ
R2

W (v(W ) · ∇w̄N,β − F (x, t))dx+ ||W ||2
Ḣ

α
2

)
≤ CλαN−1+α||W ||2L2 + C||W ||L2 ||F (x, t)||L2 .

and using the bounds for ||F (x, t)||L2 and integrating with time the evolution equation for ||W ||L2 ,
we get, for any ϵ > 0,

||W ||L2 ≤ Cϵ
N ϵ

Nβ+1λβ
.

On the other hand, by integrating in time (5.26) we get, for any t0 ∈ [0, (Nλ)−α ln(N)]∩ [0, Tcrit],
any ϵ > 0

ˆ t0

0

||W ||2
H

α
2
≤ supt∈[0,t0](Nλ)

−α ln(N)(||F ||L2 ||W ||L2 + ||W ||2L2) ≤ C
N ϵ

(Nβ+1λβ)2
. (5.27)

To bound the growth of the higher order norm, we note that

∂

∂t
||ΛsW ||2L2 = −2

ˆ
R2

Λs(W )Λs[v(W ) · ∇(W + w̄N,β(x, t)) + v(w̄N,β(x, t)) · ∇W + ΛαW − F (x, t)]dx.

(5.28)

In order to bound the growth of the Hs norm with s = 2−α+δ (we will now just write s instead of
2−α+δ for compactness of notation), we need to bound each of these terms under the assumption
that (5.27) and (5.24) hold. First, we note that, as seen in [67],

||Λs(W )Λs[v(W ) · ∇(W )]||L1 ≤ C||Λ2−α
2 W ||L2 ||Λs+α

2 W ||L2 ||ΛsW ||L2

so, using our hypothesis for ||W ||Hs , (5.24), the interpolation inequality for Sobolev spaces and
some basic computations we get

||Λs(W )[v(W ) · ∇(W )]||L1 − 1

100
||Λs+α

2 W ||2L2 ≤ 1

100
,

and using our hypothesis for F and taking ϵ and δ small enough we get

||Λs(W )Λs(F )||L1 ≤ ||Λs(W )||L2

N ϵ(λN)2+δ

Nβ+1λβ
≤ C||Λs(W )||L2(λN)αN−δ.

For the rest of the terms, we need to use again Lemma 2.2.10, that is to say:

Lemma 5.3.3. Let s > 0. Then for any s1, s2 ≥ 0 with s1 + s2 = s, and any f , g ∈ S(R2), the
following holds:

||Λs(fg)−
∑

|k|<s1

1

k!
∂kfΛs,kg −

∑
|j|≤s2

1

j!
∂jgΛs,jf ||L2 ≤ C||Λs1f ||L2 ||Λs2g||BMO (5.29)
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where j and k are multi-indexes, ∂j = ∂

∂x
j1
1 ∂x

j2
2

, ∂jξ = ∂

∂ξ
j1
1 ∂ξ

j2
2

and Λs,j is defined using

Λ̂s,jf(ξ) = Λ̂s,j(ξ)f̂(ξ)

Λ̂s,j(ξ) = i−|j|∂jξ(|ξ|
s).

Note that, even though this lemma is only valid for functions in S (the Schwartz space), an
approximation argument allows to us use this lemma for the functions we will be considering.
We will also use that, for any ϵ, s1, s2 ≥ 0, s1 + s2 ≤ 2

||w̄N,β ||Cs1
≤ Cϵ

(Nλ)s1+1−β

N
N ϵ + Cλs1+1−β

||Λs1w̄N,β ||Cs2 ≤ Cϵ
(Nλ)s1+s2+1−β

N
N ϵ + Cλs1+s2+1−β

and if also 2 > s1 > 1, k with |k| = 1

||Λs1,kw̄N,β ||L∞ ≤ N ϵ (λN)s1−β

N
+ Cλs1−β

where we get these bounds from (5.23), the properties of g(r, t), the scaling properties of Cs and

||Λs1f ||Ck ≤ Ck,ϵ||f ||Ck+s1+ϵ , ||Λs2,kf ||Ck ≤ Ck,ϵ||f ||Ck+s2−1+ϵ

for |k| = 1, k > 0, s2 > 1, s1 ≥ 0. Now, applying Lemma 2.2.10 with s1 = 1 + δ, W = f we get

||Λs(W )Λs[v(W ) · ∇w̄N,β(x, t)]||L1

≤ ||Λs(W )Λs[v(W )] · ∇w̄N,β(x, t)]||L1 + ||Λs(W )v(W ) · Λs[∇w̄N,β(x, t)]||L1

+ ||ΛsW ||L2(
∑
|k|=1

||∂kW ||L2 ||Λs,k∇w̄n,β ||L∞ + ||Λ1+δW ||L2 ||Λ1−α∇w̄n,β ||L∞).

But, for t ∈ [0, (λN)−α ln(N)2], using the bounds for w̄N,β and the interpolation inequality and
taking δ small and N big

ˆ t

0

||Λs(W )Λs[v(W )] · ∇w̄N,β(x, τ)]||2L2dτ ≤ Cλ2−β

ˆ t

0

||Λα
2 W ||

α
s

L2 ||Λs+α
2 W ||

2s−α
s

L2 dt

≤ Cλ2−β(

ˆ t

0

||Λα
2 W ||2L2dt)

α
2s (

ˆ t

0

||Λs+α
2 W ||2L2dt)

2s−α
2s ≤ CϵN

ϵλ2−β(Nβ+1λβ)
−α
s (

ˆ t

0

||Λs+α
2 W ||2L2dt)

2s−α
2s

≤ CϵN
α

2−α (1−β)+o(δ)+o(ϵ)(

ˆ t

0

||Λs+α
2 W ||2L2dt)

2s−α
2s ≤ 1

100
(

ˆ t

0

||Λs+α
2 W ||2L2dt)

2s−α
2s .

Similarly, for δ small and N big

ˆ t

0

||Λs(W )v(W ) · Λs[∇w̄N,β(x, t)]||L2dτ ≤ Cϵλ
s+2−βNs+1−β+ϵ

ˆ t

0

||ΛsW ||L2 ||W ||L2dτ

≤ Cϵλ
s+2−βNs+1−β+ϵ(λβNβ+1)−1N ϵ(Nλ)−

α
2 N ϵ(Nβ+1λβ)−

α
2s (

ˆ t

0

||Λs+α
2 W ||2L2dτ)

2s−α
4s

≤ CϵN
−2(β−1)+o(ϵ)+o(δ)(

ˆ t

0

||Λs+α
2 W ||2L2dτ)

2s−α
4s ≤ 1

100
(

ˆ t

0

||Λs+α
2 W ||2L2dτ)

2s−α
4s ,

and
ˆ t

0

||ΛsW ||L2

∑
|k|≤1

||∂kW ||L2 ||Λs,k∇w̄n,β ||L∞dτ ≤ Cϵλ
s+1−βNs−β+ϵ

ˆ t

0

||Λ1W ||L2 ||ΛsW ||L2dτ

≤ Cϵλ
s+1−βNs−β+ϵN ϵ(Nβ+1λβ)−[ 12+

α
2s ](

ˆ t

0

||Λs+α
2 W ||L2dτ)

1
2+

2s−α
2s
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≤ CϵN
1−β+o(ϵ)+o(δ) ≤ 1

100
(

ˆ t

0

||Λs+α
2 W ||L2dτ)

1
2+

2s−α
2s .

Moreover,
ˆ t

0

||Λ1−α∇w̄N,β ||L∞ ||Λ1+δW ||L2 ||ΛsW ||L2dτ ≤ Cϵλ
3−α−β(1 +N2−α−β+ϵ)

ˆ t

0

||Λ1+δW ||L2 ||ΛsW ||L2dτ

≤ Cϵλ
3−α−βN2−α−β+ϵN ϵ(Nβ+1λβ)

1−α
2

−δ

2−α + α
2s (

ˆ t

0

||Λs+α
2 W ||L2dτ)

1−α
2

+δ

2−α + 2s−α
2s

≤ CϵN
1−β+o(ϵ)+o(δ) ≤ 1

100
(

ˆ t

0

||Λs+α
2 W ||L2dτ)

1−α
2

+δ

2−α + 2s−α
2s .

Similarly,

ˆ t

0

||Λs(W )Λs[v(w̄N,β(x, t)) · ∇W ]||L1dτ

≤ 1

100
((

ˆ t

0

||Λs+α
2 W ||L2dτ)

1
2+

2s−α
2s + 2(

ˆ t

0

||Λs+α
2 W ||2L2dτ)

2s−α
2s ).

Therefore, integrating (5.28) we get that, for t ∈ [0, Tcrit] ∩ [0, (Nλ)−α ln(N)2]

||ΛsW ||2L2 ≤ 1

10
, ||W ||2Hs ≤ 1

5

and, since by continuity of the Hs norm we must have that ||W (x, Tcrit)||2Hs = 1, in particular it
must be that Tcrit > (Nλ)−α ln(N)2, as we wanted to prove.

Lemma 5.3.2 allows us to show that our pseudo-solution is a very good approximation of the actual
solution for t ∈ [0, (λN)−α ln(N)2]. Furthermore, at t∗ = (λN)−α ln(N)2, we have that

||w̄pert(x, t
∗)||L2 ≤ C

(Nλ)β
supr∈supp[w̄pert]e

−G(r,t∗) ≤ C

(Nλ)β
eC(λN)α(λN)−α ln(N)2 ≤ C

Nβ+2λβ

and for any ϵ > 0

||w̄pert(x, t
∗)||H2 ≤ Cϵ(Nλ)

2−βN ϵsupr∈supp[w̄pert]e
−G(r,t∗) ≤ C(Nλ)2−βN ϵeC(λN)α(λN)−α ln(N)2

≤ CϵN
−β+ϵλ2−β

so in particular, by interpolation, for small δ > 0

||wpert(x, t)||H2−α+δ ≤ N−δ. (5.30)

Combining this with (5.25) and (5.24), we have that, for t = (λN)−α ln(N)2,

||wN,β(r, θ, t)− ḡ(r, t)||L2 ≤ C

Nβ+1λβ
,

||wN,β(r, θ, t)− ḡ(r, t)||H2−α+δ ≤ N−δ.

With this information, we can obtain the following lemma.

Lemma 5.3.4. There is N0, ϵ0, δ such that if N ≥ N0, ϵ ≤ ϵ0 then for any t ∈
[(Nλ)−α ln(N)2, λ−α ln(N)3] we have that

||wN,β(x, t)− ḡ(r, t)||L2 ≤ Cϵ
N ϵ

Nβ+1λβ
, (5.31)

||wN,β(x, t)− ḡ(r, t)||H2−α+δ ≤ 2. (5.32)

where wN,β is the solution (5.1) with the same initial conditions as w̄N,β and ḡ(r, t) is as in (5.15).
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Proof. We will omit the proof since it is completely analogous to that of Lemma 5.3.2: We note
that (5.31) and (5.32) hold for t = (Nλ)−α ln(N)2, we prove (5.31) for times when (5.32) holds,
then we obtain an inequality like (5.27) and with that, the evolution equation for wN,β(x, t)−ḡ(r, t)
and Lemma 2.2.10 we prove that (5.32) holds for t ∈ [(Nλ)−α ln(N)2, λ−α ln(N)3].

Corollary 5.3.5. There is N0, δ > 0 such that if N ≥ N0, then for any t ∈ [λ−α ln(N)3, Nδ] we
have that

||wN,β(x, t)||H2−α+δ ≤ CN−δ.

and for t ∈ [N− δ
2 , Nδ]

||wN,β(x, t)||H2+δ ≤ CN− δ
2 , (5.33)

where wN,β is the solution to (5.1) with the same initial conditions as w̄N,β.

Proof. First, Lemma 5.3.4 allows us to show that, for t = λ−α ln(N)3 and for small δ > 0, any
ϵ > 0

||wN,β(x, t)− ḡ(r, t)||H2−α+δ ≤ 2,

||wN,β(x, t)− ḡ(r, t)||L2 ≤ CϵN
ϵ

λβNβ+1
,

and, using that supp ˆ̄g(r̂, 0) ⊂ {r̂ : r̂ ∈ (λc,∞)} for some c > 0 (see Lemma 5.2.8), again for the
same time

||ḡ(r, t)||Hs ≤ eCλ−αt||ḡ(r, 0)||Hs = C
λs−β

N3
≤ Cλs−2+α

N2
,

and combining the three inequalities, taking ϵ small and using the interpolation inequality, we get
that there is a small δ̄ > 0 such that, for t = λ−α ln(N)3

||wN,β(x, t)||H2+α−δ̄ ≤ CN−δ̄.

Finally, we note that

d

dt
||wN,β ||2Ḣ2−α+δ̄ ≤ 2||Λ2−α+δ̄(wN,β)Λ

2−α+δ̄[v(wN,β) · ∇wN,β ]||L1 − 2||Λ2−α
2 +δ̄wN,β ||2L2

≤ C||Λ2−α
2 wN,β ||L2 ||Λ2−α

2 +δ̄wN,β ||L2 ||Λ2−α+δ̄wN,β ||L2 − 2||Λ2−α
2 +δ̄wN,β ||2L2

≤ C(||Λ2−α
2 +δ̄wN,β ||L2 + ||wN,β ||L2)||Λ2−α

2 +δ̄wN,β ||L2 ||Λ2−α+δ̄wN,β ||L2 − 2||Λ2−α
2 +δ̄wN,β ||2L2

≤ (C||Λ2−α+δ̄wN,β ||L2 − 1)||Λ2−α
2 +δ̄wN,β ||2L2 + C||Λ2−α+δ̄wN,β ||2L2 ||wN,β ||2L2 ,

and integrating in time gives the desired bound.
Next, using the interpolation inequality and our bounds for wN,β , we have that, for t ∈
[λ−α ln(N)3, Nδ]

d

dt
||wN,β(x, t)||2H2+δ ≤ C||wN,β(x, t)||3H2+δ − 2||wN,β(x, t)||2Ḣ2+δ+α

2

≤ C||wN,β(x, t)||3H2+δ +
C

λ2βN4
− 2||wN,β(x, t)||2H2+δ+α

2

≤ C||wN,β(x, t)||3H2+δ +
C

λ2βN4
− 2

||wN,β(x, t)||3H2+δ

||wN,β(x, t)||H2−α+δ

≤ −CNδ||wN,β(x, t)||3H2+δ +
C

λ2βN4
.

Now, we note that if for some t0 ∈ [λ−α ln(N)3, Nδ] we have ||wN,β(x, t)||H2+δ ≤ N−1, then (5.33)
holds trivially for t ∈ [t0, N

δ] by integrating the equation. Therefore, it is enough to study the
behaviour for t such that ||wN,β(x, t)||H2+δ ≥ N−1, which in particular gives, for N big

Nδ||wN,β(x, t)||3H2+δ >>
1

λ2βN4
.
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and with this, we have

d

dt
||wN,β(x, t)||H2+δ ≤ −CNδ||wN,β(x, t)||2H2+δ

and integrating this equation gives the desired result.

The last computation we need to do regarding wN,β is to show that it exhibits a very fast growth
in the Hβ norm.

Lemma 5.3.6. There is N0 such that if N ≥ N0 then

||wN,β(x, t = λ−2+β(ln(N))
1
2 )||Ḣβ ≥ C ln(N)

β
2 ||wN,β(x, 0)||Hβ

with wN,β the solution to (5.1) with the same initial conditions as w̄N,β.

Proof. We start by noting that, by using the scaling properties of the norms Ḣs plus the definition
of ḡ(r, t)

||ḡ(r, t)||Hs ≤ Csλ
s−β .

On the other hand, we have that, for i = 1, 2, by direct computation

||wN,β(x, 0)− ḡ(r, 0)||Hi ≤ C
(λN)i

λβNβ
,

and combining these inequalities plus the interpolation inequality gives us

||wN,β(x, 0)||Hβ ≤ C.

On the other hand for t = λ−2+β(ln(N))
1
2 ), using Lemma 5.3.2 we have

||wN,β(x, t)− ḡ(r, t)||L2 ≤ C

λβNβ

and

||wN,β(x, t)− ḡ(r, t)||Ḣ1 ≥ ||w̄pert||Ḣ1 − Cϵ
N ϵ

Nβ+1λβ
.

Furthermore using the expression for ∂
∂x1

in polar coordinates for t ∈ [0, λ−2+β ln(N)
1
2 ],

||1supp(f(λr))∂rΘ(r, t)||L∞ ≤ C ln(N)
1
2 ,

so for r ∈ supp(f(λr)) and t = λ−2+β ln(N)
1
2 G(r, t) ≤ C, which, after some basic computations,

gives, for t = λ−2+β ln(N)
1
2 ,

|f(λr)∂rΘ(r, t)e−G(r,t)| ≥ C|f(λr)| ln(N)
1
2 .

Using all this we get, for N big,

||w̄pert||Ḣ1 ≥ || ∂
∂x1

w̄pert||L2 ≥ ||cos(θ) ∂
∂r
w̄pert||L2 − C

(Nλ)β−1

≥ ||cos(θ)f(λr)λN
( ∂
∂r

Θ(r, t)
) sin(N(θ +Θ(r, t))− C0

´ t
0

∂ḡ(r,s)
∂r ds)

Nβλβ
e−G(r,t)||L2 − C

(Nλ)β−1

≥ C

(Nλ)β−1
||f(λr)

( ∂
∂r

Θ(r, t)
)
e−G(r,t)||L2 − C

(Nλ)β−1
≥ C ln(N)

1
2

(Nλ)β−1
,

and using the interpolation inequality we get

||w̄pert||Ḣβ ≥
||w̄pert||βḢ1

||w̄pert||β−1
L2

≥ C ln(N)
β
2 ,
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so
||wN,β(x, t)||Ḣβ

||wN,β(x, 0)||Hβ

≥ C ln(N)
β
2

as we wanted to prove.

Remark 11. Lemma 5.3.6 would give us the growth around zero of the Hβ norm, namely the
final solution obtained in Theorem 5.4.2 will have a sequence of times tn such that

limtn→0
||w(x, tn)||Hβ

| ln(tn)|
β
2

> 0.

It should be noted that it is not the goal of this chapter to try and obtain the optimal explosion
rate around t = 0, and this rate can probably be improved substantially.

5.4 Loss of regularity
We will now use the previous results to obtain a more compact and usable theorem before we go
on to prove the main theorem.

Theorem 5.4.1. For any n ∈ N, α ∈ (0, 1), β ∈ (1, 2−α), there exists initial conditions wn(x, 0),
a solution wn(x, t) to (5.1) and tn ∈ [0, 2−n] such that

||wn(x, 0)||Hβ ≤ 2−n, ||wn(x, tn)||Hβ ≥ 2n.

Furthermore, there is small δ > 0 such that, for t ∈ [ 1n , 1]

||wn(x, t)||H2+δ ≤ 2−n

and for t ∈ [0, 1]
||wn(x, t)||H1+δ ≤ 2−n, ||wn(x, t)||L1 ≤ 2−n

||wn(x, t)||H6 ≤ Cn. (5.34)

Proof. We start by fixing α ∈ (0, 1) and β ∈ (1, 2 − α), and we consider the solutions wN,β(x, t)
that we considered earlier. These solutions fulfil that

• ||wN,β(x, 0)||Hβ ≤ C.

• For t = λ−2+β ln(N), N big

||wN,β(x, t)||Hβ ≥ C ln(N)
β
2 .

• There is some small δ > 0 such that, for N big and t ∈ [λ−α ln(N)3, Nδ]

||wN,β(x, t)||H2+δ ≤ CN− δ
2 .

• There is a small δ > 0 such that for t ∈ [0, Nδ],

||wN,β ||H1+δ ≤ CN−δ, ||wN,β ||L1 ≤ CN−δ.

If we now consider
wN,K(x, t) :=

wN,β(Kx,K
αt)

K1−α

we have that these functions are also solutions to (5.1) and,

• ||wN,K(x, 0)||Hβ ≤ CK−2+α+β .

• For t = K−αλ−2+β ln(N), N big

||wN,K(x, t)||Hβ ≥ CK2−α−β ln(N)
β
2 .
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• There is some small δ > 0 such that, for N big and t ∈ [K−αλ−α ln(N)3,K−αNδ]

||wN,K(x, t)||H2+δ ≤ CK
δ
2N− δ

2 .

• There is a small δ > 0 such that, for t ∈ [0,K−αNδ],

||wN,K ||H1+δ ≤ CK1+δ−2+αN−δ, ||wN,K ||L1 ≤ CK−3+αN−δ.

so, for any fixed n, taking K big and then N big gives us all the inequalities but the bound in H6.
But then using Theorem 3.1 from [33] tells us that wN,K is in C∞ for any t > 0, and since our
initial conditions are in C∞, using the continuity of the H6 norm for (5.1) finishes the proof.

We are now ready to prove the main theorem of this chapter.

Theorem 5.4.2. Given ϵ > 0, α ∈ (0, 1), β ∈ (1, 2 − α), there exists initial conditions w(x, 0)
with ||w(x, 0)||Hβ ≤ ϵ and a solution w(x, t) to (5.1) such that w(x, t) ∈ C∞ for t ∈ (0,∞) and
there exists a sequence of times (tn)n∈N converging to zero, with limn→∞||w(x, tn)||Hβ = ∞.
Furthermore, this is the only solution with the given initial conditions that is in L∞

t H
1
x.

Proof. For this proof, we will be considering initial conditions of the form

w(x, 0) =

∞∑
j=1

TRj (wcj (x, 0)) (5.35)

with TR(f(x1, x2)) = f(x1 + R, x2), wcJ (x, 0) the initial conditions given by Theorem 5.4.1. In
order to show properties of the solution given by (5.35), we will also consider a truncated initial
conditions

w̃J(x, 0) =

J∑
j=1

TRj (wcj (x, 0)) (5.36)

and we will refer the solution with initial conditions given by (5.36) as w̃J(x, t). Fixed ϵ, which
we will assume 1

2 > ϵ without loss of generality, we will choose (cj)j∈N so that they fulfil:

• ci > cj if i > j.

• 2−c1+1 ≤ ϵ, so ||w(x, 0)||Hβ ≤ ϵ.

• If we define

Sj :=

j∑
i=1

Cci (5.37)

with Cci the constants given by (5.34), then we take cj so that

cj ≥ jeSj−1+1, 2cj ≥ 2Sj−1.

• If tcj is the time given by Theorem 5.4.1 such that

||wcj (x, tcj )||Hβ ≥ 2cj

then 1
cj+1

≤ tcj .

We will now divide the proof in four different steps.
Step 1)The goal of this step is to show the following claim:
For any choice of (cj)j∈N and ϵ′ > 0, we can choose (Rj)j∈N such that, for t ∈ [0, 1], for any J ∈ N

||w̃J(x, t)− w̃J−1(x, t)− TRJ
(wcJ (x, t))||H5 ≤ ϵ′2−J−1, (5.38)

and w̃J(x, t) ∈ H6 for t ∈ [0, 1], and such that for t ∈ [0, 1]

||w̃J(x, t)− w̃J−1(x, t)||C3
x(BJ (0)) ≤ ϵ′2−J (5.39)
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where BJ(0) is the ball of radius J centered at the origin.
We will show (5.38) and (5.39) by induction, by showing that, for any J ∈ N, fixed (cj)j=1,...,J

and ϵ′ > 0, we can choose (Ri)i=1,...,J so that for any j = 1, ..., J

||w̃j(x, t)− w̃j−1(x, t)− TRj (wcj (x, t))||H5 ≤ ϵ′2−j−1, (5.40)

||w̃j(x, t)− w̃j−1(x, t)||C3
x(BJ (0)) ≤ ϵ′2−j . (5.41)

and w̃j(x, t) ∈ H6. For J = 1 this is trivial since w̃J=0 = 0, w̃J=1(x, t) = TR1
(wc1(x, t)) and

wJ=1 ∈ C∞ for all time. Now, for some arbitrary J we have that, if we define

w̄J(x, t) = w̃J−1(x, t) + TRJ
(wcJ (x, t))

we have that w̄J(x, t) is a pseudo-solution for (5.1) with

F (x, t) = −v(w̃J−1(x, t)) · ∇(TRJ
(wcJ (x, t)))− v(TRJ

(wcJ (x, t))) · ∇(w̃J−1(x, t)).

Furthermore, both w̃J−1(x, t) and TRJ
(wcJ (x, t)) are C∞ functions for t ∈ [0, 1] since they are both

solutions to (5.1) that are uniformly bounded in H6, w̃J−1(x, t) by hypothesis and TRJ
(wcJ (x, t))

by Theorem 5.4.1. But then we know that limRj→∞||F (x, t)||H5 = 0 by using that for any two
functions f1(x), f2(x) ∈ H7

limR→∞||f1(x1, x2)f2(x1 +R, x2)||H5 = 0,

plus the fact that C∞ solutions solutions to (5.1) are continuous in time with respect to the H7

norm.
Now, to get (5.40), we just use that, if w̄error,c(x, t) is a family of pseudo-solutions (which depends
on the parameter c) with source term Ferror,c and fulfilling ||w̄error,c(x, t)||H6 ≤ C for t ∈ [0, T ]
(C independent of c), ||Ferror,c(x, t)||H5 ≤ c and we call wc(x, t) the solution of (5.1) with the
same initial conditions as w̄error,c, then

lim
c→0

||wc(x, t)− w̄error,c(x, t)||H5 = 0,

and therefore,
limRJ→∞||w̃J(x, t)− w̃J−1(x, t)− TRJ

(wcJ (x, t))||H5 = 0, (5.42)

and so taking RJ big enough gives (5.40), and then since for t ∈ [0, 1] wJ(x, t) is a H5 solution to
(5.1) with initial conditions in C∞, it must also be in H6.
Next, for (5.41), since we only need to prove the case j = J , we use

||w̃J(x, t)− w̃J−1(x, t)||C3
x(BJ (0))

≤ ||w̃J(x, t)− w̃J−1(x, t)− TRJ
(wcJ (x, t)||H5 + ||TRJ

(wcJ (x, t)||C3
x(BJ (0))

≤ ϵ′2−J−1 + ||TRJ
(wcJ (x, t)||C3

x(BJ (0))

and, as before, using the continuity in time with respect to the H5 norm of smooth solutions to
(5.1) gives us

supt∈[0,1]limRJ→∞||TRJ
(wcJ (x, t)||C3

x(BJ (0)) = 0,

so taking Rj big enough finishes step 1.
Step 2)The goal of this step is to obtain the properties of limJ→∞w̃J(x, t):
First we note that,

||wcj (x, t)||H1+δ ≤ 2−cj , ||wcj (x, t)||L1 ≤ 2−cj

so there exists
w∞(x, t) := lim

J→∞
w̃J(x, t)

and w̃J(x, t) tends to w∞(x, t) in H1+δ ∩ L1. We would like to show that, for any t ∈ [0, 1]

∂

∂t
w∞(x, t) + v(w∞(x, t)) · ∇w∞(x, t) + Λα(w∞(x, t)) = 0.
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For this, we note that, for j > J , using the properties of Λα and v, for t ∈ [0, 1]

||Λαw∞(x, t)− Λαw̃j(x, t)||C1
x(BJ (0)) ≤ C(||w∞(x, t)− w̃j(x, t)||C2

x(BJ (0)) + ||w∞(x, t)− w̃j(x, t)||L1)

≤ C(

∞∑
i=j

||w̃i+1(x, t)− w̃i(x, t)||C2
x(BJ (0)) + 2−j+1) ≤ C2−j ,

and similarly

||v(w∞) · ∇w∞ − v(wj) · ∇wj ||C1
x(BJ (0))

≤ Csupi≥j ||w̃i||C2
x(BJ (0))(||w∞(x, t)− w̃j(x, t)||C2

x(BJ (0)) + ||w∞(x, t)− wj(x, t)||L1)

+ Csupi≥j(||w̃i||C2
x(BJ (0)) + ||w̃i||L1)(||w∞(x, t)− w̃j(x, t)||C2

x(BJ (0))

≤ C2−j ,

so that

w∞(x, t2)− w∞(x, t1) = limJ→∞(w̃J(x, t2)− w̃J(x, t1))

= −limJ→∞

ˆ t2

t1

(v(w̃J(x, s)) · ∇w̃J(x, s) + Λα(w̃J(x, s)))ds

= −
ˆ t2

t1

(v(w∞(x, s)) · ∇w∞(x, s) + Λα(w∞(x, s)))ds.

and using that

limJ→∞||(v(w∞(x, t)) · ∇w∞(x, t) + Λα(w∞(x, t))− (v(w̃J(x, t)) · ∇w̃J(x, t)

+ Λα(w̃J(x, t))||C0
t C

1
x([0,1]×BJ (0)) = 0

and that (v(w̃J(x, t))·∇w̃J(x, t)+Λα(w̃J(x, t)) is continuous in time with respect to the C1
x(BJ(0))

norm, we get that the function

v(w∞(x, t)) · ∇w∞(x, t) + Λα(w∞(x, t))

is also continuous in time (for t ∈ [0, 1]) with respect to the C1
x(BJ(0)) norm, so

∂

∂t
w∞(x, t) = −(v(w∞(x, t)) · ∇w∞(x, t) + Λα(w∞(x, t))).

holds.
Furthermore, for t > 0

||w∞(x, t)− w̃J(x, t)||H2+δ ≤
∞∑
j=J

||w∞(x, t)− w̃J(x, t)− TRj
(wcj (x, t))||H5 +

∞∑
j=J

||wcj (x, t)||H2+δ

≤ ϵ′2−J−1 +

∞∑
j=J

||wcj (x, t)||H2+δ .

Now, we note that, if t ≥ 1
cj

, then

||wcj (x, t)||H2+δ ≤ 2−j

so, if

j0(t) := max({j ∈ N :
1

cj
< t}, {0}) (5.43)

then
∞∑
j=1

||wcj (x, t)||H2+δ ≤
∞∑

j=j0(t)+1

2−cj + Sj0(t) ≤ Sj0(t) + 1
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with Sj as in (5.37) and if J > j0(t)

∞∑
j=J

||wcj (x, t)||H2+δ ≤
∞∑
j=J

2−cj ≤ 2−J+1.

This in particular means that, for any t > 0,

limJ→∞||w∞(x, t)− w̃J(x, t)||H2+δ = 0 (5.44)

and
||w∞(x, t)||H2+δ ≤ ϵ′ + Sj0(t) + 1. (5.45)

This implies that, for any t0 > 0

supt∈[t0,1]||w∞(x, t)||H2+δ ≤ ϵ′ + Sj0(t0) + 1 (5.46)

and since w∞(x, t) is a solution to (5.1), using Theorem 3.1 from [33] tells us that w∞ is in C∞

for any t > 0.
Finally, we have that, for t = 1

||w∞(x, t)||H2+δ ≤
∞∑
j=1

||wcj (x, t)||H2+δ +||w̃J(x, t)−w̃J−1(x, t)−TRJ
(wcJ (x, t)||H2+δ ≤ 2−c1+1+ϵ′,

so we can make the H2+δ as small as we want by taking c1 big and ϵ′ small, and in particular
w∞(x, t) will be a global smooth solution to (5.1).
Step 3: We will now show that we have uniqueness, i.e. that, for any M, ϵ > 0, if we assume there
exists a solution w̃(x, t) to (5.1) fulfilling

supt∈[0,ϵ]||w̃(x, t)||H1 ≤M

then, for t ∈ [0, ϵ] w̃(x, t) = w∞(x, t).
For this, we note that, if we define W (x, t) := w̃(x, t)− w∞(x, t) then

d

dt
W (x, t) + v(W ) · ∇(W + w∞) + v(w∞) · ∇W + ΛαW = 0

so in particular
∂

∂t
||W ||2L2 ≤ −2

ˆ
R2

W (v(W ) · ∇w∞(x, t))dx

but then we have

|
ˆ
R2

W (v(W ) · ∇w∞(x, t))dx| ≤ ||w∞(x, t)||C1 ||W ||2L2 (5.47)

|
ˆ
R2

W (v(W ) · ∇w∞(x, t))dx| ≤ ||w∞(x, t)||L∞ ||W ||L2 ||W ||H1 ,

so, for any t0 ∈ [0, t] we have

||W (x, t)||L2 ≤ Ct0||W ||H1e
´ t
t0

||w∞(x,s)||C1ds

but, for t ≤ 1

||w∞(x, t)||C1 ≤ ||w∞(x, t)||H2+δ ≤ ϵ′ + Sj0(t0) + 1,

where we used (5.46). Now, we note that for t = 1
cj

we already know that

||W (x, t)||L2 ≤ C

cj
||W ||H1e

ϵ′+S
j0( C

cj
)
+1

≤ 1

cj
(M + 1)e

ϵ′+S
j0( 1

cj
)
+1
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and, by definition of j0 (see (5.43)), we have that j0( 1
cj
) ≤ j − 1, so

||W (x, t)||L2 ≤ 1

cj
(M + 1)eϵ

′+Sj−1+1 ≤ C(M + 1)

j

which tends to zero as j tends to infinity so, for t ∈ [0, 1] ||W (x, t)||L2 = 0 and therefore
w̃(x, t) = w∞(x, t). For t > 1, we just use that supt≥1||w∞(x, t)||C1 ≤ C, and therefore (5.47)
gives uniqueness.
Step 4: To end the proof, we need to show loss of regularity, and more precisely that there is a
sequence of times tn such that

limn→∞||w∞(x, tn)||Hβ = ∞.

But we chose our cj so that

2cj ≥ 2Sj−1,

and if tcj is the time given by Theorem 5.4.1 such that

||wcj (x, tcj )||Hβ ≥ 2cj

then 1
cj+1

≤ tcj .
Therefore, we have that

||w∞(x, tcj )||Hβ ≥ ||TRj
(wcj (x, tcj ))||Hβ −

∑
i∈N,i̸=j

||TRi
(wci(x, tcj ))||

−
∞∑
i=0

||w̃j(x, t)− w̃j−1(x, t)− TRj
(wcj (x, t))||Hβ ≥ 2cj −

∑
i∈N,i̸=j

||TRi
(wci(x, tcj ))|| − ϵ′.

However,
j−1∑
i=1

||TRi
(wci(x, tcj ))||Hβ ≤ 2

j−1∑
i=1

||TRi
(wci(x, tcj ))||H6 ≤ Sj−1 ≤ 2cj−2

and
∞∑

i=j+1

||TRi
(wci(x, tcj ))||Hβ ≤

∞∑
i=j+1

2−ci ≤ 1

so
||w∞(x, tcj )||Hβ ≥ 2cj−1 − 1− ϵ′

and we are done.

159



Chapter 6

Conclusions

6.1 Conclusions
The tools we have developed for this thesis allow us to show a variety of results regarding ill-
posedness, non existence of solutions and loss of regularity, including non-existence of solutions
for SQG in Hs and Ck (in chapter 2, non-existence of solution in Ck,β for gSQG (in chapter 3),
gap loss of regularity for 2D-Euler (in chapter 4) and non-existence of solution for dissipative SQG
in Hs (in chapter 5).
Furthermore, the techniques applied here are versatile, which suggest that they could be applied to
show similar results in other models, such as IPM, Prandtl or De Gregorio. Not only this, but since
we manage to obtain a great deal of information about the qualitative and quantitative behaviour
of the solutions, this could allow us to obtain more general results not related to ill-posedness,
such as norm growth for long times, mixing or instability of solutions.

6.2 Conclusiones
Las herramientas que hemos usado en esta tesis nos permiten demostrar una variedad de resultados
relacionados con el mal comportamientos de soluciones, la pérdida de regularidad y la no existencia
de soluciones, incluyendo la no existencia de soluciones para SQG en Hs y Ck (en el capítulo
2), la no existencia de soluciones en Ck,β para gSQG (en el capítulo 3, la existencia de salto de
regularidad para 2D-Euler (en el capítulo 4) y la no existencia de soluciones para SQG con difusión
fraccionaria en Hs (en el capítulo 5).
Además, las técnicas aplicadas parecen ser versátiles, lo cual sugiere que se pueden aplicar a otros
modelos de importancia, como IPM, Prandtl o De Gregorio, y obtener resultados similares. No
solo eso, pero dado que conseguimos obtener una gran cantidad de información, tanto cualitativa
como cuantitativa, sobre el comportamiento de nuestras soluciones, en principio podríamos usar
ideas similares para demostrar otro tipo de resultados, como el crecimiento de norma a tiempos
largos, la inestabilidad de soluciones o el mezclado de un fluido.
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