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0.1 Summary

In this thesis we study the behaviour of several active scalar equations in spaces where well-
posedness is not expected, namely we study 2D-Euler, the Surface Quasi-Geostrophic equation
(SQG) and the generalized Surface Quasi-Geostrophic equation (gSQG) . Even though one expects
some kind of bad behaviour to happen, such as non-uniqueness, wild norm growth or non-existence
of solutions, it is hard to predict what the behaviour will be for a specific model. Furthermore,
some counter-intuitive phenomena are possible, such as global existence when wild norm growth
is possible.

In chapter 2, we study the SQG equation both in H® and in C*. For H*, s € (%, 2] and C*,
k > 2 a natural number, we obtain wild norm growth as well as non existence of solutions. The
same tools we apply can be used to obtain similar results in other critical spaces, such as W1,
as well as some other supercritical spaces (for example H® with s < %)

In chapter 3, we study the generalized Surface Quasi-Geostrophic equation with more singular
velocities than SQG in the spaces C¥#. For this family of equations, the low regularity of the
velocity suggests the possibility of ill-posedness, but a important cancelation in the evolution
equation makes it so that there is local well-posedness in H*. When considering the spaces C*#,
it is unclear if this cancellation is enough to obtain well-posedness. The results in chapter 3
show that not only there is wild norm growth for this family of equations, but in fact there is
non-existence of solutions.

In chapter 4 we study the 2D-Euler equation, and find initial conditions that produce global
unique classical solutions with instant gap loss of regularity, i.e., they start in some space H?
(s € (0,1)) and for all £ > 0 the solution is, at most, in some given space H* with s’ < s.

Finally, in chapter 5 we study the SQG equation again, but this time we add some fractional
diffusion. Diffusion in general makes it harder for any kind of ill-posedness to occur, since it has
a regularizing effect in the solutions. Despite this, we prove that for Sobolev spaces below the
critical regularity strong ill-posedness can happen and in fact we prove non-existence of uniformly
bounded solutions.



0.2 Resumen

En esta tesis estudiamos el comportamiento de diversas ecuaciones de escalar activo, en concreto
2D-Euler, la ecuacion Cuasi-Geostrofica Superficial (SQG) y la ecuacion Cuasi-Geostrofica Su-
perficial generalizada (gSQG) en espacios donde se desconoce si el problema esté bien propuesto.
A pesar de que lo esperable es que se observe un comportamiento indeseado, como no unicidad,
crecimiento salvaje de la norma o no existencia de soluciones, es dificil hacer predicciones so-
bre el comportamiento dada una ecuacion concreta. Ademas, existen modelos para los cuales se
producen fenémenos contraintuitivos, como la existencia global de soluciones a pesar de existir
crecimiento salvaje de la norma.

En el capitulo 2, estudiamos la ecuacion SQG en los espacios H* y C*. En H*®, s € (%,2],
y C*, k > 2 un numero natural, demostramos que puede tener lugar un crecimiento salvaje de
la norma e incluso que es posible la no existencia de soluciones. Las herramientas utilizadas
servirian para demostrar resultados similares en otros espacios criticos como W™ y en otros
espacios supercriticos como H® con s < %

En el capitulo 3, estudiamos la ecuacion Cuasi-Geostrofica Superficial generalizada en los
espacios C*# cuando la velocidad es mas irregular que en SQG. Para esta familia de ecuaciones,
la baja regularidad de la velocidad sugiere que el problema podria estar mal propuesto, pero
una cierta cancelacién en la ecuacion de evolucion permite demostrar que el problema esta bien
propuesto en H®. Cuando se consideran los espacios C*, no es evidente si dicha cancelacion es
suficiente como para demostrar que el problema esté bien propuesto. Los resultados obtenidos en
el capitulo 3 demuestran que el problema no esta bien propuesto en C**# y, de hecho, puede darse
tanto el crecimiento salvaje de la norma como la no existencia de soluciones.

En el capitulo 4 estudiamos la ecuaciéon 2D-Euler, y encontramos condiciones iniciales que
producen una solucién clasica tanica y global, pero dicha soluciéon sufre instantdneamente un salto
en su regularidad, mas concretamente, la solucion empieza perteneciendo al espacio H® (s € (0, 1))
pero, para cualquier ¢ > 0, estd como mucho en H s’ para un cierto s’ < s.

Finalmente, en el capitulo 5 estudiamos una vez mas la ecuacion SQG, pero esta vez le anadimos
una difusién fraccionaria. La difusion en general favorece que el problema esté bien propuesto,
dado que produce un efecto regularizador sobre la soluciéon. A pesar de esto, demostramos que,
para espacios de Sobolev con regularidad supercritica, el problema esta fuertemente mal propuesto
e incluso se da la no existencia de soluciones uniformemente acotadas.



Chapter 1

Introduction

On this thesis we will study the behaviour of active scalar equations, i.e., PDEs of the form

0
Ef—l—v(f%Vf:O, (1.1)

f(x,O) = fo(x)v

where v(f)) = (v1(f),v2(f)) is a given operator.

Many important equations can be written in this form, such as 2D-Euler (v(f) = V:ATLf),
the surface quasi-geostrophic equation (v(f) = V-(—A)~z f) or the Prandtl equation (vy(f) =
1, 6151796(1)“) = —%(f)), and extra terms can be added to the equation to model specific phenomena,
such as diffusion or external forces. One property that all these equations we mentioned have in

common, is that

dvi(f) _ dva(f)

83:1 8$2

i.e., they produce an incompressible flow. Even though this is not necessary, all the equations that
we will consider in this thesis produce incompressible flows. A very important property of such
equations is that, given a solution f(z,t), if we define

0
50 t) = v(f)@ = oz, 1), 1)
¢(x,0) =

then (assuming v is regular enough) f(z,t) = fo(¢~!(z,t)). This in particular implies that the
LP norms (1 < p < oo) are conserved.

In general, we say that an evolution equation is (locally) well-posed in some space X if, for
any initial conditions fo(z) € X, the following conditions are fulfilled:

e Existence: There exists a solution f(z,t) € X for ¢t € [0, ¢€) for some € > 0.
e Uniqueness: f(z,t) is the only solution fulfilling f(z,t) € X for the time interval [0, €).

e Continuity: The solution (and, in particular, the time of existence) depends continuously on
the initial conditions, i.e., given a solution f(z,t) that exists for ¢ € [0, €), for each ¢y € [0, €),
we have that

Wy £ 0y Fa,0)x —05WPeefo1o] 1 (2, 8) = f(@, )] x =0
with f (z,t) another solution to the evolution equation.

This definition of well-posedness, which is the well-posedness in the sense of Hadamard, is
unfortunately in general a little too restrictive when talking about active scalar equations. The
reason for this is that some spaces, and in particular C*®, have the property that there exist
functions f(x) such that



limeol|f(@ +¢) = f(@)[|cr.e #0,

so that, very often, active scalar equations are not well-posed in C*®, even when the solutions
exist and have nice properties. An example in that regard is the 2D-Euler equation, where initial
conditions in C*® produce unique global solutions but we do not have well-posedness in the
sense of Hadamard. Keeping this in mind, we will consider a different definition of well-posedness
through this thesis that is better suited for active scalars equation:

Definition 1. We say that an active scalar equation as in (1.1) is well-posed in a Banach space
X if, for f(z,0) € X

e Existence: There exists a solution f(z,t) € X for ¢ € [0, ¢€) for some € > 0.

e Uniqueness: f(z,t) is the only solution fulfilling f(z,t) € X for the time interval [0, €).

e Norm control: There exists a continuous function
H:A— (0,00)

with
A:={(a,b) €R?:b>a >0}

such that, for any solution f(x,t), we have that, if t; € [to,to + H(A1, A2)], then

1F (@ to)l[x < A= |If (2, t)][x < Ao

The norm control condition allows us to assure that, if an active scalar equation is well-posed,
then the norm of the solutions cannot grow in a very wild way. Note that in particular H(a,b)
gives us a lower bound for the time of existence for any solution with initial conditions with
1fo(@)llx = a.

The main goal of this thesis is to study the behaviour of active scalar equations in spaces
where we do not have local well-posedness in the sense of Definition 1. When this happens, we
expect that we have either non-existence of solutions, non-uniqueness or a wild behaviour of the
evolution of the norm, and in this thesis we will focus on showing either wild behaviour of the
norm or non-existence of solutions.

We will distinguish between several different kinds of ill-posedness, depending on how bad the
behaviour of the solutions is.

Definition 2. We say that an evolution equation is mildly ill-posed in the space X if there exists
a constant ¢ such that for any ¢ > 0 we can find a solution f(x,t) such that

1 (2, 0)l[x <€ supyepo,q|lf (2, )][x = e

Definition 3. We say that an evolution equation is strongly ill-posed in the space X if for any
e > 0 we can find a solution f(x,t) such that

1
||f(55,0)”X <k Supte[O,e]Hf(xvt)HX > —.

€

There are a few relevant comments regarding these two definitions. First, mild ill-posedness
implies that a continuous function H (a,b) as in Definition 1 does not exist, but it could be possible
to define H (a,b) for b big enough or for b — a big enough. This, however, does not always imply a
very wild behaviour of the solution. For example, when one studies the evolution of perturbations
around a stationary radial solution g(r) € C*< for 2D-Euler, we obtain a system of the form

O Fat) + o) - D (at) + 9(r) + (o) - Vi (2, 1) = 0,

which can be mildly ill-posed in C*® despite the fact that f(x,t) exists for all time and is in C**
if f(z,0) € C** and in fact ||f(z,t) + g(r)||ck.« is continuous in time.



Another thing to keep in mind is that, usually, to show strong or mild ill-posedness we find
initial conditions fo(x) € YN X, with Y a space where we actually have well-posedness, to ensure
that there exists some kind of solution. When this is not an option (for example, when it is not
known if the evolution equation is well-posed in any space), one can consider similar definitions
that work by contradiction: We find initial conditions such that, if a solution exists, then the
norm of the solution will grow in the way specified by Definitions 2 or 3.

The wild growth of the norm that occurs when an evolution equation is strongly ill-posed in
a space X suggests the possibility of finding initial conditions where no solution exists at all: If
a solution grows infinitely fast, it could leave the space X instantly. There are several possible
definitions of what non-existence even means, but the basic one is the following:

Definition 4. Given an evolution equation, we say that there is non-existence of uniformly
bounded solutions in the space X if, for all ¢ > 0 we can find initial conditions fy(z) with
[|fo(z)]|x < e such that, for any solution f(z,t) with f(z,0) = fo(z) and any § > 0 we have

ess-supy o,/ (, 1) | x = o0

Throughout this thesis we will obtain several different results regarding loss of regularity /non-
existence of solutions, some stronger than others, but all of them will, at least, imply a result like
Definition 4.

In order to show strong ill-posedness, we will usually consider what we call pseudo-solutions,
so it is important to clarify what we mean exactly by a pseudo-solution.

Definition 5. Given an evolution equation

of
n =H(f), [ft=0)= fo(x)
with H(f) some operator, we say that f(z,t) is a pseudo-solution to the evolution equation with
initial conditions fy(z) if it fulfills

or _

o7 = H() + Fa.t), f(t=0) = fo()

for some function F(x,t).

Although this definition of pseudo-solution is very general (since F(z,t) can be basically any-
thing we want), we are only actually interested in pseudo-solutions with the source term F(z,t)
small in an appropriate norm. In order to obtain strong ill-posedness in a certain space, we will
find (usually explicit) pseudo-solutions that exhibit the desired behaviour we want to show (i.e.,
arbitrarily fast norm growth), and with F'(x,t) smooth and small enough. In general one expects
that, if F(z,t) is sufficiently small, the pseudo-solution will have the same qualitative behaviour
as an actual solution to the evolution equation, which would then imply strong ill-posedness.

One thing to keep in mind is that, even though one expects that

limF(x,t)%O.f(xa t) = f(l’, t)

this actually depends on the specific evolution equation we are considering, the specific space in
which F(z,t) tends to 0, and the properties of f(z,t), so in particular proving convergence can
be difficult if we do not know f(z,t) explicitly.

As an example we can consider the evolution equation

Of _ 4o
A H
= ()
for f(x) : [0,7] — R, and with H the Hilbert transform. This evolution is locally well-posed in
C® for a € (0,1), but the appearance of the Hilbert transform suggest that it might be ill-posed
in C.

This can actually be proved by considering the family of pseudo-solutions



K
cos(Nix —t)
fN’K(‘%Vt) :Zl Ni2
which fulfil
Ofn. K 5
> —H
ot (fn.x)

/v (2, t =0)||cr <C
.5 (2, 8)||cr > cot In(K)

for some C,co > 0, for t € [0, 7].
Furthermore, it is easy to check that

C
f2 < —
[fn (@, )| < N

for some C' > 0 depending on K.
One can then use this to prove that, if we define

0
fé\;’K = fyx +H(fvK)

Ink(z,0) = fN,k(fCa 0)

then, for any fixed K, for NV big and t € [0, ] we get

= Ct
[ fng(z,t) — fve(e, t)]|m < N

for some C' depending on K. This plus the properties of fy x(x,t) (in particular, the fact that the

function is 2W’T—periodic) allows then us to show that, for N big

C
| f (@, t)]ler > gtln(K)

which proves strong ill-posedness.

1.1 Overview of the thesis

Chapter 2 will cover the Surface Quasi-geostrophic equation, obtaining strong ill-posedness
and non existence of solutions in C* (k > 2 a natural number) and H* (s € (2,2)), as well strong
ill-posedness and non-existence of uniformly bounded solutions in H? (see [39]).

Chapter 3 studies the generalized Quasi-geostrophic equation for singular kernels, and we
manage to show strong ill-posedness and non-existence of solutions in C*# with the specific
values of k and 8 depending the specific kernel considered (see [40]).

In Chapter 4 we deal with the 2D-Euler equation, and we construct unique, global solutions
w(x,t) that lose some regularity instantly, and more precisely

w(z,0) € H®, w(z,t) ¢ H

for all ¢ > 0, for some s’ < s, s € (0,1) (see [41]).
Finally in Chapter 5 we consider the Surface Quasi-geostrophic equation with (supercritical)
fractional diffusion, and construct global unique solutions w(x,t) with

H'LU(J:,O)HHS S €, Sup[m@”ﬂ)(l‘,t)HHs =0

and with w(x,t) € C* for all ¢ > 0 (see [38]).



Chapter 2

Strong ill-posedness and
Non-existence results for SQG

2.1 Introduction

In this chapter we will focus on the study of the Surface Quasi-Geostrophic equation, from now
on the SQG equation.

We say a function 6(z,t) : R? x [0,7) — R is a solution to the SQG equation with initial
conditions (z,0) = 0y(z) if the equation

00 06 06
= 2.1
ot " or, T 0n, 0 @1)
is fulfilled for every x € R? and 6(z,t) is (pointwise) differentiable for (z,t) € R? x [0,T). The
velocity field v = (v1, v2) is defined by

o= =2 A1 = _Ry0
8LE2
Vo = £A 19 = R10
53:1

where R; are the Riesz transforms in 2 dimensions, with the integral expression

I'(3/2 z; —y;)0(y
B2 py [ 1m0,

R;0 =
R

for j = 1,2. We denote A“f = (—A)% f by the Fourier transform Aef f& =g~ f( ).

This model arises in a geophysical fluid dynamics context (see [60] and [88]) and its mathe-
matical analysis was initially treated by Constantin, Majda and Tabak in [27] motivated by the
number of traits it shares with 3-D incompressible Euler system, where they already established
local existence in H® (see also [28] for bounded domains) and in the case of C*% (k > 1 and
1 > a > 0), see [98] by Wu. In the critical Sobolev space H? Chae and Wu [21] proved local
existence for a logarithmic inviscid regularization of SQG (see also [66]). Finite time formation
of singularities for smooth initial data with finite energy remains an open problem for both SQG
and 3-D incompressible Euler equations.

Due to incompressibility and the transport structure of SQG the LP (1 < p < o) norms of
the scalar 6 and the L? norm of the velocity field v = (vi,v2) (kinetic energy) are conserved
quantities of the system (2.1) for sufficiently regular solutions. Global existence of weak solutions
in L? was proven by Resnick in [89] (see also [29] in the case of bounded domains) and extended
by Marchand in [84] to the class of initial data in L” with p > 3. However non-uniqueness of
weak solutions was obtained by Buckmaster, Shkoller and Vicol in [12] for solutions such that
A710 € CyC with 3 < 8 < 2 and 0 < 575.

10



One of the main objectives of this chapter is to construct solutions in R? of SQG that initially
are in C* N L? (k > 2) but are not in C* for ¢ > 0. Note that if we consider a velocity field
v(f) = VEA~(+9() with € > 0, then we have local existence in C* for (2.1). We also prove
strong ill-posedness in H® for supercritical spaces in the range s € (%,2) and for the critical
space H2. Moreover we construct solutions that are initially in H*® for s € (%,2) but are not
in H® for t > 0, and that are unique in a certain sense that we will specify later. For the SQG
equation, there were no strong ill-posedness results in H* and C* prior to the ones obtained in this
chapter. There are ill-posedness results for active scalars with more singular velocities obtained by
Kukavica, Vicol and Wang in [78] and, in the case of SQG, in [55] Elgindi and Masmoudi a mild
ill-posedness result is obtained for perturbations of a stationary solution. This, however, does not
imply mild or strong ill-posedness for SQG. A few days after the results of this chapter appeared
on the arXiv, Jeong and Kim [64] posted an article on the arXiv with a similar result in the case
of the critical Sobolev space H?2.

There are some remarkable results regarding norm growth in the periodic setting for SQG.
Kiselev and Nazarov [73]| showed that there exists initial conditions with arbitrarily small norm
in H® (s > 11) that become large after a long period of time. Recently, He and Kiselev proved in
[59] an exponential in time growth for the C? norm

sup,<p|V?0| L > expyT for v(6y) > 0.

On the other hand, numerical simulations suggested the existence of solutions with very fast
growth of |V6)| starting with a smooth profile by a collapsing hyperbolic saddle scenario (see [27],
[87] and [26]). Such a scenario cannot develop a singularity as shown analytically in [35] and [37],
where a double exponential bound on |V is obtained. A different blow-up scenario was proposed
in [90] where the fast growth of |V6)| is associated to a cascade of filament instabilities.

2.1.1 The main theorems

In this chapter we prove the following results:

Theorem 2.1.1. (Strong ill-posedness in C*) For any ¢y > 0, M > 0,2 < k € N and ¢, > 0,
there exists 0y (x) € H¥H 5 NC* with ||6g(2)||cr < co such that the unique solution 6(z,t) € H* 3
to the SQG equation (2.1) with initial conditions 6y (z) satisfies ||0(z, t.)||cr > Mcy.

Theorem 2.1.2. (Non existence in C’“) Given ¢g > 0, t, > 0 and 2 < k € NN, there exists
Oo(z) € HF1/8 1 CF for the SQG equation (2.1) such that [|fy||cx < co and the unique solution
0(x,t) € HFT1/8 exists and satisfies that ||0(z,t)||cx = oo for all t € (0,t.].

In fact, for the initial conditions given by Theorem 2.1.2 there is no solution f(z,t) € L{°L2
to (2.1) with those initial conditions and ||0(z,t)||cx < M(t), for any M(¢) : Ry — Ry, even if
we allow for ||M(t)||p~ = co. For more details see Remark 2 after Theorem 2.2.2.

Theorem 2.1.3. (Strong ill-posedness in H*) For any ¢o > 0, M > 0, s € (2,2] and ¢, > 0, there
exists a H? function 6y(x) with ||0o(x)||grs < co such that the only solution §(x,t) € H?, with
B(s) > 2 to the SQG equation (2.1) with initial conditions 6y (z) satisfies ||0(z, t)||ms > Mco.

Remark 1. The purpose of this chapter is not to obtain the optimal range of Sobolev spaces in

which strong ill-posedness is achieved. There are refinements to the methods used in Theorem 2.1.3
that would allow us to decrease the lower bound in the interval of ill-posedness.

Theorem 2.1.4. (Non existence in H* in the supercritical case) For any ¢., ¢y > 0 and s € (3,2)
we can find initial conditions (), with ||0o(x)||m= < ¢o such that there exists a solution 6(z,t)
to (2.1) with 6(z,0) = 6y(z) satisfying ||0(z,t)||g: = oo for all ¢ € (0,t.]. Furthermore, it is the
only solution with initial conditions 6 (z) such that 0(x,t) € LC2 N LPL2 (0 < oy < 1) with
the property that ||0(z,t)||ge> < M(t) (1 < as < 2) for some function M (t).

Theorem 2.1.5. (Non uniform existence in H?) For any ¢y > 0 there exist initial conditions
0(x,0) with ||0(x,0)|| g2 < co such that there is no solution 6(x,t) to (2.1) satisfying

€SS-SUP;¢o,¢] [10(z,t)||gz = M
for any ¢, M > 0.
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The proof of Theorems 2.1.4 and 2.1.5 can be adapted to work in the critical spaces W1+%7P,
p € (1,00], but we will not go into detail since that is not the goal of the chapter. For more
information regarding the necessary changes to adapt the proof for these cases, see Remark 5
after Theorem 2.4.2.

2.1.2 The strategy of the proof

Ill-posedness in critical spaces for the incompressible Euler equations was already considered in
the papers by Bourgain and Li (see [9] and [8]) obtaining strong ill-posedness for the velocity in
the 2D and 3D Euler equations in C*, k > 1 and for vorticity in the space H%/? (d the dimension).
In fact, they obtained stronger results: in [8] they obtain a velocity w satisfying, for 0 < to <1

ess-SUPg <, ||, t)||cx = 00,
[[u(z,0)||cr < co

and in [9] the vorticity w satisfies

ess-supg <y, (@, 1)]| 4 = oo,

otz )l 4 < co.

that is to say, they obtained non-existence of uniformly bounded solutions in H' for the vorticity
and in C* for the velocity. Later, analogous results were obtained by Elgindi and Masmoudi in
[55] and Elgindi and Jeong in [54] with a different approach. Recently, Kwon proved in [77] that
there is still strong ill-posedness in H' for a regularized version of the 2D incompressible Euler
equations.

Our strategy in this chapter for proving strong ill-posedness for SQG differs from the previous
works mentioned above since there is no global existence result for SQG in H®. More precisely
for Theorems 2.1.1, 2.1.2, 2.1.3 and 2.1.4, we construct solutions by perturbing radial stationary
solutions 6 = 6(r) and, in order to obtain precise bounds of the errors, we consider an explicit in
time family of pseudo-solutions of SQG for ¢t € [0, T], namely

0_)\"]71\[(7“, Ck,t) 2:>\f1 (r)
sin(Njo — AN 2= Gyt — 7 5)

Nkjk+1 ’

F AN r—1)+1))

J=1

where (r, ) are the polar coordinates, f; are smooth compactly supported radial functions, v, (f1)
is the angular velocity generated by the function fi, the parameters fulfil (A, J, N) € (R4, IN, IN)
and Cp is a constant that arises from the velocity operator. This 0y jn fulfills the evolution
equation

+ ACoH(0x,n) =0,

00z, 5N n 00x,1,n Va(Af1)

ot e T
where H denotes the Hilbert transform with respect to the « variable, and for any fixed A and
J, as N becomes big, this pseudo-solution becomes a good approximation of SQG. The ill-
posedness arises from the unboundedness of the operator H in the C* N L? spaces. Note however
that the appearance of an unbounded operator in our evolution equation does not imply directly
ill-posedness, and for example in the Burger-Hilbert’s equation

of of -
a*‘f%*‘H(f)—O,

although the L™ norm has a fast growth (see [14]) as long as the solution is C'°, Bressan and
Nguyen [11] proved the surprising result of global existence in L? N L.
We denote by 05 s n(r, o, t) the unique H*+1 solution of (2.1) satistying initially

Ox,n (1, 0) =0 s n(r, a,0).

12



We will prove that, for any fixed A\ and J, for sufficiently large N we have
10,3 (ry s t) — By g n(ry )| e < CEN~(GFalk)

where a(k) > 0 and the constant C depends only on the parameters A, J, k and T. With this
bound and the properties of the pseudo-solution we obtain

110,05 (7, ., t)||or > CA2 In(J)t

where C' is a universal constant.
Once we have solutions with arbitrarily large growth in norm we prove non-existence of solu-
tions in C* by considering the following initial conditions

0(x,0) = Y Tr, (Or,.1,.n,(,0))

neN

with Tr(f(x1,22)) := f(z1+ R, x2). By choosing appropriately the parameters (A, )nen, (Kn)nen,
(Np)nen and (Ry)pen we can show that the unique solution 6(z,t) € H*T5 with this initial data
will leave C* instantaneously. In particular the solution (x,t) is not in C* for any time ¢ € (0, 7.

In the case of strong ill-posedness in Sobolev spaces, Theorem 2.1.3, we will use a similar
strategy for s € (%, 2), although the proofs are more involved since we do not have any existence
result for the supercritical Sobolev spaces. However, in the critical case (Theorem 2.1.5) it is not
clear that a suitable pseudo-solution could be constructed by perturbing a radial solution. In
order to overcome this obstacle we need a different strategy. In this case our initial data is similar
to the one consider in [9] with the following expression

J

FO7Ir) sin(2a) 1
ec,J,b((E70) = ZC ] y 5 >b> 0,

=1

where the radial function 0 < f € C* has supp(f) € [3,2], ¢ > 0 and J € N. The main
difficulty when considering this type of initial conditions is that the usual energy estimates only
give existence for a short time interval which does not provide enough growth in H2. To obtain
improved time intervals of existence we decompose our solution as a sum of pseudo-solutions with
initial conditions o
F(O7Ir)b sin(2«)

J
for j = 1,...,J. To finish the proof we perturb this solution with a small H? function localized
around the origin that will experience very large norm growth.

The chapter is organized as follows. First in section 2.2 we prove strong ill-posedness and
non existence for the space C*. In section 2.3 we show strong ill-posedness and non existence for
Sobolev spaces in the supercritical case. Finally in section 2.4 we prove strong ill-posedness and
non-existence of uniformly bounded solutions for the critical H? space.

Cc

2.1.3 Notation

In this chapter we will consider functions f(x) : R2 — R in C* with k a positive integer and H*
with s a positive real number. These spaces allow many different equivalent norms, but we will
specifically use

If (@ ||chZ||M Ll

1=0 5=0

and for H®, when s is a positive integer we will use

@l =3l

1=0 j=0

13



where the derivative is understood in the weak sense.
For non integer s , the standard way of defining the norm is by

17 @) llaze = IF [+ 1R EF 7] llee,

where F is the Fourier transform. We will not require to use this definition to compute the norm
in these spaces through this chapter. For s a positive integer, we will sometimes write

f (@)Ll

where 14 is the characteristic function in the set A. This is a slight abuse of notation since the
function f(x)14 may not be in H?®, but we will use this as a more compact notation to write

3 / s 3m2>2dx>%.

=0 j=0

Analogously, we will use

, 'f(z)
[l f(2)1al|lck .—ZZGSS -SUP e A ( Dz sz).

=0 j=0

We will work both in normal cartesian coordinates and in polar coordinates, using the change
of variables z; = rcos(a), x2 = rsin(w). We will sometimes define f(z) as a function in the
variable (21, z2) and then refer to f(r, ) in polar coordinates (or vice versa), and this is an abuse
of notation since we should actually write, if F(r, «) is the change of variables that takes us from
(r, @) to (z1,22), f(F(r,a)). Furthermore, given a function f(r, ) in polar coordinates, we define

1f(r, a)llzzs = [1F(F ()|,

1f(re)llex = |IF (F~ @)llen-

For two sets Ay, As, we will use d(A;, As) to refer to the distance between the sets

d(Alv A2) = infm€A1,y€A2|‘r - y|

2.2 Strong ill-posedness and non existence in C*

To prove ill-posedness in C* we construct fast growth solutions by perturbing in a suitable way
a stationary smooth radial solution. In contrast, there are previous results ([16] and [17]) where
the perturbation of a radial function led to global C* rotating solutions and enhanced lifespan of
solutions respectively.

In this section we will show that, for a specific kind of perturbation we can predict the behaviour
of the solution with a very small error. The perturbation will be composed of functions of the
form

F(NY2(r — 1) + 1) sin(Nna)

where f is a given smooth function and N,n are integers. Below we will obtain the properties
that will allow us to work with this kind of functions.

2.2.1 Estimates on the velocity field.

In this section we will use the following expression of the velocity field

T — 1
o(6()() = Fgf)p_y @=y)*0)

dyldyg
r2 |z —yl

with v = (v1,v2) and for a vector (a,b) we define (a,b)* := (—b, a).
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We will omit the constant on the outside of the integral from now on, since all the results we

will obtain would remain the same if we were to change Fﬁff ) for an arbitrary (non-zero) constant.

Lemma 2.2.1. Given natural numbers n, N and a L™ function gn(r) : [0,00) = R with support

in (1— N%m, 1+ N;m) we have that, for 6(r,a) := gn(r) sin(Nna), there exists a constant C

(depending on n) such that, for N big enough and r € [1 — N=2,1+ N_%]

r2a’gn (r + h) sin(Nna')
T 0 oy ) - N
o0 —eos(Nma) [ R

< Clgn|lL= N2

do/ dh)

Analogously, for 0(r,a) = gn(r) cos(Nna) we have that

[ (8(., ) (r, @) + sin(Nna) / ria’gn(r+ h) sin(Nna') do/dh|

D I [ e CTO N K
< Cllgn (r)l|=N"12.

Before we get into the proof, a couple of comments need to be made. First, v, refers to the
radial component of the velocity at a given point, that is to say, if we call Z to the unitary vector
in the direction of x then

b (r— )t
v (00))(2) :p.v./ - (@ =y) 8y

R2 lz — y[? Aoy

However, the expression obtained in Lemma 2.2.1 requires us to work in polar coordinates.
Therefore, considering a generic function f(r)sin(ka) and making the usual changes of variables
(z1,22) = r(cos(a),sin(a)), (y1,y2) = r’(cos(a’), sin(a’)) we obtain

1}7-(9( R ))(’/‘, Oé)

(cos(a) sin(’) — sin(«) cos(a’)) f(r") sin(ka’)

= PV. )2 do/dr’
/]RX[WT] " |(r cos(a) — 1" cos(a’))? + (rsin(a) — r’ sin(a/))2[3/2 adr

3 !/
:PV "2 Sln(a_a) A k/d/d/
/]Rx[—rr,rr] ) [(r —77)2 + 2r1'(1 — cos(a — a’))\3/2f(r ) sin(ka’)da'dr
: o A o
= cos(ka)P.V. (r')? S_ln(/oz2 Oé)f/(?“ )_Sln(k‘a - k:/a) - dol di
Rx[—m,n] |(r —r")2 + 2rr'(1 — cos(a — &'))]
in(a’ + h) sin(ka’)
= cos(ka)P.V. pyz— Sl do’dh 2.2
cos(ke) Rx [, (rh) |h2 + 2(r + h)r(1 — cos(a’))|3/2 aan, (22)

where we have used trigonometric identities and eliminated the terms that are odd with respect
to o/ — . Note that in the last line we have relabeled o/ — « as o' for a more compact notation.
Analogously if 8(r, ) = f(r) cos(ka) we obtain

w(0( ., ))(ra) = —sin(ka) / (r 4 py2 S fr+ h)sinkal)

Rx[—,7] |72 +2(r + h)r(1 — cos(a’))[*/2

With this, we are now ready to start the proof of Lemma 2.2.1.
Proof. We need to find bounds for

/ r2a’gn (r + h) sin(Nna')
Rx[—m,7]

/
12+ r2(al 2372 da’dh

sin(a/)gn (r + h) sin(Nna)

_ 12 do/dh
/Rx[-ﬂ,ﬂ“* VTR 20 + Wyr(L = cos(@ )2
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with gn(r) satisfying our hypothesis. We will first focus on

‘/ r2a’gn (1 + h) sin(Nna')
Ih2 + r2(a)2[3/2

3 + h)sin(Nna')
_ h 2 bln(O( )gN(r d /dh
/A(T +h) |h2 +2(r + h)r(1 — cos(a))|3/2 ol dh|
with A := [-2N~1/2 2N~1/?] x [-2N~1/2 2N~1/2]. This is accomplished in several steps. It
should be noted that the constant C' may depend on n and it may change through the proof, as

it is the name we use for a generic constant that is independent of N and g.
Step 1:

da’dh (2.3)

(sin(a’) — & )gn(r + h)sin(Nno') |,
h)? da’dh
|/ + |h2 4+ 2(r + h)r(1 — cos(a’))|3/2 o/dh|

&' Plgn (r + b))
= C/A(T +h) |h2 + 2(r + h)r(1 — cos(a))|3/2

< [ Jow(r+1)lda’dn
A

< CN7Ylgnllr

dadh

Step 2: Defining

1 1
[h2 4 2(r + h)r(L = cos(@)) P2 [h2 + (r + h)r(a/)?) 32

F(r,h, o) :=
we estimate the following integral by

| / (r + h)%a’gn(r + h)sin(Nna')F(r, h, o/ )da' dh)|
A

(o)t
|h2 +2(r + h)r(1 — cos(a’))|?/2

< C/ lgn (r + h)|da/ dh
A

<c / o llg (r + 1) da'dh
A

< CN"Hlgn |z

Step 3:

22 o' gn(r + h)sin(Nna') o
[ ) aan

lgwtr 41|
<C h do'dh
/ W+ o+ myr(ay2 e ™

ox(+ml
<C do'dh
<0 [ T R

< CN7Y2||gn]|L

Combining all these three steps we conclude

|/ r2a/ gy r—i—h) sin(Nnao/ )do/dh—/ (r + h)2sin(a’)gn (r + h) Sin(Nnal)do/dh\
|h? +r(r 4 h)(a/)2[3/2 A B2 +2(r+ h)r(1 — cos(a’))|3/?

< Cllgnllp=N""2,
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and to bound the contribution of the integral in A we also need

N 2./ sin( N l
|/ragN (r+ h)sin(Nna')  r?ad’gn(r + h) sin( na)do/dh|

2+ G+ @ PP i ()

\2 h|
< C/ of r+h (az) | do’dh
A| llgn ( )|\h2+%(a')2)|5/2

h
A |h2+%(0/)2‘1/2
< CN7Y2||gn]|pe.

Therefore adding and subtracting

/ r?2a’gn(r + h) sin(Nna')
a |2+ (r+h)r(a)?)3/2

0 (2.3) we obtain that

Ix < C|lgn||n=N"12,
Finally, we need to deal with the integral outside of A. First we bound the following integral

Rx[—m,7]\A |h2 +r2(a’)2 3/

_ 2/ / 7“20/91\;(7’ +2h) Sigu\;na/)da’dh.
[~2N-1/2 2N-1/2] J[2N~1/2 7] |h2 +r2(a’)2[3/

To do this we compute, for fixed arbitrary h € ( ON~2, 2N~ l) and r + h € supp(gn), the

integral over an interval of the form o € [k2X — -7 (k+ 1)7 — 527;] (which we will denote by

[ak, @g11]). Note that it has the length of the period of sin(Nna) and that sin(Nna) is an even

function around the point k2% Nr t o
If we define
a/
H(! hyr) = T T 12 (/22
we have that
. / Qp + Q41
= / sin(Nna )(H(f, h,r) (2.4)
(o, ap41]
OH (XL hor) g+ apger,  O2H(c(e),h,r) 1,  ap+ app
_ 1Yy = _ Rk Rl d l)
* BL% (a ;. )t Do p(@ > )
°H ! 1
_ / sin( Nna/)LW,(a/ _ O Gkt yag
[ak7ak+1] 8a 2 2
. (677 + AL41 2 1 /
<C |sin(Nna')|(a/ — ) do
[ak 04k+1] 2 |h2 +7’2Oé%|2

<(5) e eaE

where we have used a second degree Taylor expansion around % for H, and c¢(o’) is where
we need to evaluate the second derlvatlve to actually obtain an equality. Now, adding over all the
intervals [y, ag 1] with 7 — 7= > ap > 2N~ 1/2 we get the upper bound
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27

=" 2m 3 1 2m 3 1
(z) rear = 2 (%) wreap
2 Nn/ |h? +r2ai|> — 2 Nn/ |h? +r2ai|?
ap>2N-1/2 > N/2n

2 3 [ 1
SC( 7T) /1/2 2 2(p 2T iy 22dm
Nn N2y B2+ r (2 — o)

™

2m\3 [ 1
B
Nn) S, T Ga B

T

o) (7)o s v,

IA

IN

where we took IV big to pass from the third to the fourth line. The only contribution missing now
from the integral in the o' variable, if we call ay, the smallest oy, such that oy > 2N~Y2 and aeo
the biggest one with m > o, is

/

«
sin(Nna') ——————————dd/,
/[‘2N1/2,ak0]u[o¢m,rr] ( ) |h2 + T2(0/)2|3/2
but
R ) , o )
|/2N71/2 sin(Nna )Wda | <C, (2.5)
| [ sin(Nna) - do’| < . (2.6)

|h2 £ r2(a)2|3/2

Combining (2.5),(2.6) and the bound we obtained for (2.4) and integrating with respect to h
we get

(67788

|2/ / r2o/g]\;(7“ +2h)/8i2(3]\£na/)da'dh|
[—2N1/2,2N-1/2] J[2N-1/2 ] |h2 + 72 (/)23

S/ Clgn (r + h)|dh < Cllgn|L~N""2.
[—2N1/2,2N~1/2]

The term

| / (r + h)? sin(a/)gn (7 + h) sin(Nna')
Rx[~m.7]\A 1% +2(r + h)r(1 — cos(a))[3/2
is bounded in a similar fashion, integrating first with respect to o/ in intervals of the form [ag, g4 1]

and then bounding the parts that are not covered exactly by said intervals (as in (2.5) and (2.6)),
and with that we would be done.

do’ dh|

O

Now that we have a manageable expression for the radial velocity we are ready to compute it
explicitly (with some error) for some special kind of functions.
Lemma 2.2.2. Given natural numbers n, N and a C? function gn(.) : R — R with support in
the interval (1 — N_Ql/Q 14 %/2) satisfying ||gn||c: < MNY? fori = 0,1,2 there exists a constant
Co # 0 (independent of N, n and gy ) such that for € [1 — N~2,1+ Nz,

- N sin(Nnhs)hg
c - ) L2
[Cogn(2) /]Rx[_ﬂ,ﬂ] 9N @+ h) G e

< CMN~/2, (2.7)

dhydhs|

with C' depending on n.
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Proof. The strategy of this proof is to first show that

- ~ sin(Nnhg)hg
hy) — ————55dh1dh
< CMN~Y2, (2.8)
and then prove that
. ha
Iy, = Nnhg)——5—5=dh1dh 2.9
N ~/1R>< [—m,7] Sln( " 2) (h% + h%)B/Q e ( )

is a Cauchy series with respect to N, satisfying
1INy — Ingin] < Csup(Ny, Np)~'/2 (2.10)

with C' depending on n.
Combining both of these results and taking

Co = th—onN,n

we obtain (2.7), and we only need to check that Cy is different from zero and independent of n.
We first obtain bound (2.8), by noting that, due to parity

ha
T+ hy) — Z))sin(Nnh
| NN (gn ( 1) — g (Z)) sin(Nnho) CETIRE
iy / (gN(Z 4+ h1) + gn (T — h1) — 29N (Z)) sin(Nnha)hs
(0,2N~1/2]x [—7,7] (h? + h3)3/2

dhydhs)|

dhidhs|.  (2.11)

Next we fix some h; € (0,2N ’%) and obtain bounds for the integral with respect to hy. This

is done as in Lemma 2.2.1, dividing in periods of length 2% starting at 5n7» and approximating

Nn
% by its second order Taylor expansion, since the first two orders will cancel. That way, for
1 2

the interval with hy € (k2% + 57—, (k 4+ 1) 2% + 55—] we obtain the bound

2Nn>’ Nn
(D) ¥+ 2im h 27 \3 1
|/ sin(Nnhy)——2—dh, gc(—) S S— (2.12)
R 35+ ofm (h} +h3)2 | Nn/ (hi + (F5)?)?

We add periods contained in the interval [0, 2N ~1/2] and we denote by ks, = koo (N, 7) the biggest
integer k such that (k+1)2% + ;2 < 2N~1/2 to obtain that

(koo 1) R+ 2fm ho
|/ sin(Nnhg) ————dhs|
R (b1 + h3)>
Eoo A
21\ 3 1 27\ 3 oo 1
= C<7 —gc(i) / T RNy iv e
peEA L (h%Jr(%)z)z Nn o (h3+(%Z)?)?
2m\3 [F 1 or 3 Rt
co(ZY [T w2 &
) Jo GO fue GER
2m\2 1
<o) =
- C( n) h3

This allows us to bound the contribution to (2.11) when hy > % by dividing it into three parts:
1) If hy < 2‘;’\,—“”:

2N71/2

\ /m(gN(£+h1)+gN(icfh1) —2gn(7)) cos(Nnhs) &
0

(CEEE

27

n
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1/2

2N~
< |c/ Mh2N dh1| < CMN~YV2,

2) If 2= < hy < (koo + 1) 2E + 52—

sin(Nnhs)ha

me /(kOO""l) nt I
(1 + )77

(gN(Z + h1) + gn (T — h1) — 2gn(T)) dhadh, |

v Foo t 1) R+ 2frm sin(Nnhga)hs

oN~
< /fv" lgn (Z + h1) + gn (T — 1) — 29N (T)] |/2§)$ GEEL dha|dhy

—1/2

2N
2m\2 1
< IN(=) —dh < -t :
< O/h Mh1N<Nn> h?dhl < CMN'log(N)

3) If (koo + 1) 2E + 55— < hy < 2N~/

oN—1/2 —1/2
A (g (o) + g (= ) = 200(2) T
(koot1) 7%+ 577 ( 1T
2N 1/2
<C Mdh, < CMN~%.

27
Nn

sin(Nnha)ha

dhadh
o

Finally, we bound the error when hy < %:
1) If |hy| < 2N—1/2

1/2

2N~
ho
|/ / (94 ) + 05 (3 = ) = 20(3) c08(Nha) s dhod|

1/2

e 2 1 1/2
< Mhi{N ————=<dhodh; < CMN™"/=.
_/ / 1 (h%+h§) 2 1>

2) If |hy| > 2N ~1/2

o sin(Nnha)ha
h —hy) — 2g () SN R )2
[T oG )+ a5 = ) = 20w (0) G e dhadi|
< /N"/ Mian Y i, < cMN!
- N-1/2 2 ! (h% +h%) 200 = '

Combining all these bounds we obtain (2.8). Therefore, we have that it is enough to prove
that

- . ho
|Cogn (Z) — /]RX[ ]gN(a:) cos(Nnhg)mdh 1dhs|

< CMN~V2

which is equivalent to studying the behaviour of Iy ., defined as in (2.9).
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We start by transforrying the integral with a change of variables hi := Nnhq, he := Nnhao,
although we will relabel hy, hy as hyi, ho to simplify the notation.

ho
T in(Nnhs) ——5—==dh1dh
gN(x)/[—QN1/2,2N1/2]><[—7r,7r]81n( " 2>(h2+h2)3/2 e
ho

= T sin(hg) ———————dhy dhs.
gN( )/[QnN1/2,2nN1/2]><[Nnﬂ',NnTr} ( 2) (h2 h2)3/2 ’

If we compare the integral for different values of N, N7 > Ny we get
I 1 = in(h ha dhydh
Nin = Iy = [ sin 2)m 2

with
A= [—2nN21/2, 2nN21/2] X [Nonm, Nynm| U [—2nN21/2, 2nN21/2] X [=Nynm, —Nanm),

B= [2nN21/2,2nN11/2] X [=nNym,nNy7| U [—Qanl/Z, —2nN21/2} X [-nNym,nNy7].

To get an estimate for the integral on A we use symmetry to focus on he > 0 and we separate the
integral into three parts, ho € [27ko + 5, 27 (koo +1) + 5] (With kg = ko (N2, n) the smallest integer
with 27kg + § > Nonm and koo = koo (Nl, n) the biggest one such that (koo +1)2m + 5 < Ninm),
hs € [Nonm, 27rk0 + 3] and hg € [(koo + 1)27 + 5, Nin7|, and we estimate each part separately:

1) If he € [27ko -l- 7.2m(kos + 1) + 3]

2mNy/? p2m(keot 1)+ ho
/ / Sin(hg) 7dhgdh1 ‘
2

20N} 2 Jonkg+ (h3 + h3)3/2
2nN21/ koo 2nN1/2 1
< C dh <C — dh
- / 2nN}/? Z (h3 + (k2m)?)? ( ! / 2an/2 (b1 + k2m)* !
2nN1/2 Nin 2nN1/ 1
<C ————dxdh; < C — =dh
/ 1/2 /NQ‘IL_Z hl + 3;271') rany /Qan/z hl + N2n)3 1

N;Tn
2) If hy € [Nynm, 21k + X
/22:1]\;1//2 /J\Z:i’+2 sin(h2)(h2+hh2)3/2dh2dh1| < 52 ,
3) If hy € [(koo + 1)27 + T, Ninm]

Q"Nl/ Ninm ha C
sin(ha) g7y dhadhy| <
\/2nN1/2 A (koot+1)+%Z (h2 + h,2)3/2 N3/2

For the integration in B we use a similar trick, using parity to consider only he > 0 and
separating in the parts ho < 57”, 57” < hy <2m(koo + 1) + 5 and 27m(koo + 1) + § < ho < Ninm,
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with ks = koo (N1,7n) the biggest integer such that (koo + 1)27 4+ § < Nynm: 1) If 57” < hy <
27m(koo +1)+ 5

N2 2w (koot1)+ 3 hy
/ / Sin(hg)idhgdhﬂ
2n 57

Ny/? (h2 4 h3)3/2
2nN}/? koo 2nN;/? k 1
——————5dh < C ——dh
/2an/2 231 ™22 2nN,/? Z « (h1 + k2m)* '
onN}/? JHan 2an/a 1
—— —dxdhy < C dh
2n1\/1/2 / (h +9927T) = 2nNL/2 h
<
- N277,2
2) If hy < 38
mN}/? e
| 2nN1/2 o Sln(hQ)mdhgdhﬂ < n27

2nN1/ Ninm
. ha C
/2 172 /27r(km+1 gsm(h2)(h h2)3/2dh2dh1|< 3/2

Putting together the estimates in the regions A and B we have that limy_ooIn, = Co(n),
and that |Cy — Iy.,| < CN~'/2. The only thing left to do is to prove that Cy is indeed different
from 0 and independent of n.

To prove that Cy(n) is actually independent of n, it is enough to prove that, for two arbitrary
integers ny, na,

th—moIN,nl — IN,ng = 0

The proof is equivalent to that of (2.10), so we will omit it.
To prove that Cy # 0, we start by focusing on the integral with respect to ho for any fixed hy
on an interval of the form [-Km, K7,| with K € IN

ha
in(hg) ———-=dh
/[—KW,KTr] sin( 2)(h%+h§)3/2 ’
/ (he) e — [sin(ha) ]
= cos(hy) —s———s—=dhy — |sin(hy) ———s—
[— K, K7l ? (h3 + h3)1/2 ? ? (h3 + h3) /2 hy=—kn

1 1
- c08(h2) —s—————dhy = 2/ c08(ha) —s—————dhs,
-/[—KmKﬂ'] (h3 + h3)1/2 [0,K 7] (h? + h3)1/2

and we can use this property to compute the integral in [-2nN'/2,2nN/?] x [~ K7, K7] as

2nN'/? K= Kr p2nN'/? 1
(ha) —5——5—75dhadh (h2) —5—5—75dh1dh
/Qan/z / COS 2 h2 + h2 1/2 200 = / /Qan/Q COS 2 (h2 =+ h%)l/Q 18052

2anN1/2
T 1 o N1/2 4n2N
= h —  _dxdhy =2 ho)l 14+ —\Y2an
/0 cos( 2)/_%1{21/2 CEESE xdho /0 cos(hs) og( " +(1+ 7 )/ ) dhs
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o N1/2 An2N ApN1/2
)!/%) = log(———))dh>

K
—9 142
/0 cos(hz)(log( » + (14 2 ;

Km 1/2
AnN

+2/ cos(ha)log( nh )dha,

0 2

and we can evaluate the last line by checking the two integrals separately

Kn 1/2 Kn
AnN
/ cos(ha)log( n Ydhy = f/ cos(ha)log(hg)dhs
0 0

ha
Kr
=— [log(x) cos(z) — Si(m)]o = Si(Km) >0,

where Si(z) = fOGE %dt denotes the Sine integral function, and

Kn 1/2 2 1/2

2nN An*N AnN

[ costhaltog(R + 1+ 2172 —1og(H

2
Kr 2 1/2 3
ha 4n?N ., 20N CK
1 = dhy < 222
—/0 A h2 ) ho Jdh, <

Furthermore, we can bound the integral outside of the interval he € [—Kn, K, 7]. The par-
ticular way we divide the integral depends on the parity of K and Nn. Here we will obtain the

bounds in the case K even and Nn odd, the other cases being analogous:

2nN1/2 Nnm h
(h2) —5———5—=75dhadh
/QnN1/2/ COS 2 h2 ¥ h2)3/2 2 1|

onN1/2 ML onNY2  Nnx
</ Z ;dh +/ / dhgydh
T om0 (B3 4 (2mk)2)2 ' 2nN1/2 J(Nn—1)n h2+h2 2
-2

onN1/2 FEt -1 C
<C dh
= /0 ,; h1+2 TN

2
2nN1/2
1 C C C

<C —dh, + < 2 =
- /0 (b +2m(5 —1))3 "TNE —(K—2) N3

Combining all these together we get that, for any K < nN

2nN1/2 nNw 1
cos(ha) —5———5—=dhadhy
/ / (h? 4+ h3)1/2

2nN1/2

c CK? C
> Si(Kr) — (———)? — -
> SUKm) — (5~ ~ NI

and by taking K big enough so that w — (%)2 > 0 and then N big enough so that
O

. 3
Sz(;(ﬂ) —CK” _ € - we are done.

We can now combine both lemmas to obtain
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Lemma 2.2.3. Given natural numbers n, N and a C? function gn(.) : R — R with support in
the interval (1 — 71/2 1+ 2 ) and ||gn||ci < MN2 fori=0,1,2 , we have that there exists

a constant Cy # 0 such that, for re(1—N"Y214 N2,

|vr-(gn (r) cos(Nna)) — Cocos(Nna)gn (r)] < CMN~—/? (2.13)

with C' depending on n but not on N or g.
Analogously, we have that

lur(gn (1) cos(Nna)) + Co sin(Nna)gn (r)] < CMN~Y? (2.14)
with C depending only on n.

Proof. We already know by Lemma 2.2.1 that

v (gn (1) cos(Nna)) — cos(Nna)/ r?a/gn (r + h) cos(Nna')

Rx [—,7] 12 + 12()2]3/2 do’dh| (2.15)

< Ollgn (r)||=N""?

and, by a change of variables, we have that

r2a’gn (r + h) cos(Nna') dhde/ o’ gn(r + hr) cos(Nno' )da'dh.
N L S ORI o [h? + a2[3/2

However, for any fixed r € [1/2,3/2], we have ||gn(r + rh)|
applying Lemma 2.2.2 we get

ci < 2'lgn(r + h)

ci and thus

o' gy (r + hr) cos(Nno/ _
|Cogn (7 //[ 8 |h2—|—0)/2|3/(2 ) do’dh| < 2CMN~Y2, (2.16)

and combining (2.15) and (2.16) finishes the proof of (2.13).
We omit the proof of (2.14) since it is completely analogous to that of (2.13). O

All these results will allow us to compute locally the radial velocity with a small error, but we
would like to also have decay as we go far away from r» = 1. For that we have the following lemma.

Lemma 2.2.4. Given a L* function gn(.) : R = R with support in the interval (

N;/z), and let 0 be defined as

O(r, ) := sin(Nna)gn(r)

with N,n natural numbers.
Then there is a constant C (independent of gn) such that, if N is big enough and 1/2 >
|r —1| > N=Y2 or r > 3/2, we have

Cllgn|lz=

|Ur(0)(7°,06)| < m

Proof. To estimate |v,.(0)(r, a)| we will use expression (2.2) and therefore we need to find upper
bounds for

in(a/ h) cos(Nna')
h 2 Sln(a )gN(T + d /dh .
|/]R><[ m](r+ ) (124 2(r + h)r(1 — cos(a) /2" |
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N~V
2

sin(Nna)da = 0 and a degree one Taylor expansion around o = k- 2” + 5, for

Let us fix h such that r + h € (1 — 1+ N;/z) and with » > 1/2. Using that

f(l-‘rl) b

sin(a’)
|h24+2(r+h)r(1—cos(a’))

7z We can bound the integral over a single period

‘/ sin(a’) cos(Nna') do!|
k22 (k1) 22 W2+ 2(r + h)r(1 — cos(a))[3/2

C 1
< do’
/[k s (k1)) N [B2 1 2(r + h)r(1 — cos(a’)) P2
C 1
S 2 2w |13

with ¢ small and C big, where we used that r + h,7 > 1/2 and that there exists ¢ > 0 such that
1(1—cos(e/)) > (')? if o« € [—m,7]. Adding over all the relevant periods we obtain

- C 1 Ae 1
D W < da
= (Nn)? [+ k312~ S (Nn)? b+ ca g7
Nn 1 1
C’Nni?)dx < C]\fni2
- |h27rc ‘ |h27rc B 1‘
C’ 1 C 1
S Nah e S NahE
Furthermore, since the support of gn(r) lies in (1 — 1/2 , 14 N;l/z) and |r — 1| > N71/2 we
have that |h| > lr;“, so, by integrating in h we get
¢ g (r + 1)
— h)? 22 dh
/]RNn(r—i— ) h?
C C
< _ wdh < —7——— oo
< /,.+h_1e<-fv;/2w;“> Nafr — 1 91e= 4 < e lolle

2.2.2 The pseudo-solution method for ill-posedness in C*

As mentioned in Definition 5, we will say 6 is a pseudo-solution to the SQG equation if it fulfils
that

00 _ 00 _ 00
“ It +F —
ot Ul(ﬁ)axl —i—vg(ﬁ)a s (z,t) =0
_ 9 _ _
0(B) =~ 5~ (~8)"/%0 = ~Raf
oa(@) = 2 (CA)2G = R0
2 P 1

0(x,0) = by(z),

for some F(x,t).
We will work with initial conditions of the form
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K
sin Nka
A(fi(r )+f2(N1/2 1)+1) Z N2k3
k=1

with IV and K natural numbers, 1 > A > 0 and where f; and fs satisfy the following conditions:
e Both f1(r) and fo(r) are C functions.

e f5(r) has its support contained in the interval (1/2,3/2) and f; has its support in (1/2,3/2)U
(My, Ms) with some My, My big.

o A1) _ 10 (3/4,5/4).

o fo(r) =1in (3/4,5/4).
grralnE) . . .

¢ ——— is 0 when 7 = 1, k = 1,2, where v,(f1) is the velocity produced by f; in the
angular direction.

We will use these pseudo-solutions to prove ill-posedness in C?, and at the end of this section
we will explain how to extend the proof to C¥, k > 2.

It is not obvious that the properties we require for f; can be obtained, so we need the following
lemma.

Lemma 2.2.5. There exists a C*° compactly supported function g(-) : [0,00) — R with support
i va(g())(r)
n (2,00) such that L(r =1) =a; withi=1,2 and a; arbitrary.

Proof. We start by considering a C*° function h(x) : R — R which is positive, with support in
(=1/2,1/2) and [ hdx = 1. We define the family of functions

f’”h"Q (T) = nlh(nl(r - n2))’

with no > ny > 2, ny,ny € IN. These functions are C'°° for any ni,ns , and are supported in the
interval (ny — i, ng + ﬁ) Now let us consider the associated family of vectors

V= Uni,na Vm,nz,
with

v, 2
Vg = (2elmama) gy Fvellnso) ()

Note that to prove our lemma it is sufficient to show that this family is in fact a basis of
R2. Before we can prove that this is the case, we need to find expressions for Vi, For our
purposes it is enough to compute Ay, n, Vi, n, since these vectors will span the same space as long
as Apy,n, 7 0.

To begin with, we deduce the expression for v,. Proceeding in a similar way as for v,., and for
simplicity only considering the case when 6(r, @) = f(r) we get

Uoz(9<'7 '))(rv a)

L=y

R2 |z —y|3 dyrdys = P.V. /]R2 e (z —y) - (0(y) — O(2))

lz -yl
_ o F7) = f(r))(r — r'(cos(a) cos(a) + sin(a) cos(e))) , /s
=PV /]RJrX[,T’,r] |(rcos(a) — 1'cos(a’))2 + (rsin(a) — r'sin(a’))?|3/2 da’d

r—1'cos(a’ — a) o (f(r') — f(r))da'dr. (2.17)

=P.V.

dy1dyso

=PV. !
Ry x [—m,7] " |72 + ()2 — 2r1r'cos(a — o))
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Moreover, since we will be considering functions with support in (2, 00), after relabeling o — o’
as o/ we end up with the expression

e / r— T/COS(O/) / rg !
P.V./2 /_ﬂr 2T |3/2(f(7")_f(7“))dr do!.

N2 — 2rr'cos(a’))
Furthermore, if we write

r —1'cos(a’)
F ) ,7 ' = /
o) = o e 2rricos(@) P2

for r = 1, we can use differentiation under the integral sign and obtain

le)/@ ) OL (10 ') = D)o

6T‘j [—m,7] (’97“j
But for f = f,, n, we have that

6JF ’ ’ r g / 8JF , . C
_— ni,n d d — _— , , d g =,
| (2,00)x[—m,x] O G (—,x] O (r,m2, 0 )de| n

with C depending on r and, in particular, since span(V') is a closed set, by taking limp, — oo Vi ns
we get that

oOF O%2F
( / OF 1 ng, o), / B 1 . o)da) € span(V)
[,ﬂ._’ﬂ.] (97’ [,ﬂ.’ﬂ_] 87‘2

Furthermore, we have that

88—1:(7’77”,0/)(7“ =1)

_ r’( 1 B 3(r —r'cos(a’))? i )(r _ 1)
|72 + (r')2 — 2rr'cos(a/) 372 |r2 + (r')2 — 2r1r'cos(a’)|5/2

and, integrating with respect to o/ we get

OF N 1 — T 1
/[_m] 5, (mn2,a)(r=1)d L (1+0(5)).

With the second derivative we obtain
0’F
—(r, 7", a)(r=1)

or?
B —7"( 9(r — r'cos(a’)) 3 15(r — r'cos(a’))?
N |72 + (r')2 — 2rr'cos(a/)[5/2  |r2 + (r')2 — 2rr'cos(a’)|7/2

)(7‘:1).

Now, before we get into more details regarding this value, we note that

, 9(r — r'cos(a)) 15(r — r'cos(a’))3 _
" (| 12+ (1")2 — 2r1'cos(a)[P/2 12 + ()2 — 2rr'cos(a)|7/2 |) (r=1)= (r")3”

Therefore, we have that
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1 1 1
+0
oy * ) e
and again since span(V) is a closed set, the vector (1,0) belongs to span(V’). Now we only need
to prove that there exists a point r’ such that

, 9(1 — r'cos(a’)) 15(1 — r'cos(a’))? ,
— - d 0
/[—mrr} " (|1 + ()2 = 2r'cos(a/)[5/2 |1+ (r')2 — 2r’cos(a’)|7/2|> o’ 70,

): O( )) € span(V)),

so that we can find a vector V,,, ., of the form (a,b) with b # 0. But, for example, using that, for
0 > 0 and 7’ big

1 1 2 C

(14 ()2 — 2r'cos(a))? + (1+(r")2+2r'cos(’))? (14 (17)2)? = (r7)2(+1)

one can check that

/ —r'( 9(1 — 7' cos(a’)) 15(1 — r’cos(a’))? )do/
[, 1+ ()2 = 2r7cos(a/)[3/2 |1+ (r')2 — 21'cos(a’)|7/2]

C 1
~ e oy

(7,/)4 )

with C # 0, and taking 7’ big enough we are done.
O

Therefore, to obtain f; with the desired properties, we first consider a radial C*° function

f1(r) with support in (1,2) and derivative 1 in (2, 2) and then define

fi(r) = fi(r) + fulr)
with fi(r) a C* function with support in [2, M] such that
ok va (f1(r)+F1(r)(r)

ork =0

for r =1, k = 1,2 and such a function exists thanks to Lemma 2.2.5.

Once we choose specific f; and fy, this family of initial conditions has some useful proper-
ties that we will use later. First, for any fixed K and A our initial conditions are bounded in
H?*1/4 independently of the choice of N. Furthermore, the C2 norm is bounded for any fixed A
independently of both IV and K, and can be taken as small as we want by taking A\ small.

For any such initial conditions, we consider the associated pseudo-solution

K : Ua(fl)

_ sin(Nka — MtNk—=2 — \Cyt

s (rot) == M) + (N2 1)+ 1) Y I N7 W) ey
k=1

where Cj is the constant from Lemmas 2.2.2 and 2.2.3. We do not add subindexes for f; and fo

since we consider them fixed from now on. Furthermore, the constants appearing in most of our

results will also depend on f; and f3, but, since we consider them fixed, we will not mention this.
This function for N > 4 satisfies

00y ke N (r, a,t) n 90x kN va(Af1) i OAf1

ot da r or - (Oxk,N) =0 (2.19)
with 7T
0, (f(r) cos(ka + g(r))) = Co f(r) cos(ka + g(r) + E)

if k # 0, and v,.(f(r)) = 0. Note that, for arbitrary fixed T, these functions satisfy that
[10x k N||g2+1/4 < CAK, with C' depending only on T
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Furthermore, we can rewrite (2.19) as

0. kN (1,0, t) n I0x. k.~ Vo (Ork.N) n O0\KkN -

ot Jda r or orlB k)
00 xe.n va(Mf1 — 0 ONf -0 7
L 9k (A1 — O kx.N) + (A1 /\’K’N)UT(GA,K,N)
Oa r or
ONf1

+

o (0, (Ox e, N) — vr(Ox k. N)) =0

Therefore @ is a pseudo-solution with source term

Fy\ g n(z,t) =
0 w1 — 0 AN —0 _ A\ _ _
Aa,;(,zvv (A1 g AK,N) n (M1 arA7K7N)U7'<9’\’K’N)+877{01(67'(6/\’]{’]\7)_UT(Q/\’K’N)).

Next we would like to prove that this source term is, indeed, small enough to obtain the desired
results. We start by proving bounds on L? and in H? for Fy x y(,t).

Lemma 2.2.6. Fort € [0,7] and a pseudo-solution 0 x n as in (2.18) the source term Fy i n(z,t)
satisfies

|| Fx v (@, 8)] |2 < ON -3/
with C depending on K, X\ and T.

Proof. We start bounding the term ‘%‘fl (0, (0x.5.5) —vr(0x.k.N)). First we decompose each func-
tion

sin(Nka — XN 2= _ \cot)

N2k3
_ sin(Nka) cos()\tN@ + ACot) — cos(Nka) cos()\tN% + ACot)
N N2k3

kva (f1)
and using that Tgl(r =1) =0 for k = 1,2, then for 7 € (1 — 2N~'/2,1 + 2N~1/2) we have
that
ava(fl)

C
<<
or N

and thus

3005(/\t]\7k% + ACot)
l or
dsin(AENE =) 4 ACot)
| 5
Therefore, we can directly apply Lemma 2.2.3 to obtain

|l < C

|~ < C.

sin(Nka) cos()\tN% + ACot)

vy (fo(NY2(r — 1) + 1) N3 )
- sin(Nka) cos()\tN% + ACot) C
_UT(fQ(Nl/Q(T_1)+1) N2k3 )| S N5/2)3°
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cos(Nka) cos()\tN% + ACot)

[ (fo(NV2(r —1) + 1) N3 )
_ cos(Nka) cos()\tN@ + ACot) C
*”r(f2(N1/2(7’*1)+1) N2k3 )< Nb5/2k3"

With this we can estimate

ENTYE T onfy of C
] ) 2 1 2
[ ]GROk = 0Bk w)dodr < (192 i s

For r € (1/2,1-N~Y2)U(1+N~'/2 c0), we use that 7 is zero in those points and Lemma 2.2.4
to obtain

N AL o 2
/1/2 /,W( or (vr(Ox,x,8) — 0 (0x,1,N)))“dadr

B A Y]
< )2 _MJ2ME= y2504
= N4(H or |lLe) /1/2 / (N3/2|7’—1|2) aar

c . of
(12 (1 ol )2

IN

and similarly

e T ONf = c of
Lo ] i@ oo < s (15 Pl

Combining all of these inequalities we get
ONf1 - C
HW(UT(Q) —0,(0))]]L> < NZT3/d
with C' depending on A\, K and T

90, k. N va(Af1—0x k.N)
(e} T

N

For the term we simply use || af’” PR % and

Va(Af1 —ék,K,N)l _ || , <
r supp(Ox, ke, w)11L* = "Nroy1/g

SO

||8§>\,K,N Va(Af1 = Oxk.N) e < C
Oa r L2 = N3+1/a

Similarly for Wh;iw%(é,\ K,~N) we have that

~ C O(0x kN — A1) C
or(Ox,,8)|| L2 < NZii/a and || o 2l < N
SO
O(0xk.N—A1) 7 C
| 2OseN Z AN g e )lls < ez
which finishes the proof. O
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Lemma 2.2.7. For t € [0,T], given a pseudo-solution O x n as in (2.18) the source term
Fy\ k. n(z,t) satisfies

13,5, v (2, 1) | s < ONO/
with C depending on K, A\, and T.

Proof. To prove this we will use that, given the product of two functions, we have

£ glles < CUIf Lo llgllas + 1 llerllgllmz + 11 flle2lgllar +11fllesllgllz2)-

_ Furthermore, for the pseudo-solutions considered, we have that [|0x x,n — AMfil|cr < ONF72,
110z 6.8 — Millge < CNF7274 |\ fy]|en < C with the constants C' depending on k, A and K.
Therefore we have that, using the bounds for the support of 65 x v

00, kN va(Mf1 — Ox Kk,N)
12 "
a r

00 . 00 .
< CUI5m e lloa (= Bx el + = llel[oa (M = By re.n) a2
06 3 o0 _
1175 e oM = Bxse i)l + 175 s loa (A = Ox 1 )l 22)
<CONTVA,

and analogously

o0 —A g
I WW((A,K,MHHS

0 M _ O0xx.n — Nf -
< (U 2OBN M), @ el + | ZPIN D, @, )
0 - _ o(0 - _
2Ot Z MDY 8 e+ 12N T G )
or or
< CN~V4,
and finally
o\ _ _
1252 B ) — 20 B
o\ o\ _

< (]| leLooH(Ur(@AKN) O (Ox 5, n))| [ 1e + || fl\|cl||(vv(9AKN) Or(Ox,5,N))|| 2

o\ o\
T f1||ca||<v,<mm 5 Bsen)) s + | flucsn(memv)—v,me»an)
< 0N3/4.

O

We can combine these two lemmas and use the interpolation inequality for Sobolev spaces to
obtain that

HFX,K,NHH?‘H/‘L < O(N7(2+3/4))1/4(N3/4)3/4 < ONfl/S'

~ With this, we are ready to study how the solution to SQG with the same initial conditions as
0, x,~ behaves. If we define

Ok N =0\k,N —O\K N,
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with 0y k n the only H 2+1 solution to the SQG equation with the same initial conditions as
0,k ~, we have that

009\ kN 009 kN 09\ kN
— + v1(Ox k.N) Dy +v2(Ox k,N) D2y
00 00
+v1(Oxk,N) é\ijN +v2(Ox k,N) 3;;1\[ (2.20)
_ Lle) _ 00
+ v1(9A,K,N)M + U2(9/\,K,N)M — F\ g.n(x,t) =0,
oy Oz

and we have the following results regarding the evolution of © i n.

Lemma 2.2.8. Let Oy g n defined as in (2.20), then if Ox kN exists for t € [0,T], we have that

Ct
1Ox N (2, t)]|2 < N34
with C depending on \, K and T.
Proof. We start by noting that
3 Oxrnll7e _/ o
ot 2 B R2 AN
_ 00 _ 00
(('Ul(@)\,K,N) 01 (Oa k) B 4 (00 (O k) + V2 (Or, i ) )
o1 Oz
8§A K.N 8§)\ K,N
] — ] —— — [ t))d
+v1(Ox K, N) 911 +v2(Ox x,N) D N KN (T, )) T,
but, by incompressibility, we have that
_ o0 _ 00
/ e)\,K,N((U1<@)\,K,N) + Ul(eA,K,N))% + (v2(Oxx,N) + U2(9/\,K,N))M)d$ =0,
R2 T (933’2
and therefore we get that
9 [1Ox kN ][7
ot 2
00x k. N 90x i, N
< thah D 4 F t))d
< |/]R2 Ox KN (vl(GA,K,N) pr. +v2(Ox k. N) s + Fxk n(, )) |

< [|1Oxk.~||L2 (H@A,K,NHLZ’HéA,K,NHCI + HFA,K,N(xat)”L?)v

and using that ||Fy g n||r2 < W, 10x.5c.n]|ct < C and integrating we get that

C«(eCt _ 1)
[[Ox k N|L2 < TN@F3/a)
O

Lemma 2.2.9. Let Oy g v be defined as in (2.20), then for N big enough, 0) x N ezists for
t€0,T] and

Ct

1Ox kN (2, )| r2s1/a < NiE

with C' depending on A\, K and T
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Proof. Tt is enough to prove that
Ct
||D2+1/4®k,K,N||L2 < W

since

Il < CUID? fll L2 + 1] f]] 2)
with D® = (—=A)*/? and we already have the result

Ct
1Okl < o

We will use the following result found in [81].

Lemma 2.2.10. Let s > 0. Then for any s1,52 > 0 with s; + s2 = s, and any f, g € S(R?), the
following holds:

1 1 . .
ID*(f9) = 32 /D" 9= 37 5039D*if |l < CIID* flls2D"gllsao (2:21)
[k[<si lil<s2 ¥

0 __ =9 _
dxitoxy?’ T8 9glt 9l

Dif(€) = DS () f(€)
Dsi(e) =i Hal(jef?).

Although this result is for functions in the Schwartz space S, since we only consider compactly
supported functions we can apply it to functions in H*. We will consider s = 2 + 1/4, although
we will just write s for brevity.

Then

and D*3 is defined using

where j and k are multi-indexes, & =

d ||D*© 7
AN Onwnllie [ peg

at 2 -
_ 00
D? ((Ul(@A,K,N) + v1(9,\,K,N))a/\7;f’N

00 1 N
8x2

009\ k,N

+ (v2(Ox g.N) + v2(Or.k.N)) D1y

90 kN

Oxq + I k,n)(z, L‘))dx.

+ v1(Ox K.N) + v2(Ox K. N)

We will focus for now on

— 8@)\ K.N ~ 89/\ K,N

D°© D? 0 — 0 —= ) dx.

- \K,N (m( AEN)) D1 + v2(0x Kk, N) O ) T
_ 0O\ Kk.,N

Applying (2.21) with s =1, g = v;(Ox x,n)), [ = =525, i = 1,2 we get that

1 1 .
T,anDé’Jg— Z Eang *f) L

¥ [k|<s2

(D*Ox kN D (fg) = >

[k|<s1
< C|D*Ox kN2 [|1D* fll 2| D*gl| Brro
< C|ID*Ox kNl L2108 kN || 12

Ox kN H>-
Furthermore we have that

00 _ 00 _
(D*Ox kv D3 (201 (O 1, v) + D (2 Yy (03, v)) 22
0x1 O0xa

1 9 . o) _
=-[| (D 201(0 + —(D%© %ua(0 dr =
9 /]}{2 8331( A,K,N) Ul( A,K,N)) (‘3302( )\,K,N) 712( )\,K,N) €z 0
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and, for ¢ = 1,2, using that the operators D*° are continuous from H® to H% *%¢ we have the
following three estimates

1)

s Lok sk 9O\ KN
|(D G)A,K,N,kz_l k!a vi(Ox,1,n))D oz, )r2|

< CID*Ox k. n || 2] |vi (Ox 16, n) || 2+
< ClD*Ox kN2 |05 kN || 1=

Ok N||He

O kN Hs

2)
1,00 i
(D*OrkN. Y. q@#mdvi(eww))ml
lil=1"" '
1_.00 i
< C 32 D" On ezl =g oo 1D Bl
=
< CID*Ox kw2 |Ox &, N || 2 1105 16, | 2+
3)
, 00 -
[(D*Ox i, N %stiw&K,N»Lz'

(3

< C|ID*Ox k.~ 2 |1Ox g N || 1= ||Ox 5 N || 125 -

Most of the other terms are bounded in a similar way without any complication, although a
comment needs to be made about bounding the terms

8DS§/\,K,N

8DS§>\,K,N
0, 7)@:.

D*(©xk.N) (Ul (Oxk,N) Dy

+v2(Ox k.N)
RQ

At first glance one could think that, since we are considering §A7 k,~ bounded in H 2+1/4 [yt
not in higher order spaces, we could have a problem bounding this integral. However, we actually
have that

8D597)\’K’N

H o, HLOO < C’HDsé)\,K,NHH?-*-E < CHG_)\,K,NHH4+1/4+€ < C’.NQ-"_6
3

i (O 1,32 < CTN~(H3/4)
and thus

. OD*0 k. N OD%0x\ k. N
|/]Rz D (@A,K,N)(UI(GA,K,N)T t UQ(GA’K’N)T)M‘

< CT|[D*(Ox k3|2 N~3/4H < OT||D*(Ox )|l 2N ~H5,

and combining all of this together plus similar bounds for the other terms, and using

NOxren||re <C ||[Fagon||ge < CNTY8
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with C depending on A\, K and T, we get

d _
@HDS@A,KNHé < ||D*Ox kvl (CN V8 + OO kw1 + Cl1Ox kN Fe)
which gives us, using
10x k.5 [e < C|Ox k. Nlz2 + DO kv 12) < C(|| DO g n|[12 + N~EH3/Y)

that

0 _ s s
51D Okl < (CN Y8 + C||D*Ox kN L2 + C||I DO kN |[72).

Now, we restrict ourselves to [0,T%], with T, the biggest time such that ||[D*©y k vz <1
(or T if T, is bigger than T or it does not exist). Integrating for those times we get

C(eft —1)
N1 /8 ’
and since for NV big enough we have that T' < T, we are done.

|D*Ox kN[22 <

Now we are finally prepared to prove strong ill-posedness in C? for the SQG equation.

Theorem 2.2.1. For any co > 0, M > 0 and t, > 0, we can find a C?> N H>*/* function 6y(x)
with ||6o(x)||c> < ¢o such that the only solution 6(z,t) € H2t3 to the SQG problem (2.1) with
initial conditions 0y (z) will satisfy ||0(x,t.)||cz > Mco.

Proof. We will prove this by constructing a solution with the desired properties. We fix arbitrary
co > 0, M > 0 and t,, and consider the pseudo-solutions 8 g n. First, note that, for any N, K
natural numbers, for A > 0 small enough our family of pseudo-solutions has a small initial norm
in C?, so we consider A = X\g small so that ||, x n(z,0)||c2 < ¢o for all K, N natural and such
that |Aocot*‘ S g

These pseudo-solutions fulfill that, at time ¢, for a = )\ot@
‘ 82@/\0,1(,1\7 (.’L‘, t)

Oa?

K Ua(fl)
sin(Nka — Mt Nk=22 — XoCot)
= Do (N2 1)+ 1)) & )

k=

1
Sin(—)\oc()t) )|
k

=1
In(K)|sin(—XoCot)|.

™= 7

= [Nofo(NY2(r—1)+1)

??‘

> Aol fo (N2 (r = 1) + 1)

Furthermore, we can find ¢ > 0 small such that , for a € [)\gtv“snf 1) e Aot Un) 4 ¢ 2
we have

0205, k. N (,1) \ | f2(NY2(r — 1) + 1) [In(K)|sin(—NoCot)|

| oo R 2
Therefore by using that f(r) =1 if r € (3/4,5/4) and defining
27 o(f1) 2r 27 (f ) 27
B—UJG]N|:]N+)\t ‘NN )\t +CNK

and A:=[1— X2 14 N2 e obtain

4
ae}\oKN 2 ZTL(K)2 . 2
dodr > \g————|A||B —XoCot 2.22
[ [ F () dodr > iy vy AIBlsin(=XoCon) (2.22)

with |A], |B| the length of A and B respectively. We now consider K big enough such that

)\0lﬂ(K)|$Zn(f>\ocot*)| Z 16MC(),
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and thus, for N big
829
/ /B - a*;fN) dadr > 16M2c2| A||B|. (2.23)

Now, we can use Lemmas 2.2.9 and 2.2.8 plus the interpolation inequality for Sobolev spaces to
obtain that, for N big enough,

1©xg, 56,32 < CEN /4

for some a > 0 which can be computed explicitly but whose particular value is not relevant for
this proof. With this we have that the solution 0, x v satisfies that, at ¢t = ¢,

([ () aoar)™

_ m
|| laxsllr2

1 0?2 GAO,KN 1 92 @/\O,KN

>|| TleBHL? H
> 41\4CO\A|1/2|B|1/2 — Ct*N_a 1/4

laxsl|r

where we used that there is a constant C' such that

1 9%g
172 5z laxsllze < Cllglaxsllm:. (2.24)

But |A||B| > CN~1/2, so, taking N big enough we get

3 9)\07KN 2 1/2
//37“3 902 )dadr)

> 3Meco|A|Y?|B)V2.

But o
1 0%
SupxéAxB'ﬁW| < 2|gllc=, (2.25)
)
3 Ox,K,N 1/2
//37"3 e )d dr)
< 2" |BY2|0x, kN lc2,
and thus

3MC()
5

1030, 5, N |02 >

2.2.3 Non existence in C¥
Now we can prove the last result of this section.

Theorem 2.2.2. Given ¢y > 0, there are initial conditions 8, € H2T/#NC? for the SQG equation
1

(2.1) such that [|0g||c2 < co and the only solution #(z,t) € H*ts with §(z,0) = 0y(z) satisfies

that there exists a ¢, > 0 with ||6(x,t)||cz = oo for all ¢ in the interval (0,t.).
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Remark 2. We can actually prove that, for the initial conditions 6y(z) obtained in Theorem
2.2.2, there is no solution in L{°L?2 such that §(x,t) € C? for ¢ in some small time interval (even
if we allow ess-sup,¢jg /|0(2,?)[|c2 = 00), since, if we call 61(z,¢) the solution found in Theorem

2.2.2 and 6o (z,t) the new solution belonging pointwise in time to C? for a small time interval, we
can obtain the bound

d[[0a(x, t) = 01 (2, )|| 2
dt
which implies that ||02(z,t) — 01 (x,t)||r2 = 0.

< O|02(z,t) — 1 (2, t)|| 12

Remark 3. The value of ¢, can be made arbitrarily big if wanted with very small adjustments
on the proof, but for simplicity we provide the proof without worrying about the specific value of
ty.

Proof. (of Theorem 2.2.2)
We consider a family of pseudo-solutions to the SQG equation
éﬂ(x7 t) = éAn,Kn,Nn (CC, t)

for n € N, with 0, k, n, defined as in (2.18). Although 6,, depends on the choice of \,, K, and
N,,, we do not write the dependence explicitly to get a more compact notation. We start by fixing
A satisfying

Ap <277,

and such that ||0,,(z,0)||c> < ¢o independently of the choice of K,, and N,,.
Note that this already tells us that for any fixed arbitrary 7', if 0 < ¢ < T then

K’!L
NL/E

10 (@, )| 24175 < C277( +1)

with C depending on 7. We will only consider Np/® > K, so that 100 (2, )] prasass < C27™.

We fix now K,, so that A\2In(K,,) > 16n. Note that then, as seen in the proof of Theorem 2.2.1,

we have that there is a set S,, = S\, K, N, (see (2.22), A x B would give the desired set) with

measure |Sy,| > 17z > 0 such that the function 6, (z,t) fulfils that

1S, |12 |sin( A\, Cot)|
ATL

1 0%0,(z,t)

||’I”72 D2 ]'Sn||L2 > 4n

. (2.26)

Let us consider now the initial conditions

H(()‘n)nele (Kn)nele (Nn)nell\h (Rn)nelN) = Z Tr, (en(x’ O))
nelN
with Tr(f(z1,22)) = f(z1+R, x2), with R,, yet to be fixed. We will refer to these initial conditions
simply as 0(z,0) and to the unique H?*5 solution to the SQG equation (2.1) with initial conditions
0(x,0), as O(x,t) for a more compact notation, keeping in mind that the function depends on
multiple parameters. Since ||0,,(x,0)|| g2+1/s < C27™ we have that ||0(x,0)|| g2+1/2 < C, and thus
we can use the a priori bounds to assure the existence of 6(x,t) for some time interval [0, ¢.,] and
also ||0(z,t)||g2+1/s < C for some big C for ¢ € [0,%¢]. This also tells us that, in particular,

|[0;(0)]| Lo < Viaa for some big constant vy,qe for t € [0, 4] and j = 1,2.

We restrict ourselves now to study the interval t € [0, t.;] with

crit =M\ —, —————=)-
! 2 Supn(An)Cb?

By construction, the support of ,,(z,0) is contained in a disk of a certain radius D. Then, if
we consider R,, = R,,_1 + 2D + 4vmazterit + Dp + Dy with D,,, D,,_1 > 0, we have that

d(supp(lBDJrzvat (—Rn,o)o(ajv t))a supp(é)(sc, t) - lBD+2vmwt (—Rn,O)e(zv t))) > D,

crit crit

37



and

9n(xvt) = 9(x7t)lBD+2vmaItCTit(7Rn50)
is a pseudo-solution fulfilling
0. - 00 - 00, -
= 077, L 977, = Fn ]
ge T o) g T alOn)gr B =0
v1(6 )———8 A0, = —Ro0
1\Un) — 81'2 n — 2V,
va(0,) = 9 A1, — R0
2\Un) — 8301 n — 1Y,
- 90, 90,
F o= — —_— _n
n Ul(e n) 8x1 ’02(9 en) (91’2

on(xa 0) = 0(35’ O)lBD+2vmwtCMt(—Rmo)'

If we now define ©,, := 6,, — Tr, (0,) we get

ot T UOn) g T O G
OTr (0, OTr (0,
+ ul(@n)i’;;(l ) U2(@n)7§;(2 ) (2.27)
~ .00, ~ .00, -
+ Ul(TRnwn))T +v2(Tr, (0n)) —Tr, (Fx, x,.N,(7,t) + F, =0,
Ll Oxo

with Fy, k, n, the source term of our pseudo-solution 6,, = 0y, k, n, and therefore satisfying
the bounds given by Lemmas 2.2.8 and 2.2.9,

C
|‘F)\n,7Kn7NnHL2 < W
n
and g
[FN i N 2170 <
N8

It is easy to prove that

5 C
[10:(0 = ) Lgupp (3, 12 < (Dn)?
and in fact
- C
00 = On)Lupp (o, llor < D, (2.28)
since

d(supp(0r), supp(0 — 0,)) > D,.

2+3/4 ~
Taking, for example, D,, = N,, > to obtain that ||F,||;> < —S+ we can argue as in Lemma

2+3
2.2.8 to get that '

N,

Ct
1©n]|z2 < N2

for all t € [0,Z..it]. We can also estimate ||©y, || 2+1/5 as in Lemma 2.2.9, being the only difference
that now we have the extra term F),. Therefore, it is enough to obtain bounds for

5 s 7 aén ~ 8571
. D (On)(D*(01(0 = ) 5" + v2(0 = ) 5 %)) dwrdry
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with s = 2+ 1/8.
Using Lemma 2.2.10 in the same way as we did in Lemma 2.2.9, we can decompose this integral
in several terms that are easy to bound using (2.28) plus the term

= .00, = .00,
D? (O, 6—06,D°— 6 —0,)D°—)dx1d
. (©n)(vi( ) 0z, + v ) am) z1dry
which is, in principle, too irregular to be bounded. However, using incompressibility and ©,, =
0, — Tr, (0,,) we get

a0 a0
DS _ DS n n D* n
‘ - (®n>(1}1(9 Hn) 92y +’U2(9 0 ) 924 )d$1d$2|
_ - .00 90
= s 0, 6—6,)D°—= 0 —0,)D*—")dx,d
|| D", Bu)(01(0 — ) D 5 + va(6 — 0,) D 5 s
5 9T, (0,) 5\ s TR, (0n)
= 5(6,, 0—0,)D° s 0 —0,)D?° - dxid
] D@00~ 5,)D* =52 B (6 — ) D" e B
< (1D | — N2 <
n Ny
Therefore, as in Lemma 2.2.9, we get
Ct
1Onllg2s1/s < —75-
H2+1/8 N%/S

This combined with the L? norm and using the interpolation inequality for Sobolev spaces
gives us
Ct Ct

[Onl[2 < = .
n 19768 = n/ata

with @ > 0, for all ¢ € [0, terit]-
However, this means that, if we consider the polar coordinates around the point (—R,,0),
which we will call (rg,,ag,), and using (2.24)

1 0%0(x,t)
20z Tra(1s,)llr2
R, R,
1 0%0(x,t ~ _
> |, (5 T D15, Mz 1 — T, (B 6)
172 |sin( A, Cot)| Ct
> 47’Z|Sn| / )\n B N1/4+a

but, using CotA, < Z, |S,| > C’K‘lNﬁl/2 and taking N,, big enough we get
D) n

1 9%0(z,t)
Tr (1g ) —1+~ > ent| S, |12
[Tk, ( sn)r%n da%, |2 > cnt|S,|
for some small constant c.
But then
1 020, (x,t)
Tp (1g ) —2""7
I7n, (15,) 7250 s

< ||Tr, On(,t)[|c2 |5l

39



and thus ||Tg, (1, )0(z,t)||c2 > cnt and we are done since we can do this for every n.
O

Both results in this section can be obtained in C™ for m > 2, using the same method. To do
it we consider pseudo-solutions of the form

i sin(Nka)

/2(p _
A(fa(r) + F(NY2(r = 1) +1) 2 N

).

The proof follows the same method, except that this time we have that the associated source
terms F) g n of these pseudo-solutions fulfil ||Fy x n||r2 < W, || Fx N || e < CNFk—m—1/4
which gives us, by taking k£ big and using the interpolation inequality that

, <ON—2H0

Ex 5 N ] et

for any § > 0.
Note also that analogous expressions as (2.24) and (2.25) exists for higher order derivatives in
a, albeit with different constants.

2.3 Strong ill-posedness and non existence in supercritical
Sobolev spaces

2.3.1 Pseudo-solutions for H?*

The proof for ill-posedness in supercritical Sobolev spaces follows a very similar strategy as before.
We find an appropriate pseudo-solution with the desired properties, we find bounds for the source
term and then we obtain bounds for the difference between the real solution and the pseudo-
solution. This time, we will consider pseudo-solutions of the form

= sin(No — N2ty f
Br.0.8) = ulr) + fol O AL

with f1, fo compactly supported C*° functions, ro > 0 and v, (f1(r)) is the angular velocity
generated by the function fi(r).

The choice of f1, fa and o will depend on the specific behaviour we want our pseudo-solutions
to have. Before we start to specify how we choose them and how we will label the pseudo-solutions,
we need the following technical lemma.

Lemma 2.3.1. For any 8 € (%,2) and K,c > 0, there exists a C* radial function fi(r) :

Ry x [0,27] — R, with support in some [a1,as] X [0,27], 0 < a1 < ag depending on K, ¢ and
Hralf1()
such that || f1(r)||gs < ¢, and |—F——(r = 4)| > 2K,

= a

Proof. By Lemma 2.2.5, we can find a C* function g(r) : R4 X [0,27] — R with support in

va(g(N()
r € [2, M] such that %(r = 1) = 1. If we consider now the functions
g(Air)
Ira e (1) = —T, AnA2>1
122 (7) St
we have (for example using the interpolation inequalities for Sobolev spaces) that
C
Hg>\1,>\2(r>||Hﬁ < )\72 (2.29)

with C' depending on ||g(r)||g=.
Furthermore, vy (f(A))(5) = va(f(-))(r), W(%) = )\W(T), o)
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9 le(9x1.25 (D) () 1 A3B \2p
—T(r = —) = 1 - 11 .
or A1 A2 A2

Therefore it is enough to take g, , with A2 big enough so that % < ¢ (C the constant in

2-8
(2.29)) and then A; big enough so that )‘32 > K and gy, x, with a; = )\%, as = % will have all

the properties desired. O

From now on we consider § a fixed value in the interval (%, 2). The family of pseudo-solutions
we consider to obtain ill-posedness in H” is, for N € IN

sin(Na — Nt Lali()) )
T
NB
with fi ¢ x the function given by Lemma 2.3.1 for the specific values of c and K considered and
re,k = % given by the lemma. By continuity, we have that there exists an interval [rc x —¢€, 7 x +¢]
such that if 7 € [re x — €, 7.k + €] then

ON ek (ryont) = fiex(r)+ fo,ex(P)7T0 K (2.30)

§ralfiex () K
=12 o (2.31)

—or
We take fo.x to be a C° function with support in [re x — €,7cx + € N [r“ék, 3T;’K] and
fulfilling || fa,c,x||22 = ¢
These pseudo-solutions fulfil the evolution equation

00N .1 . Vo (frex(+) 00N c.x _ 0
ot r da
and therefore they are pseudo-solutions with source term
Fner (2.32)
Vo (ON,e,i(+) = fr.e.x(?) 00N e i = 0N c.x
= —( . MKy (v ere () )

Va(On,e.k (1) = f1,e,k() OON o K

00N .1 )
r O '

+ 00N, 5 () = frex (")) o

—

Next we need to obtain bounds for our source term. To do this, we start with a lemma
analogous to Lemma 2.2.4:

Lemma 2.3.2. Given a L™ function gy : R — R with support in the interval (a,b) then if we
define gy as
gn(r,a) = sin(Na + ag)gn (1)

with N a natural number, then there is a constant C' depending on (a,b) such that if r > b,
then

Cllgn||r=
Nir—b2 "

ci < MN? fori=0,1,...,m, then

[or(gn)|(r, @) <

Furthermore, we have that if ||gn|

"™, (gN CMN™ 1

)
IN) () < 220 2.33
Oz 0z} () |r — b2 ( )

with C' depending on (a,b) and m.
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Proof. The proof for the decay of the velocity it is analogous to that of Lemma 2.2.4. As for the
higher derivatives, using that

vp(w) = cos(a(z))vy (w) + sin(a(z))va(w),

one can obtain that

m—1 1 ai’Ul (gN)

+C 4 |(m)(ﬁ a)|
=0 j=
m—1 1 i
9'v2(gn)
+C — = |(ajxlai_jx2)(r7a)|

with C depending on m,a and b, and using the decay for v,, and

[wl|

N )l

[lwl]Lr

[ve(w)(z)| < Cm

we obtain (2.33).

With this, we are now ready to obtain the bounds for our source term.
Lemma 2.3.3. For t € [0,T] and a pseudo-solution Oy .k as in (2.30) then the source term
Fnekx(x,t) asin (2.32) satisfies
1PN e k()] 2 < CN~(F7D
with C depending on ¢, K and T.

Proof. In order to obtain the desired estimate we divide the source term into several parts. First
we have

Vo (0N, (1) = frex () 00N c K
l T Oa 22
C

= Oy
< COllva(On e () = frex Ozl =525 e~ < 55—

and analogously

or O e () — e () L0 Treac@)y

(G_N,C,K - fl,c,K(T)) H < ¢
or L= = Nt

_ 0
< lor(On ek (-) = fre.x ()] 22l

Finally, by using that supp(ficx) € [2rc.x,a2) (see Lemma 2.3.1 and the definition of the

pseudo-solution ), supp(fa,c k) € [“5%, BTQC”“] and together with Lemma 2.3.2 we have
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HUT(éN7C,K(') — flm,K('))M

or ||L2
a2 C 1/2 C
< . < . .
B </2rk N2+28(p — 2rexys rdr) = N1+8 (2.34)
Combining all three bounds we obtain the desired result. 0

Lemma 2.3.4. Fort € [0,T] and a pseudo-solution Oy . x as in (2.30) then the source term
Fnex(z,t) as in (2.32) satisfies, for k € N

C

1N i (2, )| < Srmp—=5

with C depending on k, ¢, K and T.

Proof. We separate the source term in three different parts:
1) Using the properties of the support of Ox ¢ x

I OON .k Va1, — ONexc)

Oa r ||Hk
F00
N,e,K _
<O =g et llva(frex = On sl e
1=0
C
< N2k
2)
OON e — 1o _
I (O, ,KaT 11, 7K)U7"(0N,C,K)||Hk
k —
OO — frc .
SCZH ( = 7Ka7n = K)ICi UT(€N7C,K)||HK‘71'
=0
C
< NziR

3) To bound H%%’K%@N,C,K)HHM we just apply Lemma 2.3.2 as in (2.34) to obtain

afl,c,K o
Hi@r O (ON e, 5) |
ki i fle K 0
00550 (0N e, i) C C
<2 2= 22 < o = Nooiw
i=0 j—0 1 L2

O

And applying the interpolation inequality for Sobolev spaces (with L? and for example H?)
we obtain the following corollary:

Corollary 2.3.5. Fort € [0,T] and a pseudo-solution §N7C,K as in (2.80) then the source term
Fnex(x,t) asin (2.32) satisfies

| Fv e (@,t)]] a1 < CNT=H)

I
with C' depending on c, K, T.
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Now, as in the previous section, we define Oy . r (z,t) to be the unique HP+3 solution to (2.1)
with initial conditions Oy ¢,k (2,0) = Oy ¢,k (x,0), and we denote

Onek =N,k — Oncpi- (2.35)
The next step now is to find bounds for Oy ¢ k.

Lemma 2.3.6. Let ©) x n defined as in (2.35), then if Ox ik, exists for t € [0,T], we have that

Cct

1Ocx(@ Dl < 5y

with C depending on A\, K and T.

Proof. As in the proof of Lemma 2.2.8, we obtain the equation

dH@NcKH
<
7 |/ ON K

<U1(®N,C7K)

89[\/‘ e K 8§N c, K
) ) . ,C
81'1 +U2( N, 7K) 8952

< 1108l 2 (11On.curllza0.corllos + 1P (@, )22 )

+ Fy,ex(2,1) ) dal

By using that ||Fy ¢ xllrz < %7 [|0x.5.n]|ct < C and integrating it follows

C(eCt - 1)

HGN’C,KHLz < N(@23-1)

O

Before obtaining the bounds for the higher order norms of Oy . x we need a couple of technical
lemmas:

Lemma 2.3.7. Given a C' function h(z) : R? — R with ||h||z~ < M, ||h]|cx < MN and
€ (0,1), then there exists a constant C' depending on a such that

1(=2)**(h(2))||r= < CMN®.

Proof. Using the integral expression from the fractional Laplacian

(h(z) = h(2)) ,

|z — z|>te

(=2)2(h())(@) = C

R2

and dividing the integral into two parts depending on the value of |z — z| we get

/ Md < CN®||h||z~ = CMN®
|z—2z| |‘r‘C - Z| “

/ (@) = ME) 4, < one-t|fhfler = CMN®
|z—z| ‘.I‘—Z| ta

and we are done.
O

Lemma 2.3.8. Given a Ct function h(x) : R? — R with ||h||p~ < M, ||h||cr < MN and with
support in the set [~ R, R)? for some R, we have that there exists a constant C depending on R
such that fori=1,2

[vi((2))| Lo < CM log(N).
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Furthermore, if ||h||cn < M,||h||cn+r < MN for some natural number n we also have that,
fori=1,2, k=0,2,...n

0" v;(h(x))

— | < .
H@"*kxlakszL _CMlOg(N)

Proof. The proof of the first part is the same as in Lemma 2.3.7 but using the kernel for v; instead
of the one for (fA)“/ 2. For the second part we just need to use that, for sufficiently regular

functions we have that
Qui(h(z)) _ U{(ah(w))
8;vj ‘ &rj '

O

Lemma 2.3.9. Let Oy . i defined as in (2.35), then we have that, for N large, On . i exists for
t€0,T] and

Ct

1O cr@ Bl oy < g

with C depending on X\, K and T.

Proof. The proof is very similar to that of Lemma 2.2.9. We will prove the inequality for the time

interval [0, 7] with T* the smallest time fulfilling  ||On ¢ x(x,t)||go+1/2 = log(N)YN=(5=2) | (we

can just consider ¢ € [0, T] directly if T > T or if it does not exists). Note also that, since we have

local existence, obtaining this bound also ensures that we have existence for the times considered.
First we have that, for s = 8 + %

d ||DS@N c KH2L2

= e L DOy,

dt 2 R2 N’ ’K
= 0ON ¢

D ((01(Ocii) + v1 () 5
1

00N .k
8332

il JOnN ..
+ (v2(ON,c, i) + UQ(@N@,K))%
€2
80_N,C,K

(9.731

+v1(ON,e.K) + v2(On,c, i) + Fn e i (, t)>d17-

We start bounding

_ OON e K ~ 0ON o K
DOy, DS( ON.c _— On.c 7>d
. N,k D?(01(On,c, i) o +v2(0N e, k) s T
Onett = 1,2 we

Applying Lemma 2.2.10 with s; = s — 1, s2 = 1, f = v;(On.cx)), 9 =
would get that

s s 1 s 1 s,
(DO s, D*(fg) = D 504D g~ 3 5gD*f)
[k|<s1 lil<s2
< ClD*OnN,e.xll2|D* fllBmol|D* gl| L
< C||D*On,ce.xl|r2||1ON ¢,k || 2,

where we used ||D*1v;(0n ¢ x)||L~ < C. Furthermore we have that

(D*ON,e,x, D*(

1 0

5 0 _
= — — (DS . 2 On o — (D* . 2 On o do —
2 /]R2 3x1( ONe, k) 01 (ON k) + 83:2( ON,e, k) V2(ON,c,x)dz =0

00N . = ., 00N, _
T 0 (O e, i) + D (V0 (O k) 22
1 3$2
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and, for i = 1,2, using that the operators D*¥ are continuous from H® to H® stk

. 1 - sk 09 KN
(D*ONcrs Y Eakvi(aN,C,K)D ’kai)Lﬂ
K|=1

< CID*On,e. k|2 [vi(On c.x) |1 |ON e || 1o
< OD*ON e k|2 ||ON k|| s

where we used [[0;(0y .« — fiex)ller < Clog(N)N=P+! (consequence of Lemma 2.3.8) and
[lvi(f1,e.5)|lcr < C.

We also have

1_..00 .
(D*Ox kN, Z T,aJMDS’Jw(@A,K,N))Lﬂ

: ! dx;
lil=1
1,00k N i F
s - (A SiJay.
s0_|21IID Orsevlleall g =52 12l D™ vi(O k)l
J:
<C> |p® G v, (0
< ID*Ox kN2 [0 1 N [ 12 || D* 72 0i (O, N Lo
lil=1

NN*=2]og(N)

< ClID*Oxk Nlle2[|Oxk N[+ ( NE

< OlD*Ox kN2 1O ke N 1,

+0)

where we used Lemmas 2.3.7 and 2.3.8, the expression for D#*3J and the bounds for the derivatives
of 01\[70’1(. B
The last part to bound from the term with v;(0n c i) is, for i = 1,2

0ON .k

02, D*vi(ON ) 2]

< O|D°OnN e k|2 |ON e || 11 [|D° 20 (AN .1 )| -
%)CNS_Qlog(N)N2

NP
< C|ID*On ekl 2N~ Hog(N) < C||D*Op e iclra N2,

|(DS@N,C,K7

< C||DS@N,C’KHL2N_(’8_

where we used that, for the times considered, using Lemma 2.3.6 and the interpolation inequality
we have ||Oy.c.x|lg < CN~F~2) (the bound is actually better, but this is enough).

The rest of the terms not depending on Fi . x are bounded in a similar fashion, and using
10xx.n|ms < C, ||Fyex)lime < CN~F~32) with C depending on ¢, K and T, we get

d _(f_3
%HDS@N,QK\IZB <|ID*On ekl 12 (CNTE2) 4 Ol|On.c ||+ + Cl1ON e |32
which gives us, using

1ON.c.i|lms < C|ON.c.kllz2 + ID*On,cilr2) < C(|D*On e i |p2 + N~
that

d —(3-2 s E
glIDencklle < (CNTCD 4 CID* Oy kllz= + ClID*Ox kv I7),

and using || D*0 k. n||12 < log(N)N~(#=2) and integrating we get

C(eft —1)
Nf-3
Now, taking N big enough we obtain that T > T and we are done.

ID*ON e xllr2 <
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2.3.2 Strong ill-posedness in supercritical Sobolev spaces
Now we are ready to prove strong ill-posedness in supercritical Sobolev spaces:

Theorem 2.3.1. (Strong ill-posedness in H?) For any ¢ > 0, M > 1, 3 € (%,2) and t, > 0,
we can find a HP2 function 6y (x) with ||6o(x)||gs < co such that the unique solution 8(z,t) in
HP*3 to the SQG equation (2.1) with initial conditions 6o (x) is such that ||0(z,t.)||zs > Mco.

Proof. First we prove a bound for the pseudo-solution 9_N¢c, k defined in (2.30). More precisely

7‘3K sin(Na) crik
||f2,C7K(T) NGB HL2 < NB
and
. -2
I ) Tf,K sin(Na) e < C’crﬁk
2,c,K Nﬁ H?2 > N5_2 )

which in combination with the interpolation inequality for Sobolev spaces and the bounds for
fi,e,i gives us -
10N .c.kc(%,0)][ s < Crc
with C; depending only on .
Furthermore, at time ¢ we have that our pseudo-solution fulfils

B
Cre

NB

10N, (2, 8) — frexl]r2 <

and we can find the lower bound for the H! norm of éN,c,K — fi.c,k by using

a(éN,c,K - fl,c,K)
3w1

OO,k — frek) _ sin(a) OO,k — frek)
or r Oa

= cos(a)

which gives us, after some trigonometric manipulations and using (2.31) that, for N large
ctK rg ;(1

100 e, (2,8) = fre, el = O 57

with C' a constant. B
Furthermore, since supp(On c.x — fi,c,x) N supp(fi,e,x) = 0 we have that

ctKrf;(l

0N e (@, )| 51 > 10N e,k (2,8) = frexl o > OW’
for sufficiently large V. On the other hand the interpolation inequality gives us
_ _ 1 B-1
0N e (@, )1 < 10N e (@, )] o 0N e (2, )] 2
and using our bounds for ||0y ¢ i (2,t)||r2 and ||On .k (z,)|| 2 we get

108 e, (2, )| s > CacK t?

with C5 depending only on . Therefore, by choosing ¢, K appropriately we have that, for all N
big enough, B
0N .c.k (%, 0)[| s < co,

0N e,k (2, )| s > 2Mcq.
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Now, considering the solution 6y . x of (2.1) with initial conditions Oy . x (,0), we know that

||0N,C7K(xa O)HHﬁ < co,
and, using Lemma 2.3.9,
10N .k (@,8) = Onc.ic (2, 87) | s
_ . . ct*
< |‘9N,C,K(-T7t )— 9N,c,K($,t >||Hﬁ+% < W

for large N, and so, by taking N big enough we can conclude

10n.c.ic (@, )l rrs 2 110w crc (2, 8|15 = 108, (2, 87) = On,e s (@, 7)o > Mco.

2.3.3 Non existence in supercritical Sobolev spaces

In this section we prove the following theorem:

Theorem 2.3.2. (Non existence in H? in the supercritical case) For any tg, cg > 0 and § € (%, 2)
we can find initial conditions 6y (z), with ||6p(z)||gs < co such that there exists a solution 0(x,t)
to (2.1) with 0(z,0) = 0y(x) satistying ||0(z,t)||gs = oo for all t € (0,¢]. Furthermore, it is the
only solution with initial conditions 6y(z) that satisfies 6(x,t) € L°CY* N LPL2 (0 < v < 3)
with the property that 6(z,t) € H (1 <, < 3) for t € [0, o).

Remark 4. In particular, if there is another solution in f(x,t) € LC2* N L{° L2 then it cannot
fulfil O(x,t) € HP for t € (0,t*] with any 0 < t* < t, even if we allow

ess-SuP,c(o,+1|10(2, )| s = oo

Proof. Let’s first note some of the properties that the pseudo-solutions O_N,Q k (for some fixed 3)
have:

° §N7C,K(a:,t) isin C* for all t € [O,to}, with |‘§N,C7K($,t)||ck < CCNkifB, ‘|§N7C,K($,t)”Hk <
CcN*=# for any natural k > 2 , with the constant C' depending on k, K and ty. Also, for
B > s >0 we have |0y x(7,t)|| s < C1eN*=F 4 Coc with C; depending on K, s and t,
and Cy a constant.

e For N large we have the lower bound ||0y . x(7,t)||gs > Cct? K# with C a constant.

e On.cx(w,t) is supported in the disk of radius M centered at zero Bjs(0) for some M inde-
pendent of the values of the parameters.

Furthermore, we have the following result.

Lemma 2.3.10. Consider the equation

DON . i
ot

N,C,K) 85N,C,K

~ ON e.xc
+ (Ul (QN,C,K) + Ul,ext axl N,C’K)ivc, =

+ ('UQ(éN,c,K) + UQ,emt 83’32

with initial conditions GNN,QK(I, 0) = Q_NVC,K(:L',O) and such that

N,c,K N,c,K
av?,emt i 8vl,enct
81‘2 8%1

and
s les < ON

i,ext
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with C depending on ¢ and K.
Then for any T > 0 we have that if N is big enough, then for t € [0,T] there exists a unique

éN,C’K(x,t) € HP* 3 and

||§N7C7K(I,t) — éN#,K(l‘,t)HLz < CtN—(28-1)

10N e, (,8) = O e, (@, 8)]] oy < CENTF72)
with C' depending on ¢, K and T'.

We first note that local well-posedness of this equation in HPAT! is straightforward since

;Yé;%K € C? for i = 1,2. As for the error bounds, they are obtained in the same way as in

v
Lemmas 2.3.6 and 2.3.9, i.e., studying the evolution equation for Ox . r(2,t) — On.c i (x,) now

N,c,K aéN,C,K((L‘,t)

ot 5 These terms, however, are easily bounded by

with new terms depending on v
writing

éN,c,K(ﬂﬂ,t) = (éN,c,K(xat) —ONe,x (7, 1)) + On e i (2, 1)

and using the properties for vﬁgfc’tK and Oy o x (z,1).

This lemma tells us that our pseudo-solutions defined in (2.30) stay close to other pseudo-
solutions that have the same initial conditions and an error term in the velocity field (if the error
term is small enough). Now, to obtain the initial conditions that will produce instantaneous loss
of regularity, we consider

9(.’17, 0) = Z TRj (échj’Kj ($7 0)),
Jj=1

with Tr(f(x1,22)) = f(x1 + R,22), and R; yet to be fixed.
We will refer to the solution of (2.1) with this initial conditions and H? regularity (if it exists)
as 0(z,t), keeping in mind that it depends on the values for R;, Nj, ¢;, K;, with j € IN.
We start by fixing c¢; and K; with the following properties:
1)
||9vacjaKj (l‘, O)HH[’ <27, ||9Nj7cj7Kj (xv O)HL1 <277, (2'36)

2) If Nj is large enough then
NON; ;. 5, (@, 0)|| s = teo2? (2.37)

and - .
||9Nj,cj,K,- (, t)HH% < cp27!

for ¢ S [O,to]. B

This gives us a bound for the velocity generated by Z;il TR, (0N, c; K, (x,t)), which we will
call vaz-

As for R;, we will consider R; = R;_1 + D; + D;_1, Rg = 0, and we will take D; = j4NJ‘-1 +
2M + 8U7nawt0- .

Now, we say that a sequence ¥ = (v!(z,t))i=1,2,jen is in the set VIN,), em,Co if

o vl (x,t) € C3 for t € [0,1o), with ||v] (z,1)]|¢s < jf—l{’[?

J J
Jvy _ vy,

* 6(E1 - 812'

Given two elements 07, U2 of V() we will consider the distance

jen,Cos
d(ty,72) = SupjeN,i:l,QeSS'Supte[O,to]j4N]3||v{,i(z7 t) — v%,i(xv tllcs.

Note that with this distance V), x.c, 18 a complete metric space.
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Furthermore, given an element ¥ € V(x,), ¢, we define the sequence of functions W (v) =

(W;(@)(2,1))jen = (w;(x,t))jen as the only sequence of H+2 functions for ¢ € [0, %], satisfying

ow;(x,t) ; ow; ; ow;(z,t)
Y — —(oa(u) + o] ) G — (valuwy) + vy t) TS (239)
w;j(z,0) = Tg, (O, ¢, K, (2,0))
Note that Lemma 2.3.10 tells us that if (IV;);en are big enough, the condition
, Co
J g < —
||’U7,,ext||cd — ]4N]3
implies that there is a (unique in H%%2) solution to (2.38) for t € [0, o] with
I Tr, (O, .cp.5; (2, 1)) — wi(z,1)]| 2 < CtN; P~
—(p-2
1T, (O, i, (2,1)) = wy (1) g < OtN; P72, (2.39)

We will call the set including these sequences Wn,), .co-
Now we define the map ve,: that takes an element of w € Wy,) ., to an element of
Veat(w) € V(Nj)jem,co as

- )
V1%t ((W0)) jen) = T (R,0¢ ij w]o)

» )
U9t (W) jen) = B ( Tg,, ¢(z) Zw] w]o)

where ¢(z) is a smooth C* function with ¢(z) =1 if x € B4vm,aw+M( ) and ¢(z) = 0 if |z| >
8vmaz + M.

Note that Hvz ot (wy)jem)lles < 401\074 ; and thus ||Uz emt((wJ)JE]N)HC3 < 703 if Ny, is large.
]0
Furthermore, if © € By, +m(—Rj,,0), then

Jo>

o0

% (W) jen) = Uz‘((z w;) — wj,) (2.40)

and, since for (N;) jew big enough supp(Wj, (vest(w)) C Bao,, o, +M(—Rj,0), we have that Wi, (vest (w))
actually fulfils (2 38) with v} given by (2.40).

This allows us to define the operator G over a sequence v in the space V(n,);cy,c, 88

G(T) = (] e (W (D)))izm1 25N,

The operator G maps (for (V) jen large) VIN,), eniCo 80 V() en.co and actually, if we can find
a point 7 € V(n,),cx,c, Such that G(v) = ¥, then, for (w;);enw = W(7),

o0
t) = Z w;(x,t)
j=1
is a solution to (2.1) with initial conditions
0) = Tr,(On,c,.x,(x,0)).
j=1

If we now consider two sequences 7! = ( z ) =12, /€N, U2 = (’U?’J)Z 1,2 jelN € VIN,)nen,0o and we
define for two elements of Wy, cx.co d(w', w?) = sup;cpo.1] Z] 1 Hw — wj 2|| 2 we can compute
d(W; (7)), W;(5%)), by defining @w; = W (7') — W (42), since it fulfills the evolutlon equation
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om; oW o,

= D () - S

ot 6(E1 8901
ow;(ah) O, o
- QD ) — Dy a7
OW;(0Y) 1 24 OW; o
_T(’Ul -V )‘Tm%
oW, (@), 15 15, 0w o
37372(”2 vy”) By 2

This gives us a bound for the evolution of the L? norm of w;

O\|w; |2

" - i 1,5 2,7 1,j 1,5
T CIW; (@) e [[d;]|L2 + [IW5(@)]|er (v = 077 || e + o — vy

L)

But for N; large we can bound ||[W;(#")||c: by some constant C; using (2.39) , and thus we
obtain, for ¢ € [0, to]

-~ ~ (,C 1,5 2,5 1,j 1,5
[[; (2, )] |12 < CCj(e“" = 1)([[v7 = v77||L + [Jvg” —v7[| L)
- d(7*, 72
Ct )
SCCj(e 0_1)7j4N;’ 5

and for N; large

(7, 7?)

15 (, B)llze < e=—

with € as small as we want. Adding over all j we obtain, for ¢t € [0, t(]
AW (@), W (5%)) < Ced(7,7?)

with e arbitrarily small.
But now, if the N;’s are big enough, we have that, by the definition of vy,

d(G(T), G(7?)) = d(Veat (W (7)), veat (W (%)) < mg@N Cd(W (1), W (7))
Ce ) |
< md(v ,07) < §d(v ,U7)

so the map G is a contraction, and since V), y.c, 15 2 (non-empty) complete metric space, there
is a fixed point and therefore w(x,t) is a solution to (2.1) with initial conditions

0(z,0) =Y Tr,(On,.c; 5, (z,0)).
j=1
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Properties (2.36),(2.37) and (2.39) finish the proof that a solution with the desired properties
of Theorem 2.3.2 exists.

For uniqueness in the space mentioned we call 8;(x,t) the solution we constructed above
and assume the existence of another solution 6s(z,t) € L{°CJ* N LL2 (0 < 4 < 1) with
the property that fx(z,t) € H™ (1 < 72 < 2) for t € [0,¢9). In particular (since it is in
L YY), there exists a certain constant vgmq, such that ||v;(62)||pee < V2 maz- We start by
studying the uniqueness for ¢ € [0, min(t*, ¢o)] with t*v2 1mas = t0Umas- In particular, we have that
supp(02(z,t)) C UjenTr, (Btyvma,+1(0)). We define

9{ (LU, t) = 1B4f,0umm+M(*R]‘,0)91 (LL', t)
9;(337 t) = 1B4t0vmaz+lﬂ(7R]’70)92($7 t)'

If we define ©7 := 0 — 67, © := 0, — 0;, we get

007 00! 907 06! 007

72 __ 271 Jy - 22 Jy 71 Jy . 22 J
ot 61‘1 U1(® ) axl ’Ul(@ ) ax2 U2(® ) 81'2 ’U2(@ )
oes . 9ed . o 907 ‘
T o (67) = = (07 — 2L e VAR _ Q]
8331 Ul( 1) 6332 02( 1) 8$1U1(@ @ ) 8331 ,Ul(@ @ )
00! i 0o ;
_87‘%21]2(@_@)_67{1321}2(9_@)
007 ; 008’
— 871‘1,01(91 — 9{) — 673727)2(91 — 9{)
which gives us
(19,1l rz ; TRICIFE
= < ClelllorlOgll + Clltlle s

and by taking N; large and integrating the above inequality big we get

€|O]| >
19;l]2 < i
and adding over all j and taking e small
o, < 191

and thus ||©]|z2 for t € [0,t*]. Tterating the argument allows us to prove ||0||r2 = 0 for ¢ € [0, to].
O

2.4 Strong ill-posedness in the critical Sobolev space H?>

For this section, we will consider solutions of (2.1) that are in layers around zero, each one closer
to the origin, so that within each layer one gets (in the limit) an evolution system of the form

00 - o0 ~ 00
a + (v1(9) + K(t)l’l)aiml + (v2(9) — K(t)l’g)% = 0,
= - A5 = _R,7,
8172
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0

Vg = 87551/& 10 = Rl
0(x,0) = Oy(x).
9v:(8)(0)

But first we need to obtain an expression for === (i, j = 1,2) for 6 with support far away
J
from 0. We consider first ¢ = 1. We have

NGIZI / (=2 +12)0(y)
R2

’01(9) = 73/2 |SE — y|3

dyl dy2 .

For 6 with support far away from = = 0 we can just differentiate under the integral sign and
when we evaluate at © = 0 this yields

32132(19) (x=0)= 1—‘75?;522) P.V. - —3y1 y2|z|(5y) dy1dys,
an =0 = G [ R e
We will consider 6(z1, 22) satisfying 0(—x1,22) = —0(x1,22), 0(x1, —x2) = —0(21, 22), SO
32132(19) (x=0)= 41;(3/22) P.V. v —3y1 y2|9|(5y) dydys,
ag;(f) (= 0) =0.

If we take a look at the expression for
into a certain Cy > 0 we obtain

8151796(19) in polar coordinates and combine all the constant

Ov1(0 in(2a")0(r', o/
10, —0)= —cypv. sin@a )0, ) 4t
Oxq Ry x[0,7/2] ()
The expressions for vy are obtained the same way and in fact we have
Ova ()
—0)=0
2w =0=0,
0 i o
81)2( )(I’ _ O) _ COPV/ Sln( (6% ) ( )d’r/da/'
Oxo Ry x[0,7/2] (r')?

Analogously, the second derivatives of v; all vanish.
We will be interested in studying the evolution of initial conditions of the form

i F(b=Ir)b7 sin(2ar)

J

™

j=1

for f(r) a positive C* function with compact support and % > b > 0. More precisely, we would
like to study the behaviour of the unique H* solution with said initial conditions when b tends to
zero. One could think that we can just check the evolution of each of the terms Lo sin@a) ,hg
then add them together, hoping that the interaction between them gets small as b — 0. However

9vi o get specific results, we fix some
positive radial function f in C* with supp(f) C {r € [1/2,3/2]} and ||f(r) cos(2a)||gs = 1. We
define 6. ;; as the unique H 4 solution of

00c,7b 00,5 e gp
T +v1(0c,75) B, + va(Oc, 1) Ors 0,
with 9
v1(0c,gp) = —873321\95,,1,17 = —Ralc,sp,
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0
7A0c,J,b = Rloc,J,ln

va(be,5p) = o

FOO7Ir)b sin(2a) 1

0., 0) = , =>b>0. 2.41
7b(, CZ ; 5 (2.41)

Note that the odd symmetry is preserved in time.

A few comments need to be made regarding the properties of the transformation h(r,a) —

m (or equivalently h(z) — @) We have that

o If A > 1, then ||“A22)|| 0 < [|A(r, )| 2.

o If A(r,a,t) is a solution to (2.1) with initial conditions h(r, , 0), then M is a solution
0 (2.1) with initial conditions M
(RO
e Fori =12, j = 1,2 we have v;(252)(%,0) = Lui(h(-,))(ra), 2253 (5,0) =

v, (h

( (J ))(7“ a).

The initial conditions in (2.41) fulfil that, taking ¢ small and J big, they have an arbitrarily
small H? norm and an arbitrarily big value of |%;1'J’Z’)(O,t =0). If |%;I'J’Z’)(O,t)| remained
big for a long enough time and # remained sufficiently regular during that time, we could then
use a small perturbation around = = 0 to obtain a big growth in some H*® norm.

The main problem here is that we cannot assure existence for sufficiently long times using just
the a priori bounds, so we need some extra machinery to be able to work with these solutions.
For that we consider C' the constant fulfilling that, for any H* solution of SQG (2.1) we have

ON0(x, t)|| s
ot

For fixed constants to, K > 0, we define t?glf(c 7 as the biggest time fulfilling that, for all times

< Cll(, 6)l1% (2.42)

t satisfying (" . ;, >t >0 we have

ot S to.
o If |z| € [5b", 2b"] for 1 < n < J, then |¢. sp(w,t)| € [b"F5, b7 %], with ¢ sp(z,t) the flow
given by
dpe gp(x,t
%H (0 r(,1).

. Hb_jecnﬁb(bjx’t)l[bé,b—%]( r)llgs < g for 1 <5 <.

fo avlgj; J.b) (0,8)|ds < K.

Let us make a few remark on these conditions. First, due to the odd symmetry of the solution

%ﬁ“””) is always negative and thus

/ |5U1 e Jb) 0,5)|ds

is a strictly monotone function with respect to . Note also that we can check that the norm

and the initial conditions,

1677 0c, 1072, )1 4 g ()]s

is continuous in time by checking the evolution equation for it and using that . j; exists locally
in time. Also, depending on the choice of parameters it may happen that tf;lK c,J,p does not exists

(the second and third condition may not be satisfied for ¢t = 0),

and b < 278 to avoid that. Finally, if we only consider the typical a priori bounds, the second and
third conditions could make #{"'- . ;, tend to zero as we make b small, which would be a problem
for our purposes. However, we have the following lemma.
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Lemma 2.4.1. Fized to, K,c and J fulfilling ¢ < e;: and K > maz(1,ty), we have that, if b is

small enough, then the unique H* solution 0., with initial conditions as in (2.41) satisfies

_ B 1

166,560 2, )1 00, (1) e
for 1< j < J, t €0t . ;] and if x € [0"5,b™3] then ¢e sp(x,t) € ("5, 67 F) if 0 < t <
bt et b

Proof. Before we get into the proof, we need to define

ovy (ec,J,bl(anr% o) ()

) i= / a(s)ds

We will study the evolution of 6, := 6., J7b1[bj i1 bj_%](r) (these functions obviously depend on

kn(t) := | (0,%)];

¢, J and b, but we will omit this dependence to obtain a more compact notation). These functions
satisfy the evolution equation

00; 00, 89‘ 00; a0,
87; + Ul(ej)aimjl + 1)2(9 )a (QC’J’b — ej)aixi + 1)1(96’]’1, — Hj)a—le

Furthermore, we have that 6’ (1) = b770;(b/z, t) fulfils the evolution equation

=0.

’

00, , 00, ) 00, 00, 00,

5 U1(9j)87;1 + U2(93)8 + 267, — ej)ﬁTcg + (07, — ej)achl =0, (2.43)

with 6,7, (2, 1) == b0, 5 (M, 1).
We want to obtain suitable bounds for the terms depending on 00’){,7,] — 0. To do this we

[ /
J
decompose HC’J,b 0, as

ec:G,b - ej 0 + 9 J
with 6, ; = (6.7, — 0)) 11,00 (r) and 6 ; = (6,7, — 6;)110.1) (7).

But 6 ; satisfies that ||9/_7j|\L1 < Cb3, (supp(9 ), supp(0_ ) = b, which gives us, if we

define v; 7 (x) =vi(0_ ;) ()

ooj=

J 3-8
[lv; J(I)lsupp(e;)HC‘l < CObs
For the term depending on H'Jm-, we use that, for £ > 1

16771 otyllze < OB

pEtE b
bkar%
2

d(supp(6,7 1 okt d yok-ty)y supp(;)) 2
which gives us, after adding the contributions for all the k, if |z| < b8

82111«(0;“]-)

0292109 29 x)‘ =0

Therefore, using a second order Taylor expansion for the velocity we obtain that, for |z| < b8

/

’[}1(0_"_7].) = _kjfl( )xl + 'U+ 2Js 67‘7‘07‘(1.)7
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1 (P)|pe < Cb*. Furthermore by computing the derivatives of 01(9;_7]-)
(r)||cs < Cbi.

with |[o 7" (2)1 1 1
b3 b7 3]
+,j,error
we actually obtain ||v] (x)l[b%,bé]
Analogously, we have

’

v2(0y ;) = kj—1(t)x2 + v;’j’e”“’r(m%
with ||,U+7j,error(x)1 , ( )||C4 < Cb4
Writing v§'7or = Ujhj,error( )+ v; ’J( ), we get that (2.43) is equivalent to

’ ’

89] ! error ] ! error 9]
— + (vi(0;) + o1 *kj—lxl)aiml + (v2(0;) + v5 +kj—1x2)8702 =0,

ot
with |[v¢"7"|| s < Cbi. To obtain the evolution of the H* norm, we note that, with our definition
of the H* norm

69
8”9 ||H4 Zzanamlaz ]m2HL2
1=0 5=0

and

80
Ol grmyorra; 112

ot

0'0; ot

:2(

, 0. , 00
[(v1(9j) + o — kj_yx) =2 + (U2(9j) +v3""" + kjflx2)87x;])L2~

5331

03'93181'*%2 ’ é)jzlé)i*jxg

However, using ||[v"™"||ce < Cb* and incompressibility we get, for : =0,1,....,4, j =0, ..., 4

87,0; 87,( error gzll ) 62( error 222 )

8j5618i_j1‘2 8Jx18i—jx2 8J$16i_j$2

I( )r2| < Cb7 1014

and
- ; a0, : 00, -
(20 Ooma) Glmg) Lo 09
831'1al731’2, 831'181 J(EQ 61110181 Jxg L2l =yt 0Ix10" I 29 L2
which gives us, by adding all the terms and including the contribution from the terms depending

on v1(9 )% and ’UQ(H;-)%

0110 |z _ allbjﬁc,J,b(b‘jx,t)l[b%,b_%}(r)llm -
ot ot :

< (g1 + CONIB0e,gp (b 2,01 0 g ()]s
+ O 0,50z, 1)1

o b (O

with C given by (2.42).
Using that, by hypothesis
1

Hbjec,cﬁb(b_]x?t)l[b§7b*§](r)‘|H4 < toé,

Hbjac,J,b(b_j$70)1 —é](r)HH‘L <c

b3 b
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and integrating (2.44) we get

. . 1
||bygc’J_’b(bﬂx,t)1[b% b—g](T)Hm < cetKi—1(0)+ (55 +Ob)t

and using K;_1(¢) < K, and taking b small enough

1
(T)HH4<C€6K< —

J —J
Hb GC’J,b(b xﬂf)l[b%,b*%] C’to

which gives us the first property we wanted.
As for the bounds for ¢ ,(7,t), we again work in the equivalent problem with 6, ;, and note
that we just proved that

[0 (6.7,) @)1 1 3 | < (ks (8) + COB) ] + [vs(8))|(2),

/

;)(x = 0) = 0), integrating

and since |vi(9;)| < min(C, Clx|) (by using our bounds in H* plus v;(0

in time we have that, for b small, the particles under that flow starting in [%, %] will stay in
(e7C,eC) C (b¥,b %), with C' depending on K and t and we are done by undoing the scaling
and returning from 0; to 0;. O

Note that last lemma tells us that for b small enough, at ¢t = tf{’;l}f(c Jp» €ither ¢ = to or

tcrit
Joro et |%ﬂ""b)(0, s)|ds = K. Our next goal is to prove that, if the right conditions are met,
t{‘,rit
we will actually have ["”"" \%‘?“)(07 s)|ds = K.

Lemma 2.4.2. For fized ty, K and c fulfilling ¢ < eé:K and K > maz(1,ty), we can find J and

. 0

b such that at time t = t"l- . ;, we have that
fgtO,K,c,J,b |8v1((9i:c1,J,b) (07 5)|ds - K.

Proof. We start by studying the trajectories of particles with |z| € [b‘”‘%,b_%].
In the proof of Lemma 2.4.1 we obtained that, for |z| € [bs,b™ 5],

’

vi(0.75) = v(0)) + 0§ (@) — ki1 (t)z (2.45)

va(67,) = v(0)) + V5 () + kj_ (t)2

(let us remember that here 9; actually depends on ¢, J and b but we omit it), with ||vf""°"(z)||ca <
C1b% for i = 1,2, with C; depending on ¢, j and J, and ||U(9;~)||Cl < Cs with C5 depending on .

1

By returning to the original problem, we get that, for |z| € [p/+%, b~ 5]

01(0e.7) = v(0;) + 05 (@) — k1 (t)ay (2.46)
V2(0c.g5) = v(0;) + 05 () 4 kj_1 ()22

with |07 ||o1 < Cb3 and |[v(6;)||c1 < Co with Cy depending on .

We are interested in studying the ¢ associated to this problem in polar coordinates for particles
starting in (r, ) € ([%, %}, [0, 27]). We study separately the evolution of the radial coordinate and
of the angular coordinate for simplicity.

For the radial coordinate, if we call ¢/ (rg, g, t) the flow associated to (2.46) that gives us the
radial coordinate of the particle that was initially in (rg, o), using that v(0) = 0 and integrating

in time, we have that,

¢1(r0, @0, 1) _ oJi ki (s)ds+CrbTt4Cot o JK+C1bT t4+Cot
0 - -
As for the change in the angular coordinate, we are interested in finding bounds for how fast
a particle can approach the lines o = i%, i = 0,1,2,3. All four cases are equivalent, so we will
consider ¢ = 0. We have that
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Va(r,0,t) =0

and, since for i = 1,2 Ha”“ [|lL < C(|kj—1|+ Cib+ Cs) (with C a universal positive constant) we
get, defining ¢/, similarly as we did with ¢? (7, ag,t),

#?,(ro, o, 1) S o C

1 1
(J§ kj—1(s)ds+C1b1 t+Cht) > e~ C(K+C1b7t+Cat)
Qg

Now we are ready to obtain bounds for

/tf(’;fi(,c,J,b |5v1(9c,J,b)
0

e (0, s)|ds.

Since the transformation

90,171, ()\x)
A

does not change the value of %ﬁ;"*b)(o,s) and by linearity, we have that, for s = 0 we can
compute

95”],1,(.%‘) —

ov1(Oc,p) o -
|T(m_0at =0)| = Z

for some C' > 0.
For times ¢ > 0, writing for the flow map ¢ sp(2,t) = (P1,c,56(2, 1), P2.c.06(2, 1))

cOu(f(r) cos(2a))
J 01

) > Celn(J),

HM&

Q\Q

| 8’01 (gc,J,b(T» «, t)) | —-C / n yZGC,J,b(yv t)
]RZ

(9331 |y|5 dyl dyQ

y29c,J,b(¢;1 (y,t),O)
| ‘(]5’b dyldyQ

¢2ch(y, t)0c,76(9,0)
—C/ , e dind
P | e

=C 'Ul

C ) 2y 00 0
= C/ O1,e,00(T ¢2 S )5 9” 5192 ];( )dyldyQ
‘(bc,J,b(ya )15 9172 ]

with C a constant, but (passing to polar coordinates to obtain the bound more easily)

b2.c0(z,t) |2|®
P1,c, 702, 1)
LB 015 e OB T
_ Sin(2¢?,J,b(T, OZ)) 7"3 > e—C(K‘FClb%tJ"C?t)
sin(2«) ¢Z7J7b(r,a) -

for some C, and thus

61)1 (ec,J,b(rvaat)) —
| 7. (z =0)]

ZCe*C(K+c1bit+Cgt)/ W@ld@
R2 Y

+
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and integrating in time

tfr,i;(,c“],b 9 . 1
/ 0 ILQ 10) (0, s > 157% 1 Celn(J)e=C Ui ot
0 T1 48,65,

To finish our prove, we just fix some K, ¢y and c fulfilling our hypothesis, we take J big enough
so that

toCeln(J)e CE+C2to) 5 | 41

and then take b small enough so that using Lemma 2.4.1 either to = tf[’)”}(c Jp OF

o e ab v+ (0
/ 0 |%C’J’b>(07s)|d(g:f{
0 L1

and such that

toCcln(J)e_C(KJrClb%to+Czt0) S K.

The result then follows by contradiction, since if we assume ty = tgom}"( .75 We obtain

t
| Q00e8) )14 > toCeim(rye O sevtortato 5 g
0 T -

O

Corollary 2.4.3. There are initial conditions 0%’;{?“&1 € H* with ||0}?@%“51HH2 < ¢ such that there

exists 0 < 1§}, = <to and a solution Ok 1, z(x,t) to (2.1) with 02itial as initial conditions fulfilling

crit

0.2 Quy (O 10.2)
o1 (VK to,¢) ds = - K
/0 0x1 (0. 5)ds ’

10k 0,6 (2, )| 12 < MK 44,2

Furthermore we have supp(03i4) C {r € (a, )}, supp(Ok to,6(x,t) C {r € (a1,a2)} with
a1, as depending on K, tg and c.
Proof. The initial conditions and solution are the ones obtained in Lemma 2.4.2, we only need
to note that ||0. p||gz = C(ijl j%)% < Ce, and thus we need to take C'c < ¢ and then apply
Lemma 2.4.2. As for the condition regarding the support, we just need to use that since the
solution remains in H* the velocity is C! and that the velocity at (21, 22) = (0,0) is zero and thus
particles can only approach the origin exponentially fast. O

Theorem 2.4.1. For any ¢y > 0, M > 2 and t, > 0, we can find a H>T3 function Oo(x) with
160 ()| 12 < co such that the only solution 8(z,t) € H2t3 to the SQG equation (2.1) with initial
conditions y(x) is such that there exists ¢t < ¢* with ||0(x, t)||gz > Mcp.

Proof. We consider the pseudo-solution

ngt*vc(LN = 0K:4M,t0:t*,a:°§ (w,1) (2.47)

) . in(e¢®N
+ %gl(6G(t)N§1’1)92(€7G(t)N§x2)Sln(eN x1)

=

Nl

with 0k 4,z given by Corollary 2.4.3 with ¢ = 9, to = t* and K = 4M,

L ouy Ok t0.2)
Gt)=—- | ———22(0,s)d
(0 = - [ e 0,5
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and g1(21), g2(x2) C°° functions with support in [—1,1] and ||g;||r2 = 1. We will define
fI}Lt*,co (@, 1) == O —ans =1+ o= <0 (2, 1)

sin(e“® Nxy)

C 1 _ 1
F2 Nz t) = g1 (e9ONZz ) go (e CON T 2y) N3
2

4

for a more compact notation.
These pseudo-solutions have the following properties:

e For N large, ||0ar.t- co.n(t = 0)|| 2 < co.

e There exists a t.-;+ < t* (given by Corollary 2.4.3) such that, for N large, we have

_ C
1031, o, (8 = terit) ||z > e > coe™

where we used that, since g, g2 € C' and have compact support, for A > 1

. 1 1 1Al 1
lmy ool [N2g1(AN221)g2 (A 1N2x2) cos(ANz1)||L2 = ﬁ||g(x1)||,;z.

Furthermore they fulfil the evolution equation

A 1 1
GM,t*,co,N +u (fl )an,t*,co +o (fl )an,t*,co
ot 1N M t*,co 0x1 2V Mt eo O
1 2 1 2
- avl(f]w,t*,co) 0 co,N ¥z 6U2(fM7t*,co) 0 co,N

8961 6331 8332 8%2 =0

and thus it is a pseudo-solution with source term

FMat*7CU7N($7t) = F]b[,t*,co,N(x’t) + F]%/I,t*,co,N(xvt) + FI:\S/I,t*,co,N(xvt)v

2 o 2
co,N co,N
F e @0) 5= =01 (72, 0) 2+ wal 2, 3) 520,
afl%/[ t*,c 8-}(}4 t*,c
FZ%Lt*,cO,N(zvt) = —(v1( EO,N)T’CI’O + va( EU,N)T;?’O),
o0 (e y) @ = 0) 92
F]?J,t*,CO,N($7t) = (.]31 7@;(1) — Ul(f]&,t*,q))) 82’/'); 5
. 2 (fig =) (@ = 0) — ))8 o N
2 (9$2 VMt 0 8552 '

As usual we want to find bounds for the source term for ¢ € [0, terit]. For Fyy o .oy (a,t) it is
easy to obtain that

_5 1
1 Far e con (@ )lle S CNTZL [[Fiy e e n (1) [ e < CN?

with C depending on M and cy. )
For F3 e co.n (1), using that [|f2 y[|zr < CN~% and that the support of fj, . . lies away
from 0, we get
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_5 _5
1ER e con (@ OllLe SCNT2, {[FRy e o n ()]s < CNT2

with C depending on M, t* and cy.
Finally, for Fﬂvt*,CO’N(x,t), using that, for 1 = 1,2

avi(fjlv[ o)
%Tm - vi(f]%[t*,co)

vanishes to second order around 0, that the third derivatives of v;( fl}/l,t*7 «,) are bounded around
0, and that supp(f2 y) C [-N~2,N~2] x [-N~2,N~z], we get
3 _5 3 1
HFM7t*7c0,N||L2 <CN™z, ||F1M7t*,co,NHH3 <CNz,

with C depending on M, t* and cg.
With all this combined and using the interpolation inequality, we get

_5 _1
[EM e conlle SONT2,0 |[Faeeco Nl paey S CNTE.

This allows us to obtain, in a similar way as in Lemmas 2.2.8, 2.2.9, 2.3.6 and 2.3.9 that, if
On 1+ o, N (2, ) is the solution to (2.1) with Ops 4+ ¢ N (2, 0) = Onr+ o, v (2,0) then

= _1
HQM,t*,Co,N(xat) - eM,t*,co,N(xat)HHZJr% < CtN™1

and this combined with the properties of §M_,t*’CO’N(x7 t) finishes the proof.
O

Theorem 2.4.2. For any c¢g > 0 there exist initial conditions (z,0) with ||0(z,0)|| g2 < ¢y such
that there is no solution 6(x,¢) to (2.1) satisfying

ess-supyeo | 0(z,t)||m2 < M
for some €, M > 0.
Proof. After fixing some arbitrary ¢g > 0 we define

On,r,N (2,t) == TR(Opr—an t+—2-n com2-n N,

with Ops 4+ co N s in (2.47) and Tr(f(21,22)) = f(z1 + R, x2). We will also refer to the first
time when B
00,7, N (T, )] 2 > 2"

(which we already know exists and is smaller than 27™) as tcrit .
We will study the initial conditions

0(z,0) =Y On r, N, (,0), (2.48)
n=1

which fulfil ||6(z,0)|| gz < ¢o if each N, is big enough, and we will prove by contradiction that if
we choose appropriately (R, )nen and (N, )nen there cannot exists a solution 6(x,t) with these
initial conditions that satisfies

ess-supyeo ¢ |10(z, t)|[ 2 < P (2.49)

for some €, P. Note also that 0, r, v, (7, 0) is supported in Bz (—Ry,0). We can assume that our

L? norm is conserved, since this will be true if equation (2.49) holds (for the time intervals that
we will consider). We will assume without loss of generality that € < 1, and we define v, as the
maximum velocity that a function f with ||f||g2 < 1 can produce. With this in mind, we write

Rn = Dn + Dn+1 + 4rUmam2n71 + Rn—l +3
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with D,, = N2} and we will prove that, if N,, is big enough, then any solution to (2.1) with initial
conditions (2.48) will satisfy

ess-Supyeg o1 |10(2, )|z > DA (2.50)
for any n € IN. Note that with this definition of R,,, we have, for any i # n that

d(supp(TRn (e_"anan (:E7 O)))v Supp(TRi (e_i,RmN'L (.T, O)))) > 4'Uma;c2n71 + D,

Now, we focus on the evolution of

en('r7t) = 1B 7Rn,0)9(x7t)

Dn+2“mam2n_1+% (

and we will assume that

esS-SUP;c(0,0-n1[10(7, 1) || 2 < PA (2.51)

and try to get to a contradiction.
Then if ¢ € [0,27"], we have that 6, (z,t) will fulfil the evolution equation

o 2, 2,

— 4 (v1(0,) + v (0 — 9"))ax1 + (v2(0y) + v (6 — 49,1))%2 =0, (2.52)

ot

9n(£7 0) = 1B (7Rn,())9(x7 O)

and that [[v;(0 — 0n)1B, ,.(r.)llcs < C N, * since d(supp(6 — 6,,),supp(6,,)) > N2
But then we can argue as in Lemmas 2.3.6, 2.3.9 and 2.3.10 to show that, for ¢ € [0, terir.n], if
N, is large, we can find a solution 6, (z,t) H2+3 fulfilling (2.52) and

Dp+2vmaz2n 143

- _ _1
|6 (z,t) — TRn(0n7Rn1Nn(x’t))||H2+% < CNyp *.

But then, the regularity of 6,, plus the (assumed) regularity of 0,, allows us to show that both
solutions are actually the same by studying the evolution of 8,, —6,,. Since for some tc,i,, € [0,27"]
we have that

| |TR1,, (én,Rn,Nn (177 tcrit,n)) ‘ |H2 > 2n7
and the H? norm of Tg, (0. r, n, (2,t)) is continuous in time, we arrive to a contradiction by

taking N, big enough and repeating this argument for each n € IN.
O

Remark 5. The proof can be adapted to work in the critical spaces WS for p € (1, 00]. For

this, note that it is easy to obtain a version of Corollary 2.4.3 but with small Witer , since the
function

Z f(bij’/‘)bj sin(2a)
c -

i=1 J

has a W' 5? norm as small as we want by taking ¢ small. As for the perturbation, we need to
consider

sin(Nzq)

Agl(Nbxl)gg(mez)W,

with a = a(p),b = b(p) > 0 values that keep the norm W' bounded (but not tending to zero)
as N — oo (for example, in W1 we consider a = 0) and A\ > 0. Taking b = % and arguing as in
Theorems 2.4.1 and 2.4.2 allows us to obtain ill-posedness for a wide range of p, but we need to
include some refinements to obtain the result for all p € (1, 00]. Namely, approximations for the
velocity similar to those obtained in Lemma 2.2.3 are needed and we have to include one extra
time dependent term in the pseudo-solution.
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Chapter 3

Strong ill-posedness and
Non-existence results for gSQG

3.1 Introduction

In this chapter we consider a generalization to the SQG equation. More precisely, we say a
function w(z,t) : R? x Ry — R, w(wx,t) € H®, s > 2+~ is a solution to the generalized Surface
Quasi-geostrophic equation with parameter v (or to the 7-SQG equation) with initial conditions
w(x,0) = wo(z) if the equation

— 4+ v9,— =0 3.1
€1 ? 2 ( )

is fulfilled for every z € R?, with v = (vq -, v ) defined by
d d

Uiy = —— A, Vg y = — A M.

8$2 8$1
As in the previous chapter, we denote A% f = (—A)?% f by the Fourier transform 1@(5) = |£|a]?(§).

This family of equations becomes the 2D incompressible Euler equations and the SQG equation
(see [27], [19] and [18]) when v = —1, 0 respectively. For the entire range v € (—1, 1), it has been
shown in [18] that this system is locally well-possed in H® for s > 2++. In [21] the authors proved
local existence in the critical Sobolev space H? for a logarithmic inviscid regularization of SQG
(see also [66] for the v-SQG case). Regarding H® norm growth see [73] where the authors show
that there exists initial conditions with arbitrarily small H® norm (s > 11) that become large after
a long period of time. Finite time formation of singularities for initial data in H® for s > 2 + ~
remains an open problem for the range v € (—1,1). On the other hand, there are a few rigorous
constructions of non-trivial global solutions in H* (for some s satisfying s > 2 + ) in [16], [58],
[15] and [95].

For both 2D Euler and SQG, the critical Sobolev space has been studied in [9], [39], [54] and
[65], where it has been established non-existence of uniformly bounded solutions in H2*7 (see also
[78] and [77] for other ill-posedness results for active scalars). Furthermore, for v = 0, in a range
of supercritical Sobolev spaces (s € (2,2)) non-existence of solutions in H* is proved in [39].

Global existence of solutions in L? have already been obtained for SQG in [89] (see [18], for an
extension in the case v € (0,1)), but uniqueness is not known and in fact there is non uniqueness
of solutions for A™*w € CfC# with <8< 1 and 0 < % (see [12]).

Local well-posedness in C*# N L7 (k> 1, 8 € (0,1), ¢ > 1) was established for SQG in [98],
and recently the result was improved in [3|, where the requirement w € L? has been dropped. The
same result as in [98] applies for the range v € [—1,0) for 8 € [0, 1] (for the a priori estimates see
[19]). Nevertheless, as shown in [39] for v = 0, there is no local existence result when 5= 0,1 (in
the case of 2D Euler equations see [8] and [55] for a proof of strong ill-posedness and non-existence
of uniformly bounded solutions for the velocity v in C*).

63



Global in time exponential growth of solutions was obtained in [59] for the range v € (—1,1)
in CY8, with B € [f(v),1].

3.1.1 Main results

The aim of this chapter is to prove strong ill-posedness in C*# (k > 1, 3 € (0,1] and k+3 > 1+7)
of the v-SQG equation for the range v € (0,1). We also construct solutions in R? of y-SQG that
initially are in C*# N L? but are not in C*# for t > 0.

Theorem 3.1.1. (Strong ill-posedness) Given k a natural number, 8 € (0,1], v € (0,1) and
5 € (0, %) with k+ 8 —26 > 1+, then for any T, t..i; €1, €2 > 0, there exist a H*#+1=9 function
w(z,0) such that ||w(z,0)||cks < € and the only solution to (3.1) in H*¥+8+1=% with initial
conditions w(x,0) exists for ¢ € [0, 7] and fulfills that

1
lw(@, terie)llcre = —.
€2
Theorem 3.1.2. (Non-existence) Given k a natural number, 8 € (0,1], v € (0,1) and § € (0, 3)
with &+ 3 —28 > 1+, then for any T and € > 0, there exist a H*#+1=2% function w(z, 0) such

that [|w(z,0)||cr.s < € and that the only solution to (3.1) in H**#+1=29 with initial conditions
w(x,0) exists for ¢ € [0,T] and fulfills that, for ¢t € (0, 7], |Jw(z,t)||cr.e = oo.

Remark 6. Although technically we do not prove the results for the case 8 = 0, the result in
C*1 actually gives us strong ill-posedness and non-existence in the space C**1.

3.1.2 Strategy of the proof

To obtain the ill-posedness result, we first focus on finding a pseudo-solution w for v — SQG that
exhibits the behaviour we would like to show, mainly that it has a small C**# norm initially and
this norm grows a lot in a very short period of time. As in Definition 5, we say that w is a
pseudo-solution to y—SQG if it fulfils an evolution equation of the form

ow ow ow

—— — —+ F(z,t) =0 3.2
at + U177 8,(61 + 1)277 (93)2 + ('T7 ) ( )
with v = (v1 5, v2,4) defined by
O i 0 |\ 14—
Viy = 787552‘/\ lerw7 Vg = 87551‘/\ 1+“/w_

Again, in general we will only use this definition for @ when F' is small in a relevant norm. Once
we have a pseudo-solution w with the desired behaviour, if F' is small and both F' and w are
regular enough, then @ & w, with w the solution to (3.1) with the same initial conditions as w,
and therefore w shows the same fast growth as w.

The details about how to find a pseudo-solution with the desired behaviour are somewhat
technical, but the rough idea is to consider initial conditions that in polar coordinates have the
form

g(r, Na)
wy(r,a,0) = f(r) + W,
that is, a radial function (which is a stationary solution to v-SQG) plus a perturbation of frequency
N in «. The evolution of wpere n (7, @, t) := wn (7, t) — f(r) satisfies

of(r OWpert N Vo r
+ 'U'y(wpert,N) . pre'rt,N + U'r,’y(wpert,N) f( ) + pert,N 77(f( )) =0,

or Oa r

8wpert,N

ot

where v, ., Vo are the radial and angular components of the velocity respectively.
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For very big N, we have that

U'y(wpert,N) . vaert,N ~ Oa 'Ur,’y('wpert,N) ~ C’y(*Aa)%Ha(wpert,N)

where (—Aa)% , H, are the fractional laplacian and the Hilbert transform respectively with respect
to only the variable a.. This suggest studying

00 U0 6 (8t Ho) + 22 el

ot or

and using w = f(r) + w. The system (3.3) is relatively simple to study, since it is linear and one
dimensional in nature, and one can obtain explicit solutions where the C*# norm grows arbitrarily
fast. Then, once the candidate pseudo-solutions are found, a careful study of the errors involved
allows us to obtain ill-posedness.

Moreover, to obtain non-existence, we consider an infinite number of fast growing solutions,
and spread them through the plane so that the interactions between them become very small.

= 0. (3.3)

3.1.3 Outline of the chapter

The chapter is organized as follows. In Section 2, we set the notation used through the chapter. In
Section 3, we obtain estimates on the velocity in the radial and angular direction. In section 4, we
introduce the pseudo-solutions with the desired properties and establish the necessary estimates
on the source term F(x,t). Finally in section 5, we prove strong ill-posedness and non-existence
for the space C*#.

3.2 Preliminaries and notation

3.2.1 Polar coordinates

Many of our computations and functions become much simpler if we use polar coordinates, so we
need to establish some notation in that regard. For the rest of this subsection, we will refer to

F:Ry x[0,27) — R?

(r,a) = (rcos (a), rsin («))
the map from polar to cartesian coordinates. Note that the choice of [0,27) for the variable « is
arbitrary and any interval of the form [c, 27 4 ¢) would also work, and in fact we will sometimes
consider intervals different from [0,27). These changes in the domain will not be specifically

mentioned since they will be clear by context.
Given a function f(x1,3) from R? to R, we define

Pl Ry x [0,27) — R
as fpoz(Tv a) = f(F(T, a))

For r > 0, we also have the following equalities

0 s o pol B
f(giilmﬁ = COS (a($1,$2)) gr (F 1(x1,m2)) (3.4)
8fpol

_%Sin(a(fﬂhxz)) (F~ (@, 22)),

O

9 o frel
ﬂgiéj”:sm(a(ml,xz)) J;r (F~ (21, 22)) (3.5)
afpol

—|—%Cos (a(z1,72)) (F~ (@1, 22)).

Oa
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Furthermore, for functions such that supp(f*°(r,a)) C {(r,a) : r > ro} with ry > 0, we have
that for m = 0,1, ..., using (3.4) and (3.5)

1fllem < Cromll 7l m,

where
k
o ak:f pol
||fp l| cm = ZzHarlaak 7,||LOO’
k=0 :=0
and similarly
1fllcm.s < Crom, sl P |lgms- (3.6)
with
Hf”"l(r a)lems = |17 cm
am pol
+Zbup d'r 8{2 From—rg (R, A) — W(R+h1,A+h2)
i=0 |h2 —+ h2| 2

where Q := {R, € [0,00], A € [0,27],hq € [-R, 0], hy € [—7, 7]}
Furthermore, if we restrict ourselves to functions such that

supp(fp"l(r, a)) C{(r,a) :ry >1r>10}

with 1 > rg > 0 then for m = 0,1, ...

||f||H"' < CT17T07ml|fp0lHH’"7
with

k

Y ak pol
1 = 3 S 12 e

k=0 i=0

Since we will need to compute integrals in polar coordinates, for a general set S we will use
the notation

Srol .= {(r,a) : F(r,a) € S}

and more specifically, we will use

BY(R, A) := {(r,a) : |[F(r,a) — F(R, A)| < A}

with |(z1,22)| = |22 + 23|2 (this is simply the set By (R cos (A), Rsin (4)) in polar coordinates).
Also, note that, for R > 2A (which we will assume from now on) we have

2 )\2

B (R, A) C [R— X\, R+ ] x [A — arccos (1 — ﬁ)’A + arccos (1 —

L}
We also define, for h € [—, A,

Sxr.a(h) ==sup(@: (R+h, A+ &) € B (R, A))

and defining
S\ R, A00 = SUPpe(—x 2] (SN R,4(R))

then for & € [—S) R, 4,00, S, R,A,00] We can define

Py ra+(@):=sup(h: (R+h,A+a)c B];OZ(R, A))
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Pyroa_ (@) :=inf(h: (R+ h,A+a) e BY(R, A)).

When the values of A\, R and A are clear by context, we will just write S(h), Seo, Py (&) and

P_(&). A property for P, (&) and P_(d&) that we will need to use later on is that, for R € [3, 3]
and & € [*SA,R,A,oo; S)\,R,A,oo] we have

|Pyr.A+() + Prroa—(@)] < CI.

Which can be easily obtained using that, since

|F(R,A) — F(r,a)| = |(R —7)* + 2Rr(1 — cos(A — a))|%

then
P)\7R7A7+(6¢) = —R(l — COb(d))
N V2R(1 — cos(@))? — 4(2R2(1 — cos(@)) — A2)
2
Py ra,—(&) = —R(1 —cos(a))
3 V2R(1 — cos(@))? — 4(2R%(1 — cos(a)) — A2)
2 9

|Pyroa+(@) + Pypra— (&) =4R(1 — cos(a)) < Ca* < ON2,
3.2.2 Other notation

Given two sets X,Y C R?, we will use d(X,Y) to refer to the distance between the two, that is

A(X,Y) =

W=

_ _ 2 _ 25
Lo nf EY|$ yl = we)l(nf @ =y1)" + (22 Y2)7|2.

Furthermore, given a function f and a set X we define d(f, X) as

d(supp(f), X).

Also, given a set X and a point = we define the set

X—-z:={ycR?®:y+xcX}

Working in polar coordinates, we will use the notation
Xxrol _ (r,a) :={(f,a) € R? . (F+rda+a)e Xpol}7

where we need to be careful since XP° — (r,a) # (X — F(r,a))?°.
We will also define, for A a regular enough set, k € IN

HWMW:ZZ%Wngmx

=0 j=0 o 722
i
. 2 3
1@ all = 33 (oo 2t
=0 j=0
Finally we will use the notation
k ok

f okf
| flow.s ':Z sup Tarom—m; (YL Y2) — m(y1+h1»y2+h2)|
C TomheeRr |h2 + h2|%
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3.2.3 The velocity

We will be considering v-SQG, so our scalar w will be transported with a velocity given by

(z —y) w(y)

v (w()@) = COIPV. [

R2
Since the results are independent of the specific value of C(v), we will just assume C(y) = 1.
Furthermore we will use the notation

(y2 — m2)w(y)

o)) = v, (1,0 = PV, [ =gy,
v (()a) = v, (0.1) = V. [ S gy ay,

The operators v., v1,, and vy, have several useful properties that we will be using later, namely

the fact that they commute with cartesian derivatives 8%1 and % (as long as w is regular enough)

and also that, for ¢ = 1,2 ’

Vi (W)l e < Chy[[0] s

It is unclear (and in fact, untrue) whether these properties translate to the operators v, .
and v, , that give us the velocity in the radial and polar direction respectively. We can obtain,
however, similar properties for these operators.

We start by noting that

Oy () = cos(ala))vr - (w) + sin(a(@))va, (w), (3.7)

Vo (w) = cos(a(z))vz, (w) = sin(a(z))vr 4 (w),

and since cos(a(x)) and sin(a(z)) are C*° if we are not close to r = 0, we have that, for m € Z

|vry (W)L 1> 2l Em < Con (V14 (W)|[Em + [[02,5 ()] 5m) < Cr g [J0][ s

Ve (W)Ljgp> 1]l m < Con([[o14(W)]|m 4 [[v2, (W)][m) < Cr | |w0]| et

Furhtermore, if we differentiate with respect to %, 1 =1,2 we get

v~ (w) Ow 0 cos(a(x)) Osin(a(x))
“om Uw(%) + T“Lv(w) + T”Zv(w)’
OVq (W ow Odcos(a(x Osin(a(x
Roalt) _y, (2L) 4 20D, () - 2L, (),

With this, using induction and if we only consider |z| > % we get that, for mi,mq € Z

8m1+m2v7“,’y (w) Omitmay,
W(x) - UM(W )|

kU w kU w
<oy PP |5t @),

Ja.k—i Ja.k—j
O, 0, Oz 0,

om +m2rUa,—y (w> omitmey,
|W(m) - Ua,w(W)(l"”
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mi+mo—1 k

o 11177 OFvy - (w)

and thus
am1+m2v (w) am1+m2w
I(—ggmggme— — vragrmggmz stz 31l (3.8)
1 2 1 2
< C(|[o1 (W)L g 5 g llomitma—1 + [z (W)L 5 1 llgmatma-1),
am1+m2vr”y(w) am1+m2w
||(W - ”m(W))hzg%Hm

< Ollory (W) g llmiema =1 + [[v23 (W)L jz> 2l zrmatme-1)

am1+m2 Ua,»y(w) am1+m2w
H(W *%,%W))hx\zth (3.9)

< O(H”L'y(w)lmzéHCm1+M2*1 + HUQ,’Y(w)l\an%|‘Cm1+m2’1);
am1+m2va ’Y(w) am1+m2w
”(W - ”mv(W))lmzénLQ
< O(H”L'y(w)lmzé‘|Hm1+m2*1 + ||U2,'y(w)1|x\2%HHmﬁmrl)
with C depending on m; and ms.

3.3 Bounds for the velocity

Since we will work in polar coordinates, it will be necessary to obtain expressions for the velocity
in the radial and angular direction. These expressions are, assuming w(z) is a C' function with
compact support and v € (0,1)

o (w)(r,0) =

/ (r + h)?sin(a’) (WP (r + h, o + a) — wP!(r, a))
[—7r,00] X [—m,7]

do’dh
B2 1 2r(r + h)(1 — cos(a))|G+/2 “

o (w)(r. ) =

/ (r+ h)(r — (r + h) cos(a’)) (WP (r + h, o’ + @) — wP°!(r, o))
[—r,00]x [~,7] |h2 + 2r(r + h)(1 — cos(a))|B+)/2

da! dh.

These expressions, however, hide some cancellation of the kernel when we are far from the support
of w. Therefore, given a C! function w with support in Bj(Rcos(A4), Rsin(4)), 2 > R > 1,
A< 1% we will use the expressions

v (w)(r, o) =

/ (r + h)?sin(a/) (WP (r + h, o + ) — wP°(r, @)
B! (r,a)—(r,a)

da’dh
12+ 2 (r + h)(1 — cos(a’))| G172 )

b (w)(r, o) =
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(r+h)(r — (r + h) cos(a/)) (WP (r + h, o + a) —wP!(r,a)) , ,
5 3 5 da'dh
BP? (r,0)— (1) ‘h + 2T(T + h)(l - COS(O/))|( +n/

when (r, ) € Bax(R, A) and

”UpOl(w)(T a) _ / (T + h) Sln( )prl(T +h,o + a)
™ T supp(wrel)—(ra) [M? +2r(r + h)(1 - cos(a’))|(3+7)/2

dadh

v (w)(r ) =

(r+h)(r — (r + h) cos(a/))wP (r + h,a' + ) ,
5 s da/dh
supp(wPol)—(r,a) ‘h’ + 2T(T + h)(l - COS( ))l( )/

when (r,a) ¢ Bax(R, A).

Although the expression for Bf;gl(r, @) is not simple, it will be enough for our computations to
use the properties we obtained in subsection 3.2.1.

We are particularly interested in obtaining the velocity produced by w with support very
concentrated around some point far from r = 0 (say » = 1 for simplicity), and for this we start
with the following technical lemma.

Lemma 3.3.1. Given A < 15, and a C* function w(x) with supp(w) C Bx(cos(c),sin(c)), ¢ € R,
we have that if (r,a) € Bax(cos(c),sin(c)) then

r2a/ (WP (r + h, o + a) — wP(r,a))

pol _ /
|U (w)(r7 @) /BPOZ(T a)—(r,a) |h? + T2(a/)2|(3+w/2 dadh
< Cf|w|[p= A7
ol / _ a,ypol
pol rh(wP(r + h, o’ + o) — wP(r,a)) , ,
|U (w) r 04) - /Bpol(r a)—(r,a) |h2 + 72 (O‘/)2|(3+7)/2 o dh'

< Olw||p=At™
with C depending on y.

Remark 7. The result can be extended to functions with support concentrated around a point
(r, ) with r = 0, although then the constant will depend on the specific value of r.

Proof. This result is very similar to Lemma 2.2.1, and the proof is analogous. We just need to take
successive approximations of the kernel and bound the error produced by each such approximation.
For example, for (r,«) € Bay(cos(c),sin(c)) we have that

(r + h)2(sin(a’) — o) (WPl (r + h, o/ + ) — WP (r, )
B2 (r,0) — (r,@) |h2 + 2r(r + h)(1 — cos(a’))|(3+7)/2

| dodh|

< |/ (r + h)? |/ |3 (WP (r + h, o 4+ a) — wP!(r, )
B ra)—(ra) |h2 + 2r(r + h)(1 — cos(a’))|(3+7)/2

< N |wl |~

do’ dh|

and thus we can substitute the sin(a’ —a) by o/ —« with an error small enough for our bounds.
Repeating this process for other parts of the kernel yields the desired result. O

Lemma 3.3.2. Given a natural number N, > § >0 fulfilling N—° < W and N~ < W’ a
function fn s(z) with supp(fn.s) C By- 1+a(cos(cl) sin(cy)) (c1 € R), ||f p0l||cj < MNI=9) for
j=0,1,2 and 1 >~ > 0, then ifw%’%(r a) = K,Oé(r a)cos(Na + ¢2) (ca € R) we have that for
(o) € B, (Lcy)

OQN—1+6
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/ Pl (4 hal 4 0) —wl(ra))
Bl (ra)—(ra) |h2 + r2(a/)2|B+1)/2

2 7 /
pol r?a/(cos(N (o + a) 4+ ¢2) —cos(Na + ¢2)) , ,
N (T a)/ do'dh
BISL s (ro)=(ria) [h? + r2(a)?|G+0)/2
< CMN™°
h pol h.o' ., pol
J T ) = ) -
BZN 146 (M) —(r,a) |h +r (a ) ‘ v
h(cos(N (o' 4+ a) 4+ ¢c2) — cos(Na + ¢2))
— oLy, a)/ r do'dh
N,§ BZNL s ()= (i) |h2 + T2(a/)2|(3+v)/2
< CMN7—°

with C depending on vy and §.

Proof. We will just consider the case c¢1,co = 0 for simplicity, and we will focus on obtaining
(3.10), the other inequality being analogous. We need to find bounds for

rh(wit(r + h,a! + a) = fR7%(r, a) cos(N (o’ +a)))
prol |h2 + r2(o/)2 |(3+w)/2

da/ dh‘

AN— 1+5( (T a)

‘/ / S rh(FR%5(r + B, o +0) — fR%(r, a)) cos(N (o’ + a))
AN—1+8

/
[ (a RIEe =

d51 d52

—1+43 rS(sz) So ( JZ\)/(TES(T + 89, 571 + Oé) - g;ofs(r, Oé)) COS(‘Z\](ST1 + a))
/4N 1 |S|3+’Y

+6 J—rS(s2)

where we used the change of variables s; = r(o/ — a), h = s, and we define |s| := |s? + s3|2.
Furthermore,
/ / 8(02) 55 cos(N(5 + ) (fR5(r + 52, 3 + @) = f5(r. )
AN-1+5

‘8‘3+7 d51d82

rS(s2)

T rS(s2) s cos(Nsp ) (fRO(r + s, L+ @) — 11310550' a))
= cos(Na) : ds1dss
AN—1+6 J

rS(s2) |S|3+’Y

d81d82.

/ / S(s2) sy sin(Nsp)(fR5(r + 52,5 + a) — fR5(r, @)
—sm Na
AN-1+5 J

rS(s2) |S|3+V

We will only check the term that is multiplied by cos(Na), the other term being analogous.
We start with the contribution when (s1,s2) € A := {|s;| < 4]’\7

| 9 cos( f,of;(?“ + 82, 2L +a) — 1{70,55(7"7 a))ds d
/ s+ 1dss]
< CMN"°,
Next we consider the integral in
( )N 2mr

I A

B :={(s1,82) : (s1,82) € BZ%—H&(TaO‘) —(r,a), [s1] < |
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with |-| the integer part.
We will focus on the contribution when (s1,s2) € BN (s > 4%, s9 > 0), since the other parts
of the integral are bounded analogously. We start by computing the integral with respect to s;.
For this we first note that, for an integer 4, given a C? function g(z) and a real number % >0
we have

(i+1) 3 r
[ eosalgends <GP (supacqage (@)

S 27
N

where ¢” () is the second derivative of g(x). This bound is obtained simply by considering a second
order Taylor expansion around the middle point of the interval and noting that the constant and
linear terms vanish. Therefore, if i > 2, so > 0

2nr

(i+1)2%- cos( )(fN(S('I"JrSQ,T +a)— f,og(r,oz))
: dSl
/Zzwr | |3+7

N
@& SR+ se, 2+ a) — [Rs(r )
dsi s[>+

27r
< (W)g(supsle(ﬂy,(ﬁlﬂ”%)

)

2T s 1

<CM
= OMUy ((2mm)2 4 52)*5°

2 25 N0 N'70[(i + 1)37 + 5]
g (N i ((Zm)2 + s3)% ()2 + s3) )

27y 1 N1
<CM(Z== 3.—(1\]2—25 + 7)
( N ) (ZIC 4+ 55)3+7 (222 + 59)

Adding over all the relevant values of i we get

| 2427 | s
Z oM 27rr) . 1 (NQ’Q‘S n N )
i=2 (5" + s2)3+7 B+ s
< /OO o2y ;(N%% + Lﬂ;)m
N N (5 4 st K+ s
cM cM

< +
= N25(2—]7{,T+52)2+7 N1+5(2”TT+32)3+7’

and multiplying by s and integrating with respect to so we obtain

4N—1HS
CM CM
+ dsy < CMNY=S.
/0 82(N26(2%7" + 59)2H7 N1+5(217\r[r + 52)3+7) 52 =

Finally, we need to bound the integral when
(s1,82) € C:= Byn-1+s(r,a) — (r,a) \ (AU B).

For this we only need to use that in this set |s| > 3N !9 and that

2
|/ dS]_l S 2 T )
[-rS(r).rS (N[~ 2022 | 2=, | SN | 22 N
which gives that

sacos(sp)( f,of;(r-i-Sz,STl +a)— ]%Ofs(r @))
| 2 d81d82|
c

‘3‘3-&-7

72



<|

4N~IHs
/ Clsal M\ < cpano—5-o7,

_AN-1+8 NlN_1+5‘3+7
O

Lemma 3.3.3. Given 2 5>0>0and 1>~ >0, for any natural number N fulfilling N~ o< ﬁ
and N7'0 < s, a function fns(x) with supp(fN5) C Bpy-1+s(cos(cy),sin(c1)) (a1 € R),
I f p°l||c7 < MNI=9 for j = 0,1,2 then we have that if wN5(r Q) = Nf;(r a)cos(Na + ¢2)
(ca € R) there exist constants C,Cy such that for (r,o) € Byn-1+s(1,¢1)

|02 (w5) (r, @) = N7 fR75(r, @) Oy sin(Nav + ¢)| < CMNY,

2% (W 5) (1, @) < CMNT°,

a,y

with Cy # 0 depending on v and C depending on v and 9.
Proof. Using Lemmas 3.3.1 and 3.3.2 yields

022 (w5 (1, )
2

pol r?a/(cos(N (o + a) + c2) — cos(Na + ¢3))
Né(r a) 2 1 2(A2[(317)/2
B, s (ra)=(ra) |2 + 7r2(a/)?| G+

dodh|

< CMN"°,

|05 (wi,5) (r, @)

pol (1 ) rh(cos(N (o + «) 4+ ¢2) — cos(Na + ¢2))
e B s (ra)=(ra) [h? +r2(a’)?| (4772

do'dh)
aN—1+6

< CMN"°,

and therefore it is enough to prove

do’dh (3.11)

' pol( )/ 20/ (cos(N (o’ + ) + ¢3) — cos(Na + ¢3))
BlN-14s (re)=(re) |h2 +r2(a’)2[B+)/2

— NYC, sin(Na + ¢3)] < CMNY™°,

|35 (r, ) / y rhicos(Via + a) + c3) — cos(Na + ca)) 5 g (3.12)

|h2 + 72 (a/)2|B+)/2

B;N*1+5 (T,&)*(T,a)

< CMN"9,

We start with (3.12), where by using the odd symmetry of the integrand with respect to h

ool rh(cos(N(a/ 4+ @) 4+ ¢c2) —cos(Na +¢2)) , ,
sl “>/ ) e
AN—1+6
7oL Py (e) rh(cos(N(a/ + a) + ¢2) — cos(Na + 02))dhd 7
INs (r,cx) o |h2 + r2(a/)2|FN/2 a
£ (1 ) P+(°“ rh(cos(N(a' + a) + ¢2) — cos(Na + CQ))dth/‘
Inis (o) 2 + 72 (o) 2|3 /2
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<|M CN_>+2 L _dd| < CMNEHOO=Y) < oM N
| _ NCLR)EH) ol = =

where we used that |P, (o) + P_(a')] < CN~2+20 |S | < arccos(1 — 162— 2+25) < CON-9 and

that, for h € [P_(a’), — Py (/)]

1 c
W2+ 2 (@ 22 = NCT e

For (3.11) we use

/ r2a’(cos(N (o' + ) + c2) — cos(Na + ¢3))
Bpoz 1_*_6(1” a)—(r,a)

/
12+ r2(af)2| G2 da’dh

= (Na + / ”“/ sV 5 a3 Ahdh
= —snNVato AN—145 J —rS(hsa) |h2+h’2‘(3+7)/2 e

hlsmNhl)
= —sin(Na + c3) // |h2+h2|(3+7)/2dh1dh2

+ 4sin( Na—|—62/ / ha sin(N5) A ) dhydhs
S(hy) [P + R3|G+/2

where we just take
g S(h), if h€[-4N~1Ho 4N—1+9]
0 otherwise.

But, we have that, for ¢ a natural number,

(+1)FF+rS(ha) sin(N)
/iQ"NT-i-’!‘S'(hz) |} + h3| G+
< .

N2 |(i5E + 75 (ha))? + b3 G/

dhy |

and thus

/°° hy sin(N%)

rS(ha) [RT + h3|GT/2

= NGB + (k) + 1O

dhy |

1
— ~ dx
1 N2 |$2% + ’I“S(hg) + h2|(3+7)

C
< —
S N[- + 7S (hy) + ho|2+Y) T N|rS(hy) + ha|+7)

1Q

where we used for hg > 0, r > 1 5 we have ’I“S(hg) + hy > CN~119. But then

l4sin(Na + )/Nw/ Msin(NT) |
S « Co 1 2
0 r§(hy) |D3 + h3[B+N/2

—1+48

N
5—6
<[ st - o
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and

sV +es) [ / TSN n)
sin(Na + ¢ e Loson BENCRE 1dha

< O hy) < ONT- Gl
= ‘/N—Hé N‘h2| (24+7) 2‘

and therefore

20/ (cos(N (o' + a) + ¢2) — cos(Na + ¢3))

/
12+ 72(af 2| G+ decdh

ol
BZN 146 (re)—

(r,a)
hq sin Nhl) s
+ sin(Na + ¢2) //]R|h2—|—h2 3+7)/2dh1dh2|§CN7 ¥

and combined with (3.11) we get

o hy sin( N’“)
|v§fy(wN5)(7‘ a) +fN5(7' a)sin(Na + ¢g) / / Wdhldhﬂ

< CMN"9,

Furthermore

h1 sin( N hl)

‘ 3+’Y

- Sin(Na + 02) / dhidhs

R2 |h2 + h3
N\" hisin(h
= —sin(Na+cg)<> / L(;thldh%
T r2 |h? + h3| 2
and

hy sin(h > > 1
/ L(&dhldhg — / hy sin(hy) / o dhadin
R2 |h2 + h2| —o0 —o0 (h2 h2)

& 1
= / I Slr;(hl) / Gty dA\dh, = KA/Z/ 7}“ SmQ(hl)dhl.
oo PP S (14 22)%5 o |haf*tY

By using that ‘hl}lliéﬂ is monotone decreasing for hy > 0, sin(x + m) = —sin(x), sin(xz) > 0 if
€ (0,7) and K, > 0 we obtain

L > hl sin(hl)

Thus

o awa) o)~ 4 () sV e < S,

and since, for the values of r considered we have
N 8l
|(> — N7 <CONYH < ONY0
r

we are done.
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Lemma 3.3.4. Given 0 < ¢ < 5, 0 < v <1, a natural number N such that N~ 1+46 <3 0 and a
C? function fn.s, satisfying

supp(fn,s) C By-1+5(cos(cy),sin(cq))

(c1 € R) with || fns|lci < MNI(=9) 5 =0,1,2, then for any x = (x1,13) = (Rcos(A), Rsin(A)) €
R2\ Byy-11s(cos(cy),sin(cy)) we have that

M
ol e VO
2% (7, sin(Na)) (R, A)| < O ’
M —2445

pol r,a) sin(Na _
|U (.fN 5( ) (N ))(R’ A)| < C‘d(x,fN75)|2+7

with C depending only on ~.
Furthermore, if fns € C*2 for k an integer k > 1 and ||fns(r,a)||ci < MNIO=9) for
7=0,1,....k then we have

P @)sinNa)RA) M 2t
0zl 0l ! = T d(x, fns)PH
‘3jv£f’i(fzv,5(ﬁa)Sin(Na))(R,A)‘<C M ot
Dl ozl T ld(z, )P

forj=0,1,...k+2,1=0,1,....5, with C depending on ~y and j.

Proof. We will consider ¢; = 0 for simplicity and we will obtain the expression only for v, ., va
being equivalent. That is to say, we want to compute

/ (r")?sin(a’ — A) fys(r',a’) sin(Ne)
supp(f&75) (

dodr’
R —1")2 4+ 2Rr'(1 — cos(A — o)) |3+)/2 @

N2sin(a/ — A)fns(r', o) sin(No/ — NA
:cos(NA)/ (') (2 ) /N, ( ) sin( it )/2)
supp(f%%5) [(R—1")%+2Rr'(1 — cos(A — o))|3+7

+sin(NA) / ()sin(a’ — A)f5(r', ') cos(Na’ — N A)
supp(f2ety |(R—1")2 4+ 2Rr'(1 — cos(A — o))[3+7)/2

= Cos(NA)/ (r' ) sin(a) fv,s(r',a + A) sin(Na)
supp(/2°0)—(0,4) [(B = 11)2 + 2Rr’(1 — cos(a) )| (3+7)/2

+sin(NA) / (r')?sin(@) fn,5(r', @ + A) cos(Na)
supp(F274)—(0,4) [(R = 1")% + 2Rr’(1 — cos(a))[(3+7)/2

da/dr’

do dr’

dadr’

dadr’

with f, R and A as in the hypothesis of the lemma. We will focus on the part depending on
cos(N A), the other term being analogous. First, a second order Taylor expansion and some

computations give us, since 7’ € (%, %)

DR +3R ()2 sin(@) fvs (1, @ + A) sin(Na)
ELENES [(R—17")2+2Rr' (1 — cos(a))|3+)/2
N +2N

DT+ /972
g/ <“) |sin(Na))|
i%+i N

r (‘672 (r")? sin(@) fns(r', a + A) Dd
N FDT R IN[9a2 (R — )2 + 2Rr' (1 — cos(a))|3+1)/2

2 135(r. )|
= C<N> <|(R —17)2 + 2Rr/(1 — cos(a))|2+7)/2

76

da|
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||fn,5(r, a)l[c
[(R—1")2 +2Rr'(1 — cos(a))|(3+1)/2
|6 (r, )| )
[((R—1r")2 +2Rr'(1 — cos(a))|(4+7)/2

_|_

+

Using that, for (', &) € supp(fp(’l) (0, A)

(R 7')? + 2Rr'(1 = cos(@))|> > d((R, A), fn,s)

d((Rv A)a fN,J) > N_1+5
and the properties of fy s we get then that

DR+ ()2 sin(@) fv,s (7, @ + A) sin(Na)

da
g B PP 2R cos@)or2
CMN~1-2
~d((R,A), fns)*T
so that
N LSRR8 ()2 sin(a) fvs (@ + A) sin(Na)
’ dadr’
_N-145 |SCON 2my = |(R—17)% 4+ 2Rr'(1 — cos(a ))|B+7)/2
LN oM N8 cM
< dr’ < :
T J1oN-14s d((R7A)va,6)2+A/ N N2d((R7A),fN,6)2+W
As for the rest of the integral we have
)/H'N s /S(T/) (T) sin(a) fy,s(r', & + A) sin(Na) dadr’
N-tts S SCON jax_ax [(R —17)? + 2Rr! (1 — cos(@))| (372
1+95

- /HN CMN—! ' < CMN?
= Jincies d((R,A), fn )2 = N2A((R, A), fn )2

and

’/1+N 1+5/ B 2 |+ (7"')2 sin(@) fy.s(r', @ + A) sin(Na) s

adr
N-1+s S s |(R—1")2 4 2Rr'(1 — cos(a))|(3+7)/2
- /1+N " oMN-! < CMN?®
r

T Jion-ies d(RA), )P T N2A((R, A), fvs)* T

and we are done.
To obtain the result for the derivatives, we first note that since
V1,4 (w) = cos(a)vy(w) — sin(a)va,,(w) (3.13)

V2~ (w) = sin(a) v, 5 (w) + cos(a)vq (W)

7



then for x = (z1,22) = (Rcos(A), Rsin(A))

M N72+5

ol
‘UP (fns(r,a)sin(Na))(R, A)| < CW )

) ' M —2446
5 valr, @) sin(Na)) (R, A)] < Ot V7217,

Furthermore, derivation commutes with the operators v; , and vs -, so we can prove that

|8va l(fN5(T a)sm(Na))(R,A)| -c M N2
PRERE < G v P

P NN, M
ozt oal! = ld(, )P

by differentiating fu s(r, @) sin(Nce) and applying our lemma for each individual term.

Then, using (3.7) and computing - z3J7 Vrys 1817 rUq,~ We obtain, for r > 1 that

Y (RA) <c(zj:zk:| O v RA)|+|%(R A)|)
oxtoxl ™" ¢ Oat Ozl e dxl okt

M

<C —2+6+j
— o ld(z, fas) P ’

ik
5)’“1}17 6’“1)2
— =T _(R,A)| + 7 TeY R, A
3 g B+ st (. 4))

and we are done.

3.4 Pseudo-solutions considered and their properties

To obtain ill-posedness for the space C*? for v-SQG, we will add perturbations to a radial solution

f(r) (with f(r) chosen so that it has some specific properties). These perturbations will be of the
form

L-1 km
N(M +1)(a—al) + a2 + &)
AS AV 1), N1 0a) 2 3.14
with
o f(r—1,a)=g(r—1)g(a), g a positive C* function with support in [~3, 2] and such that
fl@)=1ifze[-%, 1] and ||[f(r — 1,a)||c; < 1007,

e M,N,A>0,6€(0,3), LeNand o', a®€R,
e N°>100, N9 > 100,
e kelN, 5e€(0,1], v € (0,1),
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o k+8>14+26+1,
° L<%.

For compactness of notation, whenever we have f,d, N, L, M, \ satisfying these properties we
will say that they satisfy the usual conditions. From now on we will consider k, £, v and ¢ fixed
satisfying these properties, just so that we can avoid extra sub-indexes for these parameters. Due
to this, one needs to keep in mind that in general the constants in the lemmas obtained might
depend on the specific values of k, 3, v and §. Before we study how this kind of perturbations
will evolve with time, we start by obtaining some basic properties regarding the norms of (3.14).

Lemma 3.4.1. Given a perturbation as in (3.14), which we will refer as wy, g, with f,0, N, L, M, X
satisfying the usual conditions we have that

|lwr,gllcs < OKjA(NM)jfkfﬁ

OFwy, 5(r, @) CA 5 CAL
ALY e - +ONNM) P ———
| ok=ix 0%y < L|sin(N 2525 |(NM)P (VM) M(NM)P
Oy, 5(r, @) CAX(NM)*—8 s CA(NM)'*PL
AR IS — + CANM) O 2 ) 2
| Ok+1=ig 0lxy " — L|sin(N252-))| ( ) M

with C' a constant depending on f and K; constants depending on j.

Proof. The bounds for the C7 norms can be obtained directly by using that, for functions with
support concentrated around r = 1, we have that

£ (1, m2)l|cs < K| 7 (r, )|

and the bounds for the derivatives of w’kmé can be obtained by direct computation. For the other
two inequalities, we have that

|W < Kil[w}(r, a)l|cx < CANM)~P70
< CA(NM)™#=0 4 M(CA?ALN
+OA f;‘: FIN'=3( — 1), N1 SV Z&%—Bal) +a?),

and we can compute 31" cos(N(M + 1)(a — o) + a?) as

L—1
Z cos(N(M + 1) (a — o) + a?)
1=0

sin( NL(a—al))
=—— 2 _Zcos(NM(a—a')+a®+
sin(N 25%)

N(L —1)(a — at)
2

)

which gives us

CA\L CA

Fwy, g(r, @) n
Ok—ig, M(NM)? " |sin(N 22| L(NM)B

WP < ON(NM) P9
| 6"“*11718’:02 | - CA( ) +

The proof with k + 1 derivatives is done analogously. O
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This lemma tells us that these perturbations behave similarly to wave packets, with their
amplitude and derivatives decreasing as one gets further from o' + 5 QW’T . We will use this property
to obtain upper bounds for the norms of these perturbations when several of them are placed
appropriately far way from each other. For this, we first we need a short technical lemma.

Lemma 3.4.2. Given a C! function f(z): R — R with ||f(z)||ze < My and ||f'(z)||p~ < Ma,
we have that, for any x,h € R, B € (0,1)

[f(x) = f(z + h)|
||

<2 PMP P

Proof. We have the two trivial bounds

f@) = fa+h)| _ 20

|h[? Ll
[f(@) = fle+ )| _ |h[Mo
|h[? R
and thus it is enough to find a bound for
., 2M; |h|M;
SupheR(mln(W, W))
But it is easy to see that the supremum is attained when ?,]l\fﬁl = ""}'jl‘g"‘. Since this happens

when |h| = 21 substituting |h| in any of the upper bounds gives us

Mo
) = Fat Wl 2My gy g1 8,

B = (2M;\B
12 (52-)
O
Now we are ready to prove decay in space of the functions that we use as perturbations.
Lemma 3.4.3. Given a function g(x) of the form
J  L-1 1 2 knm
cos(N(M; + 1) (o — a3) + a5 + =F)
pol _ ) 1-6(,. 1-6 J J J 2
g (r,a)_;Aj;f(N (r—1),N'*7%a) TEONAT )+

where f,0, N, L, M;, \; satisfy the usual conditions and with 04} € [ck, ] and |on1<1 — a;2| >

for some ¢ > 0 and %’_1 < 2 for j1,j2 € {1,2,...,J} then we have that
J2

1 1 L 1
B <ONE
levs < CXG+ s Yo o)

with C' depending on k, B and § and where M = sup;j—1__ j(M;), X == supj—1..._1(\;).

Proof. We will compute bounds for the seminorm | - |« of an arbitrary k-th derivative of g, and
we will refer to it simply as ¢g(*)(z) since the specific derivative we consider is irrelevant for the
proof and we will use d* as notation for the specific k-th derivative for the same reason. We start
by obtaining bounds for ||g(*)||p~. Since laj, —a},| > ¢ and o € [¢, &], we have that for
any « there is at most one j with
. 1 ™ cm
minlo —a; = 1< 35
For simplicity, assume that j = 1 fulfils (3.15) (the proof when other values of j or no value of
j fulfil (3.15) is equivalent).
Then, using Lemma 3.4.1 we obtain

(3.15)
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9 (r, )| <

< Cn i (= 1), W15y NP+ D0 = 0)) +af e N

JL(NMl)Hﬁ
5 L COS(N(M; +1)(a — aj) + aF + Exy

+C|Z/\ de FIN'Z2(r = 1), N'"a) JL(NM;)*+8 )l

05\ C CAL CA
= JNAM)? T (NM)PT T MNP | [sin(%)L(NM)P
- CX_ N q/‘\ N _CS\L_ N CX_
= J(NM)# T (NM)F+S " M(NM)P " cL(NM)P

cx 1 1 L 1
- (]\Z/N)ﬁ(j T Tt o)

Arguing the same way for any arbitrary k + 1 derivative we obtain

g% (r, )|
C (l N 1 L 1
(MN)8*J ~ (NM)s = M  cL”

and then a direct application of Lemma 3.4.2 gives us

(k) — g
g" () — g™ (z + h) <1 1 L 1
< = = = - ).
e < ONG+ Nare T T e

O

With this out of the way, we are ready to define the pseudo-solutions that we will use to prove
ill-posedness. Namely, we define

B (T s t) = Ao fi(r) (3.16)
J L-1 COS(:' )
Z > </\ Fo(N'2(r = 1), N'7% (o = tAgvay (f1) (r = 1)) x JL(NAZ)IW>

with

km
Eja = N(Mj + D) (@ = aj = thovay (i) (r = 1)) + af + - +tACy N (M; +1)7

J TM1=Y 3
3= M) o= gy M =M +J) org=
1 m Jy-1 7 2 1 7r j
Q= ﬁ(l + j) Y — AVa ([1)(r=1), of = —(; - 1)§M(1 + j)”

The functions fi(r) and fo(r — 1,a) and the values k, 3,7,8, \, N, M, J, L and ¢ will fulfil the
following properties:

e \\N,M,J,L,t>0,6€(0,%),y€(0,1) and L,J,M € N, & € N,
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f2(r—1,a) = g(r — 1)g(e), g a positive C* function with support in [—3, 2] and such that
fl@)=1ifze[-%, 1] and || fo(r — 1,0)]|cs < 1007,

. MY
N°® >100, N'=% > 100, \g <1 (i.e. N7 > ;wa ),

keN, ge€(0,1], v € (0,1),

k+B>1+25+7,

M
L<M

pol
i v~ (1)
61%

T(Til):ofori:1,27

9h —1ifre[3,3],
e supp(f1) C {r:r € (3, K,)} for some K., depending only on .

As before, to avoid extra sub-indexes we consider k, 8,6 and 7 to be fixed, but all the results will
apply as long as they fulfil the restrictions mentioned. The constants appearing in the lemmas
might depend on our specific choice but the final results will not.

However it is not immediately obvious whether the conditions we impose over f; , are too
restrictive, so we need the following lemma to assure us that a fi ., with the desired properties
exists.

Lemma 3.4.4. There exists a C*° compactly supported function g(.) : [0,00) — R with support
i va,n (9())(r)
in (2,00) such that %(T = 1) =a; withi=1,2 and a; arbitrary.

We will omit the proof of this lemma since it is completely equivalent to that of Lemma 2.5
in [39]. With this, the existence of the desired f; is easy to prove, since we can just choose some
C® f with support in (%, 2) with the desired derivative in r € [%, %] and then add some other C'*
function given by Lemma 3.4.4 to cancel out the derivatives of V, , around r = 1.

Our next goal will be to prove that this family of pseudo-solutions is a good approximation

for our solutions. For this we define v,  as

Efgl(fg(Nl_‘;(r —1),N'%a+¢;) cos(NKa + ¢3))(r, @)
= (NK)'C, fo(N*7°(r — 1), N' %+ ¢;) sin(NKa + ¢3),

rH(f(r)) = 0.

We will only use this definition for ease of notation and we will only apply this operator to our
pseudo-solution so we do not have to worry about defining this for a more general function.

. . . . “pol .
With this, the evolution equation for w NNM. LS

_pol
8w/\,N,JLI,J,L,f
ot
OwP*! ~

l AN,M,J,L,t —pol (,—pol

= —vh% (Ao f1)(r = 1)T — Aotr% (wi,ON,M,J,L,f)
_pol
w i OXofi(r)

. NN, M, J,L,Q 0J1(") _pot, —poi

= —vh% (Mo f1)(r=1) Do o o7 ( f\?N,M,J,L,f)

while on the other hand, if wy y »s ; 1, 7 is the solution to 7-SQG with the same initial conditions
as Wy N ML JLE then

pol
aw/\,N,M,J,L,E

ot
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pol pol pol
/\,N,M,J,L,f) aw,\,N,M,J,L,E B 8w/\,N,M,J,L,£ pol

pol
r o or oy (w)\,N,M,J,L,f)

pol

ot

. . . l . .
and we can rewrite the evolution equation of w{’, , - in pseudo-solution form as

_pol
aw/\,N,M,J,L,f
ot
pol (,—pol ~ _pol ~ _pol ~
”ow(w,\,N,M,J,L,t) aw}\,N,M,J,L,t aw}\,N,M,J,L,tU (@ )
_ _ . B
r da or YNTN,N, M, J,L,t
_ gpol
F,\,z\f,M,J,L,t~

with
pol _ ol pol pol pol
EXymgpi = B+ +F,
pol __ =pol —pol
prol . vh% (Ao fi w,\,N,M,J,L,{) aw}\,N,M,J,L,f
Lo r Oa ’

—pol
o oB% (Mof1) 00 :
Fy™ o= (08 (o fa) (r = 1) — == ) — At

r Oa ’
_pol
ol _ (o fi(r) - wA,N,M,J,L,E) _pol
3 T 67" T17(w>\7N,M1J7L1t~),
L O fi(r) ol _pol
Y= or (UT"Y(wi,ON,M,J,L,E) - UT"Y(wi,ON,M,J,L,E))'

The next step in our proof will be to show that F\ y 5s ;1.7 can be made as small as we need
by choosing appropriately the parameters, namely we will show that it becomes small as we make
N big.

Before we get to prove that, there are some basic properties of wy y 5 ;1 7 that we will need
later on

pol

10X 012,500 Ol or < Cr A CoA(NM)™HE =80

(L

N gL t) = Ao fi(r)]|gm.sr < CoA(N M)+ k=0

for any m € N, 5’ € [0,1], t € R, with C; and Cy depending on m and 3’

pol

@3y ar 1.2 @Ol < CLt CoANTH(NM)™ =40

108 vrp (s @ t) = Do fa(r)|[m < CoANTHHO (N M )™+

for any m € N, 8’ € [0,1], t € R, with Cy and Cy depending on m.

1@y nar, 0,07 (%1 %2, )| g < C1 + CoM(NM)™HE k=5

103 81,2821, T2, 8) = Mo fi1(y/ 23+ 23) | < CoA(NM)™HT =40
for any m € N, 5’ € [0,1], t € R, with C; and C5 depending on m and 3’
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10y Nar,51.5(@1 T2, ) [|[Hm < Cy + CoAN IO (N M) —h=F

[0y N g0 (21, T2, 1) = Mo fi(y/2F + 23)|[gm < CoANT'HO(NM)™ =6
for any m € IN, 8’ € [0,1], t € R, with C; and Cy depending on m.
e By using the interpolation inequality for sobolev spaces we also have
05§ a1,0,0.5(@1, T2, 1) — Ao f1 (2} + 23)||gm < CLAN T (NM)™—F=F
for any m > 0, t € R, with C; depending on m.

The bounds in polar coordinates are obtained by direct calculation and then we obtain from
those the ones in cartesian coordinates using that the functions are compactly supported and with
support far from the origin. Now, for our pseudo-solutions to be a useful approximation of the
solution to v-SQG, we need the source term to be small. For that we have the following lemmas.

Lemma 3.4.5. For any fixed T, if 0 <t < T we have that

1 C
P\ nargnillee < (1+ ?)W
with C' depending on T, \, M, J and L.
Furthermore, for m € N, we have that
1. N™
I\ Ny illam < C(1+ ?)W

with Cy, depending on T, A\, M, J, L and m. In fact, by interpolation, the inequality also holds for
any m > 0.

Proof. We start by obtaining bounds for ||Fy||pz. We have that

OWy N M, J LT
Oa

|| o

_ 1
1E4][22 < [[vany Ao ft = @3 n a2, ez g 22l -

I OW N MJLE

da

| Lo

< ClXof1 — Wy yoar il

N7 1 1
S O Nrrpri=s yrr—1 = O yrraT

For F5, using that the first two derivatives with respect to r of

Yoy (Aof1) vanish at » = 1 plus
s

the fact that it is a radial function, we have that if z € supp(m) then

da
P (A
2 o) = 1) — S0P -,
’ r
and so
PO —3+465
I _a435 TYUNN M, LT c
||F2pOHL2§C>\0N + H Ao |L2§C NkJrlB SNk+ﬁ+1~

Similarly, for F5 we have

8(w§?JlV,M,J7L,E — Ao f1(r))

_pol
1Fsllz= < L (P o S TR [
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_pol
Nwy"N v ynp — MoJi(r) ol .
or HLWHUT’”(w&N,M,J,L,f = Aofi(r)[lm~
N1—5 N’Y 1
é CNk_‘_ﬁ Nk+ﬁ+1—6 g CNk+B+1

<l

Finally, for Fy, we go back to cartesian coordinates and divide the integral in two different
parts,

Ay := Boy-1+5(cos(tAgva,~ (f1)(r = 1)), sin(tAova, (f1)(r = 1)))

Ag 1= supp(Wy narsr7) \ Al
we have

|[Fal|L2
oXofr,. _

< or (Or (@3 N0 7) = Oy (O Noazg,0) Las |22
oxofi,. - _

+1I or (”nv(w,\,N,M,J,L,i)_Ur,'y(w,\,N,M,J,L,f))lAz||L2-

For the bound on Aj, using Lemma 3.3.3 and |%| < C we get

o fi(r) . _
I Or (”Tw(w,\,N,M,J,L,E) - vT7’Y(w)\7N,M,J,L,f))1A1HL2
_ _ _ 1
< ||)\0f1(7’)||01||Ur,v(w,\,N,M,J,L,£) - Ur,v(w,\,N,M,J,L,z))lAl |[Loe|A1]2

N9 1
<Ck

NEk+B+1-6 =~ I Nk+B+1

where we used that Ay = C]\gﬂ (the constant C' depending on M).

For the integral in A, using Lemma 3.3.4 and the bounds on f; we have

[N

oxof1,_ ,_ _
(/A( or (UT,’Y<wA,N,M,J,L,f)_UT,’Y<wA,N,M,J,L,f)))2d$1d$2)

< iflcN”(/
As

. C o c\’ %
< 1 —2445
< ( /2 . (N hM) hdh)

C
<
= INk+B+1
For the proof for the bound in H™, we use the that, since

1
_ 2
(Ur,'y(w,\,N,M,J7L,£))2d171dZE2)

1
9’

pol

supp(wA,N7M7J7L7£) c{(r,a):re|z,K|}

for some K, then

pol

||w)\,N,M,J,L,t~||Hm < ||w>\’N7M,J7L7{HH7"

and therefore we just need to find bound for

OFF;
ZZHmHLZ

k=0 =0
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with i =1,2,3,4.
For the bounds in H™ we will use that, given two functions f, g and m € Z we have

m
1fgllem < CY || flloillgllm—
i=0

with C depending on m. Combining this with (3.9) we have

m 1 aqupd -
ol A\,N,M,J,L,i
HFlHHm SCZ”UOC”Y()‘Ofl _wi(’JN,M’J’L’{)]‘\x\Z%HHi ; Do ||Cm*i
=0
m iN71+5+'~/ Nm—it+l Nm™

< C; Ns N < O

HwP!

—ANMILLY we have that

For I, using that, for r € BP°! := supp( e

Ot (v (Mo f1)(r =1) — M)

el ‘ T < ONGB=)(=143)
ort -

pol

for i = 0,1,2, and since vg‘ff/()\ofl)(r =1) - L:\Ofl) only depends on r, then, for ¢ =0, 1,2
vPoL (A ,
Hvam(koﬁ)(r = 1) - Mlzeﬂ ci < CN(3_1)(_1+6)

T

and for higher derivatives we just use
vh% (Mo f1)

[|[Va,y (Ao fi)(r=1) — WTLTEB‘

ci <C,

where the constant depends on i. With this we get

OWy N M, JLE

“ Ve (A
1Bl < O oy (o) = 1) = P20l )

2 ci 90 [|grm—i
N—3+45+m CN™
< (C— < = .
- tNE+B — tNk+B+1
For F3 we have
"N O(Wy Ny i — Mo fi(r) _
| 5] gm < CZH —— 78;“ o [|vry (@x N, a1, g, ,0) | [ =
i=0
m i+1 m—i—1+3+~y m
< CZ N N <c N .
Nk+8 NE+B Nk+B8+1
i=0

As for Fy, the contribution obtained when integrating in A, is obtained again applying lemma
3.34

[[Fala, || zm

<CY [ofi(r)] A2

et |[Ory (Wx n a1 g 1.7) = Vry(Ox noar.gz8)) 14 |lom-—
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Nm+'y—6 N™
NktB+1-6 OgNk+ﬁ+1 :

For the contribution when we integrate Fy over A; using (3.8) we have

[[Faleea,[lmm < CXol|(Urn(0x N ar,g,0.7) = Ve (Ox N v 1,0)) Laea, || Hm

4 01, (@ 0%w :
<C>‘OZZH Ty )\NMJLt) A,N,M,J,L,t)

Ur,~ - g >1m€A1||L2
7 .,.9—J : J5..9—J
=0 =0 Ox10x4 Ox10x3

+ CXol[v1 ’Y(w/\ Norgni) leea |[am—1 + CXol|vay (W n ar. 1.0 leea, || Hm—1

0%, (W N.a1.7.L.E) 0N\ N MILE
< CX H( _’U'r,'y("—’:")> 11€A1||L2
s oriou]
N— 1446 1
+C~Nk+6N .

But then since

9f(r,a) e o f(r, @)
W - Zzgfm}p,l(ﬁ Q)F

=0 [=0

S

with gp, j,¢1 in C* and bounded if r > %, we have that

H(a ’Ur'y(w,\NMJLt) ; (8 w,\NMJLt)>1 e
— o, L
0270zl " 92 02 e
Zq Zp apvp (w,\NMJLt)
Sp:o 1=0 H(gq’j’p’l(r’ @) [“)Tl(“)aP !

1T -
0 WX N,M,J,LF

l
- U”Z‘}?‘/ (gq,j,p,l (7"7 Oé) a?ﬂlaapil )) 1(7',(,!)6145101' | |L2 .

But applying Lemma 3.3.3 to each of the terms we obtain after differentiating, we get

q9 P

oP 7
< Z Z H (gq,j,p,l(r, a) Ur (wA N,M,J,L, t)

< 8rl8ap !
=0 1=

OPw P

ol A, N,M,J,Lt

_ Up (gq 5P, l(’r‘ a)—arlaapfl )) l(v",oz)EA’lm’ ||L2
NaNT—3 N—1+6

<C NFE+B ’

and so

m

NINT— 6N 1+46 CN™
m—1
[Falzea, |[am < C N N +CXo ZZ N8 S FNRATD

q=0 j=0

and we are done.
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Since we are interested in showing (arbitrarily) fast norm growth for 4-SQG, our solution
should start with a very small norm that gets very big after a short period of time. Lemma 2.2.4
already gives us tools to show that the initial norm is small, and the next lemma will gives us a
lower bound for the C**# norm of our pseudo-solutions at time .

Lemma 3.4.6. There exists a set A (depending on A\, N, M,J and L) such that, if x € A then
there exists unitary u depending on x and a constant C with

MWy N s i@, 1) — Ao f1)
| ouk

1 CL?
2(MN)8  (NM)BM

— C(NM)=O+8) _ ¢(NM)=PN~1F9)

> A

and a set B (depending on \, N, M, J and L) such that if x € B then for all unitary v we have
that
CL?

|8k(wz\,N,M,J,L,f(~ra t) — Nof1) )
(NM)PM

duF A(MN)?

furthermore, there is a set Sarn.s with |Sans| > C1MN?,

| < M + C(NM)~C+) 4

A= USESAI,N,JAS’

B = USGSM,N,Jst

d(z,y) < 3% if v € Ay, y € By, and |A,|,|Bs| > (1\,("71\’;‘[)2, with Cy and Cs constants.
Note that, in particular

1 CL?

damyp ~ ar ~ CINM)T - ONTE)

HwA,N,M,J,L,{(xatN) = Xofillers > A

Proof. We start by finding the set A as well as the unitary vector v that gives us a big k — th
derivative.
For this, we first want to obtain accurate estimates for

8k(7)\oJlVMJL6t(T a,t) = Aof1)

Oak
The definition (3.16) yields
8k io]l\f M,J,L t(r’ @, t) _ ak(m};?]l\/,M,JvL,t"({rﬂ Q, t) - )‘Ofl)
dak Sk

o' Ajfz(le (r—1), Nl*‘s(a — tAoVay (f1)(r = 1)) 8" COS(Ej,l)>
X , :
oot dak—i ’

and so

|8k iO]lVMJLtrat zJ:Lz:_l 1
dak 2 2 \ JL(NM; )+
_ _ OF cos(E;
XAV = 1,8 0 = gt () = D) )

< OANNM)~C+A),



Furthermore

oak
= (N(M; 4+ 1))* cos(N (M +1)(a — a; — tAgVar (f1)(r = 1))
+ad +tACy N (M +1)7)
= (N(M; +1)" cos(N(M; + ) (a — aj (1)) + o (t) + af (1))

with
ajl- (t) == a; — t)\oCﬁY'y(NJ\Jj)V*1 + tAgUay (f1)(r =1)
a?(t) = a]2- + (1 = y)tAoCy(NM;)Y
oy (8) = tACH (N (M; + 1) — (NM;)” —yIN7 M),

and we have

| cos(N (M + 1) (o — aj (1) 4 o (t) + o, (1))

— cos(N(M; + 1) (a — aj(t)) + o (1))]

< Claj, ()] < Cty(1 = 7)ACy (N M;)?

SO

_pol
| akwﬁ?N,M,J,L,f(r’ a,t)

J
- Z Z (W/\fQ(Nl_‘;(r — 1),N1_5(0¢ — tA\Ua (f1)(r =1)))

cos(N (M; + 1) e = a;(t)) + a?<t>>) | < CA(NM)~0FD) 4 Am -

But we have that a}(f) =0, a?(f) =0, so that if « = i-2%, i € Z, then

| akwi?jV,M,J,L,f(r’ a,1)
dak
1 1-5 1-5 -
- M = DN @ =l ()7 = 1)
CL?
< NM)—6+8) -
< OXNM)™C+) 4 d

and in fact, if o € [i3F — o7, i 50 + Tonsr) With @ € Z, then

_ l =
akwi?N,M,J,L,f(r’ a,t)

Oak
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1

> Q(NT)BAJ‘E(NP(S(T - 1),N176(04 - )\Ofva,»y(fl)(r =1)))
CL?
— OANNM)=0+8) =
(VM) (NM)S M
But since f(N1‘5(r—1) N1 (0 —tAvq W(fl)(r — 1)) = 1if (r,a) € [1 - 22 14 2
A0V (1) (r = 1) = X i 004 (1) (r = 1) + X2 then defining
':LfoMJ—l Z,:L%f_i_mxom,;(fl)(r:nJ
Y U am
G MM i S g IO
with +1, .2 2
J 2T ™ 2T T
= S A Y [ —
Ais (HNM v N T enar 'Vt Tenar
we have that, for (r,a) € AP
OF P! r ot 2
,\NMJLt( ) > A — ONNM)=0+8) ) CL '
dak 2(NM)PB (NM)F M

Furthermore, the sets A4; ; fulfil |4; ;| > C(NM)~2 for some C' > 0. Therefore, if we prove that
there exists a unitary vector u = (u1,us) such that, if x = (r cos(a), rsin(a)) € A

_ ~ k- pol
O%(wy s p.i(@ 1) — Xof1) " w Wy N.M,J,L, i ant)

~

ouk Oak

in a suitable way, then we are done proving the existence of the desired set A. But

012) _ , teostafay 277 @)ala))  sinfa(a)) 07 (r(@). o)
ou or r Oa
Afret(r(x), a(x)) . cos(a(z)) 3fp°l(7“($)70¢(33))]
or r Oa

+ us[sin(a(x))

so that

017(r,0)
auk Z Z Gir iz Oé T ul’u2)arl2621 —i2¢y

Zl 012 0

with g5, ;, C°° and bounded as long as we only consider r > %
Applying this formula to Wy y a7 517 We get
_ T k ,=pol n
MWy n s (@) — Ao f1) 9w Wy N,M J,L,t( a,t)

- gk,O(av T, uy, UZ)

ouk Dok
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< C)\(NM)—(5+,6)

gr—1,0(cos(a)us—sin(a)ur)

and it is easy to prove that gy o =
(—sin(a), cos(a)) we get

, go,o = 1 and therefore taking v =

- s k,+pol
MWy N, 1) = Ao f1) 1 9 wA’NwM”]yL_’f(T} a,t)

ouk ok dak | < C)\(NM)i(Hﬁ)

pol

N-1+8 N-1+6
} AN, M,J,L,

and using 7 € AP = r € [1 — +—> 1+ =] plus the bounds for w

i gives

_ ~ _pol ~
ak(w)\,N,M,J,L,f(xvt) - Xof1) B akwi,N7M7J7L7{(T7O‘7t)|
Ouk Dok
< OANM)~ O 4 CA(NM) PN,

and so, for x € A

OM(wy n ar.gn (2, T) S A CL?

_ _ —(6+8) _ —Bpar—1+46
Dk = NP A(NM)BM CA(NM) CAXNM)™PN ,

which finishes the proof for the existence of the set A. For the set B, we remember that for r» > %
we have

_ ~ k —pol
O (W N .aa, g, (1) — Mo f1) 9 w§7N7M7J7L,g(T’ a,t)
| IuF — gro(o, U, uz) ok |

< CAN(NM)~@O+8)

and since |ggo| < L we only need to find a sets B; ; with the desired size and distance to A; ;

rk
ok @Pol (o
such that | w*’N’]gg,;L’tU ° t)| is small. But
k,—pol I
|8 WY Nz L i t)|
dak
J L-1
1 -
< —————Af(N'O(r = 1), N "% (a — Aotvg =1
< @lg (FEan M2 0 = .12 = dofvay () = 1)
_ CJL?
and using
L-1 : Na
sin( L% L—1
Z cos(N(M; + l)a) = ((Ni)) cos(NMjo + ( 5 )Na)7
P sin (5



we obtain

N

J
L-1
S SIS cos(NM Lo+ N+ TV na)
— sin —) J
j=1 2
_ sin(L Moy gin(MALe) 1 (L—1) (J—1)NMa
= NM((1+ — N ).
sin(&e) sin N%a cos( (1+ J)OéJr 2 at 2J )
If now we define
fOJlVMJ(T a)
sin(L ) sin( M4l 1 (L—1) (J-1)NMa
= NM(1+ — N Y
sin(£52) sin(N%a) cos( (1+ J)a * 2 ot 2J )

then we have that

pol T .
® fLNMmg s W—pemodlc in the « variable.

e There exists |@| < W such that fL N.M, g(r,a) =0.

) pol _ _
. \%"(mﬂ < CLMNJ with C a constant,

which means that if a € Ujezla + i3 — then |f£O]lVMJ(T o) < ZE.

1~ o
ovaN O Ty T+ 4C]V[N]

Using this we have that, if o € Ujez[a + i2F — m,& +i% + 4CMN] then
or (ry o) A CJL?
WA N, M, JL T (s
< AC(NM)=OF+8) 4 N\~
| Dok 'S Tarvys TACM) AN
so, for any unitary vector u
0wy nargpi(@: ) A cJr?
NMALET ) < AC(NM)=O+A) 4 )
| Duk 'S Tarvys TACM) AN
and defining now
J+1 . .27 T 2 i
Biji=014—"—,14—— -0 - 2y 0
( +NM M A SR b Te o VAR T
and it is easy to check that A; j, B; ; have the desired properties. O

The previous lemma shows that our pseudo-solutions do have a big norm at time ¢, and although
this will be enough to show ill-posedness, for our non-existence result we will build solutions such
that the C*# norm will be infinite for a period of time, and this requires us to obtain specific
bounds about how fast our solution can change their C*# norm.

Lemma 3.4.7. We have that

dllwy n ar,gp,0(T15 T2, 1) = Mo fi(v/2F +23)|lors < CAM
dt -t

with C' a constant.
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Proof. First, since rotations do not change the C*# norm, it is enough to study the evolution of
the norm of

J L-1

SN (A (V' () - 1), N Pa(a))

j=1 0
cos(N(M; +1)(a(z) — af) +af + EX 4+ tXCy N (M +1)7
JL(NM,)k+5

which has time derivative

J
— MCy NY(M; 41) VZ
J=11
sin(N(M; + 1) (o(z) — of) + a2 + B+ tACyNY(M; +1)7
JL(NM B ’

(A (N (r() — 1), N' P a(a))

umz

but since this function has support in r > %, we can use (3.6) and it is enough to obtain bounds
for the C*# norm in polar coordinates. However, using the expression for Ay we easily obtain

L-1

J
INCyNY(M; +1)7 Y > <)\ Fo(N' =2 (r — 1), N'°a)

=0

~

7j=1
sin(N(M; 4+ 1) (o — a}) + o2 + B 4+t C, NV (M +1)7
JL(N M;)k+P lows

CA
t

<

O

We only need one last technical result before we can go to prove our ill-posedness result.
Namely, we need to obtain bounds for the error between our pseudo-solution and the real solution
to v-SQG with our initial conditions. We will, however, prove a slightly stronger result, where we
show that the error remains small even if we compare to a solution to v-SQG with a small error
in the velocity. This will later on be necessary when we prove the non-existence of solutions in
CkB.

Lemma 3.4.8. Given a pseudo-solution Wy n s 5 1,.7(21, T2,t) and a function verror = (V1 error, V2,error)
fulfilling

N™
||Ue7‘7"07‘| IC"’ S W

form=0,1,....k+2 and

81}1,67'7'07' + 61}2,67‘7'07‘

81'1 81'2

we have that, for any fived T A\, M, J,L and i, if N is big enough, then the unique H**FH1=0
solution 1D/\)N7M,J7L7{(I1, T2,t) to

:O’

811’,\ N,M,J,L,t ~ oy
ﬁ + (UW(wA,N,M,J,L,f) + Verror) * (va,N,M,J,Lf) =0, (3.17)
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Wy nvz,i (5 0) = Wy oy i(2,0)
exists for t € [0,T] and, if we define
W =Wy N m.gni = OaN,M,J LT

then
[|W (z,t)||2 < C(1+ )tN k=p-1

[|W (z,t)|| grto+1-s < C(1 4+ )tN_é.

ST

with C depending on T, A\, M, J and L.
Furthermore, by interpolation, for any s € [0,k + 8+ 1 — 6] we have that

1
W (z,t)||gs < C(1+ ;>tN_(k+B+1)+S.

Proof. First we note that the evolution equation for W is
ow
ot
+ (0y (W) + verror) - VO N s g8 — Fanm,iz,i = 0

+ (UW(U)A,N,M,J,L,E) + vy (W) + verror) - VW

and (using the properties of Fy y 5, ;1 7 for N big) this evolution equation has local existence and
uniqueness in H*+t8+1=9 under our assumptions for ve,.or. Furthermore, it is enough to prove
our inequalities under the assumption ||W (z,t)||gris+1-s < CN%log(N), since then using the
continuity in time of ||W||gr+s+1-s and taking N big would give us the result for the desired time
interval.

For the L? norm, we can use incompressibility to obtain

d||W1]3. _ ~
ar ——1L= <2 / |W(”w(W)Vw,\,N,M,J,L,£ - Fxnwmsrit Uerrorvw,\,N,M,J,L,f) |dx

_ C 1
< /2\W”w(W)Vw,\,N,M,J,L,E)dﬂ + m(l + ;)||W||L2-

To bound the integral term with v., (V) we need to use two important properties that will also
be key when working with the H*+5+1=% hounds. First, as in [18], using that, for an odd operator
A (which in our case will be vy, and v ) we have

[ ratng =3 [ reaten) - 9ar)

and so
|/WU’Y(W)VIDA,N,M,J,L,f)dx‘
ow :
OWx N, M,J, LT AN, M,J,L,Q
= ol [ W g W ERRAALE () FEASALL g

and using Corollary 1.4 in [81]

|/WU"/(W)VIE)\,N,M,J,L,E)dxl < ||W||%2||VU7(7D,\,N,M,J,L,£)HL°° < CIW|[7-

where we used that

oy (@x noargp.0)l | cwr s < CNF 1758 106(N)
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which is obtained by applying Lemmas 2.3.7 and 2.3.8, the definition of v, and the properties of
Wy n.wm.J.Li Lhen, after applying Gronwall we get

Ct

W[z < W(

1
1+i
7)

with C depending on A\, M, J, L and T.

The proof of the inequality for H*+t8+1=% is very similar to that of Lemmas 2.2.9 and 2.3.9,
so we will skip most of the details and focus on the few differences for the sake of briefness. The
idea is to use that

O|[AW |12, sron s OW
— KL
<2 / (A W)A* (%5 dal,
oW

and then bound each of the integrals obtained from the equation for 5. For example, for the

term

‘ /(ASW)AS (0y (W)@, N ap,g1,7)d]

we use Lemma 2.2.10 (which is proved in [81]) to get for s = k + 8+ 1 — § the inequality

| / (ASW)A® (0s (W) - Vi g gl

< 1 [ WA (W) VO, g )

la]<s—y

b 30 [ W00, (1)) - VA (0, 0,

[b|<y
+ Cl[(AW)[ 2 [[oy W) 5=~ [NV ar, .18l 2o

.. . 1
where we used the multi-index notation, ¢ = (c1,¢2) , [c| = (ci+¢3)2, ¢! = ¢1lep!, 8° = IS = 951 022
and the operator A®€ is defined via the Fourier transform as

ASIF(€) = A3 (©)f(€)
Asi(e) = il (jef?).

Most of these terms can be bounded directly by C||[W||%. using the properties of v., A®°,
and Wy n a7.71.7 Plus the assumptions for W (including the L? growth) and the interpolation
inequality for Sobolev spaces.

A few terms, however, requires more careful consideration, namely,

ow
| AW 0 (W) 2L i, (319)

o)A () 5

for i = 1,2, since [|A®(v,(W)]|| cannot by bounded by ||[W||gs. We will just focus on (3.18)
since the other term is done in exactly the same way. Here, we need to again act as in the L2
case, rewriting (3.18) as

1 s s OWy N M,JLE R OW N M, JLE
3| [ AT (0 45 () ZABMILE) 5 (1)) ZARALLL .
We can then use again Lemma 2.2.10 to get

R s OW N M,JLE s OWy N M, JLE
o] [ (W) ([ () RIS g 50 ARALLLE g

)dz|
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ow P
Vi ()| e < O [W] [

< CIW |l .

Wl me

Combining the bounds for all the terms we obtain

C{||‘A“S H%Z 1 C
— < W | ms (||W s+ (14 =)—

and therefore, for ¢ € [0,T]

1
(W (z,t)|| s < CeCUt||F||gs < C(1 + ?)tN*‘s

with C depending on T, \, M, J and L. O
Combining all the technical results together we obtain the following.

Theorem 3.4.1. Given T, t..it,€1,€2,€3 > 0 and to.; € (0,7T], we can find A, M, J, L and ¢ such
that, if N is big enough, then for any ve, o, satisfying

N™
||Uerror||Cm < Nk+5+2

form=20,1,....k+ 2 and

arUl ,error + an,error

(91‘1 8,@2

then the unique H*™#T1=% function @y y a7 s #(,1) satisfying

=0

5w,\,1\7,1\4,],1:,t~

ot + (v (W N ar.g.1.0) + Verror) - (VO §arg.0) =0 (3.19)
Wy N.ar.g.1,i (% 0) = Wy noar g i(2,0)

exists for ¢ € [0, 7] and has the following properties.

o [0y nargri(T,0)|[crs < e,

) HQI}A7N71\/I7J7L7£(.’E,t)”ck,/ﬂ > é if t € (terit — Clerity terie) with C depending on €; and eq,
i H@/\,N,M,J,L,f(xa0)|‘Hk+13+17%67||wA,N,M,J,L,E(x70)||L1 < €3

Proof. We first fix some parameters so the pseudo-solutions wy y as 7 have some desirable
properties. We fix £ = t..;; so that, by Lemma 3.4.6 we have

_ 1 CL? _ _
|w)\7N,M7J,L’f(x7tcrit)‘ck-ﬂ Z )\(W - 7? - C(NM) s _ CN 1+5).

Since we want 1 to also have a very big C*# norm, this suggest taking \ ~ é, and we will
specifically consider A = é32(47r)ﬁ.
With X fixed, we can now focus on assuring that our initial conditions have a norm as small
as required. Using Lemmas 3.4.1, 3.4.3 and 3.4.6 plus our choice for a7 we know that
1 1 J L

105 Na1,.1.5 (2 0)]|ors < Cho + CA(} + (NP 7t (NM)=P + M)

M= 1 1 J L
R @ — i B -84 =
O+ ONG+ s T 7+ (VM) P+ ).

and that there are sets A and B (depending on A\, N, M, J and L) such that if z € A then there
exists unitary v depending on x with

96



O%(wy N argn i@, t) = Xof1)
| Ouk |

1 _ CL?
2(MN)8  (NM)PM
and a set B such that if x € B then for all unitary u we have that

> \( — C(NM)=C+8) _ ¢(NM)=PN—1+9)

CL?
(NM)BM)

|6k(@>\,N,M,J,L,£($7t~) - Xof1) 1

< —(6+8)
oo | < Nz HONM) +

furthermore, there is a set Sys n,s such that its cardinal fulfils [Sy n 5| > Ch MN? and

A = USGSM,NM;AS

B = USESM N, aB’

d(z,y) < 35 if v € A,,y € B, and |A,],|B,| > (NM)g, with Cy and Cy constants.
By takmg t =t and J?2 = L, M = L3 = J® and fixing J big we can then obtain that

JoA=7 ¢
tcritN’y

[0y N ar,5.1,7(20)|lors < C

and for x € A there exists u unitary such that

|ak(mA,N,M,J,L,Z(x7 ) — Xof1) (4m)#

o |2 W Ny (3.20)

and for € B and any unitary vector u

ak(wA,N,M,J,L,E(xa t)— Xof1) (47)B
| - | <10 5
ou EQ(MN)

Note that, the choice of the parameters J, L and M depend only on ¢; and es.
We would like to obtain similar bounds for @, so we need to show that @ and w are close to
each other in a useful way. First, using Lemma 3.4.8 we have

1
g <O+ =)N26+D
/ 0} 6:5’2C P s t)

and in particular (including from now on (1+ ?) inside of the constant C' since it is constant with
respect to V), there exists A, Bs such that

Z/ —— 2+/ (gk(’lz} 7:_‘?) )2 SCN_Q(B+1+5)
5‘z 6x2 ‘ B, 0x'0xg "

SO

k -

A, / 2 « O N2(B+149)
O Dl <y [ (Gl

k ~

B < CN*Q(,B‘HS*FI)
0 a |_Z/ 633163:]5 o

and therefore

k -
>) | <CN™ 2(8+9)

’L
0 9312
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k ~ _
Mﬂ < ON—28+5).

( Ozt dxk 1 -

1=0

Given a time ¢ € [0, terit], we dconsider x4(t) € As, zp(t) € B, points fulfilling

()k w w .TA(t) ) 2 2
E < ON—2(6+9)

w)(zp(t)t) .2 2(B+5)
<CN~™
|§ 8m18 o )’

Now, if u is the unitary vector given by (3.20) for x5 (t), we have that

|3kﬁ)(x,4,t)flb(z37t)| 1
ak’tf)(:cA,t) —w(xp,t) 1 5
> ’ _CON~
_| oku ‘|$A—xB|/3
akw($A7tC”t) B w(xB7tcrit) 1 B B s
= | oku ‘|9UA—JUB|5 —|w(z,t) — w(x, terit)||cks — CN
4 PV AL
> — — C# —CN—9¢
€2

where we used Lemma 3.4.7 in the last inequality. Then if |C M| < Z,|CN™ o< L we get

O"w(xa,t) —w(xp,t) ‘ 1 >1 1
OFv lza —2B|P ~ €

Iz, )llors > |

and this will be true if we take N big enough and |t — | < W;—fl = Ceq,€39).

The only thing we need to prove is that we can also obtain

||1Z’,\,N,M,J,L,E(ffa0)||ckﬁ <e

[0 (, O)‘|Hk+/3+1—%a < €3,

but
C C

+

||U~)(5E;0)HHI¢+5+1,%5 < m E

with C' depending on J, L and M, so taking N big enough
||w(‘r70)||Hk+/i+l—%6 <€
and analogously,

Je(1=) €1

~ A(z,0 B8 S CO——ere + =
lox n,v1,0,,8(, 0)|[rs < tcv-itN7+ 2

so again, taking N big enough finishes the proof.
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3.5 Strong ill-posedness and non-existence of solutions

We are now ready to prove ill-posedness and non-existence of solutions. As mentioned earlier,
these results hold for k € IN, g € (0,1], v € (0,1) with £k + 8 > 1 4+ v and ¢ is some constant
6 €(0,3) such that k + B+ 26 > 1+ 1.

Theorem 3.5.1. Given T, t¢pi €1, €2 > 0, there exists a function w(z, 0) such that ||w(z, 0)||cr.e <
€1 and the only solution to (3.1) in H*+#+179 with initial conditions w(z,0) exists for t € [0, 7]
and fulfills that

1
[|lw(x, terit)||ore > —.
€2
Proof. This is just a direct application of Theorem 3.4.1 with

Vl,error = V2,error = 0
O]

Theorem 3.5.2. Given ty, e > 0, there exist a function w(z,0) such that ||w(x,0)||cr.es < € and
that the only solution to (3.1) in H**#+1=39 with initial conditions w(z,0) exists for ¢ € [0, to]
and fulfills that, for ¢ € (0, o], ||w(z,t)||cr.e = oo.

Proof. To obtain initial conditions with the desired properties, we will consider initial conditions
of the form

oo G(js€)

YD Ta,(wij(@)

j=1 i=1
where Tr(f(z1,22)) = f(z1 + R, z2). We will first choose w; ;(z) and afterwards we will pick the
values of R; ;.

First, fixed j, we will restrict to choices for w; ; such that they are initial conditions given by
Theorem 3.4.1 with é =j, e =€ and T = ty. Then if we choose some t¢rit = tcriri; and we
call W, ; a solution to (3.17) with the initial conditions given by w; ;(x) and an appropriate veg¢
fulﬁlhng ||vezt||ck+2 S C@j, we would then have that for ¢ € [tcrit,i,j — thm’t,i,j; tcrit,i,j]

@i (@, t)l|crs > j
for some C depending on € and j. Therefore, we can, by choosing t.. ; appropriately, obtain,
for any t € [%,to}

SUP;=1,2,...,G(j,¢) | |u~;,] (z,t)||crs > j

with G(j,€) a finite number depending on j.
Furthermore, we can now choose €3 in Theorem 3.4.1 so that

60277.
||wi,j (x)||Hk,+[f+1—%6 S G(], 6)

2-J
i 1 <
s s@ller < g

with ¢y a constant small enough so that any solution to y-SQG with
||w0(x)||Hk+ﬂ+l—%5 <

exists for ¢t € [0, ] and ||w(x,t)||Hk+B+1,%5 <1 for t € [0,¢]. Therefore we know that, indepen-

3

dently of the choice of R; ;, for t € [0,to] there exists a unique H**#*1729 solution to (3.1) with

initial conditions
0 G(j)

Z > T, (wi;(x))
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and, furthermore, if we call this solution we(x,t) (which still depends on the choice of R; ;, but
we omit it for simplicity of notation), then we have that there is a constant v, such that, for
te [0, to]

||v1(w00)||L°°, HUQ(wOO)HLoo < Umag-

With this, and using that there exists D € R such that supp(w; j(x)) C Bp(0), we have that, if
we choose the R; ; so that |R;, j, — Riy jo| = 4toVmasz + 2D + sup(Pi, j,, Pi, j,) with P; ; > 0 then
we have that

1,71

wiJ@O(xv t) = lBD+2t0v,,,Law (= R; ;,0)Woo (JE, t)

fulfils for ¢ € [0, ¢o] the evolution equation

Bwi’ j,00
Tg + (Uy (Wi, j,00) + V(Weo — Wi j,o0)) + (VWi joc) =0
and o
[[v(Woo — wij.00))llor+e < =575
Pi,j

But by the choice of w; j(x) and using that the supports of the w; j» are disjoint, we have
that if

[[0(Weo — Wi j,00))|lor+2 < Cij (3.21)
then for ¢ € (0, ¢(]

[woo (2, t)[[crs = SUPjen iz1,2,....c(,e) Wi j,00 (T )| ors = 00

and taking P; ; big enough so that (3.21) is fulfilled finishes the proof.
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Chapter 4

Loss of regularity for 2D Euler

4.1 Introduction
We consider the incompressible Euler equations

o+ (v-V)v+ VP =0, (4.1)
diveo =0

in R? x Ry, with d = 2,3, where v(z,t) = (vi(z,1), .., va(z,t)) is the velocity field and P = P(z,1)
is the pressure function. In this chapter we study ill-posedness of the initial value problem for
(4.1) with a given initial data vo(z) = v(z,0).

In order to illustrate the ill-posedness phenomena, we first note that the classical theory of the
Euler equations goes back to the work of Lichtenstein [82] and Gunther [57], who showed local
well-posedness in C*® (k> 1, a € (0,1)). This was extended to global-in-time well-posedness in
the 2D case by Wolibner [97] and Holder [61]. In the case of Sobolev spaces, Ebin and Marsden
[52] proved, in a compact domain, local well-posedness in H* for s > % + 1, and Bourguignon and
Brezis [10] have generalized it to the space W*P for s > % + 1. Moreover, Kato [68] extended the

local well-posedness to R? for initial data ug in H*® for s > g + 1, see the extension to the W*P
spaces, due to Kato and Ponce [69].

Remarkably, in the 2D case these local-in-time results can be easily extended for all times using
the Beale-Kato-Majda criterion [6], since the vorticity is transported by the flow. The optimal
bound for growth was obtained by Kiselev and Sverak [76] in a disk, see also the work by Zlatos
[104] and the lecture notes [71] by Kiselev for further results.

Moreover, it can be shown that the equations are not well-posed in some spaces, such as
integer C* spaces (k > 1). This was recently demonstrated by Bourgain and Li [8], and in-
dependently by Elgindi and Masmoudi [55], who showed strong ill-posedness and non-existence
of uniformly bounded solutions for the initial velocity vy in C*. Furthermore, nonexistence of
uniformly bounded solutions in the critical Sobolev space H 541 was established in another work
of Bourgain and Li [9]. Subsequently, Elgindi and Jeong [54] obtained analogous results with a
different approach, and Jeong [65] gave a simpler proof and similar results for the critical space
WP, Recently, Kwon proved in [77] that there is still strong ill-posedness in H? for a regularized
version of the 2D incompressible Euler equations. We also refer the reader to Misiotek and Yoneda
[85] for a proof of a nonexistence result in critical Besov spaces in d = 3.

These results gave the first methods of studying ill-posedness and nonexistence of solutions to
the Euler equations. Moreover, subsequently Elgindi [53] proved a remarkable result on singularity
formation of the 3D axisymmetric Euler equations without swirl for C*® velocity, where o > 0
is sufficiently small, and Elgindi, Ghoul, and Masmoudi [56] extended it to the finite energy case.
We also refer the reader to the work of Chen and Hou [22], who provided evidence of a possibility
of nearly self-similar blow near a boundary, as well as their subsequent impressive work [23].

In the case of supercritical Sobolev spaces DiPerna and Lions [49] show that for d = 3 and
for every p > 1, there exists a shear flow solution to (4.1) with vy € W1? and v(z,t) ¢ WP for
t > 0. Using the structure of shear flows Bardos and Titi [5] showed the instantaneous loss of
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smoothness of weak solutions for the 3D Euler equations with initial data in the Holder space C“
with @ € (0,1). Note that these constructions rely strongly in the 2 4+ % dimensional structure
of the shear flows. At this point is worth mentioning the ground-breaking work of De Lellis and
Székelyhidi Jr. [46, 47|, where they show non-uniqueness of solutions in L? by the method of
convex integration (see also the work of Wiedemann [96]). Very recently, using similar tools, Khor
and Miao [70] use the method of convex integration to construct infinitely many distributional 3D
solutions in H” for 0 < 8 << 1 which has an instantaneous gap loss of Sobolev regularity.

From now on in the present work we will focus in solutions with sufficient regularity in the two
dimensional case and use the vorticity formulation, which is obtained by taking the curl of the
first equation of (4.1) and denoting the scalar function (vorticity) by w := curlv = d1ve — dav1,
where 97, 0> denote partial derivatives with respect to x1, xs, respectively. The equation for the
vorticity reads

Ow +v-Vw=0. (4.2)

According to the Biot-Savart law, there is a stream function ¢ such that v = (—02t,01¢) and
—A%) = w which gives that v[w] = —A~1V+w, where V1 := (—=0s,0;). Thus the velocity field v

can be expressed as
2 [ (z-y)w(yt)
t) = — — = 4.3
llet) = 2 [ P, (43)

where (21, 22)" := (—x2,71), although we will ignore the factor 2 in our computations since both
velocities produce the exact same qualitative behaviour.

In [103] Yudovich proved the existence and uniqueness of weak solutions for bounded vorticity
in a bounded domain. This statement can be extended to R? for solutions such that w € L' N L>®
(see discussions in [83] and [2]). Very recently Vishik [93, 94] showed that although there is
existence of solutions with a force source the uniqueness fails if L>° is substituted by LP with
p < oo (see also [2]).

The main result in this chapter is to construct unique solutions of the 2D incompressible Euler
equations (in vorticity formulation) in R? x [0, co) with initial vorticity in the super-critical Sobolev
space H?, 0 < 3 < 1, which, at each time ¢ > 0, does not belong to any H?" such that

1 (2 B 5)6
8 > PR (4.4)
Moreover these solutions are not in the Yudovich class but are the unique classical solution in the
sense given by Definition 4.1.3.

We note that the only result to-date in the direction of proving instantaneous loss of regularity
for 2D Euler in the supercritical regime with velocity v(t) € H! for all ¢t > 0 is the result of Jeong
[63], who constructed solutions to the 2D Euler equations which belong to the Yudovich class but
the derivative of the vorticity loses integrability continuously in time, i.e. w ¢ Whr(®) | with p(t)
decreasing continuously in ¢, 1 < p(0) < 2. In fact, it is shown in [54] that for this regularity the
solution cannot have a jump in the regularity class. Furthermore, Alberti, Crippa and Mazzucato
[1] show a gap loss of Sobolev regularity for a passive scalar that is driven by a non-Lipschitz

incompressible velocity field, see also [43)].

4.1.1 Main results

We are interested in showing loss of regularity for solutions with vorticity w € H?, but as the first
step we will prove that there are initial conditions wy € C'2° that are not big in H” but become
arbitrarily big in H? for 8 as in (4.4).

Theorem 4.1.1 (Norm inflation for smooth data.). Given T, K >0, 3 € (0,1) and 8’ > %,
there exist finite energy initial conditions wy € C° with |lwol||zrs < 1 such that the only classical
solution to 2D Euler with initial condition wy fulfils |w| s > K fort € [£,T].

We then consider an infinite number of rapidly growing solutions and use a gluing argument
to find initial conditions that lose regularity instantly.
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Theorem 4.1.2 (Loss of regularity in the supercritical regime). For any e > 0, 8 € (0,1) there
exist finite energy initial conditions wy such that there exists a unique global classical solution w
to the 2D Euler equations (see Definition 4.1.3) with those initial conditions such that

lwollms <€,

9 _
lw(z,t)||ger =00  for te(0,00),5 > %

Since the initial conditions from Theorem 4.1.1 are chosen so that wy € C2°, for Theorem 4.1.1
we can use the usual definition of classical solutions for the 2D Euler equations without any trouble.
However, Theorem 4.1.2 requires us to consider initial conditions with very low regularity, and so
we need to be a little more precise regarding what we consider a classical solution to 2D Euler in

such a situation.

Definition 4.1.3. We say that w € L>°([0,T); L* N LP), where p > 2, is a classical solution to 2D
Euler with initial conditions wp(z) if

we Cyy(K) for every K = B4(0) x [0,a] C R? x [0,T)
and
Ow + v[w] - Vw = 0,
w(z,0) = wo(x).

Since w is C’;)t on each compact set this assures that the transport equation makes sense,
that the LP norms are conserved (whenever they are well defined) and that the support of w is
transported with the velocity v[w].

Note that the initial conditions considered will in general not be in the Yudovich class (but in

L' N LP for some oo > p > 2), so it is unclear whether we have have locally in time a classical
solution, much less if it is also global and unique, and we will resolve these problems by hand.

4.1.2 Ideas of the proof

In order to prove the norm inflation result, Theorem 4.1.1, we start by considering wq consisting
of a stationary radial function and a perturbation involving highly oscillatory angular behaviour

wola) = ) + () 2N, (4.5

As N grows, the effects of the velocity produced by g(r)N~" cos(Na) become less and less
relevant, and thus we can approximate the solution by

6tw(xat) + v[f(’r)] : Vw(w,t) =0,

see Figure 4.1 below.



Figure 4.1: A sketch of the initial vorticity wg. Here the inner vorticity depends

only on 7, and so the resulting velocity field is only angular, which causes

rotation of the outer part (here denoted by the arrows). The high frequency

N in « of the outer part improves the control over the solution. We note that

except for the inner part, the radial part of the vorticity must also include an

outer part (supported far from the origin), which would guarantee zero average

of wy.
This already allows us to obtain, in a fairly straightforward way, strong ill-posedness in H?,
B € (0,1), by choosing f to be small in H?, but such that |[v[f(r)]||c: is large. However, in order
to obtain H#" norm growth for some 3’ < 38 (as in (4.4)), rather than merely for 8’ = 3, we need
to consider a more general family of initial conditions

Wo (%) = Wrad(0) + wWose(0) := AP F () + NP N"Pg(\r) cos(Na). (4.6)

Note that such scaling with respect to A > 0 preserves the H? norm. As in (4.5), the periodicity
parameter N allows us to improve our control over the behaviour of the solution and now the scal-
ing parameter \ is compressing the timescale so that the growth happens faster. The appearance
of the new parameter A\ makes the control of the errors more challenging than in the case of SQG
(chapter 2) . We will approximate the solution by a function of the form

O(t) = Wrad(t) + @ose(t)

1 [t 4.7
= AP Or) + M Pg(Ar) NP cos <N (oz — ;/ Vg [f(/\r))\lfﬁ + (error)] d8)> . (4.7)
0
We note that A is related to N by a power law, which we describe in (4.10) below. We note that
we will have that N > X for 8 close to 0 and A > N for § close to 1.

In order to keep track of the regularity of the solution w(t) of the Euler equations (4.2) with initial
data (4.6), we first show (in Section 4.4.1) that for any T' > 0 we can choose X large enough so
that

wW(t) = Wose(t) + wrqalt) for ¢t € [0, T7,

where wys. and wyqq remain localized in space. We also show that the influence of wyse 0N Wyaq is
exponentially small in N, so that w,,q approximates wyqq,

N
||W7"ad - wradHLz § e 2

on [0,T7.

This can be proved by an energy estimate on W := w,qq — Wrad, which shows that ||W| L2 grows
exponentially in time of order e’\l_ﬁt, as well as by the localization of wys. and wyqq, and a
Paley-Wiener-type estimate, which shows that the growth of ||WW|z2 is dominated, on time in-

terval [0, T, by an O(e~V) smallness of the influence of w,. ONto Wrqq, see Lemma 4.4.1 for details.

Next, in order to make sure that the evolution of w,s. is governed, to a leading order, by v[w, 4]
(i.e. that wese can be approximated by wWys.), we need to show that v[w,4q] can be approximated
by v|wrqea], and that its effect is not overpowered by v]w,sc]. We address the latter issue by proving
that

|wose(t)||cr < A2P NP exp(CN—F) (4.8)

(see Lemma 4.4.2). We then show that w,s. can be approximated by wW,s. by noting that the
oscillatory part @y, of the pseudosolution (4.7) satisfies the same PDE as w,s., except that the
velocity field is averaged over «, which allows us to use Lagrangian trajectories to show that

|wWose — Dosellz < CAZ 3PN 1og N. (4.9)

Indeed, the above estimate can be obtained by noting that the radius of the Lagrangian
trajectory of Wy, remains constant throughout the flow, as well as using a version of the classical
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Log-Lipschitz velocity estimate in polar coordinates (4.22)—(4.23), a resulting L> radial velocity
estimate (4.24) and the C! estimate (4.8).

At this point we pick any sufficiently small 6 > 0 such that

(2+6-p)8 S 2-p)p
2+6—02 2 — 32

Bs =

and we relate A and N by
N\2m28+0 — NP, (4.10)

Such choice suffices for the above arguments, as well as lets us observe the norm inflation claimed
by Theorem 4.1.1.
Indeed, it shows that the right-hand side of (4.9) can be estimated by C|@ose||z2A"%/2, and
consequently we can use a Sobolev interpolation argument to show that, for any 8’ > s and
sufficiently large A,

[@ose() || gor = CAFC=D=BNF'=8 > N\ for t € [1/T, T,

where € > 0 is a positive (and small) number, and so the claim of Theorem 4.1.1 follows by taking
A sufficiently large.

We note that, in order to obtain the last inequality, one needs to be able to estimate from below
the size of the H® norms of the pseudosolution @(t) for s € (0,1). While we can use the explicit
formula (4.7) for the pseudosolution, we note that it is merely “almost explicit”, which makes the
issue nontrivial. We show that the error term can be estimated in C' by a fractional power of
the C' norm of the leading order term f(Ar)A'=#, but this by itself still does not suggest a way
of computing a lower bound on ||| g- using an explicit formula, i.e. the Sobolev-Slobodeckij
e e s
choose r = 0 and ¢ < 0. This way we can make use of the L? conservation of @ to obtain a lower
bound, and we need to estimate a negative Sobolev norm of @w from above. We provide a subtle
argument that provides robust estimate of such form, which can also take into account the error

term, see Lemma 4.3.5 for details.

and we

representation. Instead, we use the Sobolev interpolation || - || < | -

As for Theorem 4.1.2 we note that taking A larger in the above argument increases the norm
inflation, and ensures that it occurs on a larger time interval. Moreover, it also makes the solution
more localized. Thus, for each j we can construct a solution w; to the 2D Euler equations (4.2)
such that

j 2-p)p 1 ~;
||wj('7t)||H5 Z4J fors>m+3,t€ [4 ]71]7 (411)
|supp wj| <277 for t >0, with  supp w; C B1(0) for t € [0,27] (4.12)
and
w; (- )||r = C forall t € [0,1], p € [1,2/(1 - B)] D [1,2]. (4.13)

Thus considering the rescalings
1 t

we obtain the norm inflation of order 27 on time interval [277,27], which expands to (0,00) as
j — 0o. We can therefore consider a series of the rescalings (4.14), translated in the z; direction
by a rapidly increasing sequence distances R;, defined by Ry := 0, Rjy1 := Rj + D; + Dj; for
some large D,’s, see Figure 4.2 below and (4.64). Let us denote the corresponding translations of
(4.14) by @, (x,1).

In order to obtain the claimed gap loss of Sobolev regularity, we first perform a subtle limiting
argument to show existence of a solution to the 2D Euler equations (4.2) with the corresponding
initial data. In fact, we show strong convergence of the classical solution for a truncated initial
condition (i.e. consisting of the first J pieces, J > 0) in CYH2(K) for any compact set K C
R? x [0, 00), which gives us a limit w., that is a classical solution in the sense of Definition 4.1.3
above, see (4.66) for details.
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Figure 4.2: A sketch of the gluing argument. This shows the support of the
first few individual pieces @; at some time ¢t € (277,27), where j = 4. Note
that, given j and t € [0,27], supp @i (t) C By (Ry,0) for k > j.

We can then observe that, given t > 0 and 8’ > (2 — 8)3/(2 — %), we can pick a sufficiently large
j so that the norm inflation (4.11) implies arbitrarily large H A" norm of a j-th piece of wao, and
we need to make sure that the pieces do not interact with each other too much to affect this norm
inflation.

To this end we note that the pieces are localized, in the sense that, given ¢ € [0,27), the support of
@; is contained within By (R;,0). This, together with (4.12) gives us an increasingly better control
as j — o0o. On the other hand, for the small values of j, we lose the control of the individual
pieces (which can, for example, leave Bi(R;,0) and interact with each other), but the support
of all pieces has measure bounded by 1 and is included in Bg,p,(0), which implies that it is
separated from further pieces, see Fig. 4.2 for a sketch. This can be obtained thanks to the LP
norm control (4.13), which implies a finite maximal speed vp,qz, and a choice of the D;’s (see
(4.64)), as well as the fact that our CY H2-loc argument lets us obtain property of our constructed
limit wee.

This control of the distances between pieces of wy, lets us show that, given t € (277,27), the norm
inflation of the j-th piece of w., is not affected by either the following pieces or by the sum of
the previous pieces, see (4.70) for details. We emphasize that this argument implies not only that
HP" regularity is lost instantly at ¢ = 0, but also remains lost for all ¢ > 0.

A similar argument can be used to show uniqueness of wy,, except that we need to make use
of the both properties of the localization: the control of the distances between pieces and the
measure of their supports. Moreover, we need to use Lagrange trajectories to keep track of the
trajectories of the particles originating from each piece (see (4.71)). These facts, together with the
C! bounds of each of the pieces at t = 0 (see (4.75)) and estimates of the Biot-Savart law (4.3),
let us estimate the C! norm of the vorticity evolving from each piece (see (4.76) for details), given
any solution in the sense of Definition 4.1.3, and establish a minimal growth of the R;’s (which
involves 4 exponential functions in j, see (4.78)), that allows an L2-based uniqueness proof (see
(4.81)—(4.84) for the main setup). In fact, supposing there are two distinct solutions that coincide
until some time T > 0, we pick a jo € N (dependent on T') that identifies the piece after which
the uniqueness is unlikely to occur. Namely we pick jo such that 270 ~ T (e.g. jo = 4 in Fig. 4.2),
which, for each j > jo, allows us to efficiently control the C' norm of the vorticity originating
from the j-th piece. As a result we can make the final choice of the initial distances between
pieces (see (4.78)), such that, for each such j, the L? norms of the differences between the j-th
pieces of the two distinct solutions can be estimated by a constant that is arbitrarily small with
respect to j (see (4.82)). In order to make the resulting sum convergent, we simply pick j =2 (see
(4.83)). On the other hand, we apply a rougher estimate for j < jo (see (4.84)) to obtain an L?
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estimate covering all such pieces at the same time. This gives uniqueness by a simple argument
by contradiction (see (4.85) for details).

4.1.3 Outline of the chapter

In Section 4.2 we give some basic notation that we will use throughout the chapter, as well as some
preliminary facts. In Section 4.3 we obtain some technical bounds related to the Biot-Savart law
(4.3) as well as an upper bound on a negative Sobolev norm of functions used our construction. In
section 4.4 we give the family of initial conditions that allows us to show Sobolev norm inflation
and we prove such growth. Finally, in section 4.5, we show that a gluing argument allows us to
build a global in time solution that losses regularity, and we show that it is the unique classical
solution with the given initial conditions.

4.2 Notation and preliminaries

Throughout the chapter we will use functional norms, such as H” for example, which refers to
the spatial variables, that is || f(x,t)||zs will refer to the spatial H” norm for the specific time (or
times) considered. We denote by 9; the partial derivative with respect to ¢, and by 9; the partial
derivative with respect to x;, i = 1, 2.

The only exception to this rule appears in Section 4.5 below, where we prove loss of regularity
in a way that requires different treatment of of the space and time regularity. In order to avoid
confusion, we will use sub-indexes to indicate the relevant variable for a norm; for example
[ f(z,t)[[cx would denote the spatial C* norm (for a fixed t) and [ f(z,t)lca, would denote the

C" in both space and time.

We will use the following ODE fact:

If f/(t) < cf(t) + b and f(0) =0 then f(t) < - (e — 1) < bte™. (4.15)

[SRR~

We will make use of polar coordinates, namely, given (z1,x3) € R?, we define (r,a) € [0,00) x
(=7, 7] by 1 =7 cos(a), xo = rsin(a).
Moreover, given f(r,a): R? — R, we denote by

Af(r): 1 7Tf(r,oz)doz

:271'

—T

the average of f with respect to «.

Since most of the specific computations will be performed in polar coordinates, we will often say
that a function is 2W’T—periodic if, in polar coordinates, f(r,a) = f(r,a + ZW”)

Moreover, we will use v, and v, to denote the radial and angular components of the velocity
respectively.

Furthermore, we recall that,
[vlwlllwree S llwlloo log [|w([w.o (4.16)

for compactly supported w, and so, if wg € C§°(R?), then the unique solution w of the Euler
equations (4.2) satisfies

t t
lw@®)llcr < llwoller +C/ [ofwlllerllwlor < llwollon +C/ [wller|wllzo log [lw][cr
0 0

for every ¢ > 0 (which can be proved by considering ||Vw| r» and taking p — oc). Thus, since
lw(®)]| Lo < |lwollee < |lwollcr, we obtain in particular that

lo(®)ller < M, (4.17)

107



where M := |jwo]|c-
Finally, we recall the Sobolev-Slobodeckij characterization

| 2
1. =c. [ [ =Ty porse o)

see [48, Proposition 3.4] for a proof. In particular, if {f;}, is a family of disjointly supported
functions in R?, then

2
D] =N V1 (4.18)
J J

Hs
4.3 Velocity and vorticity estimates

In this section we study some properties of the vorticity function and the velocity fields given by
the Biot-Savart law (4.3). We also estimate H” norms of vorticity functions given in terms of an
oscillatory ansatz.

First we note that if w is a smooth solution of the Euler equations (4.2) with initial data wg, then

w(t) is 2w /N-periodic for all ¢t > 0 if wy is. (4.19)

Indeed, if w(t) is not 27/N-periodic at any time ¢ > 0 then w(Ry,/yx,1) is another solution to the
Euler equations with the same (27 /N-periodic) initial data, which contradicts uniqueness, where
R, denotes the rotation operation by « € [0,27) in R2.

4.3.1 The Log-Lipschitz estimate

Lemma 4.3.1 (Log-Lipschitz continuity of v, and v,). Suppose that supp f C Q := Bgr(0) \
Bpr/2(0). Then
e [f1(z) = o [f](W)] < Cl[flloclz =yl (1 + log(R/]z — y|)) (4.20)

and
[valfl(@) = valfl(W)] < Cll flloolz — y| (1 + log(R/]z — y])) (4.21)

for any x,y € Q.

Proof of Lemma 4.3.1. The proof is a modification of the classical proof (due to Yudovich [103])
of the log-Lipschitz bound on v[f].

We first recall that by (4.3)
-yt fy)
vl f](x) = / T dy
@) R2 |z —y|?
Let x1,29 € Q and § := |21 — x2|. Then

vr[f](21) — vr[f](2)] S/ f(y)|dy—|—/B Mdy

Bas(z1) 171 — as(z1) |72 =

+ [ FW) &
Q\Bzg(iﬂl)
svm</ m*@+/ v dy
Bs(0) Bss(0)
Lo (B2 )i
Q\Bgd iEl) |x1 - y|
5 b

S fllso 6+/ (R — + )dy :

O\ Bas (1) lz1 =yl |z =y
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where x, is a point between z1,25. We now note that R 2 |z; — y| and that |z, — y| ~ |z — y|
to obtain

lvr[f](21) = or[f](@2)] S 11 f]locd (1 +/ |21 — y_Qdy> S 1l (1 +log(R/0))
Q\Bzg(a}l)
as required.
A similar argument gives the same result for v,. O

Corollary 4.3.2. Suppose that supp f C Q := Br(0) \ Br/k(0) for some K > 1. Then

v [f1(2) — v [f1(W)] < Cllflloclz — y[ (1 +log(R/|x — y])) (4.22)

and
va[f1(z) = valfl(W)| < Cllflloclz — yl (1 + log(R/]z — y|)) (4.23)
for any x,y € Q.

This allows us to prove some improved control over the L> bounds of velocities produced by
2W”—periodic functions.

Lemma 4.3.3. If suppw C Q := Bgr(0) \ Bg/k(0) for some K > 1, w is 2w /N -periodic then
orell ey < CRIwlz log(N)/N. (4.24)
Given Corollary 4.3.2, we can prove (4.24) by noting that
Avp[w]) =0

for any w (by incompressibility). Moreover, w is 27 /N-periodic, which implies the same for v,.[w].
This means that, given € €2 there exists y € {2 such that v, [w](y) = 0 and |z—y| ~ C diam () /N.
Thus an application of Corollary 4.3.2 gives

vp[w](2)] = [vp[w](z) = vr[w](y)] < Cllwlloo]z =yl (1 4 log(R/|z —yl))

< CR||w||o log(N)/N, (4.25)

as required.
4.3.2 An exp(—N) decay of the radial velocity of 27/N-periodic vortici-
ties

Here we show that a compactly supported vorticity function that is 27/N-periodic generates a
velocity field whose radial part decays exponentially fast as N — oco.

Lemma 4.3.4. Let w € L*(R?) be 2 /N -periodic and such that supp w C Bq,(0)\ Bg, (0). Then
[orw](r,0)| S (a2 — a1) |w||=~e™™ (4.26)

for r € [0,a%/12as] U [40as, 00).

Proof. First note that if w(r, «) = g(r) sin(Na)

5 sina/g(r 4+ h)sin(Na')
h2+2(r+ h)r(1 —cosa’)

v |w](r, ) = cos(Na)p.v./R/_7r (r+h) dd/dh, (4.27)

and a similar formula holds if sin(N«) is replaced by cos(Na).
In order to analyze (4.27), we first consider

sin z
1) = C+ (1 —cosz)
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where C' > 0, and we note that f is holomorphic in C\ {z + iy: x = 2kmr,y = —log(l1 + C £
VC? +2C)} and 27-periodic in the real direction. Thus, by the Cauchy Theorem,

‘/ f zdeZ

_ ‘/ fliy + 2)e N+ dz| <2re™ ™ sup  |f],
Rx{[Im| <7}

where

1
=3 log(1+ C + /C? +20), (4.28)

and we used the fact that —log(1+C —+v/C? 4 2C) = log(1+C++/C? 4 2C). Since for y € [—,7]
we have | cos z| < coshy <e¥ < \/1 +C++vC?+2C, and so

|C’—|—1—cosz\20+1—e720+1—\/1—|—C'+\/C'2—|—2021

for C' > 5, we obtain that |f| < 1 for such C. In particular, since also v > 1 for C' > 5, we obtain
that -
f(x)sin(Nz)dz

’ —T

< 2me N (4.29)

for such C.

Given r > 0 we expand w(r, ) into Fourier series in . Due to to 27 /N-periodicity we have

w(r,a) = Z (g(r, k) cos(ka) 4+ h(r, k) sin(ka)),

k>N

where
s

g(r, k) +ih(r k) := / w(r, a)e**da.
Clearly |g(r, k)|, |h(r, k)| < 27||w||s for each r, k. Moreover, since r € [0, a?/12as] U [40as, ), a
direct computation shows that
h2
Ci=——+—2>5
2(r+ h)r —

for each h € [a; — r,az — r]. Thus, given k > N, we can apply (4.29) (and an analogous estimate
for cos) to obtain

az—
vup[w](r, )| < / r+ h ('/ sinalg(r + h, k) coska’) ;
ar—r = e C+1—cosa

/7r sin’h(r + h, k) sin(ka’) ao’l dn
C+1—cosa/

—T

@ T r+h _
Shell [ TR et an
a;—rTr kZN
< (a2 — a)wll e,

as required. O

4.3.3 Sobolev norms for high frequency ansatz

In this section we prove a technical lemma that allows us to bound from above a negative-order
homogeneous Sobolev norm of certain functions supported in an annulus in R2.
Lemma 4.3.5. Givene € (0,1), § € (0,¢), and f € C?([1/2,4]) with f' > 0 in [1/2,4], there exist
C, Ko > 1 such that

wi (r,a) :=g(r)cos(Na — K f(r) + ferr(1))
satisfies

lwrll -5 < CKllgllen

for every g € C?((1/2,4)), K > Ko, N € N and fer, € C1([1/2,4]) such that || forr||cr < K17€.

110



Proof. We first show that for r € (1, 6)

A wi| < CK°|gllze. (4.30)
We note that

™ o0 / /!
A wi(r,a) = C’(;/ / wie(r’, &) s—r'dr’do’.
—rJo |(r—17")

24 2rr'(1 —cos(a— )| 72

Using the change of variables h =’ —r, @ = o/ — «, we can estimate the integral over the region
{|]¢/ — a| < 1/K}, by noting that r,7 + h = O(1), which implies that

a+% oo o

/ / wi (', o) _ ' dr'do’

% Jo |(r—r")2+2rr'(1 —cos(a — )|z
C £ ! dhd
< oo _ Qa
= Clole /,L/foo 2 + Caz|*

K

£ o
gclgllme/ / ——dhda
1= |y Sy T

N
< gl / 137094a < Clgllp~K

L
K

as claimed.

As for |&| > 1/K, we first consider h € [0,4] and we divide this interval into O(K') pieces of the
form [a,a + 27 /(K f'(a +r))] and integrate by parts on each of them. Namely, given a € [0, 4] we
set

h
u(h) := / (r+h)g(r+h)cos(Na' — Kf(r+h) + ferr(r + h))dh,

2—96

v(h) := |h? +2r(r + h)(1 —cosa)|” = ,
so that

2h + 2r(1 — cos d o
|2h + 2r(1 — cos &)| _ §C|h2+27'(7'+h)(1*(3055‘)| :

|h2 4+ 2r(r + h)(1 — cos@)| 2
uw'(h) = (r+ h)g(r + h)cos(Na/ — Kf(r +h) + ferr(r +h)),

W'(h) < C

u(a) =0, and we can estimate u(h) for each h € (a,a + 27/(K f'(a + r))] by the brutal bound
lu(h)| < CK™gllze.

This gives that

/Z“) glr W) cos(NG — Kf(r 1)+ forrlr +0) s

12 + 2r(r + h)(1 — cos(@))| ="

ot TS
/ T (hyw(h)dh

Cliglle= /‘”‘ KT/ (a ¥ 27 27
< — - ="
S —x ’ v(h)dh + v a+Kf’(a+7") u a+Kf’(a+r)

C o [OTEFGTD - C K—1=e
a

2—-6

(a+ 7725)? + Ca2| "
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where we used the fact that 1 — cos @ > C(&)? as well as the fact that

21 B
! (H Kf’(aw))‘ -
—g(r)cos(No/ — Kf(r+a) — hKf'(r+a) + ferr(r + a)))dh’
< Cllgllen K™,

/a+W (9(T+h) cos(No/' = K f(r + h) + ferr(r 4+ h))

by adding and subtracting the mixed terms, and noting that the difference of the g¢’s gives
Cllgllcr K2, the second order Taylor expansion of f gives the bound C|g||r~K 2, and the
assumption on fo.. gives C||g|| o K~17¢.

Thus, letting a := h;, where hg := 0, h;41 := h; + m for ¢ = 0,...,49, where ig is the
largest integer such that h;, < 4, we obtain that h € (h;, h;y1) for some i € {0,...,ip} whenever
r 4+ h € supp g N [r, o), and

(r+ h)dh

/4 g(r+h)cos(Na/ — Kf(r 4+ h) + ferr(r +h))
0 Uﬂ+2dr+hﬂlfam®F?

||9||L°° s 1 gl K1
<CZ ~ ﬂdh+ 2 ~o2=38
o B2+ Ca2| h2,, + Ca2|%
C [ S] +Il( 1 C 1I(v_6
< Clsla= | _any Clsler
K Jo |n2+ca?m &l

and a similar computation can be done for h € (—(r — 1/8), 0], which allows us to cover r + h €
supp g N (0,7). With this, in particular

g(r+ h)cos(No/ — K f(r +h)+fe,,(r+h))
>+ J—rt |h2 + 2r(r + h)(1 — cos(@))|* =
oo Sy 1 1 K¢
cof s~ | gy oo
>la)>4 0 |h2 + Ca?| "z &l

K

1 1
<C da<C K 'K K
< Cllgllc /7;>&|>}< <K|d2_5 + K€d|1_5> a < Clgller( + )

(r + h)dhda

l
8

< Clgller K~°.

Next we need to show some bounds for » < 1 and r > 6. For r € (0,1/4) we need h € (1/4,4)
(so that r + h € supp g). Thus letting hg := 3, hiy1 = h; + % and letting 79 € N be the
largest integer such that r + h;, < 4, and applymg integration by parts as before, we have

(r + h)dh

/m“9v+hnwuwﬂKf@+h>+ﬁw“+h”
. |h? + 2r(r + h)(1 — cos a)| =

Cllgllpe M+ 1
S || HL / - ﬂdh/
K hi  |h? 4+ Cra2| ™=

C hit1
+ <h L C ~2|ﬂ /h g(r/)cos(Na’_Kf(r+h)+ferr(r+h))dh>
i+1 ra 2 i

Cligllze= [+ 1 Clgller K¢
< =12 —rdh g — S—
h |h? + Cra2|™z |7, + Cra2| ™=

Thus, summing in ¢, and integrating in & € {|&| € (1/K,m)} (recall that & = o/ — «), we obtain

A (w)(r, )| < Cliglen (K + K) < Cllgllen K—° for v € (0,1/4).
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Similarly, for r € (6,00) we need h € (r — 1/2,7 — 6), which gives the final bound of the form

—0

K

K1 n K=
(r— 435 " (r— )z

|A%wK>v¢m|§<nmn01(

Integrating the squares of the above pointwise estimates on A~ %wg gives the claimed L? bound. [

4.4 Initial conditions and growth for smooth functions

Here we prove Theorem 4.1.1, that is we fix 3 € (0,1), 8 > (2 - 8)3/(2 - 3?), and K,T > 0 and
we construct wg € C°(R?) such that |jwg|| s < 1 and that the unique classical solution w to the
Euler equations admits growth ||w|| e > K for ¢t € [1/T,T].

To this end, we fix 6 > 0 sufficiently small so that

2+3-8)8 _ (2-8)8
2+5—p2 ~ 2-p2

Bs = (4.31)

satisfies 85 < 3.
We will consider radial functions f(r),g(r) such that g € C°(%,4) and f € C2°((a,b) U (c,d))
and fulfilling

o a>103,d<1074

. 8r% € (4, M) for some M > 1 when r € (1,4),
o | fllars gl <1/20

o [ f(ryrdr=0.

A function g fulfilling the requirement is trivial to obtain, but we need to justify that f with the re-
quired properties exists. For this, we first consider some arbitrary, positive f(r) € C°(1075,107%).

We will study, for r € (%, 4), BTM. First, we note that

/\2 )\r )(r — " cos(a)) ,
va[A” /_ﬂ/ r2 24 2rr'(1 — cos(a))dr da

so using the location of the support of f(Ar) we have va(f()\r)) > 0. Furthermore, for r € (3,4),

Orva| )\2

A2 B 2)2(r — 1’ cos(a))?  da
/777/ " f () <r2 + ()2 +2rr'(1 — cos(e))  (r24 (r")2 4+ 2rr'(1 — cos(a)))2> drid

and thus
Jim 002 FOON) = =7 [ 2mf(s)sds

so, if we take \ big enough then 8,v4[A?f(A-)](r) < 0, and thus

5, LaPFOIm) o
T
for r € (3,4), which implies that —\? f(\r) gives us the desired effect on the velocity for A big,

but this f would clearly not have zero average. To compensate for that, we now consider A2 f (%)
for A > 103. It is easy to check that, as A — oo, we have, for any r € (%, 4)

Ua[)\_gf(j)](r) -0 8rva[)\_2f(j)](r) — 0 so that, for A big enough
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“AZFO) +ATF(/A)
has the desired properties for the velocity and average value. Then, multiplication by some small
constant ¢ > 0 allows us to make the H' norm as small as we want.
We will thus consider some f and ¢ with the desired properties and f and g will be fixed from
now on, so in particular anything that depends only on the specific choice of f and g will just be
a constant.
Given A > 0 we now set

wo == MNP FOr) + AP g(Ar)N =P cos(Na), (4.32)
where f,g € C°(1/4,2) are as above and N is related to A via
A\Z-28+8 — NB, (4.33)

Note that in particular ||wol|gs < 1 for any A > 1.

We denote by w: R? x [0,00) — R the unique solution of (4.2) with initial data wg. Before we can
show the rapid growth of |lw|| ;s7, we need to prove some basic properties of w, which we discuss
in Steps 1-3 below. We will keep in mind that A > 0 is a large parameter that will be fixed in
Step 4 (Section 4.4.4), where we will prove the growth of the H?" norm.

4.4.1 Step 1 - localization and control of w,.4

We decompose w into two parts, one that is mostly composed of highly oscillatory terms w,s. and
one that remains mostly radial wyqq4, namely, if ¢(x,t) is the flow map given by v[w] we define

wrad($7 t) = wrad(d)_l(xa t)a O>7 wrad(wv 0) = )‘l_ﬁf()"r))v
Wosc(l‘v t) = w050(¢_1($a t), 0), Wosc(-r7 0) = Al_ﬁg()‘T)N_ﬁ COS(Na)'

Note that, with those definitions, we indeed have that

W(t) = wrad(t) + wose(t)- (4.34)

We now show that these two parts barely change their support and, furthermore, w;,¢4 stays almost
stationary.

Lemma 4.4.1. For sufficiently large X\ and t € [0,T], we have

SUpPP Wose C BG)\*l (0) \B(él/\)*1 (O)a

(4.35)
supp wWrad C Bapa-1(0) \ Bax-1/2(0) U Byex-1(0) \ Bax-1/2(0),

and furthermore
||w'rad - wrad”L? S e_% (436)
With Graq := A 7P f(Ar).

Proof. We first note that the claim of the lemma is valid at least for small times. We start by
proving the localization, i.e., the bounds for the support of w;.qq and wys.. Noting that w remains
27 /N-periodic for all times, we can using Lemma 4.3.3 to deduce that for ¢ such that (4.35) is
satisfied, we have, for r € Byyy-1(0)

[or[w](r)] < Clog(N)(NA)~7
and, using the relationship between N and A,
o [w](r)] < Clog(N)A~2879,

Thus (4.35) remains valid at least for ¢ € [0, CA'~5%9(log \)~!], and so taking \ large ensures that
(4.35) holds until 7.
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As for (4.36), we note that, since a > 10%, d < 1074, the assumption of Lemma 4.3.4 holds, and

thus
N

||U7'[WOSC]||L°°(supp Wrad) S HwoscHooeiN < ||wosc,0 loce™

Moreover, since
8t(f‘)rad + U(wrad) . VW'f‘ad + v(wosc) . v(wrad) =0

letting W := wyqd — Wraq We see that

WW 4+ v[W]- VW +0[W] - Virad + 0[Wrad) - VWV + 0[wose|] VW + Wrqa) = 0,

which gives us an evolution for the L? norm

d[|[W /|- 2-8 AT 1-8 IO
TSO [v[W][[r2A +e NB < C([[W]lr2A +e NB

where we used that [[o[W]|L2 < %||W||L27 since W is supported in a disc of radius 22. In light of
the ODE fact (4.15), this gives us a bound for the L? norm of

a-r g AP

W (t)||z2 < Ce ~F (4.37)

which proves the second claim by taking A large. O

4.4.2 Step 2 - L*> control of Vw,,.

The H? growth for our solutions will come from the effect of the velocity generated by w,.qq acting
on wys.. However, we need to prove that this effect is not overpowered by the velocity generated
by wese. For that, we have the following lemma.

Lemma 4.4.2. For sufficiently large A
[wose()[lor < A2TPN"Pexp(CA'F)  fort € [0, 7). (4.38)

Proof. We first note that for any C' > 1 (4.38) holds for some short time interval, say for ¢ € [0, to].
Moreover, observe that, for ¢ € [0, to],

atwosc + U[Wosc] : vWosc + U[f()\r))‘l_ﬁ + wrad,err] . Vwosc = 07
with wrad,err = Wrad — F(Ar)A'=P and by Lemma 4.4.1 we have

deoscHCl _
T < C(HU[WOSC]HC“ + )\1 5)”“036”01

< C(log(llwoseller)[|wosell e + Aliﬁ)”‘*’oscHCl

A _
< C(log(||wosellc) + A ﬁ)Hwosc”C%

NB
< CAl_ﬁ”WoscHClv

where we used the C'! velocity estimate (4.16) in the second line, the L> conservation of the
vorticity in the third line, and the assumed bound of the C* norm in the last line. Thus

1-8 _ _ 1-8
lwose(t)|cr < [|wose(t = O)”CleC)\ PN FNT=BecA

for all t € [0,0], and a continuity argument completes the proof of (4.38). O
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4.4.3 Step 3 - L? control of the difference between w,,., and the pseu-
dosolution

In this section we show that the function

t
Wose (T, ay t) := )\lfﬁg(Ar)N*ﬁ cos (N (a - 1/ Ve [f(/\r))\kﬁ + A(wose + wmd,err)] ds)) )
0

r
(4.39)
where
Wrad,err ‘= Wrad — Wrad,

which is our guess for the behaviour of w,s., is actually a good approximation (in L2) of wyse-
We note that Wy + Wraq is the pseudosolution (4.7), which was discussed heuristically in the
introduction (Section 4.1.2).

Note that this function corresponds to w,s. advected with an averaged velocity, i.e.

atwosc + 'U[Awosc] : Vwosc + U[Awrad] : voJosc =0.
More precisely, we have the following lemma.
Lemma 4.4.3. For \ big enough we have

1 A2PlogN
ON)? NP

|Wosc.err ()] 12 < C < O||wgse(®)|| 222 for all t € [0,T), (4.40)

where Wosc,err — Wose — Wosc-

Proof. To this end we define the flow maps between time s and time ¢ (in polar coordinates)

Orp(r, , 8,) = (v[w] 0 P)(r, y 8, %)
o(r,a, s, 8) = (rcos(a), rsin(a))
s (1, a, 5,t) = (v[Aw] 0 @) (1, , 5, 1)

) =

o(r,a, 8,5) = (rcos(a), rsin(a)).

Note that this definition allows for any s,¢ € R, but we will only be concerned with ¢ € [0, s].
We will denote the polar coordinates of ¢ by ¢, ¢, (and analogously for ¢), so that in particular,
when we consider w,s. in polar coordinates

Wosc(ra «, 5) = wosc(¢T(r7 «, S, 0)7 ¢a(r7 «Q, s, 0)7 O)a

wosc(ra «, S) = wosc(ar(rv Q, S, O)a aa(’rv a, s, 0)7 0)

We first note that, since v[Aw] has no radial part,

o, (r o, 8,t) =7
for all t. On the other hand, for ¢, we can use the L* estimate (4.24) on v,[w] to obtain, for

re BG)\—I(O),

t
|r(r,a,s,8) — 7] < / lor[w]ll o= (85, -1 o) | < CATP N~ Plog(N) (4.41)

for all s,t € [0,T].
As for the angular component we have
- VolAw —w]od  vu[Aw]od  va[Aw]o ¢

O (gba - ¢a)(T7 Q, S, t) = (442)

¢T(T7a757t) (ZST(T,O[,S,t) a QST(TaaaSat).

Noting that Aw — w has a-average zero, we can use Lemma 4.3.1 in the same way as in (4.25) to

obtain that

log(N)
AN

[[va[Aw — w]|loo < Cllw||oo < C/\_ﬁN_l_ﬁlog(N).
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Moreover, since v, [Aw] does not depend on « we have

[vaAw] 0 ¢ — va[Aw] 0 ¢| < |va[Aw](S,,0) — va[Aw](4r,0)|

< |Jo[Aw]llw. (B, _ (0))|¢r — bl

<C <||Wosc|\L°0 log(|wose [[w1.e) + ||7J[Wmd]||le°°(36rl(o))> AP NT"Plog(N)
< C (NTANTANIZ A2 4 \I2F) AN log(N)

< ONT2N1Plog(N),

where we used (4.16) and (4.41) in the 3rd line, (4.36),(4.38) and the support separation (4.35) in
the fourth line.
Finally, we have that, for r € (ﬁ, %)
Va[Aw]o ¢ va[Aw] o ¢
or(r; ) b (r, )

< CN2 N1 Plog(N)

< CNA AN P log(N)NF

Thus, combining these bounds with (4.42) gives that
|0(Be — ¢a)| < CN*2PN"1"Flog(N) (4.43)
for all s,t € [0,7], and in particular
|G (1, 0y 5,1) — Pa(r, ay5,1))] < CAETHIN"1Flog(N)

Thus, since

Wose (T, @, 8) = g(Ad (1, v, 570)))\175]\[75 cos(Noo(r, a, s,0))
Wose (T, oy 8) = g(/\r))\lfﬁNfﬂ cos(NgZ_)a(r, a, s,0))

we can apply both (4.41) and (4.43) to obtain

|wosc - Wosc|

AP 228 A7—1-8
A8 \2=2810g(N)
N?B NP ’

AP
NB

<C A ATPNT1Plog(N)

<C

so integrating over the support of wese — Wose We get

A2=2810g(N)

||wosc - wosc||L2 < C1||Wosc||L2 NPB

which proves (4.40), as required.

4.4.4 Step 4 - H® norm inflation

Here we finish the proof of Theorem 4.1.1. Namely, we show that for sufficiently large A the only
solution to the 2D Euler equations (4.2) with initial conditions wq given by (4.32) satisfies

lwll gor > K for t € [1/T,T). (4.44)

Remark 1. Note that since |jw|z2 < 1, if K > 1 then |w||g: > K for s > f’. Furthermore,
note since [|wo|ge < 1, independently of A > 0, we are showing strong ill-posedness in H? by
considering ew for small € > 0.
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In order to see (4.44), we first recall that, by energy conservation and the form (4.32) of initial
data

1 _
|woscllz = [Wosellz2 = §||g||L2()‘N) g (4.45)

We set v := (8s + ) /2.
By interpolation and using Lemma 4.4.3

B < B'—~ y
||wosc,err||H‘r ~ ||wosc,errHL2 ||Wosc,err||H5/

< ”“)OSC”?,;W)‘_(S(B e (lwosell g + l&osell o)™ (4.46)

’

5.5 _ B =
< (7PN (el + @l ) -
We now show that, for some n > 0,
[Gosell - < Cllwosel| L2 (N)‘@_ﬁ))_n (4.47)

for t € [1/T,T)]. To this end, we first recall the definition (4.39) of Wy,

r

e = NGOV cos (8 (a1 [ " (0alfJAPDA 4t [A(one + wrader)]) as)).

In order to apply Lemma 4.3.5, we note that

[v[woselll Lo (B(0,4/2)) < Cllwosell L= / ly|~"dy < C(NX) 77, (4.48)
Bg/A(0)

and we use the C'! velocity estimate (4.16) together with the C! estimate (4.38) of w,s. to obtain
that

lv[woselllcr < Cllwesel| Lo log [|[wosellcr < CAN'TBN—BN\I=8 1og()\2_ﬂN1_5) < A\IA9 (4.49)

recall (4.33) for the relation between A and N. Moreover, since the supports of wyqq,err and g(A-)
are at least C'/\ apart (recall (4.35)), we can use (4.36) to obtain

|U[wrad,eTTH ) |vv[wrad,err]‘ S Oerad,err”LQ S Aiﬁié in Supp Wosc (450)
Thus, given t € [1/T,T), letting W (r), G(r), Gerr (1) be defined by
W (Ar) := Wose(r, t),
G(Ar) = (W) toalfl(Ar),

t
Gerr()\r) = _Nr_l / (% [A(wosc + wrad,err)](ra S)d87
0

we observe that
W =X"N"Pgcos (Na— NIA' PG + Geyr) -
Hence, since W € C?([1/2,4]) and since (4.48)—(4.50) we get that
||Ger7-||cl([1/274]) < CNtA'=A=° < (Nt/\liﬁ)lia

for some small o > 0, where we used the fact that ¢ € [1/7,T] and X is sufficiently large (and
depends on T'). This lets us use Lemma 4.3.5 to obtain that

Wl < CINATF)TINZINTE,

where the Sobolev norm is considered on R?, treating W as a radial function. This, together with
the fact that |[W||z—, = A1||[Wose|l g—n» gives (4.47), as required.

The upper bound (4.47), together with the L? conservation of Wy, let us use Sobolev interpolation
(of L? in terms of H~" and H*) to obtain a lower bound for ||@osc|| 7. for s € (0,1]. On the other

118



hand, a direct calculation shows that |[Wosel 1 < ONAN2P||Wosel| 2 for t € [1/T,T), and so we
can interpolate H® between L? and H' to obtain an upper bound on |@ysc| .. Altogether we

obtain
|Dosell e = ||wose| 2 (NA2TF)* for each s € [0, 1]. (4.51)

Applying interpolation again for w,s. we obtain

ﬁ/
Jeosel e > Ao litn
HwOSC”Lz
1 , /
w ||ﬁl77 (CHWOSCMM _CHMOSC&TT”?{"Y)
oscll 1,2
7
2 Ol = OO (el + Il )

where, in the last inequality, we used (4.51) twice (with s = v and with s = ') to estimate
[0oscl| s as well as (4.46) to bound ||wWosc,err ||+ from above. Since the ||wese|| ;s norm on the
right-hand side can be absorbed by the left-hand side, and the last ||@ose|| 75 nOrm is negligible
in comparison with the first term on the right-hand side, we thus obtain that

|wosell rar = Cllwosell grer
for each t € [1/T,T]. Hence, applying (4.51) again with s = ' we obtain

(NA2=F)F

> €
oy = G

||WOSCHH[3’ Z c
where € > 0 is a small constant. Thus, choosing sufficiently large A shows growth of ||wosc|| 675
and hence also of ||w/|| ;5, due to the localization (4.35) and (4.18). In particular we obtain (4.44),
as required.

4.5 Gluing: Loss of regularity

We are now ready to prove Theorem 4.1.2, that is, to show existence of a solution that loses
regularity instantly, and furthermore it is the unique classical solution (as in Definition 4.1.3) and
it is global in time.

By rescaling the initial data we can assume that ¢ = 1; thus, given 5 € (0,1), we need to find
w(x,0) such that there exists a unique global classical solution to 2D Euler (as in Definition 4.1.3)
with this initial condition which satisfies

||w(x, O)HHE <1,

(2-p8

||w($>t)||Hﬂ’ =oo for te€(0,00), B > W

(4.52)

First, given j > 1, we will denote by w;(x,t) a smooth solution to 2D Euler equation given by
Theorem 4.1.1 such that

) 2-p)p 1 1
||UJ]'(£C7t)||Hs > 47 for S>2—7B2+;’ t e 4771 . (453)
Note also that by construction, we can choose the w; so that, for all ¢ € [0, 1],
| supp w;| <277, supp w; C B;(0). (4.54)
Moreover, setting p := 2/(1 — ) we can assume that ||w;(-,t)||z» = C for all ¢ > 0, where C > 0

is a constant, by the LP conservation and the form (4.32) of the initial data.
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We will consider initial conditions w(z,0) of the form

w(z,0) := iTRj (“‘”(233](”) (4.55)

where Tr(f(x1,22)) = f(z1 — R, x2). For brevity, we will use the notation

e i),

&j(m,t) = TRj ( Y

where the R;’s remain to be fixed. Some properties to keep in mind are:

e w; is a smooth global solution to 2D Euler with

~ : 2-p)B 1 i o
||wj(-,t)\|Hs > 2/ for s > W + 3, t e [2 ‘7,2]], (456)
due to (4.53). Furthermore, we have
155 (2, )l s <277, 11@(2, 0l 1 pp < C27, (4.57)
where we set || - ||piqre == || - |zt + || - |z» (recall p=2/(1 — 8) > 2), as well as
| supp @;| < 277, supp @; C Bi(R;,0) for t € [0,27]. (4.58)

e Given the truncated initial conditions
J
> 5(,0), (4.59)
j=1

we will refer to the unique global-in-time solution to the 2D Euler equations (4.2)—(4.3) with
initial conditions given by (4.59) as wy, s, and, for any t € [0,T], m,J € N, there exists a
constant C,, s, independent of the choice of (R;);en such that

lwer,r (-, 2)]

#m < Cmazs 85D gm < Comi (4.60)

e Furthermore, noting that ||[v[f]||z < Cq(||f|lzr + || fllze) for any f and g > 2 we deduce
from (4.57) that

[ower,s]llLos [0l@s]lLee < vmax

for all t > 0, where v,q, is some constant independent of J and of the choice of (R;);en-
We also deduce from (4.60) that

C
k k,J,T
r ) < - )
Vel )@ 0TS Gt G supp wey )0
C (4.61)
vkl Al < k,J,T _
| U[WJ(I’v )H = (1 + dist (x,supp U.)J))k+1
for all z € R2, t € [0,T).
e Moreover, _
|supp wy,j| =1— 271 <1 for all j > 1, (4.62)

as a property of the 2D Euler equations.

We will define Ry = 0, Rj41 = Dj+1 + D; + R; and show that if D; > 0 are big enough, then
there exists a global solution ws, with loss of regularity.
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We first construct we, as a limit of wy; as j — oo. To this end, for any fixed (D;);=1
define inductively the “J + 1-th approximation” by

ooy s WE
Wir, J4+1 i= Wer g + Wig1.

It fulfils an evolution equation of the form

O0¢Wir, g1 + V[@er,g41] - Vi g41 + F =0,

where
F = 71)[th7<]] . V(:)J_H — v [C,TJJ_;,_l] . VWtT)J

and since, for ¢ € [0,2771],

dist (supp wyr, 7, SUpp wyy1) > D1 — Qmar2’ T — 2

the H™ boundedness of the vorticity functions (4.60) and the decay (4.61) of the corresponding
velocity fields v implies that

IF(t)lgs < Cr(Dyg1 = 20maa2’ ™t —2)7" =0 as D1 — oo, (4.63)
uniformly in ¢ € [0,2771]. We set
Wit = Wirg41 — Oir, J+1,
and we use the evolution equation for Wy,
OW g1 = v[Wipa] - VWi —o[Wipi] - Vi s + 0 [Weg1] - VWi — F

to obtain that

A|Wyi1l s

I < CUIWgals + IWosall gal@er g1l s + [1F | 1),

where we used the velocity estimates
||U[WJ+1}HH4(SUPP Wer, g+1) S ||U[WJ+1}HL°°(supp Dirsa1) T HD4U[WJ+1H|L2 < ||WJ+1||H3
[0[@er,ss1lllcs supp wysn) S 1@er g1l

and that |supp Wy, y+1] < 1 and |supp Wyy1| < 2, due to (4.62). Thus, since Wjy11(-,0) =0, and
@i g1l 7 < wir s llg + |@s41llm7 < Cy for t € [0,2711] (due to (4.60)) and since F vanishes
in the limit D4 (recall (4.63)), we can find

D1 > 47 (0pmaw + 1) + 2 (4.64)
such that
[wr, 741 () = wer g (1) = Dgall g <2777 (4.65)

for DJ+1 > DJ+1 and all ¢t € [0, 2‘]+1].
Given a,d > 0 we denote by

K = B4(0) x [0, a
an arbitrary compact set in space-time. Note that, for each such K the support of ;1 is disjoint
with K for sufficiently large J. Thus (4.65) implies that {wy, j}s>1 is Cauchy in CYH2(K), and
so there exists ws, € C([0,00); Hit (R?)) such that we have that

loc

||wt7‘,J _w00|‘C?H§(K) —0 as J — o0 (466)
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for every K. Note that in particular ws, € CPC2(K), and so, since ws, € C°([0,a]; L}(R?)) (a
consequence of (4.65) and (4.57)) we see that, for each K, D%v]wy] exists at each point of K and
each multiindex o with |a| < 2, and

[v[weo] — U[Wtr,J]Hcgcg(K)
< Ok (IXBaa(0)s (Woo = wWir ) lco(o,a1:2t) + lWoo — wWir s llco (0,502 (Baa(0))))

SC X C(wr,' _wr,') al: +O(1)
K;H B24(0) tr,j+1 tr,j HCO([O, L;LY) (467)

< Ckg Z (2_j + Ha}j-i-lHCO([O,a];Ll)) + 0(1)
j=J

<o(1)

as J — oo, where we used the Biot-Savart law (4.3) in the first inequality, (4.66) in the second
inequality, (4.65) in the third and (4.57) in the fourth.

Having found the limit w., with convergence properties (4.66), (4.67), we can now take the
limit J — oo in the weak formulation of dywy j + v{wir ] - Vwyr s = 0 (which is obtained by
multiplying by a smooth function that is compactly supported in K, and integrating) to obtain
that Ojwee = —0[Wso] - Vweo € CYCL(K). In particular we, € Cp ,(K), which gives that we is a
classical solution of the Euler equations in the sense of Definition 4.1.3.

We now show that we, instantly loses regularity. Namely we show (4.52), for which it is sufficient
to consider only s € <(2_’8)’8 1). Given such s, and 7 > 0 we fix J > 1 such that

2,62 Y

2=8)8 +1 and 27+ > 7, (4.68)

8>72—,82 7

Using the short-hand notation
Bj = BDJ- (R],O) (469)

we obtain

[woo (> 7) [ 1= > —Nwersllms =D w1 (5 7) = wir (5 7) = @ga (1) | e

V
\VM
&
i‘/

j>J+1 Hs ji>J
Z Z (:.}]( 7T) - CS,T

j>J+1 e
2 ||wk(77—)HHs —Csr 2 2k — Cs.r

(4.70)

for any k > J 4 1, where we used (4.65) in the second inequality, as well as (4.18) and the fact
that supp @;(-,7) C Bi(R;,0) for all j > J + 1 (recall (4.54)) in the third inequality. Since
k > J + 1 is arbitrary, we obtain (4.52), as required.

In order to show that we, is the unique solution in the sense of Definition 4.1.3, we first denote by
¢(x,t) the flow map of w, and we set

J
Woo7j($7t) = ajj((ls_l(xvt))? Woo,<J = Zwoo,j- (471)
j=1

This allows us to decompose w, into pieces,
o0
Woo = g Woo,55
j=1
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where each piece satisfies
Orwos,j + V[weo] - Vwes ; = 0. (4.72)

In particular (recall (4.54))
| supp weo ;| <277 for all times ¢ > 0. (4.73)
We now show that, for each fixed a > 0
wmslicr <= and fwsegllen < €55 (4.74)

for all ¢ € [0,a] and j such that 2/~' > a, where C' > 1 is a universal constant and

J
M; = max (1, |@; (- 0)[cr),  Sj=Y M, (4.75)
i=1
To this end, we first apply the C! estimate (4.17) to @; and wy,;, j > 1, to obtain
[@ller <= and fwngller < @7 (4.76)

for all j and all ¢ € [0, a], where C > 1 is a constant. Thus, since for 2/ > a

Woo,<j(t) and wy, j(t) remain supported in Bg, 4 p,(0), (4.77)
Weo,j(t) and @;(t) remain supported in B; '

for ¢t € [0, a] (recall (4.69) and (4.64)), we obtain that

Woo — Wirj—1 — § Wk

k>j

[woo,j = @jl[ e

H*(Bj)

= 1D @erk — Wrk-1 — @)

= H4(B;)
Z ~ Z —k _ o—(j—1
< ||Wtr,k — Wtrk—1 — wk||H4 < 2 =2 =1

k>j k>j

for all t € [0,a] and j such that 27! > a, where we used (4.65) in the last line. This and the
first claim of (4.76) proves the first claim of (4.74), upon possibly taking C' larger. A similar
calculation,

||Woo,§j - Wtr,j||H4 = ||Woo — Wir,j — Z &jk

k>j5+1
= MH1(Ba, 4, (0)

~ —k _ o—j
< § ||wtr,k — Wirk—1 — wk||H4(BR7~+D]~ 0)) < Z 2 =2
k>j+1 ' k>j+1

for t € [0,a] and j such that 2/ > a, together with (4.76) shows the second claim of (4.74), as
required.
We emphasize that all of the above claims hold for each choice of the sequence {D;},;>1 satistying

D; > b?? where D was defined by (4.64)—(4.65). We now prove uniqueness of wy., provided that
each Dj is chosen larger, namely that

D; = Dj +exp (exp (20 exp (CM1;27) ) ). (4.78)

Indeed, suppose that there exists another classical solution W, of the Euler equations with initial
data (4.55), and let W ; be defined in the same way as we ;, but with the flow map given by @
so that

Boo(,8) = D @o0j(@,1),  Orsc j + V[doo] - Ve j = 0. (4.79)
j=1
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Note that @, conserves its LP norms with time and in particular, it moves at most with speed

Umaw-
We let
T :=sup{T’ > 0: weo(t) = Wo(t) forallt e [0,7']}
and we set .
J
Wi=We = Wooy, Wji=weej —Wso,; and Wgj:= ZWk
k=1
Clearly

ath + U[a}oo] . VW] + 'U[W] . VLOOOJ =0. (480)
In order to estimate v[W] in L? we fix jo such that
2071 > T+ 1.

Note that, since supp W<;_1 C Br,_,+p,_,(0) and supp W}, C By, for k > j > jo (a consequence
of (4.77)), and since |z — y| > Dj — 2TWnay — 2 for x € B; and y € Br; 1+p; 1 (0) UUp> 41 B
we have

1/2

2
Wi ()l W2
174 b e ) S d d +
||1)[ HlLQ(S PP Woo,j) /supp .y (/supp W, |.Z' . y| Y €L Dj — 2(T + 1)’Umaaj -2

Wz
D; — 2(T + 1) Vmas — 2
for each t € [T',T + 1], where we used (4.73), as well as the fact that 1 = x g, (y)(x) under the first

integral and Young’s inequality ||f * g|l2 < || fll2]lg|l1 in the last line. Thus multiplying (4.80) by
W; and integrating we obtain the energy estimate

S Wil +

d Wl
7HW]'||L2 < C’||Wj||L2||woo7j||Cl —+ ||w<>o,j||Cl
dt Dj - 2(T + ]-)Umaa: -2 (481)
MjeéMj2J
< OWjl| 2 |weo,jller +€7¢ F

fort € [T, T + €|, 7 > jo, where € € (0,1),

U(t) .= sup |[W(,s)||z forte[T,T+¢€,
s€[T,t]
and we used the lower bound on D, (4.78) (recall also (4.64)); note that the factor of 2 in (4.78)

is used to absorb the upper bound (4.74) on ||wee,j|lct norm. Thus, using the upper bound (4.74)
again, the ODE fact (4.15) shows that

CMj2d OMj2d
[WillLe < eeCee™ e—e" U (4.82)
forallt € [T,T +¢€), j > jo. Thus, taking € € (0,1) small enough so that, for each j > jo, the
product of the two exponential functions above is bounded by j =2, we obtain
€
IWjllLe < 2V (4.83)
fort € [T, T +¢€|, j > jo.
As for j < jo we have
d [W1lL2
“AWesillre < ClIWeill 2 l<i e, 4.84
dr | <J0||L < <JOHL ||w<]0||Cl + D;, — 2(T + 1)Umaa; — 2||W<30H01 ( )

since supp W<j, C Bgr, +p,,(0). Thus, applying the ODE fact (4.15) again, we obtain
W<l < CreU, where Cp > 0 depends on T'. Adding this inequality to (4.83), for j > jo,
gives that ||W| 2 < (Cp + C)eU for all t € [T, T + €], and so, taking sup gives

U(T+¢€) < (Cr+C)eU(T +e). (4.85)

Taking e sufficiently small, we thus obtain U(T + €) = 0, which proves uniqueness, as required.
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Chapter 5

Loss of regularity for SQG with
fractional diffusion

5.1 Introduction

As mentioned in chapter 2, the (inviscid) Surface Quasi-Geostrophic (SQG) equation is a significant
active scalar model with various applications in atmospheric modeling [88], owing to its similarities
with the 3D incompressible Euler equations (see [27]). In this chapter we consider the initial value
problem for the dissipative 2D Surface Quasi-geostrophic equations (a-SQG) in the space-time
domain R? x R, which has the following form

%+v~Vw+Aaw:0 a€(0,2] (5.1)
_ (L0 oy
Uﬁ( 81‘2’8.%‘1)’ 'l/)—A v

and as usual we denote A®f = (—A)% f by the Fourier transform XO‘\f(g) = \§|af(§) Here the
function w = w(x,t) represents the potential temperature in a rapidly rotating and stratified
flow driven by an incompressible velocity v (in chapter 2 we used 6 for the scalar, which is the
standard notation, but unfortunately here we need to use 6 for the angle when working in polar
coordinates). The velocity field can be written as v = (—=Raw, Riw), where R; are the Riesz
transforms in 2 dimensions, with the integral expression

I'(3/2) (z; —y;)w(y,t)
RJ'ZU(.’E,t) = 773/2 PV. \/]RQ J|xi—y|3dy1dy2

for j =1,2.

The equation (5.1) has been extensively studied since its introduction in [89]. In that work, the
global existence of weak solutions in L? (finite energy) was demonstrated for 0 < o < 2. Further
research on global existence of weak solutions in other spaces can be found in [84] and [4]. However,
it should be noted that weak solutions are not unique below a certain regularity threshold [12].
The equation’s scaling leads to three regimes to consider: sub-critical (1 < a < 2), critical (o = 1),
and super-critical (0 < a < 1). The global existence of unique smooth solutions in the sub-critical
case has been established in [32], while the global well-posedness for the critical case with o = 1
has been shown in [75], [13] and [31] using different techniques (see also [74], [45] and [30]).

5.1.1 Regularity in the Super-critical regime a € (0,1)

The problem of global regularity in the supercritical regime remains unresolved, despite the exis-
tence of eventual regularity results in [44], [42], [72], [80], [91] and [92]. The local well-posedness
has been established for large data in H*® for s > 2 — « (see [86]) and for a number of functional
spaces global well-posedness is present for small data (see [36], [20], [24], [34] [50], [51], [62], [67],
[86], [91], [99], [100], [101] and [102]). In the case of large initial data global existence as o — 1~
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is shown in [42] (see also [25]). Additionally, there is a corresponding instant parabolic smoothing
effect for sufficiently regular initial data [33], [34], [7], [50] and [51].

Recently in [25], a bound is obtained on the dimension of the spacetime singular set of the suitable
weak solutions of (5.1) for a range of a’s in the super-critical regime.

5.1.2 Main result

Our main result is to construct global unique solutions of (5.1) that lose regularity instantly in
the super-critical regime.

Theorem 5.1.1. Given € >0, a € (0,1), 8 € (1,2 — «), there exist initial conditions wg(x) with
||wo||grs < € such that there exists a unique solution w(z,t) to (5.1) with w(x,t) € L{°HL. This
solution is global and smooth for any ¢ > 0 and it fulfils

hmn—)oo”w(xa tn)”Hﬁ = 00

for some sequence of times (tn)nem that tends to zero.

Remark 8. One expects that, as a becomes bigger, instant loss of regularity should become
harder and, in fact, if we consider L initial conditions the result obtained in [80] (see also [79])
shows that, in the critical case « = 1, for s € (0,1), there exists at least one local weak solution
that does not lose regularity, which suggests that there might not be instant loss of regularity for
L functions in the case a > 1. This is also supported by the global existence results for o = 1
[13], [75] and [31].

Remark 9. The growth around the origin is at least logarithmic, i.e., there is an exponent a > 0
such that
|[w(z, tn)| me
lim,, s oo
| In(ty, )]

We will however omit the proof of this fact in order to obtain a more readable chapter.

> 0.

Remark 10. The solution w(x,t) converges to the initial conditions w(z,0) in the space
C3(By(0)) for any J as t tends to 0. This is a trivial consequence of (5.41).

5.1.3 Strategy of the proof

The motivation for studying this problem comes from the results obtained in chapter 2 where
instant loss of regularity is shown in the inviscid case (see also [65] for a different proof): Since
loss of regularity is possible in the inviscid case, maybe this phenomenon is still possible with some
(possibly small) viscosity added, although this is not necessarily the case since the diffusion will
fight the norm growth.

In order to obtain norm inflation in H*® with diffusion we need to consider similar (but more
general) initial conditions in polar coordinates (r,6) as in chapter 2, namely

f(Ar)
AB-1

cos(IN)
NB)s—1

where V € IN, A € R are parameters to be fixed later and f, g are smooth radial functions and r, 8
are the radius and angle in polar coordinates.

To obtain a reliable pseudo-solution, we aim to find an approximation of a-SQG that is simple
enough to be solved explicitly, and the pseudo-solution will be obtained by solving the simplified
evolution equation. This simplified evolution equation needs to be precise enough that the pseudo-
solutions stay close to the actual solutions to a-SQG. When fractional dissipation is absent and A
is sufficiently large, we can rely on the following equations

0
= Wraq = 0

ot

w(r,0,0) = Wreq(r, 0) + Wper (1,0, 0) = + g(Ar)

a; Wpert + v(wrad) . prert =0

ot
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to obtain a pseudo-solution that grows rapidly in time, and taking N big makes this pseudo-
solution a good approximation of SQG. Unfortunately, this ansatz for the evolution would com-
pletely ignore the diffusion in the case a > 0, which would make the pseudo-solution a very poor
approximation of @-SQG. On the other hand, including the fractional diffusion in our simplified
evolution equation already produces an equation that is too complicated for our purposes, and in
particular it is hard to deal with the non-locality of A%. Before we explain in some detail how to
circumvent this, we will study what we call the naive pseudo-solution:

cos(N (6 — %(M) fot e~ O3 ds))
Ns)\s—1

B (1,0,1) = e~ I et g

with vg(g(Ar)) = 6 - v(g(Ar)), which is obtained by using the (fully local) approximation

Aawrad ~ CAawTady
Ao‘wpert ~ C()\N)awpert.

This ansatz (which is NOT a good approximation of a-SQG) actually gives some basic ideas of
what the behaviour for the real solution is going to be. Namely, we see that the characteristic
time for the decay of wyper¢ is (AN)~™, while the "deformation time" (i.e., the time it would take
for ||wpert|| s to grow in the absence of diffusion) is of order A=2%# which suggests considering
(AN)™® ~ \~2+8 50 that the smoothing effects and the deformation effects have roughly the same
strength. Note, in particular, that this already suggests that we can only have instantaneous loss
of regularity if § < 2 — a, which is consistent with the fact that there is local well posedness in
HB for B>2—a.

However wy,qiye is not the right approximation, so to actually include the diffusion in our simplified
evolution equation we will compute A%, a local approximation of the diffusion, as well as @, a local
approximation of the velocity operator, to obtain the final version of our simplified equations

1o}
&'[Drad(ﬁ t) + Aawmd(r, t) =0

8wpert
ot

which can be solved explicitly. This pseudo-solution, which depends on A\, N, 8 and «, grows very
rapidly in H” as long as N and A are chosen correctly and 3 < 2 — a.. Furthermore, if 8 > 1
(and again, N and X chosen correctly), the pseudo-solution is a good approximation of a-SQG for
all time ¢ > 0. A gluing argument then allows us to combine an infinite number of these rapidly
growing solutions to obtain the desired instant loss of regularity.

+ U(wrad('ry t)) . v(wpert) + ’D(wpert) . vwrad(ra t) + Aa (wpert) = 07

5.1.4 Outline of the chapter

This chapter is structured as follows. In Section 2, we introduce the basic notation that will be
utilized throughout the chapter and derive necessary technical bounds to approximate the diffusion
operator and to find and control the pseudo-solution. In Section 3, we present the pseudo-solution
and analyze its essential properties. In Section 4, we demonstrate how a gluing argument can be
employed to construct a unique global in time solution, despite a loss of regularity.

5.2 Technical lemmas

5.2.1 Notation and preliminaries

When a constant depends on several parameters (such as «, 8, and «), we will use the notation
Ca,5,4 to indicate this dependence in this chapter.

We will, however, omit the sub-index if the parameter has been fixed at the time.

For many lemmas it will be necessary to work in polar coordinates, i.e., we will consider the change
of coordinates
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x1 = rcos(), xo = rsin(f).

Furthermore, if we call Fpq, the function that gives us the change of coordinates from polar to
cartesian coordinates, for some function f(z) we will use the abuse of notation

f(?" 0) f( polar(r 0))

Since 6 will be our angle in polar coordinates, we will use w to refer to the scalar instead of 6.
For s > 0, we will consider the H?® norms, which we will define as

Al = [1f]lze + [|A®f] 2,

and sometimes we will use the fact that, for s an integer

PR p wy s ol

7=0 =0

Finally, we will sometimes consider the homogeneous Sobolev norms, defined as
U ize = 1A F] L2

5.2.2 Approximations for the fractional diffusion

As we mentioned in the introduction, in order to obtain an appropriate pseudo-solution, we need
an approximation for the diffusion operator that is easier to work with. In particular we would
like a local approximation for the operator. Doing this directly for A“ posses some difficulties due
to the lack of integrability of the kernel of A%, so we will first approximate A~% and then use that
to obtain information about A¢.

Lemma 5.2.1. For any fized parameters o € (0,1], P,e > 0 there exists Ny such that if N > Ny,
then for any functions f(r), g(r) and p(r) fulfilling suppf(r) C (3,2) and

llglles < (N)T, [1£(r)lles < In (N) T[] fllzee, [Ip(r)]lcs < In(N)T
then if we define
w(r,0) := f(r)cos(N (0 + g(r)) + p(r))
we have that for B € [0, 3] there exist constants K, > 0 and Ce o p such that

—Q w(r,@) —1l—a+e
A= w(r,6) = Kot oz 10 < CeapN T 4] 1

Furthermore if we have f(r), g(r), p(r) with suppf(r) C (35, =) for some A > 1 and such that we
have

r
g (% Dllos < (N ), 1F(lles < In (N)7|1£(% e, (% Vlles < (N N)”
then for 8 € [0,3] there exist constants Ko > 0 and Ce o, p such that

i w(r. ) e
A= 006) = Koo sl < o0 N1
T

Proof. We will just consider P = 1 for simplicity since the proof is the same for other values of
P. We start by proving the result for 5 = 0 and A = 1. We will consider from now on that « is
fixed with o € (0,1), so we will omit the dependence of the contants with respect to a. First, we
have that, in polar coordinates

!/ !/
w(r, ) / / w(r’, 8) —1r'dr’'dt/
-7 24 2rr/(1 —cos(0 —0"))| 7=
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(r + h)dhd@.

/  f(r+ h)cos(N) cos(N9+Ng(T+h) —|—p(7’—|—h))
—rJ—r |h2 + 2r(r + h)(1 — cos(0))|*=*

Since

_ w(r, )
AT 0) — K, 2
It )= e i@ g e
o w(r.0)
= 50t d) = Kol e e i ole?
,0
+ [[(A™%w(r, 0) — (7, ) ol =L+ 1

TP T N )

we will study the operator when r € (%, 2), so that we can bound I;. First, using integration by
parts with respect to 6 and induction we get, for k > 1

/71' cos(N6) " 52
—n |h? 4 2r(r + h)(1 — cos(0))| ="

[T COS(N9~+]€%) u ((r + h)r)i Py,.:(8) 3

B /—w NE ; |h2 + 2r(r + h)(1 — cos(8))| "5 d9

with
Pei()= > criju(cos(8)) (sin(9)),

(4,1) €Sk,
Sk ={(G,) e (OUN)? 1 >i— (k—1i),j+1=i}
and this, combined with the fact that, for r € (%, 4), (r+ h) € supp(f), we have

@) Clw@)
[h2 +2r(r + h)(1 —cos(0))]z — |1 —cos()|2
implies that, for (r + h) € supp(f)
z’“: (r + h)r)'Pyi(6) O
24k—a *

| 2+21 [

o |h?+ 2r (r 4+ h)(1 — cos(f)) |h2 +2r(r 4+ h)(1 — cos(A))| =

=

Therefore we get, for any ¢ > 0

(r + h)dhdd)|

| /” / f(r+ h)cos(NG) cos(NO + Ng(r + h) + p(r + h))
oo\ [N N1 [h2 4 2r(r + h)(1 - cos(9))| ="
||f||L N(l ) (2+k—a)

and this can be bounded by C.sN~1~% by taking k big enough.

We can therefore focus only on the integral when (h,0) € [-N~1+¢ N=1+¢'| x [—x 7], and in fact
by symmetry it is enough to study (h,0) € [-N 1+  N=1+€'] x [0, 7). For this set, we will make
a couple of approximations for our kernel that will only produce a small error, namely, we note
that, using integration by parts with respect to 0

e cos(NO + Ng(r + h) + p(r+ h))
‘/ /N oo T ) cos(N 9)(|h2+2r(r+h)(1—cos(é))|%“
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B cos(NO + Ng(r+ h) + p(r+ h))

|h2 +7“(7“+h)9~2|277a
< olile~ * / 2 +h)sin@) 2+ h)b
Nt \h2+2r (r+h)(1 —cos(8))|"=%  |h2+r(r + h)62| ="

< Ml / / i)
N1t \h2+92

< ClIfllp= N

)(r + h)dhdé)|

dOdh

4a

We also have, for large N,

‘/ / o T+h>((7’+h)cos(N0~)cos(N9+Ng(r+h)+p(r+h))
0 JoN-1+e B2 +r(r + h)62| 3

rcos(N6) cos(NO + Ng(r + h) + p(r + h))
- |h? + r202| 72"

—1+4e ~
h? h
<liflle=c | / ( )dhde
N-1+¢ \h2—|—r(r—|—h)92| |h2+r(7‘+h)9 |2

1+4¢’

e [N 1
< wCNIte —_—
<l [

) dhdf|

dh < ||f||LWCN(71+6/)(1+a)'

All these inequalities combined already give us

A d) - / / —1te f(r+ h) cos(NB) cos(NO + Ng(r + h) + p(r + h))
—7J —N-1+¢

= rdhdf)|
|h2 + T202|T

<Cae||f”L ~(te)a- e)

and furthermore, we have that

| /” /N”E' f(r + h) cos(NO)(cos(NO + Ng(r + h) + p(r + h)) — cos(NO + Ng(r + h) + p(r)))
—mJ _N-1+ec

S rdhdf)|
[h2 4+ 1r202|72

l+e
< C||f||Loo hl —1+€ / / dhd0 < C||f‘|Loo In (]\]’)J\]’(1+Ot)(176/)7

and

e (r+h) — f(r)) cos(NO) cos(NO + Ng(r + h) + p(r))
I

—— rdhdf)|

|h? 4+ r292|T

1+s

< Cllfllu= 1+ [0 / ] < C|f 1 In (N) N0,
and
1+5 R 1

\/ / cos(Nf)——————r
_xJ_N-1+€¢ |h2+T292|T

(cos(NO + Ng(r + h) + p(r)) — cos(NO + Ng(r) + Nhg'(r) + p(r))dhd0)

—14€
<Cln(N 1+2€// —————dhdf < Cln(N)N NFe)d—e)te
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Therefore, we just need to study

—1+4€ /
/ / r) cos(N) cos(N6 + Ng(r ) + Nhg'(r) +p(r))rdhd§
- N-—1+¢ ‘hz + 7"292

/ / o cos(%@) cos(NO 4+ Ng(r) + Nhg'(r) + p(r)) dhdd
—rr N—1+¢ |h2 + 0_2|2770‘
rrN / ) cos(Lsy) cos(N +Ng( )+ 5149’ (r) +p(7"))ds ds
1ds2
—ra N |31 + 52|
roN
= N"%cos(NO+ Ng(r) + p(r) / N/ co|s$ j_le'OzS(jw( ))d81d82,
—rm 1 2

With this in mind, we want to show that

roN e
=limy_ Hy :=limy_ / cos( COS( g ™)) dsydss
—rxN J—N¢ |s1
= = (5.3)
(1) + 9’(T>2) :
with K, > 0 and also that, for No > Ny,
|Hy, — Hy,| < Cor o Ny, (5.4)

so in particular |H* — Hy| < Co N~1+¢". We start by obtaining (5.4). Note that

cos(lsg) Cos( g( )
Hyn, — Hn, = /
AvaNQUBvaN2 ‘51

AN, N, =[N NS | x [=raNa, reNo] U [=N§ , =N | X [-rm Ny, reNs)

dSl d52

with

B, N, = [-N{ ,Nf| x [=rmNy, —rmN1] U [-N§{ , Nf | % [rmNy, reNy).

We now bound the integral over Ay, n,, we will focus on the part with s; > 0, the other half
being analogous.
Applying integration by parts k times with respect to the variable sy we get

N2 cos(Lsy) cos(sig’
/ ( 19( ))d32d51|
rmNo |81 + 82|
C N rmNo
k 2 +Ck/ / 7 a+k d82d81)
rmNg |51 + 52|

Ck;N2 / /’I"ﬂ'NQ
+C e dsads )
N2 @ k e Na |81+32|2 a+k 2 1

< CpNy 2ot o Npe e

and by taking k big enough we can bounds this quantity by CE/Nl_2+a+E/ and in particular by
CEINl_H_g.

For the integral over Bn, n,, this time focusing on the part with s > 0 and again applying
integration by parts once with respect to so we have

/ /’"”N2 cos( cos(slg’( ))d52d51|

N, |s1 + 32|
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N rmNo
< 02 — + C/ / ——————dsads; < CN< 72,
N1 N6 ro Ny ‘81 —+ 32|

Next we need to show the last equality in (5.3).
But

/”N/ ! cos( Cos(slg’( ))d31d52
Ne

raoN |81 + 82|
_ /TWN/ cos( 52 + 819 ( ))d31d82
|31 + 52|
Lnr(A) 15 cos( 1 Rsin(A) + Rcos(A)g'(r))
_ / / e RAAdR

where we made the change of variables s} +s3 = R?, A = arctan (Sf) and Ly -(A) is (given values
A, N and r) the maximum value of R that is still in our domain of integration. The expression
for Ly (A) is complicated but we will just need to use that Ly ,(A) > min(N¢,rmN). Note
also that we can. rewrite L Rsin(A) + Rcos(A)g'(r) = RAcos(A + 6p) with A = (& + g (r)?)z,
o = arctan(— ( )) But

/LN T(A) /g )\RCOS A + 90)>dAdR

Rl o
Ln.r(A=00=5) 5 cos(ARsin(A)) -
_ /O /5 R dddR
Ly,r(A=b0—3) 3 cos(ARsin(A))
N / / COMAESINA)) AdR
o 0 Rl—a

so then, using that, for any Sy > S; > 0, I’ # 0, since a € (0, 1), we have

S1 Sa C’
|/ cos(l dR| <TChrn,s |/ Coﬁ dR| < —mex.
R« SI-a

we get

0 rLnr(A=00=3) cos(ARsin(A = 0 . in—a i « CCmazd
|/ / %d}%dm g/ Conas(\sin(A)) A < =755
o Jo 0

and also

T LN (A—60—T) A (AR A 5
Lo / / ‘DS(ARRl—SMdeA / PV. / ‘le—Slil())deA.
é

Thus

* Z rLn,(A)
HT _ limN—)QQ/Z / cos()\Rcos(A+00))deA
0

Rl—(x
— im0 (limy o / : / P (At 8) Wd}zdfi)
+hm5—>o(th_>oo/ /LN S ms()}%Rl—tn(A))deﬁ)
= lim;_q / PV. / cos A}isﬁl ))deA
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. B o [ cos(R
= lims_0 / (Asin(A)) ng a)
§ 0

1 T [ cos(R)
= sin(A)~“dA dR,
e by A R

dRdA

oo cos(R)

so, if we prove that fo Ti— dR is positive we are done.

For this, we note that, for n € IN

(D) cos(R) (D) Gin(R) (1 — «)
/ lea dR - / Tdﬁi > O,
2mn 2mn

where we used integration by parts for the equality and the fact that the denominator is increasing
and sin(x + m) = —sin(x) for the inequality. In fact, the integral is also positive for n = 0 by
taking the integral in [d, 27], applying integration by parts there and then taking ¢ small.

But then since, for d < 27

2mn+d
cos(R) C
<
L., TS g

the limit trivially exists and is positive.
Combining all these bounds we have, for any ¢ > 0,

I < Ce’Hf”LNN(_l_a)(l_e,)’
so we just need to bound I5. In order to bound the L? norm for r ¢ (1,2), we can use integration

by parts twice and h 2 r, r + h =~ 1 to get

™ f(r+ h)cos(NB) cos(NO + Ng(r + h) + p(r))
. |h2 + 2r(r + h)(1 — cos(6))|*=*

| (r+ h)d)|

Cllfllze [T r r i
TN /4 |h2 4 2r(r + h)(1 — cos(f))] =" 1 (t+ |h2 4 2r(r + h)(1 — cos(é))|)d9

Cllfllze= 1
< — (1 —
— NQ‘h|3—a( |h|)

which gives us

CllA e

A, 0) 1o, e < CUIA 0 (r, 0) (o 3l < oy

and, for r > 2
ClIf Lo

A, 0)] < S gt

so that sl
_ Lo
(A" %w(r, 0))Lre(2,00) || 22 < Nz
which finally gives us

w(r, 0)
[(50)2 + N2g/(r)?|e/?

A" w(r,0) — Ko |2 < I+ Ip < Co N1 07260,

Now, taking for example €’ = § finishes the proof for L2. Note also that we only needed the C?
bounds of f and g to obtain this result. Next to obtain the bound for H? it is enough to check
that we have a small L? norm for some arbitrary second derivative, that is to say, we want to
show that

3 w(r,9)
83/\_&’(1)(7“, 9) 0 Ka|(ﬂ)2+N2g/(r)2\‘l/2 1 atet3
I - . |2 < CepNT 7| f| oo
8x18x]3xk axiaxj(?xk ’
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We will consider i = j = k = 1 for simplicity of notation. To bound this norm, we divide it in two
different contributions

3 w(r,0)
83/\_%0(7‘, 0) a KO‘ |(¥)2+N2g/(7n)2‘a/2

] oz3 a oz} 2
_ 2 PPw(r,0) K, PBw(r, 0)
<A 93 (N2 20/ (M2]/2 9 2
y (5)2 + N2g'(r)?] y
2 K, Ky
N HE) |(¥)2+N2g/(7.)2‘a/2 aw(r7 9) || - ||3|(¥)2+N2g/(7’)2|°‘/2 62U}(Ta 9) H ,
0a7? o, D1 0s7 "
N H83 Ny w(r.9)|
2
agxl ) L
o PPw(r,0) K, PBw(r, )
<A 3 T [ Ny2 2722 7 |lz2
Oy (5)2 + N2g'(r)?] Oy

3
K,
+) N9 o loiirecr sy |Jw]] gs—i.
; (1) + g/(r)2[e/2 € €D

The first term of the contribution can be bounded by writing the derivatives in polar coordinates,
dividing it in its different frequencies in 6 (which now includes frequencies N +1, N+2 and N 43,
which does not change the bounds for N big ) and using the exact same bounds we obtained in
L?. The other term can be bound easily by direct computation by again writing the derivatives in
polar coordinates, obtaining the desired bound for 8 = 3. The interpolation inequality for Sobolev
spaces then gives the result for 8 € [0, 3].

Finally, the result for A > 1 follows directly from a scaling argument plus applying the lemma for
w(x,0) since

w(r, 0)
7+ N2 e
r 9)
< AlmetB| Aol 0) - K, wix, IEE
A ()2 + N2g/(5)2]/2
< CpeaMAN TP NTImad et B £ o

[|A™%w(r,0) — K,

O

Corollary 5.2.2. For any fivzed parameters o € (0,1], P,e > 0 there exists Ny such that if
N > Ny, then for any A > 1 and functions f(r), g(r) and p(r) fulfilling suppf C (%, %) and
r P r P r P
lg(Dlles < (N)7, 1F(Plles < (N[ fllz=, llp(lles < n(N)

then for
w(r,0) := f(r) cos(N(0 +g(r)) + p(r))

we have that for B € [0,3 — «] there exist constants K, > 0 and Cpe o p (depending on o and P, e
and o respectively) such that

1A%w(r,0) — Ko w(r, )|

D)2 N2 ()2 < Cpeiah™ I NTIFOH ) ]|
;

Proof. This follows from the previous lemma. If we define, for w as in our statement, the operators

A% (w(r,0)) == K w(r, 9)I(g)2 + N2 (r)?|*/? (5:5)

. w(r, 0)
A %(w(r,0)) .= K,
( ( )) |(%)2 +N29’(7")2|0‘/2

(5.6)
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we have that A~ (A%w) = w, A~*(A%w) = w, so

(A% — A%)(w) = —A“(A~® — A=) A%

and since, for our choice of w, A®w fulfils the hypothesis of Lemma 5.2.1, we can apply it and get,
for g €0, 3]

(A= = A=) A%l o < Conp,p A~ NI ]| e

and therefore

1AY = A% wl| oo = [[AY(A™Y = A" A|| 5o < Ceap,pA  TINTFHE| £ oc,
which finishes the proof.

5.2.3 Other relevant bounds

Even though the most crucial technical bounds in this chapter are the ones we obtained for the
fractional dissipation, we need some other technical lemmas in order to obtain a suitable pseudo-
solution and control the errors between the pseudo-solution and the real solution to (5.1). Corollary
5.2.3 and Lemma 5.2.4 give useful local approximations for v. Lemma 5.2.5 and Corollary 5.2.6 give
commutator estimates for the velocity of a highly oscillatory function, which will be useful when
propagating the L? error between our pseudo-solution and the actual solution to (5.1). Lemma
5.2.7 proves some general decay bounds for radial functions, and finally Lemma 5.2.8 shows that
we can find a radial function with several useful properties, that we will use to construct the initial
conditions for our pseudo-solution.

Corollary 5.2.3. For any fixed parameters P,e > O there exists Ny such that if N > Ny, then
for any X > 1 and functions f(r), g(r) and p(r) fulfilling suppf(r) C (35, 2x) and

lg()lles < ()™ (1) lles < ()11, lp()lles < n (V)"
if we define
w(r,0) = [(r)cos(N (6 + g(r)) + p(r)

we have that for B € [0,2] there exist constants Cy > 0 and Ce g p (depending on B, P and €) such
that

a A— — €
s (w(r0)) + 587 @) O)l| s < e, o N2

8 A— —1+e
lea(e(r,0) = 5B @), 0) [ < Cop.p Nl

with A= defined as in (5.6).
Proof. This is a direct consequence of Lemma 5.2.1, since

07, 0)) = 3 w(r,0)), (. 0)) = A (w(r,0))

T2 T
and applying Lemma 5.2.1, we have

||aiiA_1(w(r,9)) - a%x_l(u)(r, )|l < 1A~ (w(r,0)) = A (w(r,0))|| s+

< CE,P/\71+ﬁN71+6+5| |f| |Loo.
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Lemma 5.2.4. For any fixed parameters P,e > 0 there exists Ny such that if N > Ny, then for
any A > 1 and functions f(r),g(r) and p(r) fulfilling suppf(r) C (3%, ) and
r
Hg( les <In(N)” 1 (Dlles < n ()71 £(5 Vllze, lIp(5 Plles <In (N n)F

if we define
w(r,0) := f(r)cos(N (0 +g(r)) + p(r))

we have that for 8 € [0,2] there exist constants Co > 0 and Cp. (depending on o and P and €
respectively) such that for N big enough,

-
(179 (?)

Proof. This proof is very similar to that of Lemma 5.2.1, but now we study the operator

[or(w(r,0)) + Co Fr)sin(N (0 + g(r) +p(r)|lus < CeppA™ N £

[N

ve(w)(r,0) =v -7

(r 4+ h)?sin(0')(w(r + h, 0 +0) —w(r,0)) , ,
do’dh
[—r,00] X [—7,7] |h2 + ZT(T + h)(l - COS(G/)”S/Q

so we will not delve too deeply into the details and mostly mention the key differences. Again,
as before, we consider P = 1 for simplicity, and we start dealing with the case § = 0,A = 1.
First, using integration by parts k times with respect to 6’ as in Lemma 5.2.1, we note that, for
r € (1,2) we have that,

T (r+h)?sin(0)(w(r + h,0' +0) —w(r,0)) ., .
d0'dh| < CuN .
Jer ooy Lo T 2 1 @ =GNl

and furthermore, integrating by parts 2 times with respect to 6’ we obtain

I/ o / (r+ 12 sin(@) (w(r + 1,6 +6) — w(1,0)) 4
N Sy o v d] (B2 20(r - R)(1 = cos(6))2/2

—1+4€’

| / / F(r+ h)sin(N@")sin(¢’) sin(N0 + Ng(r —|—(h) +p(r +h)) (r -+ h)2dhdo|
“% aul—m,— N~ 2] J N1+ |h2 + 21“(7" + h)(1 — cos(8"))|2
1N |\f||L Ll
<C(= : dh+/ / — = dhdf’
B (N /7N71+e’ (1 —cos(N~z) N-% J_n-1te N2 |(1 —cos("))|? )
< Clfllpe N1
So we can focus on the integral over A := [~ N~1T€ N=1+€| x [-N~2, N~2]. Then, we check that
|/ Zsin(0") (w(r + h, 0 + 0) —w(r,0)) 20" (w(r + h, 0 + 0) — w(r, 0))>d9'dh|
+ 2r(r + 1 — cos(# +r
h2 h 0'))]3/2 h2 2(07)2)|3/2

< O||fl| g N~

so that we can work with the simplified version of the kernel, and we also have

20 g g

| / w(r+h,0 +0) — f(r)sin(N@')sin(N0 + Ng(r) + Nhg' () +
|12 +r2(67)%) /2
< |||z N7

Altogether, we obtain, for r € (%, 2),
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d0'dh| < Co N3 || f|| oo

o)+ 700 s (V0 + Ng(r) + p(r)) [ 0N 8 S

Next, defining Hy as

R RIE B ENEEr

20/ o / / NTe/ N2 : /
Hy ::/ 740’ sin(N6' + Nhyg (r)))dg,dh :/ , / s1sin(sy) cos(rsag (T))d51d82.
A o

We want to show that

* . 1. _ CO
and that
|H* — limpy oo Hy| < Co N7 | f]] oo (5.8)

(5.8) is obtained exactly as in Lemma 5.2.1, by getting bounds for |Hy, — Hy, | using integration
by parts in the domain that remains after canceling out the integrals from Hy, and Hy,. As for
(5.7), using that, for any K € R

K .
|/ sin(x) dz| < C,
0

x
and that, for A # 0

“sin(Azx) “sin(x) C
/0 ——dx = Szgn()\)/ ——=dx = szgn()\)IO

x 0 x

we get that, using the change of variables s; = Rsin(A), ss = Rcos(A), basic trigonometric
identities, checking carefully the convergence of the integrals, and using

. 1 _ T
sin(tan™"(x)) = m
we get
N€ N% . /
. s1sin(s1) cos(rsag’ (1))
H —lZmN—>oo/N:,/N% |52 + s2[3/2 dsy1dss
- 0o - . /
_ / sin(A) / sin(R(sin(A) + cos(Arg' 1) jpg 4
—7 0 R
Co [T . . . /
= sin(A)sign(sin(A) 4 cos(A)rg’(r))dA
_ G 7 sin(A)sign(cos(A 4 tan~1( 1 )))dA
~ ) & rg'(r)
= %0 n(tan' (1)) / " cos(A + tan~! () )sign(cos(4 + tan~} (—-))dA
=3 ) |, () g/ (7)
1

(1))

as we wanted to prove. The rest of the proof does not have any meaningful differences with
Lemma 5.2.1, a bound for the decay of v, (w) is obtained for r ¢ (§,2) to obtain the L? bound and
then taking three derivatives, applying Leibniz rule and bounding each term gives us the bound
for H3. Then, the interpolation inequality gives then the result for 3 € (0, 3).

For the case A > 1,
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[l (w(r,0)) + Co f(r)sin(N (0 + g(r) + p(r)llms

<A a5, 0)) + F(5)sin(N (O + 9(5)) + ()l

< CoppMATITENTITAB | f]| oo

O

Lemma 5.2.5. Given e >0, N € N > 3, A > 0 then for any functions g(r), f(r),p(r) € C*,
f(r) € L? and if we define
w(r,0) := f(r)cos(NO + p(r))

then we have that for i =1,2
11 epn—a 21[vi(9(r) sin(B)w(r, 8)) — g(r) sin(@)vi(w(r,0))]||z2 < Ce aN"F<|gllcr|[w]] 12,

[1Lrein-a 21 [vig(r) cos(O)w(r, ) — g(r) cos(@)v; (w(r,0))]l|z2 < Ce AN~ |lgl|cr ][] 2.

Proof. We will only consider the first inequality and with ¢ = 1, since the other cases are analogous.
We note now that

h)sin(8 + 6') — rsin(8
0 (W(r,9)) PV/ / h’;i%smwﬁ(l)_C;?gf;l)g (r + YW (r + h,0 + 0')dhde'.

Now, since the principal value integral is defined using cartesian coordinates, we would like to
show that for C'! functions, there is a more suitable expression using polar coordinates, namely
we would like to show that

. Yo — T2 Y2 — T2
hmHo( / sw(y)dy — / gw(y)dy)
R\B. () [T =Vl Nz ~lyl|ze [T — Yl

= limeﬂo/ Y2 — xzw(y)dy =0
{Jzl+e>y|>]e—eN\Be(z) 1T = Yl

but, writing the integrals in polar coordinates and cancelling all the terms with the wrong parity
with respect to h or §’

Y2 — T2
'/ 2 ()|
{lyl+e>lz1>lyl—eP\B. (z) 1T = Y]

h? 4 6 ,
< C|w]| g ~dhdf’ < C||w||p~e€ln(e)
(h>N\B. (@) |h% + 2r(r + h)(1 — cos(#))|?

and

| V272 (w(y) — w(z))dyl

_ 3
lyl+e>]e]> |yl —e\Be(z) 1T =Yl

< [Jwller] dy| < Cl|w||creln(e),

lyl+e>[a|>lyl—\Be () 1T — ¥l
so in particular we can write

/ —
1 (W (r,9)) PV/ / (r+ h)sin(6 +6) ”m(el( W (r + 0 + 0')dhde’
) R 2+ W) (1 — cos(8)F
= limeHO/
[—rool\[—e.d

/” (r+ h)sin(d + 0’) — rsin(6)
— |2 4 2r(r + h)(1 — cos(8))|2

(r+h)W(r+h,0+6")dhdd'.
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Now, using integration by parts k times with respect to €', we have that, for |%| > %

T (r+h)sin(@+6') — rsin(6)
e |h2+2r(r 4+ h)(1 — cos(6))]3/2
:ﬁ/ﬂ (1+ 2)sin(6 + 6) — sin(0)
)2+ 201+ E)(1 - conl@) [/
T C 1
w NFJ(R)2 4 2(1 4 2)(1 — cos(6")) ]2
T‘Ok
= h2Nk’

(r 4+ h) cos(NO" + C)d¥'|

(1+ ﬁ) cos(N¢' + C)do'|
T

dy’

Analogously if 1 > |2| > N=1*¢ we can also perform integration by parts k times

g —r |92 +2(1+ 2)(1 = cos(6)) P2

1
- dt’
rNk/ Z 242(1+ 1)1 — cos(8)| 7

CkT'N(l ©) < Ck’l"N ke
- h2Nk - h?

i 1+ %) sin(6 4 0") — sin(9
1/ ( +7”)Sln( + ) Sln() COS(N0,+C)CZ9/|

for any k£ € IN for some C}.
Using this, for any H(r) € L? and p(r) € C! we get, for r € [N~4,2], and defining v; ,

r —1+e ™ r sin ’Y—rsin
v (H(r) cos(NO +p(r))) == [T i [T lhg;’;ir+;‘;(+1{)cos(e,)§fg/2 (r + h) cos(N6 + p(r))H(r + h)d6'dh

Cyr Cyr C
S/|h|> N—vrf(hQN’c +h2Nke)|H( T+ h)|dh < ||H||L2

which in particular implies |[1,¢;n-4 9)9(r)sin(0)vy1(w(r,0))|[L> < [lgl|Lo||w]|rz and by

decomposing sin(0)w(r,0) in its different Fourier modes and applying the previous inequality,
. Cu

[11reinv—a201,1(g(r) sin(0)w(r, 0))||L2 < =5 lgllL<|wl|L> -

If we now further divide the operator v1 (W) as v1(W) = v11(W) 4+ v1 2(W) + v1,3(W), with

Cera
N

/ e / (r 4 h)sin(@ + 0’) — rsin(0)
v
12 N-1+e rN—1+¢€ |h2+27"(7"+h)<1 _COS(9/>)|%

(r + R)w(r + h, 0 + 0')dhde’

—14€’

2mr— N 1te rN . N
v1,3(W) = / / (r+h)sin(®+6) —r Sln(9)3 (r+ h)w(r + h,0 + 0")dhdo’
N-1+¢/ rN-1+¢/ |hZ 4 2r(r + h)(1 — cos(0))|z

using the previous bound it is enough to show that, for ¢ = 2,3

1Lrev-a,9)[v1i(g(r) sin(@)w(r,0)) — g(r) sin(@)vy i (w(r,0))]|2 < CNT||gllon || f]] 2
But, for i =2

lee[N A 2]9( 7) sin(0)vy 2( (7’ 0)) — v1,2(g(r) sin()w(r, 9))H2L2

—1‘4e€

< / / (r+h)sin(6+6) ~rsin®)
PO yvie Joy-rre [h2 4 20(r + h)(1 — cos(6))]3
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[g(r + k) sin(0 +6') — g(r) sin(O)]w(r + h,0 + 0')dhd6'||7.

2 27 2 / 2
+ h)2(10'| + |h])?| f(r + h)] 2
< Cllgl2, (r d0'dh) rdrdo
< Cllglle /0 /0 (/thHe, /|0,|<N1+6, h2 4 2r(r + h)(1 — cos(6"))[3/2 ) rdr

2
+ h)| 2
=0 21/ / / AR DI A
s ||gHC 0 ( |h‘STN_1+€/ |9’\§N‘1+‘»/ h2+’l"2(0/)2|1/2 ) rar
’ h N2
—clglies ([ / WOy ),
0 [hl<N-1+¢ Jjor < N1+’ h2+(9/)2‘1/2

1 1
2
< Cligllen /~ / 72 p2|1/2 /~ / 72 p2|1/2
| <N-1+< Jjg|<n-1+< |h] + 0F] lhol<N—1+¢" Jigy|<n—1+¢ |hg + 03]

2
/0 |f(r +rh)||f(r + rhe)|rdrd0ydhsdd)dhy

< N7 |g|[Ea I 11z

and similarly

1,ev-4.2f()v13(g(r) cos(NO)) — v1 3(f(r)g(r) cos(NO))|[2

< C||g||201 /2 (/ / Mde/dﬁ)Qrdr
o \iiien-ree Jasipisn-ree [R2 4 (69)2[1/2

2 - -\ 2
<cllglies [ ([ £ 4 7B In(|A] + N~+)dh) rdr
0 NJjhlgn-ie

2
<Cllgli [ il + 8 [ nlhal + N7 [ )|+ rholrdrdhadhy
|hi|<N—1te |ho| <N —1+e 0

< Cln(N)PN7222lg][20 || 1122

We obtain now our result from combining all our inequalities since

ey 2101 (f(r)g(r) cos(NO)) — f(r)v1(g(r) cos(NO))|| 2
3
<D lvernagvri(f(r)g(r) cos(NO)) — f(r)ori(g(r) cos(N6))|l L2
i=1

< Cullfllczllgller (N1 + N7 4 In (N)N 1),
O

Corollary 5.2.6. Givene >0, N € N> 3, A\ > 1, A > 0 then for any functions g(r), f(r), h(r) €
Cl, f(r) € L? and we have that for i = 1,2, if we define

w(r,8) := f(r)cos(NO + h(r))

[1Lren—axax [vi(g(r) sin(@)w(r, 0)) — g(r) sin(0)vi(w(r,0))]|| L2 < Ce aAANT gl |[w]] e,

[1Lrev—ann [vig(r) cos(O)w(r, 0)) — g(r) cos(@)v; (w(r, 0)]l] 12 < Ce AAN " F<|g]|c1 ||w]| 2.

Proof. To prove it is enough to note that, for f(r), g(r) as in our hypothesis, f(Ar), g(Ar) would
fulfil the hypothesis of Lemma 5.2.5, so again focusing on ¢ = 1 and ¢(r) sin(6), using the scaling
properties of v and of the L? and C! norms we have

rev—ax2xv1(g(r) sin(@)w(r, 0)) — g(r) sin(6)v: (w(r, 0))]]| 2
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= M|Lev-a,9[v1(g(Ar) sin(@)w(Ar, 0)) — g(Ar) sin(0)v1 (w(Ar, 0))]|| L2
< CANTHlg(Ar)||o [[w(Ar, 0)]| L2 < CANTFN[g(r)] o A Hw(r, 0)]| 2
= CANT|g(r)]| o [[w(r, )] 2

O
Lemma 5.2.7. Given a radial function f(r) € H® we have that
of _2
5, (r=m0)l < ClF()llmsro °
Furthermore, if f(r) € HST" with n a natural number, we have that
of -
5, " =10 < Cullf(r)l[ms+2nro ™. (5.9)
where a,, = an,lg + %, ag = %
Proof. Fixed rg, we define
!
ro4+ = inf{r : r >ro,|f'(r)] < 11(ro)] (2r0)|}
/
ro,— = sup{r:r <o, |f'(r)| < U;ﬂ}
so in particular
r
OB = 2o — 10 ) o), (5.10)
T
1)l > (o4 = 70) ' (ro)?.

We assume that f'(rg), f’(ro) > 0, the other cases being analogous. Using that |%| <
[|f(r)||ge, we have that, for h > 0,

63 2 2
f'(ro+h) > f'(ro) + hf"(ro) — || 8{? ||L°°% > f'(ro) — Hf(T)HHS%a
and thus
f'(ro) \2
s =m0 (i)
SO

A (e e WA

and in particular
8 % , 5
—[f ()l = f'(ro)=.
o

To obtain the bound for other spaces H>*2", we first note that we can assume that ro—7o, _, 70 + —

ro < %2, since for the points where ro — o > % using (5.10) we have

C
[f(ro)| < %Hf”Hl-

With this in mind, we can finish the proof by induction using that if (5.9) is fulfilled for some
n, since |%| < Cpr= || f(r)|| gr7+2n, then (again dealing with the case f'(ro), f”(r9) > 0, the
other cases being analogous),
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/ / 17" ( ) h2 / —an h2
7o 1) 2 700} + 0" 0r0) 12N, s B 1 0) = ) IO e

and thus

f’(To) 3
.
To T To 2 (c 1/ (r >|\H5+2<n+l>ra“n)
SO

< "o f'(ro) LIPS
10 > S (G ) /00

which implies that

7% %(70%) /
Crs1[lf ()| grs+2msn g ° 1§ > f'(ro)-

Before we can define our pseudo-solution, we need one last technical lemma.

Lemma 5.2.8. Given any a; for i = 1,2, there exists a C™ function g(r) such that () has
support in 7 € (¢,00) for some ¢ >0 and

9 valg(r)),
E#(r - 1) o
0% vy (g(r
or? (i( ))(T 1) = a2,
9% vy (g(r
or3 (i( ) (r=1)=as,

where g is the Fourier transform of g and 7 is the radial variable in the frequency domain.

Proof. We start by choosing hj(r) smooth function with support in r € (%, %) fulfilling

/2 shi(s)ds =1,
0

and then we define

102

ha(r) := fﬁrhl(r),
19

hs(r) := o S ha(r).

Now, since for a generic radial function h(r) we have

r —r'cos(a’)

Va(h())(r, ) = P.V. /]R " ]r’ Ir2 + ()2 = 2r1'cos(o) ) 3/ (h(r') = h(r))dd dr’,

then for r € (1, 2) we have

27r

A% hy (\r!)dr’ = ox

limy 00V (A2hy () = hmHOOQW/ (5.11)

|r2|3/2

and furthermore there is strong convergence in C* for r € (2, 2) for any fixed k. On the other
hand, using integration by parts twice with respect to r’, we have that, for r € (%, %), A>3,

r —r'cos(a’)

va(Aho( X)) (r, a) = P.V. N ho (A )do! dr’

Ry x (- |72+ (r7)? = 2rr'cos(a)) [/
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0? r —r'cos() > 5
=PV. N°r'ha (Ar')do dr’
/M - (G e ) O s

and similarly, using integration by parts four times with respect to 7/,

o /
va(Mhs(\))(r, ) = P.V. r —r'cos(a’) A5 By (A Ydo! dr”

Rox[—ma) |72+ ()% = 2rr'cos (o))

o r —r'cos(a’) ) )
= PV )\ lh )\ / d /d /'
/]R+X[ ] <8(T')4 |72 + ()2 — 2r1’cos(a’))[3/2 r'hy(Ar')da'dr

Direct computation then gives us that

. 92 r —1'cos(a) o 3m

1101 -/ = —
=0 A(r')? |r2 4 (r")2 — 2rr'cos(a’))[3/2 T
lim gt r —1'cos(a) o — 1357
=0 A(r")* |r2 + ()2 — 2rr'cos(a’))|3/2 C 467

and there is strong convergence in C* for r € (27 2) for any fixed k, so

lim oo va (X ha(A)) (1, )’ = / N (! = 2T (5.12)
Ry T T
. 1357 1357
1m0 Ve (A8h3 (X)) (7, @) :/}R ™ ——\2r'hy (N )dr' = R (5.13)
+

with, again, strong convergence in C* for r € (é 2) for any fixed k. Furthermore, if we now
consider some C'*° radial function p(r) such that p(r) =1if r > 2, p(r) =0if r <1,1> p(r) >0,
and define H, as

— ~

He(f(r)) = p(=)f (),

we have that for any C°° function H.(f(r)) tends strongly in C* to f(r) as c tends to 0, and
furthermore H.(f(r)) is radial and with Fourier transform supported in # € (¢,00). Using this
plus (5.11),(5.12) and (5.13), we have that we can find smooth functions g1 (r), g2(r), gs(r) with g;

Q3

supported in 7 € (¢, 00) such that, for r € (3, 3)
dvalgr), .. 1 9? va(g1) . 4 3 va(g1) .20
87“ r (74_1)_7’Tl E’ﬁ r (r—l)————i— 87"3 r (_1)_7"76—’_6’
valg2) . _ 1 9 valga), 6 Valg2) ., _ 42
87‘ r (T_l)_r6+e’8r2 r (r_l)__ﬂ 8r3 r (T_l)_rg+e’
0 v4(g3) 1 9? va(g3) 8 3? va(g3) 72
o r (r ) r8 © or? (r=1) 79 te Tord (r )= 710 te

r
and since the vectors (1,4,20),(1,6,42) and (1,8,72) are independent, evaluating at » = 1 and

taking e small finishes the proof.
O

5.3 The pseudo-solution
We are now ready to define our pseudo-solution and obtain the necessary properties about it.
First, taking

N%In (N) = \27P~« (5.14)
for t € [0, A"2T81In (N)’] = [0, (NA)~*In (N)?], we define

wn,g(r,0,t) == g(r,t) + Wpert (1,0, 1), (5.15)

where
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g(rA, tAY)

g(r7 t) =A 8 3
dg(r,t)
= —A%(r,t
5t g(r,t),
g(T,O) = 9(7”);
cos(N (0 +O(r,t)) — [7 2 Co . ds)
Tyere(r,0,1) = [A)A R
Wlth t _
6(r 1) = K L9 0) +/ el dr2)) g,
Ar 0 r

e [T 0 g
G(r,t):= K'N /0 (sz—&-(g@(r,s)f) ds,

where we need to choose K, g(r) and f(r). First, we choose a smooth radial function g(r) with
supp(g) C {7 € (¢,00)} for some small ¢ > 0 such that

a ’Ua(g(T)) (T _ 1) _ 17

ar

& wvalg(r),
ﬁf(f =1)=0,
9% vy (g(r
ﬁy(rz 1) =1,

which exists thanks to Lemma 5.2.8. Note that this means that there is a small % > € > 0 such
that 7o € [1 — €,1 + €, implies that

9 val(g(r)) 9 va(g(r)) 1 2
—_ = — = > — . .
(87‘ " )(r T0) (67“ " )(r 1) > 10(1 ro) (5.16)
We would now like to choose K so that, if N is big enough, G(r,t) is such that, for ¢ €

[0, AN)~*In(N)?],r € [}55, 55 U [555, 5

1

a(=

(L

For this, we note that it is enough to show that, for t € [0, (AN)"*In(N)?], r € [, 255 U

[2+€ lié'}
220 T\ b

t) < G(r,t). (5.17)

A2+

But, using the definition of g

ARG PP BUNC A0 I g R L R [ PR
0

o Or r A(rA) Ar or r
and using ¢ € [0, (AN)~*In(N)?],r € [15, 5] we have,
|/ 0 va(g —3(-,0))(r) dr| = A3~ g|/ )\T g\, Ao 1\; 9(>“70))(T)dr|

<ONTAN? < Ct>\3 PN=“In(N)?,

so, for big N, r € [153€, 2581 U [3£E, 1], using the definition of ©(r,t), (5.18) and (5.16) we have
1 ~2
i (%@(r, H)? > N1 -8+ (KA +tX* 7)1+ 2—0) — CtA* PN~ 1In(N)?)?
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and also

1
A+ (%@(r, D)*(r =) S AT+ (KA+ 77 4 CIAB=A N~ 1n(N)?)?

so by taking K, N big (and therefore \ big), gives us that (5.17) is fulfilled.
We now take f(r) a smooth function with support in 7 € [I — € 1+ € the small interval fulfilling
(5.17), and such that f(r) = 1ifr € [l = §,1+ 5], f(r) < 1. Note that, since the maximum of
G(r,t)l,c(11-¢), L (14¢) 18 in the interval r € [£(1—£),+(1+ £)], this ensures that
. [Lf (Ar)l] o —G(r
prertHLoo = Wlusuppf()\r)e a( ’t)||L°°- (5.19)
This pseudo-solution fulfills the evolution equation

Ow 0 -
o (@) - V(0 ,p) + O (Bpert) 59 (r, 1) + A (g(r, ) + B (@pere) = 0
with N
A%hy(r) cos(NO + Nho(r)) := K. hy(r) cos(N6 + hg(r))|(7)2 + N2hly(r)?|2/?
. (1) sin(NO + Nho(r))
_ . L 1(7r)sin + 2(r
Tp(h1(r) cos(NO + ha(r)) := —Cp 1 20 ()22
so that .
w0
811\5”3 +ou(wng) - V(ong) + A (0N g) + Fnpg(z,t) =0 (5.20)
with
FN’g(x,t) = Fl(x,t) + FQ({EJ) + Fg(l‘,t) (521)

Fi(z,t) = (A — A%)(@Wpere),
Fy(x,t) = _U(wpert) ) V(wpert)
Fy(x,t) = (0(Wpert) — v(Wpert)) - V(1 1)

Next we need to show that Fly g is small in suitable Sobolev spaces.

5.3.1 Bounds on the error term Fyg

Lemma 5.3.1. For any given € > 0, there is Ny such that if N > Ny, then for Fi g given by
(5.20) and s € [0,2], we have that

NG(AN)S+O¢
[[Fngllms < CGW
with N, X as in (5.14).
Proof. To prove this, we will just show that
Ne()\N)s+a

for i =1,2,3, with F; defined as in (5.21). We first focus on Fi(z,t). To bound the H?® norms of
this function, we will use Corollary 5.2.2, so for that we need to check if Wpe, fulfils the hypothesis
of the lemma. For this we note that

_p cos(N (0 +0(5,1)) — Jo P2 s gl amds)
wpert(X,ﬁ,t) = f(r)A NEB e %
r b1 0 v(g(r,0)) s 0 va(g(-, A¥7))(r) bl
—t) =K} (N))® — 4 (K= Np g ” P dn)?) T d
G()\’ ) o (N /0 (7"2 + or r Jr/0 Oor r 7) ) %
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Since f(r)e~%(%:Y) has support in r € (%, 2), if we show that

1£(r)e= G D os < || f(r)e”CED] [ In (V)7 (5.22)

||KM +/t AQ—HUQ(Q(T, )\O‘S))dSH <In (N)P
r 0 r

¢ Ag(r, \*s) C
o7 : : s < In(N)F
H/O ’ or ‘1+(7’8r9(§,s))2|1/2d8)||c < In(N)

we can apply Corollary 5.2.2. ~
For (5.22) we note that, for a function of the form h(x) = hy(z)e2(®), we have the bound

1)
but, using also that f(r) is a fixed C* function and (5.19)
Lf(r)e=CG D]l
1f(r)e” G & |
1suppsye” “D ||| f()lles (1 + NG Ol (1uppr0)”
1) [ Lsupp e 5]
-
< CO+[IG(5 DMl tauppr)’

)’

ci (14 [[ha(2)]

i < CilLsupp(hn ()€™ || ||

<C

| Lo

so it is enough to obtain bounds for |G (5, ?)[|c5(1,,,,,0)- But, for ¢ € [0, (AN) ™ In(N)?]

T
||G(X7t)|‘05(lsuppf(7'))

_ o [t/ Vo (g(r,0 ¥ 50 o 3
=t [ (e [ D g ) ) 05

g
< Cln(N)?x
1 va(g(r,0 S o, 50 o 2
supseto oo | (73 + (2O [0 S (g A 0)472) 1
< Cln(N)*x
L eml0) | e d

s - oy (1 115 + (I 3078 L (AT )
< Cln(N)*,

where we used that % + (K =20 4 [F0277 v (g(-, A7) (r)dr)? > § for r € supp(/(r)) in
the fifth line.
On the other hand, for ¢ € [0, (AN)~%In(N)?] we have

t y2—8 o
||K,Uoé(g§‘r,0)) +/ )\ va(i(ryA 8))d5||c5 S CIH(N)3,
0

t et
| [ e P 5 dsllcr
0

o 11 r20,6(%, 522
Co
|1+ 72(0,0(%,s))

< CIn(N)*sup,e(o,(an)-o (a2 | 2172 lles < CIn(N)*?,
so we can apply Corollary 5.2.2 and obtain that
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As+aNe+a+s

« A QN+ - s+a pnT— a+te+s f()\’l“) —G(r
A" = R Yipers (r,0) |1+ < CA7HFsFoNT IR e | =G | o < OB

NB)\B-1
Note also that, all the bounds we have obtained also give us, for any € > 0, s € [0,5] and N big

)\sNe-i-s )\sNe+s

Hs S Cw, H'U_}pert(’r, 9)‘ C's S CW

| @pers(r, 0)] (5.23)

Next, for Fy(z,t), we note that

1Fa(x, 1))

H < H(T} - U)(wpert) 'v(@pert)HHs + ||17(1Dpert) 'v(wpert)HHs-

But, since we already checked the hypothesis for Lemma 5.2.3, we have, for s = 0,2 and any ¢ > 0

-~ ~ ~ SN ~ ~ N2¢(AN)® ,_
16 = 0)Bper0) - ¥ el < O30 = 0)eroll IV e e < o g ¥
NQE ()\N)s+(x N3e ()\N)s—i-a
=C Ny V) < C—gamg—

and interpolation gives the bound for s € (0,2). On the other hand we have

0 1 0
U(Wpert) * Uper =Ki(5— Uper 797t7_er 797t
0ere) - ¥ pert) = 50 (5t v o pypre) Poert 0+ 1) gy Dert (. 6:1)
0 1 0
—Ki(5— _GT 797157_67’ 79,t
1(8:52\(%)2+(Nar@(r,t))2|1/2)wp (0,0 gy pere(7:6, 1)
and therefore, for s € [0, 2],
||T}(wpert) ) V("Dpert” Hs
g 1
<C v Uper 79 i || Wper 79 stl—1
- ;” (|(%>2+(Nare<r,t))2|1/2)wp e Ol s [ @pere (r, 0) 11+

< CZ )\i+1—BNi—B—1+2E()\N)s+1—i—,8+e _ C)\l—ﬂN—ﬁ—1+2e()\N)s+1—[i’+e

=0
B ()\N)SN3€ 2 5 18 ()\N)s+o<N36
=C M NB+1 ATPN =C N3N B+1

Finally, for F3(x,t), we just have, for any s € [0,2], € > 0, for N big enough

(0 = 0)(Wpert) - Va(r,t)|[m= < CZ (0 — ) (Dpert)|

113l
i=0
NENA)' Lyoig o (NN g N>(NA)*H
<C A\BNB+1 A <C A NB+1 A <C A\BNB+1

and this finishes the proof.

5.3.2 Using the pseudo-solution to control the solution

For the pseudo-solution wy g to be a useful tool, we need to show that, if we define wy g, the
solution to (5.1) with the same initial conditions as @y g, then wy g ~ wy,z. This sub-section
will be devoted to show this.
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Lemma 5.3.2. There is Ng,€9,0 > 0 such that if N > Ny, 0 < € < ¢y then for any t €
[0, (NA)~*In(N)?] we have that

_ Ne¢
llwn (2, t) — W (2, 1)][2 < CeNTl/\ﬁ’ (5.24)
llwn,g(2,t) — Wn,g(, )| g2—ats <1, (5.25)

with Wy, as in (5.15) and wy g a solution to (5.1) with the same initial conditions as Wy g.

Proof. We first note that, since (5.1) is locally well-posed in H2~*+% using continuity of
llwn, g(z,t) — N g(z,t)|| g2-atrs we know that (5.25) will hold for at least some short time period
[0, Tt.ri). We start by showing that, for ¢ € [0, Terig] N [0, (NA)~%1In(N)?], (5.24) holds.

For this, we define W := wy g(z,t) — wn g(x,t) and note that the evolution equation for W is

ow
s +o(W) - V(W + oy g(x,t) +v(ong(z,t) - VW + AW — F(z,t) =0

so that, after using incompressibility,

0 _
GIWIE: = =(2 [ W(V) - Vi~ Fa0)de+ (W12 ) (5.26)

< —(2 . W(v(W) -V (g(r,t) — g(0,1)) — F(x,t))dm) + CA2 NP1 n (N)||W]|2..

where we used that ||Wper(r, 6,7)]|c1 < CX2=BNF=1In(N). Now, we consider f(r) a smooth
function fulfilling 0 < f(r) <1, f(r) = 1if r > 2, f(r) = 0 if 7 < 1 and we define

)= 0= FN7Pr), fa(r) = 1= f(r) — fi(r),
f3(r) = f(r) = fa(r), fa(r) = f(A"27)

so in particular fi + fo + f3+ fa = 1. ~ ~
Now, by using the smoothness of §(r,t) and f(r) (which in particular implies 9, f(0) = 9,g(0,t) =
0) and the scaling properties of the C* norms, we get that

1) (g(r,t) = g(0,0))ller < CA*|g(r, Ollcz + | f1(r)[ler CAT* )2 |g(r, )| < C,
1f2(r)(a(r, ) = 3(0, 8))llor < [1f1(r)(g(r,t) = g(0,8)[|or +II(L= F(r))(a(r, 1) = (0, 1)) ]| < CN*7

and applying Lemma 5.2.7 to g(r,t) we get
1fs(Pg(rD)lles < CAFFN2 || f(n)g(r )| < CABTEHINTI = a3 N0 < ¢,
and thus
1 £3(r)(@(r8) = G(0,)l|cr < CAFTN2E | f4(r)(G(r, 1) — §(0,1))]|on < C.
Therefore
I/ W (v V(f1(r) + fa(r)(g(r,t) = 5(0,1)))dz| < C||W ][22

and by using Corollary 5.2.6, and the parity of the operator v; for i = 1,2,

R2 W’Ui (W) 311
1 0
5 R2 W[Ul( ) 81‘2 dz;




< CONTINP|WI2, < CACN~ || W2,

0
W (W
R2 U( )3ZEZ
1

=5 [ W) (55 (1)~ 3(0,)) — (W
R? L

(f3(r)(g(r,t) — g(0,1)))dx

o (f5(1)(g(r:0) — 9(0.0))lds

)
< CAINTIATEFNZB) W12, < ONCN ||| [2..

Combining all this we get that

9 2 _ — 2
S = =2( [ WV) - Vi, — F.)de+ [WIE ;)
< ON NI W + CIW 2 [ (o, )2

and using the bounds for ||F'(x,t)|| 2 and integrating with time the evolution equation for ||W ||z,
we get, for any € > 0,

NE
NB+1I)\B"
On the other hand, by integrating in time (5.26) we get, for any ¢y € [0, (NA)~*In(N)] N[0, Terit,
any € > 0

[Wllz2 < Ce

to Y Ne€
/0 HWHZ% < supye(g o) (NN~ In(N)(||F| 2 |[W || L2 + [[W]|72) < CW' (5.27)

To bound the growth of the higher order norm, we note that

%HASWH%Q = -2 /]R2 NW)AN (W) - V(W + oy g(z,t) + v(ong(z,t) - VIV + AW — F(z,t)]dz.
(5.28)

In order to bound the growth of the H® norm with s = 2—a+§ (we will now just write s instead of
2 — a4+ 0 for compactness of notation), we need to bound each of these terms under the assumption
that (5.27) and (5.24) hold. First, we note that, as seen in [67],

A W)A* [0(W) - V(W)]||r < CIA*ZW [ ||A*F 2 W[ 2 [AW | 2
so, using our hypothesis for ||W||gs, (5.24), the interpolation inequality for Sobolev spaces and

some basic computations we get

1 o 1
AW o(W) - V|11 — ——[[ASFS W2, < —
A )W) - TV )11 — o5 AT B W < =

and using our hypothesis for ' and taking € and ¢ small enough we get

NE(AN)2+0
NB+1I)NB
For the rest of the terms, we need to use again Lemma 2.2.10, that is to say:

A (W)A*(F)[|r < [[A*(W)]| 2 < ClIA* (W)l (AN)*N 2.

Lemma 5.3.3. Let s > 0. Then for any s1,s2 > 0 with 81 + s2 = s, and any f, g € S(R?), the
following holds:

1 1, ;
14°(fg) = D g0 A g = D OgA I lle < CIA fllealiAgllmao (5:29)

[kj<s1 lil<s2
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dxitoxy?’ T8 aglt 9l

Aif(€) = A (€)f(€)
As3(€) = il (|¢l*).
Note that, even though this lemma is only valid for functions in S (the Schwartz space), an

approximation argument allows to us use this lemma for the functions we will be considering.
We will also use that, for any €,s1,82 > 0, s1 + 59 < 2

where j and k are multi-indexes, & =

and A*3 is defined using

Ne+Ox1+1=p

< C.

s —

o e
N,BlIC N

(N/\)51+52+17ﬁ

Ne€ C'/\51+52+17ﬁ
N +

[A* W l|cee < Ce

and if also 2 > 57 > 1, k with [k| =1

(AN)s1 =5

CAs =P
—

||A Dy gl Lo < N€

where we get these bounds from (5.23), the properties of g(r,t), the scaling properties of C'* and
A fllar < Crel|fllcrsortes
for |k| =1, kK >0, s2 > 1, s; > 0. Now, applying Lemma 2.2.10 with s; =1+, W = f we get
A (W)A*[0(W) - Vo gz, £)]|| 2
<A WA [w(W)] - Vo gz, O]l + [[A*(W)o(W) - A* [V g(z,1)]]| 1

AW L2 (Y [0 L2 ||A V@, [ + ||A W[ L2 ||A' Vi, g 1< )-
k=1

A5 fll o < Crell fllrea—1+e

But, for t € [0, (AN)~%In(N)?], using the bounds for wy s and the interpolation inequality and
taking § small and N big

t t 2s—a
/0IIAS(W)AS[U(W)}'VwN,a(LT)HIiszSC/\Q’ﬂ/o IAZW| 5[ ATE W[, dt

t t
<ONA([ INEWIRdnE ([ At E WS ) / I E W

< S| [2dt) "5

< C'EN (1= ﬁ)+0(5)+0(E / ||As+ « W||L2dt)

Similarly, for § small and N big

t t
/O [AS(W)o(W) - A* [V o, )| podr < 06A8+2-5Ns+1-ﬂ+6/ AT || 2| [W | g

25—«

< CNST2ANSHLIBHe NI NAHTINE (NN~ 2 NE(NPHIN) ~ 35 ( |\AS+2W|\L2dT) T
0

t t
o s—o 1 e s—«
< CN 2D o[ W) "5 < o[ AT W)
0 0

and

/ AW L2 Y |0W | L2 [| A Yy, g o dT < CXTH AN ﬁ+€/ (AW | 2| AW | p2dr
|k|<1

< CNSTI-BNs—Fte Ne(NATI N~ 3 +5] / [ASTEW||podr) 2t 25"
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25—«

< O N1=AFo(e)+o() / [[ASHEW||padr)zt 5.

Moreover,

t t
1A e AWl AW 7 < N3~ (14 N3 4) [ |ALEOW ol AW e
0 0

2s—a

t 1-245
*(/ AT EW | padr) =0+

< Cé)\Sfaf,BN2fa76+eNe (N,B+1 /\ﬁ) 1;%;5+

2s

SCENl B+o(e)+o(6) < / ||Ag+2W||L2dT) P a + ZQOL.

Similarly,

/0 IS (W)A* (i (5, 1)) - TW]| 2

1 ¢ N . t N .
g—((/ AT EW | p2dr) 375 4 2 / AT EW|[22dr) 57,
100 0 0

Therefore, integrating (5.28) we get that, for ¢ € [O7 Terie) N[0, (NX) = 1In(N)?]

1
-5
and, since by continuity of the H® norm we must have that ||W (z, Terit)||%. = 1, in particular it
must be that T..;; > (NA)~%In(N)?, as we wanted to prove.

AW < 35 Wl <

O

Lemma 5.3.2 allows us to show that our pseudo-solution is a very good approximation of the actual
solution for ¢ € [0, (AN)~In(N)?]. Furthermore, at t* = (AN)~®In(N)?2, we have that

- * c —G(rt") < c C(AN)“(AN)’O‘ln(N)z c
[Wpere (@, t7)][ L2 < (V)3 S UPresupplinger:] S e S NBr2NE

and for any € > 0
||1Dpert(x7t*)”H2 < Ce(N)\)2_5N€SUPresupp[ €_G(T’t*) < C(N)\)2—,BN€_6C'()\N)Q()\N)*O< In(N)?

< CEN_5+€)\2_6

wpe’rt]

so in particular, by interpolation, for small § > 0
|[wpert (2, t)|| fro—a+s < N7°. (5.30)
Combining this with (5.25) and (5.24), we have that, for t = (AN)~%1n(N)?,

C
o, (r,6,8) = 90 ) 12 < perys
||wN,5(r, 0, t) —g(r, t)||H27a+6 < N9,
With this information, we can obtain the following lemma.

Lemma 5.3.4. There is Ny,eg,0 such that if N > Ny, € < €y then for any t €
[(NA)~*In(N)?, A~ 1In(N)3] we have that

_ Ne¢
lwn,p(z,t) = g(rt)|[r2 < CeNTl,\ﬁ’ (5.31)
lwn gz, t) = g(r, )| r2-a+s < 2. (5.32)

where wy g is the solution (5.1) with the same initial conditions as wy,g and g(r,t) is as in (5.15).
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Proof. We will omit the proof since it is completely analogous to that of Lemma 5.3.2: We note
that (5.31) and (5.32) hold for t = (NA)~®In(N)?, we prove (5.31) for times when (5.32) holds,
then we obtain an inequality like (5.27) and with that, the evolution equation for wy g(z,t)—g(r, t)
and Lemma 2.2.10 we prove that (5.32) holds for ¢ € [(NA)~®In(N)%, X\~*In(N)3]. O

Corollary 5.3.5. There is Ng,0 > 0 such that if N > Ny, then for any t € [\"*In(N)3, N%] we
have that

lwn g(@, t)]| g2-ats < CN°.
and for t € [N~3, N°]

llwn(@, 8)]|gr2es < ONT3, (5.33)
where wy, g is the solution to (5.1) with the same initial conditions as Wn g.

Proof. First, Lemma 5.3.4 allows us to show that, for t = A=*In(N)3 and for small § > 0, any
e>0

lwn,s(@,t) — (7, )| r2-ass < 2,
_ C.N¢
llwn,g(z,t) = g(r, )]z < NENAIT

and, using that supp g(#,0) C {7 : # € (Ac,00)} for some ¢ > 0 (see Lemma 5.2.8), again for the
same time

- ey )\S—B C)\S_2+a
I, )llzs < e " lg(r, 0)llms = o < o,

and combining the three inequalities, taking e small and using the interpolation inequality, we get
that there is a small § > 0 such that, for t = A=*In(N)?

llwn sz, 0)] g2ra—s < ON~°.
Finally, we note that

d —atd —atd 243
%HwNﬁHip—aM < 2/A*7 (wy p) A [u(wn p) - Vgl — 2/[A* 2wy g7

< ClIA* Fwn |12l | A% F 0w gl 12 |[A2 7 F Dy g2 — 2||A27FH0wy 4] |2,

< O(IA* F 0w pllce + [[wnsllz2) 1A% F 0w gl (A% Pwny gl 22 — 2|47 F w6 72

< (CIAP w2 = DIIA*E w7 + ClIAZFw |2 [w s,

and integrating in time gives the desired bound.
Next, using the interpolation inequality and our bounds for wy g, we have that, for t €
A In(V)?, N9]

d
Zillwn @ Ollzes < Cllww,g(@ t)l524s = 2lwns(@, Dl ars g

C
< Cllwn,p(x,t)|[3r24s + NBNT 2|lwn,p(@, )2 2451
c lwn,s(x, t)|[Gr2rs C
3 _ B\ V)2 NS 3
< Ol Ollinss + Sz ~ 2o ey S ~ON°leon @ Olfiass + Sapga-

Now, we note that if for some tq € [A™%In(N)3, N°] we have ||wy 5(z,t)||g2+s < N7L, then (5.33)
holds trivially for ¢ € [tg, N°] by integrating the equation. Therefore, it is enough to study the
behaviour for ¢ such that |[wy g(z,t)||g2+s > N~1, which in particular gives, for N big

1

é
NOMwn,g(@, )32 >> 55777
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and with this, we have

d
—llwn (@ )llz24s < —CN°Jfwn,p(@,D)lF2+0

and integrating this equation gives the desired result.
O

The last computation we need to do regarding wy g is to show that it exhibits a very fast growth
in the #” norm.

Lemma 5.3.6. There is Ny such that if N > Ny then
_ 1 8
[[wn,g(@,t = AP (I(N))2)]| g = Cn(N) 2 [Jwn, (@, 0)]| s
with wy g the solution to (5.1) with the same initial conditions as Wy g.

Proof. We start by noting that, by using the scaling properties of the norms H* plus the definition
of g(r,t)
1g(r, Olla= < CsA*7.

On the other hand, we have that, for ¢ = 1,2, by direct computation

_ (AN)*

lwn,(z,0) = g(r,0)|[mr: < CW’

and combining these inequalities plus the interpolation inequality gives us
llwn,g(z,0)]| e < C.

On the other hand for ¢ = A=272(In(N))2 ), using Lemma 5.3.2 we have

C

llwn gz, t) — glr,t)||L2 < N

and
NE

llwng(@,t) = g(r )l 2 1Operell g — Ceriiyg-

Furthermore using the expression for 8%1 in polar coordinates for ¢ € [0, \=2+# In(N )%]

H]-supp(f()\r))a?”@(rv t)HL"C S CIH(N)%,

so for r € supp(f(Ar)) and t = A\"2H8 In(N)2z G(r,t) < C, which, after some basic computations,
gives, for t = A=2F In(IV)z,

|F(Ar)2,0(r,t)e= D] > C|f(Ar)|In(NV)?.

Using all this we get, for IV big,

o _ C
||wpert||H1 > H 1waTt||L2 > HCOS( )aTwpeTt||L2 — W
P sin(N (0 +©(r,1)) - Co fy 2rds) c
> o ’r’ T ) —_—
> ||cos(9)f()\r))\N(ar@(r, t)) NN e L (NX)F-1

c d Cart c Cln(N)z
> - 1IIf(Av”)(ar@(mt))e 8|2 — N > TR

and using the interpolation inequality we get

|| Bpere|?
||wpe7"t”Hﬁ Z ﬁ#

N[

| o > CIn(N)z,
pert
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as we wanted to prove. O

Remark 11. Lemma 5.3.6 would give us the growth around zero of the H” norm, namely the
final solution obtained in Theorem 5.4.2 will have a sequence of times t,, such that

l|w(@, ta)]] e
In(t,,)| %

It should be noted that it is not the goal of this chapter to try and obtain the optimal explosion
rate around ¢ = 0, and this rate can probably be improved substantially.

tn—

5.4 Loss of regularity

We will now use the previous results to obtain a more compact and usable theorem before we go
on to prove the main theorem.

Theorem 5.4.1. Forany n € N, o € (0,1), 5 € (1,2 — «), there exists initial conditions wy(z,0),
a solution wy, (z,t) to (5.1) and t,, € [0,27"] such that

l[w (2, 0)|[rs <277, [[wn (@, )| gs = 2"
Furthermore, there is small 6 > 0 such that, for ¢ € [%, 1]
|[wn (2, )| r2+s <277

and for ¢ € [0, 1]
lwn (@, )|+ <277, [Jwn (2, )]0 <277

[lwn(z,t)|[e < Cp. (5.34)

Proof. We start by fixing o € (0,1) and 8 € (1,2 — «), and we consider the solutions wy g(z,t)
that we considered earlier. These solutions fulfil that

o [wnp(x,0)]|gs < C.
e For t = A™2tAIn(N), N big

B
2

(@, )lls = Cln(N)% .
e There is some small § > 0 such that, for N big and t € [\~ In(N)3, N9]
llwn (@, )| 2es < CN~%.
e There is a small § > 0 such that for ¢ € [0, N9,
lwn gl g+ < CN72, |lwn gllr < ON7°.
If we now consider
wn,g(Kz, K“t)

Kl—(x

we have that these functions are also solutions to (5.1) and,

wN,K(xv t) =

o |lwn,k(@,0)|[gs < CK2H0,
e For t = K~*)\72*#In(N), N big

i (@, Ol s > CE2* 8 In(N)5.
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e There is some small § > 0 such that, for N big and ¢ € [K~*A\~%In(N)3, K~*N?]
w2, )| gravs < CK2N™3.

e There is a small § > 0 such that, for ¢ € [0, K~*N?],

lwn k|| pres < CKMO2TONT Jlwy k[0 < CKTHONT2,

so, for any fixed n, taking K big and then N big gives us all the inequalities but the bound in HS.
But then using Theorem 3.1 from [33] tells us that wy k is in C* for any ¢ > 0, and since our
initial conditions are in C*°, using the continuity of the H% norm for (5.1) finishes the proof. [

We are now ready to prove the main theorem of this chapter.

Theorem 5.4.2. Given ¢ > 0, a € (0,1), 8 € (1,2 — «), there exists initial conditions w(z,0)
with [|w(x,0)||gs < € and a solution w(zx,t) to (5.1) such that w(z,t) € C* for t € (0,00) and
there exists a sequence of times (t,)nen converging to zero, with lim, ,oo||w(z, tn)||gs = oo.
Furthermore, this is the only solution with the given initial conditions that is in L H}.

Proof. For this proof, we will be considering initial conditions of the form
w(z,0) =Y Tr,(we,(,0)) (5.35)
j=1

with Tr(f(z1,22)) = f(z1 + R, x2), w,,(x,0) the initial conditions given by Theorem 5.4.1. In
order to show properties of the solution given by (5.35), we will also consider a truncated initial
conditions

J
iy (x,0) =Y T, (we,(x,0)) (5.36)
j=1
and we will refer the solution with initial conditions given by (5.36) as w;(z,t). Fixed e, which
we will assume % > e without loss of generality, we will choose (¢;) en so that they fulfil:
¢ >cyifi>j.
o 270+ < ¢, 50 [fu(@, 0)] o < e
o If we define ;

Sj=> Ce (5.37)

i=1

with C;, the constants given by (5.34), then we take c; so that

Cj > j@sj_1+1,26j > 25_]‘_1.

e If ¢, is the time given by Theorem 5.4.1 such that
chj (xvtcj)HHB > 29
1
then CJT S t(,‘j'

We will now divide the proof in four different steps.
Step 1)The goal of this step is to show the following claim:
For any choice of (¢;)jen and € > 0, we can choose (R;);en such that, for ¢ € [0, 1], for any J € IN

[ (x,t) — wy_1(x,t) — Tr, (we, (z,t))||gs < 27771, (5.38)
and Wy (z,t) € HS for t € [0, 1], and such that for t € [0,1]

@ (2,t) — @y_1 (2, )|l cs (B, 0y < €277 (5.39)
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where B;(0) is the ball of radius J centered at the origin.
We will show (5.38) and (5.39) by induction, by showing that, for any J € N, fixed (¢;);=1,..s
and €’ > 0, we can choose (R;);=1,....; so that for any j=1,...,J

|| (z,t) — wj_1(2,t) — Tr, (we, (2, t)|| s < €277, (5.40)

|l (1) — ;1 (z,t)]|c3(m, 0)) < €277 (5.41)
and w;(z,t) € H® For J = 1 this is trivial since wj—¢ = 0, Wj—1(z,t) = Tg, (we, (z,t)) and
wy—1 € C'* for all time. Now, for some arbitrary J we have that, if we define

’lIJJ(.%‘7 t) = ﬁ]L],l(.’l?, t) +Tg, (’LUCJ (m, t))
we have that w;(z,t) is a pseudo-solution for (5.1) with

F(x7t) = _U(wJ—1($7t)) ’ V(TRJ (ch (I,t))) - U(TRJ (ch (l‘,t))) : V(’LDJ—l(x7t))'

Furthermore, both @ _1(x,t) and Tg, (w., (x,t)) are C* functions for ¢ € [0, 1] since they are both
solutions to (5.1) that are uniformly bounded in H, @ ;_1(z,t) by hypothesis and Tx, (w,, (z,t))
by Theorem 5.4.1. But then we know that limpg, oo||F(,t)|[gs = 0 by using that for any two
functions fi(x), fo(x) € HY

mp ool f1(z1, 22) f2(21 + R, 22)||gs = 0,

plus the fact that C°° solutions solutions to (5.1) are continuous in time with respect to the H”
norm.

Now, to get (5.40), we just use that, if Weprorc(x, 1) is a family of pseudo-solutions (which depends
on the parameter ¢) with source term Fey o and fulfilling ||@errorc(z,t)||ge < C for ¢ € [0,T]
(C independent of ¢), ||Ferror.c(®,t)||gs < ¢ and we call w.(x,t) the solution of (5.1) with the
same initial conditions as Werror,c, then

lim ||we(z,t) — Werror,c(x,t)||gs = 0,
c—0

and therefore,
hmp, ool (z,t) = Wy-1(2,t) = Tr, (we, (z,1))|[gs =0, (5.42)

and so taking R; big enough gives (5.40), and then since for ¢ € [0,1] ws(z,t) is a H® solution to
(5.1) with initial conditions in C°, it must also be in H®.
Next, for (5.41), since we only need to prove the case j = J, we use

. (,t) =1 (2, )38, (0)
< ||y (2,t) = wy-1(z,t) = Tr, (we, (x, )| g5 + (| Tk, (we, (z,1)||c3(8,0)
< €277 4 ([T, (we, (2, 1)l c3(, ()
and, as before, using the continuity in time with respect to the H® norm of smooth solutions to
(5.1) gives us
sup; o, ime, oo |[Tr, (We, (2, t)||c2(B,(0)) =0,

so taking R; big enough finishes step 1.
Step 2)The goal of this step is to obtain the properties of lim j_, oW (z, t):
First we note that,

||’lUc]- (x7t)”H1+5 <279, ||wcj (l‘,t)HU <279

so there exists
Woo (2, ) := lim wy(x,t)
J—o00

and 10y (z,t) tends to we (2,t) in H'*9 N L. We would like to show that, for any ¢ € [0, 1]

0 a _
aww(x,t) + v(Weo(x, 1)) - Voo (2, 1) + A% (weo (2, 1)) = 0.
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For this, we note that, for j > J, using the properties of A* and v, for ¢t € [0, 1]
AW (2, 1) — A% (. 1) |[c1 (B, (0)) < Clllweo (1) — wj(x, D)llc2(B,(0) + [lwos (@, 1) — Wj (@, )] 11)
<C Zﬂwm (,t) = @iz, O)llo2(m, 0y +277) < 027,
=j
and similarly
[[v(weo) * Vweo — v(wj) - Vwslloi(s, (o))
< Osup;s|[Will 28, (0)) (weo () — @ (2, t)llc2(B, (0) + llwee (@, 1) — wj(2, T)][ 1)
+ Csup,>; ([ Will 2B, 0)) + [ Will 1) ([[woeo (2, 1) — Wj (2, )| c2 (B, (0))
<027,

so that

woo(l‘,tg) — woo(x,tl) = limj_mo(ﬂ‘]‘](l‘,tg) — ﬂ}J(l‘,tl))

= flimJ_mo/ 2(1}(12)](93, s)) - Vg (z,s) + A0 (x,s)))ds

t1

= —/ 2(v(woo(ac, $)) - Vweo(z, 5) + A% (weo (2, 5)))ds.

t1
and using that
Mmoo || (V(Wso (2, 1)) - Voo (@, 1) + A% (oo (2, 1)) — (v(Ws (2, 1)) - Vb (2, 1)
+ A% (W (z, 0)llcoc (jo,1x B, 0) =0

and that (v(@(z,t)) -V (x,t)+A% (0 (z,t)) is continuous in time with respect to the C1(B(0))
norm, we get that the function

V(Woo (2, 1)) + Ve (z,t) + A% (woo (2, 1))

is also continuous in time (for ¢ € [0, 1]) with respect to the C(B;(0)) norm, so

0 a
awoo(x,t) = —(V(woo(x,t)) - Ve (2, 1) + A (weo (, 1))).

holds.
Furthermore, for ¢ > 0

o o0
|woo (2, 8) = s (2, )| r2es <D Nwoo(,t) — By (2,8) = T, (we, (@, 8) |15 + Y lwe, (@, )| 245
j=J j=J

o0
< @274 3 ey (2, ) s
j=J

Now, we note that, if £ > =, then

ey (2, 8) [ r2v5 < 27

so, if
Jolt) = max({j € N : 81] <1}, {0}) (5.43)
then - -
Z llwe, (@ Ollz2es <D 27% + i < Sjoy + 1
Jj=1 J=jo(t)+1
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with S; as in (5.37) and if J > jo(t)

oo o0
Z lwe, (@, 8)[|r2+s < ZQ_Cj <27/t
j=J j=J

This in particular means that, for any ¢ > 0,
im0 [|Woo (2, t) — Wy (2, t)||g2+s =0 (5.44)

and
[wWoo (2, V)| r2+s < € + Sjor) + (5.45)

This implies that, for any tg > 0
SUDye (1011 [Woo (%, 1) || 25 < € 4 S (1) + 1 (5.46)

and since woo(,t) is a solution to (5.1), using Theorem 3.1 from [33] tells us that we is in C'™
for any t > 0.
Finally, we have that, for ¢t =1

o0
lfwoo (@, )l zes < 3 wey (@, Ol grzs + || (2, 8) — @1 (2, ) = Tr, (we, (@, )] | ra+s < 27+ +¢,
j=1

so we can make the H?19 as small as we want by taking ¢; big and € small, and in particular
Woo(x,t) will be a global smooth solution to (5.1).

Step 3: We will now show that we have uniqueness, i.e. that, for any M, e > 0, if we assume there
exists a solution w(z,t) to (5.1) fulfilling

supyepo,ol|@(z, t)|[m < M

then, for ¢t € [0, €] W(x,t) = woo(z, ).
For this, we note that, if we define W (z,t) := w(z,t) — woo(,t) then

%W(x,t) +o(W) - VIW 4+ weo) + v(weo) - VIW + AW =0

so in particular

§||W||2LQ < —2/ WW(W) - Vweg (2, t))dx
8t IR2
but then we have

| - W (0(W) - Vs (2, 1)) da] < [Jwss (@, 8)]|c1 || W72 (5.47)

| . W(o(W) - Vwee (2, 1)) da| < [|weo (2, 8)|| Lo [[WI[ L2 [W][ a1,
so, for any to € [0,t] we have

(W (2, t)|| 2 < CtOHWHHlef;O [lweo (,8)|| o1 ds
but, for t <1

[[woe (, )llor < Hwoo (2, )| 245 < € + Sjyta) + 1,
where we used (5.46). Now, we note that for t = 1 we already know that
-]

C €+, o\ +1 1 e +S. 441
W (2, )2 < —|Wllme % < —(M+1e "
cj Cj
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and, by definition of jy (see (5.43)), we have that jo(X) < j — 1, so

Cj

1 / C(M+1
Wz, )z < —(M + e+t  CALHD
Cj J
which tends to zero as j tends to infinity so, for ¢ € [0,1] ||W(x,t)||r2 = 0 and therefore
W(x,t) = weo(w,t). For t > 1, we just use that sup,>;||wee(,t)||c1 < C, and therefore (5.47)
gives uniqueness.

Step 4: To end the proof, we need to show loss of regularity, and more precisely that there is a
sequence of times t,, such that

limy, - oo ||Woo (2, t0) || s = o0
But we chose our ¢; so that
299 > 28,4,
and if Z., is the time given by Theorem 5.4.1 such that
||w6j (xvtcj-)HHﬁ > 2%

then —— <t .
J+1 J
Therefore, we have that

||w00(x7t0j>”Hf3 > HTRj(wcj(‘r7th))||Hﬂ - Z ||TRi(wCi(x7th))||

€N ij
oo
= i (@, t) = b1 (2, 8) = Tr, (we, (2, 0))|| s =29 = > |[Tr, (we, (@, te,)|| — €
i=0 1€IN,i#£]
However,
j—1 j—1
> Tr, (we, (@, te, e <2 Tr, (we, (2, te,)) o < Sjo1 <2972
i=1 =1
and
o oo
Z HTRL(U}C’L(:L"tCJ))HHﬁ < Z 279 <1
i=j+1 i=j+1
SO
|[woo (z, te))| s = 2671 — 1 —¢
and we are done. O
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Chapter 6

Conclusions

6.1 Conclusions

The tools we have developed for this thesis allow us to show a variety of results regarding ill-
posedness, non existence of solutions and loss of regularity, including non-existence of solutions
for SQG in H* and C* (in chapter 2, non-existence of solution in C*# for gSQG (in chapter 3),
gap loss of regularity for 2D-Euler (in chapter 4) and non-existence of solution for dissipative SQG
in H® (in chapter 5).

Furthermore, the techniques applied here are versatile, which suggest that they could be applied to
show similar results in other models, such as IPM, Prandtl or De Gregorio. Not only this, but since
we manage to obtain a great deal of information about the qualitative and quantitative behaviour
of the solutions, this could allow us to obtain more general results not related to ill-posedness,
such as norm growth for long times, mixing or instability of solutions.

6.2 Conclusiones

Las herramientas que hemos usado en esta tesis nos permiten demostrar una variedad de resultados
relacionados con el mal comportamientos de soluciones, la pérdida de regularidad y la no existencia
de soluciones, incluyendo la no existencia de soluciones para SQG en H® y C* (en el capitulo
2), la no existencia de soluciones en C*# para gSQG (en el capitulo 3, la existencia de salto de
regularidad para 2D-Euler (en el capitulo 4) y la no existencia de soluciones para SQG con difusion
fraccionaria en H® (en el capitulo 5).

Ademas, las técnicas aplicadas parecen ser versatiles, lo cual sugiere que se pueden aplicar a otros
modelos de importancia, como IPM, Prandtl o De Gregorio, y obtener resultados similares. No
solo eso, pero dado que conseguimos obtener una gran cantidad de informacién, tanto cualitativa
como cuantitativa, sobre el comportamiento de nuestras soluciones, en principio podriamos usar
ideas similares para demostrar otro tipo de resultados, como el crecimiento de norma a tiempos
largos, la inestabilidad de soluciones o el mezclado de un fluido.
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