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Abstract

In the first part of this Thesis we will talk about the effective Lück approximation
theorem. Let G be a residually finite group and let (Ni) be a chain of normal
subgroups of G of finite index with trivial intersection. Set Gi = G/Ni and
let A ∈ Matn(Q[G]). Let us denote by Ai ∈ Matn·|Gi|(Q) the matrices that
after choosing a basis represent the action given by right multiplication of A on
C[Gi]

n ∼= Cn·|Gi|. It was Wolfgang Lück who proved that

lim
i→∞

1

|Gi|
rkAi

exists and is independent of the chain (Ni). He even proved the the limit equals
the von Neumann rank rkG(A). He did this by showing that for a self adjoint
matrix B over Q[G], 0 ∈ C is not an accumulation point of eigenvalues of
the matrices Bi. So what does that mean? For a matrix C ∈ Matn(C) with
eigenvalues λ1, . . . , λn we denote by

µC =

n∑
i=1

δλi

the eigenvalue measure of C. Here δx is the Dirac measure at x ∈ C. Lück
showed that for a self adjoint matrix A ∈ Matn(Q[G]) the inequality

1

|Gi|
µAi((0, λ)) ≤ b

| log λ|

holds for 0 < λ < 1, where b is some constant that only depends on A. We
call this the effective Lück theorem. In the first part of the thesis we proof a
generalization of this theorem.

Theorem. Let A = C〈x1, x
∗
1, . . . , xd, x

∗
d〉 be a free ∗-Algebra and let A ∈ Matn(A)

be a normal matrix. Let c ∈ R>0. Then there is a function f : R+ → R+

with lim
λ→0+

f(λ) = 0 such that for all y ∈ C and for all ∗-homomorphisms

ϕ : A → Matm(C) with ϕ(xj) ∈ Matm(Z) and ‖ϕ(xj)‖1, ‖ϕ(xj)‖∞ ≤ c we
have

1

m
µϕ(A)(B(0, λ) \ {y}) ≤ f(λ).
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8 Abstract

In the second part of this thesis we talk about twisted `2-Betti numbers. Let
G be a discrete group, C[G] the complex group algebra and `2(G) be the group
Hilbert space, that is the completion of C[G]. Note that C[G] acts on `2(G) by
right multiplication, that means we have an embedding ρ : C[G] → B(`2(G)).
We denote by N (G) the group von Neumann algebra, that is the weak closure
of ρ(C[G]) in B(`2(G)) and by rkG the von Neumann rank on Matn(C[G]). Let
now σ : G→ GLk(C) be a finite dimensional representation of G. We can define
a twisting map σ̃ : C[G]→ Matk(C[G]) by∑

g∈G
agg 7→

∑
g∈G

agσ(g)g.

We can extend this map entry wise to matrices over C[G]. We prove the following
theorem, that partially answers a question of Wolfgang Lück.

Theorem. Let G be a sofic group and σ : G → GLk(C) be a representation of
G. Then, for all matrices A ∈ Matn×m(C[G]) we have

k · rkG(A) = rkG(σ̃(A)).

In the last part of this thesis we talk about convergence of eigenvalue measures
related to groups. Let G be a discrete residually finite group and let A ∈
Matn(C[G]). Let GDN1DN2 . . . be a chain of normal subgroups of finite index
with trivial intersection. Set Gi = G/Ni. Then A acts by right multiplication
via reduction modulo Ni on C[Gi]

n. Since C[Gi] ∼= C|Gi| as C-vector spaces,
this action can be represented by a matrix Ai ∈ Matn·|Gi|(C). For every i let

now λ
(i)
1 , . . . , λ

(i)
n·|Gi| be the eigenvalues of Ai and define

µi =
1

|Gi|

n·|Gi|∑
k=1

δ
λ
(i)
k

,

Where δc denotes the Dirac measure at c ∈ C.
We now can ask the following questions:

(1) Does the limit lim
i→∞

µi({0}) exist?

(2) If the answer to the first question is yes, does the limit depend on the
chain {Ni}?

(3) Let N (G) denote the group von Neumann algebra. We can consider A
as an element of the tracial von Neumann algebra Matn(N (G)) acting on
the Hilbert space (`2(G))n. Therefore we can define the Brown measure
µA of A and ask: Does the sequence µi converge weakly to µA?

We prove the following two theorems.
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Theorem. Let G be a finitely generated abelian group. Then the answer to all
of the above questions is yes.

Let G = H3(Z) = 〈a, b〉 with

a =

1 1 0
0 1 0
0 0 1

 , b =

1 0 0
0 1 1
0 0 1


be the discrete Heisenberg group. For m ∈ N we denote by

Nm = {Id3 +m ·A | A ∈ Mat3(Z)}

the congruence kernel of G modulo m.

Theorem. Let G = H3(Z) be the discrete Heisenberg group and A = a − b ∈
Z[G]. Let p be an odd prime and set Gi = G/Npi . With the notation from above
we have

µi({0}) =
p

p+ 1
.

This theorem shows that in general the answer to question (2) and (3) is no.



10 Introduction



Introduction and
Conclusions

This thesis discusses some topics from the intersection of group theory, the
theory of operator algebras and functional analysis. If G is a discrete group we
will consider the Hilbert space `2(G). On this Hilbert space the elements a ∈
C[G] act as bounded operators, by left and by right multiplication. We want to
investigate some spectral properties of these operators, especially approximation
of these operators by matrices.

Let us describe more explicitly what we mean with approximation of oper-
ators by matrices.

Let F be a finitely generated free group and let X be a finite F -set, where F
acts on the right. Let C[F ] be the group algebra with complex coefficients and
A ∈ Matn(C[F ]) be a matrix over C[F ]. Let us denote by AX : C[X]n → C[X]n

the linear operator induced by right multiplication with A and for each λ ∈ C let
mA
X(λ) be the multiplicity with which λ appears as a root of the characteristic

polynomial of AX . The Brown measure of AX is given by

µAX =
∑
λ∈C

mA
X(λ)

|X|
δλ

where δλ is the Dirac measure concentrated at λ. If the matrix A is normal the
measure µAX is known as the spectral measure of AX . In this thesis we want
to investigate the measures µAX . The idea is that a sequence of finite F -sets
can approximate some infinite algebraic structure, for example a sofic group.
Let N E F be a normal subgroup, G = F/N be a sofic group and {Xi} be
a sofic approximation for G. We introduce the notion of sofic groups in the
beginning of Chapter 3. In particular, amenable and residually finite groups are
sofic. The easiest example for a sofic approximation is the following. Let G be
residually finite and let (Hi), Hi E G be a chain of normal subgroups of finite
index in G with trivial intersection. We can define Xi = G/Hi, where F acts
naturally on Xi. Then (Xi) is a sofic approximation for G. Given now a matrix
A ∈ Matn(C[F ]) we obtain a sequence of measures µAXi . We can then ask the
following questions.

(1) Does the limit lim
i→∞

µAXi({0}) exist?

11



12 Introduction

(2) If the answer to question (1) is yes, is the limit independent from the sofic
approximation (Xi)i?

(3) Let µAG be the Brown measure of the operator AG on (`2(G))n given by
right multiplication by A. Do the measures µAXi converge weakly to µAG?

First, we want to discuss the case when the matrix A is normal. In this case we
only work with spectral measures and the answer to all of the above question
is yes. In [Kaz75] David Kazhdan discovered that the measures µAXi converge

weakly to µAG. Thus the answer to question (3) is yes and to answer question
(1) and (2) one only needs to check that

lim
i→∞

µAXi({0}) = µAG({0}). (1)

The theorem of Portmanteau already yields

lim sup
i→∞

µAXi({0}) ≤ µ
A
G({0}).

This is often called Kazhdan’s inequality. Later, in [Lüc94] Wolfgang Lück
proved the other inequality for positive self adjoint matrices A ∈ Matn(Q[F ]).
Let us briefly describe his approach. Lück showed that the point 0 ∈ C is not an
accumulation point of eigenvalues of the operators AXi , or, in different words
that the measures µAXi have small concentration close to 0. Precisely he showed
that there exists a constant C = C(A) ∈ R>0 that only depends on A such that
for every ε ∈ (0, 1) and any finite F -set X we have

µAX((0, ε)) ≤ C

− log ε
. (2)

An easy application of the theorem of Portmanteau then gives

lim inf
i→∞

µAXi({0}) ≥ µ
A
G({0}).

Together with the inequality of Kazhdan this gives the equality in 1. Only
minor changes in his proof are necessary to include not only self adjoint but also
normal matrices. Lück’s proof heavily relies on the fact that the coefficients in
the matrix A lie in Q. It should be mentioned that Lück only considered the case
of residually finite groups as in the previous example for sofic approximations.
Using the same methods, in [Sch01] Thomas Schick extended this result to some
larger class of groups and in [Dod+01] this result was extended by J. Dodziuk,
P. Linnell, V. Mathai, T. Schick and S. Yates to matrices over Q̄[F ]. In [ES05]
G. Elek and E. Szabó considered the general case of sofic groups. However,
to answer question (1) and (2) for an arbitrary matrix A ∈ Matn(C[F ]) new
methods were necessary. In [Jai19] Andrei Jaikin-Zapirain used an algebraic
approach, based on the notion of Sylvester matrix rank functions, to prove
equation 1 for normal matrices A ∈ Matn(C[F ]). Examples for Sylvester matrix
rank functions are the von Neumann rank rkG defined by

rkGA = n− dimG kerAG
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where dimG is the von Neumann dimension and the function

rkX(A) =
1

|X|
= rkCAX

for a finite F -set X. However Jaikin’s method does not provide a bound as in 2.
In this thesis we will prove that a bound for µAXi((0, ε)) as in 2 also exists

in the case of matrices over C[F ] and even in a more general setting. However
our proof will not give an explicit bound but only its existence. Similar to the
definition of the Brown measure, for any matrix C ∈ Matk(C) with eigenvalues
λ1, . . . , λk we denote the eigenvalue measure of C by

µC =

k∑
j=0

δλj .

Our first main result will be the following.

Theorem A. Let A = C〈x1, x
∗
1, . . . , xd, x

∗
d〉 be a free ∗-algebra, A ∈ Matm(A) be

normal and c ∈ R>0 . Then there is a function f : R>0 → R>0 with lim
λ→0+

f(λ) =

0 such that for every ∗-homomorphism ϕ : A → Matn(C) with ϕ(xi) ∈ Matn(Z)
and ‖ϕ(xi)‖1, ‖ϕ(xi)‖∞ ≤ c for all i and every y ∈ C we have

1

n
µϕ(A)(B(y, λ) \ {y}) < f(λ).

Note that Lück’s result covers the case where for each i ∈ {1, . . . , d} the
image ϕ(xi) is a permutation matrix and y = 0. There is a relation between the
spectral measure µAG and the von Neumann dimension dimG given by

µAG({0}) = dimG kerAG.

Thus as a corollary we obtain:

Corollary A. [The sofic Lück approximation] Let {Xi} be a sofic approxima-
tion of G and let A ∈ Matn(C[F ]). Then

lim
i→∞

dim kerAXi
|Xi|

= dimG kerAG.

To prove Theorem A we use methods similar to those used by Jaikin in
[Jai19]. Jaikin considered a sofic approximation {Xi} of some sofic group G and
showed that

lim
i→∞

rkXi = rkG

as Sylvester matrix rank functions on C[F ]. In particular he considered AG to
be an operator on the Hilbert space `2(G). We will use a more general approach
that was already considered by Steffen Kionke in [Kio18] for group algebras
Q[G]. For every trace τ on A the GNS construction gives us some Hilbert space
Hτ on which A acts as bounded operators. This Hilbert space allows us to
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define a rank function rkτ on A. Having a point wise converging sequence of
traces τi their limit τ = lim

i→∞
τi is also a trace. We will consider the question if

lim
i→∞

rkτi = rkτ

holds.
In Chapter 3 we want to discuss an application of Corollary A. Although

the rank function rkG is defined in an analytic way, in some cases eg. if G is
amenable or locally indicable, it can be characterized algebraically. Therefore it
is plausible to think that rkG is rigid under some algebraic manipulations. For
example, in [Jai19] Andrei Jaikin raises the following conjecture.

Conjecture 1 (The independence conjecture). Let G be a group. Let K be a
field and let φ1, φ2 : K → C be two embeddings of K into C. Then for every
matrix A ∈ Matn×m(K[G])

rkG(φ1(A)) = rkG(φ2(A)).

This conjecture was proved for sofic groups in [Jai19] and for locally indicable
groups in [JL20]. We want to consider a different algebraic manipulation. For
that let σ : G → GLn(C) be a finite dimensional representation of G. We can
define an algebra homomorphism

σ̃ : C[G]→ Matn(C[G]),
∑
g∈G

agg 7→
∑
g∈G

agσ(g)g.

Obviously we can extend σ̃ entry wise to matrices over C[G].
The following conjecture is a rephrasing of a question raised by Lück in

[Lüc18, Question 0.1].

Conjecture 2 (The Lück twisted conjecture). Let G be a group and σ : G →
GLk(C) a homomorphism. Then for every matrix A ∈ Matn×m(C[G])

rkG(σ̃(A)) = k · rkG(A).

Lück noticed that twisted representations appear when calculating `2-Betti
numbers of some fibrations of connected finite CW -complexes F → E → B
where π1(B) ∼= G and the map π1(E) → π1(B) induced by the fibration is an
isomorphism. We will talk about this in section 3.2.

Conjecture 2 was proved for torsion-free elementary amenable groups in
[Lüc18] and for locally indicable groups in [KS21]. In our second main result
we prove the conjecture for sofic groups.

Theorem B. The Lück twisted conjecture holds for sofic groups.

The main tool of our proof of Theorem B is the sofic Lück approximation
proved in [Jai19], see Corollary A. Notice that the sofic case of the independence
conjecture follows immediately from the sofic Lück approximation. However, in
the case of the Lück twisted conjecture, this implication is not so direct.
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In the last chapter we want to come back to our three questions from the
beginning, but this time we want to consider the case when the matrix A is not
normal. We will only work in the case of residually finite approximations. Thus
we can assume that A ∈ Matn(C[G]) for some residually finite group G and not
A ∈ Matn(C[F ]).

The problem of convergence of eigenvalues of non normal matrices has al-
ready been studied in the theory of random matrices, see [Sni02].

Since for matrices over Q[G] the methods used by Lück in [Lüc94] still work
in the case of non normal matrices, a positive answer to question (3) would
imply a positive answer to question (1) and (2).

We present an example that gives hope to a positive answer to question (3)
also in the case of non normal matrices, at least for some groups. Let G = 〈g〉
be an infinite cyclic group and let

A =

(
g2 + 3g 4
g3 −g4 + g

)
.

Let Hi = 〈g5i〉 ⊆ G and therefore Xi = Z/(5i)Z a cyclic group of order 5i. Note
that we get the matrix AXi by replacing g in A by the matrix

0 1 0 · · · 0
...

. . .
. . .

...
...

. . . 0

0
. . . 1

1 0 · · · 0


of dimension |Xi| = 5i. The following plot shows the eigenvalues of AXi for
i = 1, 2, 3:

In the graphics, the limit curve is the support of the Brown measure of the op-
erator AG. This will be a consequence of the next theorem.

Theorem C. Let G be a finitely generated abelian group and let GDH1DH2 · · ·
be a chain of normal subgroups of finite index with trivial intersection and set
Xi = G/Hi. Let A ∈ Matn(C[G]) and let AXi ∈ Matn|Xi|(C) be the matrix that
represents the action of A on C[Xi]

n. Then the measures µAXi converge weakly

and pointwise towards µAG.
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In general, we obtain a negative answer to question (2) and therefore to
question (3). For that we consider the discrete Heisenberg group G = H3(Z),
which can be seen as the matrix group generated by the two matrices

a =

1 1 0
0 1 0
0 0 1

 and b =

1 0 0
0 1 1
0 0 1

 .

Our main result will be the following.

Theorem D. Let G = H3(Z) be the Heisenberg group and let a − b ∈ Z[G].
Let Hi = Id3 + pi ·Mat3(Z) ∩GEG and consider the residual chain GDH1 D
H2 D . . . . Set Xi = G/Hi

∼= H3(Z /pi Z). Let AXi ∈ Matp3i(Z) be the matrix

that represents the action of a− b on C[Xi] ∼= Cp
3i

. Then

lim
i→∞

µAXi({0}) =
p

p+ 1
.

In particular this limit depends on p and therefore on the approximation
{Xi}.

The structure of the thesis is the following. In Chapter 1 we present the
necessary prerequisites for the thesis. In Chapter 2 we will present a proof of
Theorem A. Especially here we need the results and notation from Chapter 1.
Next, in Chapter 3, we explain our results about twisted `2-Betti numbers. We
will prove Theorem B in the first part of the chapter. In the second part we will
present the application to fibrations we mentioned before. This chapter mainly
needs Corollary A as a prerequisite. Last, in Chapter 4 we discuss our three
questions from the beginning for non-normal matrices A. This chapter is almost
self contained.



Introducción y Conclusiones

Esta tesis discute algunos temas de la intersección de la teoŕıa de grupos, la
teoŕıa de álgebras de operadores y el análisis funcional. Si G es un grupo dis-
creto, consideraremos el espacio de Hilbert `2(G). En este espacio de Hilbert, los
elementos a ∈ C[G] actúan como operadores acotados, por multiplicación por
la izquierda y por la derecha. Queremos investigar algunas propiedades espec-
trales de estos operadores, especialmente la aproximación de estos operadores
por matrices.

Describamos más expĺıcitamente lo que queremos decir con la aproximación
de operadores por matrices.

Sea F un grupo libre finitamente generado y sea X un conjunto finito F -
invariante, donde F actúa por la derecha. Sea C[F ] el álgebra del grupo con
coeficientes complejos y sea A ∈ Matn(C[F ]) una matriz sobre C[F ]. Denotamos
por AX : C[X]n → C[X]n el operador lineal inducido por la multiplicación por
la derecha de A y, para cada λ ∈ C, sea mA

X(λ) la multiplicidad con la que λ
aparece como ráız del polinomio caracteŕıstico de AX . La medida de Brown
de AX está dada por

µAX =
∑
λ∈C

mA
X(λ)

|X|
δλ

donde δλ es la medida de Dirac concentrada en λ. Si la matriz A es normal, la
medida µAX se conoce como la medida espectral de AX . En esta tesis queremos
investigar las medidas µAX . La idea es que una secuencia de conjuntos finitos F -
invariantes puede aproximar alguna estructura algebraica infinita, por ejemplo,
un grupo sofico. Sea N E F un subgrupo normal, G = F/N un grupo sofico y
Xi una aproximación sofica para G. Introducimos la noción de grupos soficos al
comienzo del Caṕıtulo 3. En particular, los grupos amenables y residual finitos
son soficos. El ejemplo más sencillo de una aproximación sofica es el siguiente.
Sea G residual finito y sea (Hi), Hi EG una cadena de subgrupos normales de
ı́ndice finito en G con intersección trivial. Podemos definir Xi = G/Hi, donde F
actúa naturalmente en Xi. Entonces, (Xi) es una aproximación sofica para G.
Dada ahora una matriz A ∈ Matn(C[F ]), obtenemos una secuencia de medidas
µAXi . Podemos hacer las siguientes preguntas:

(1) ¿Existe el ĺımite lim
i→∞

µAXi({0})?

17



18 Introduction

(2) Si la respuesta a la pregunta (1) es śı, ¿es el ĺımite independiente de la
aproximación sofica (Xi)i?

(3) Sea µAG la medida de Brown del operador AG en (`2(G))n dado por la mul-
tiplicación por la derecha por A. ¿Las medidas µAXi convergen débilmente

a µAG?

En primer lugar, queremos discutir el caso en que la matriz A es normal. En
este caso, solo trabajamos con medidas espectrales y la respuesta a todas las
preguntas anteriores es śı. En [Kaz75], David Kazhdan descubrió que las me-
didas µAXi convergen débilmente a µAG. Por lo tanto, la respuesta a la pregunta
(3) es śı y para responder a la pregunta (1) y (2) solo es necesario verificar que

lim
i→∞

µAXi({0}) = µAG({0}). (3)

El teorema de Portmanteau ya nos da

lim sup
i→∞

µAXi({0}) ≤ µ
A
G({0}).

Esto a menudo se llama la desigualdad de Kazhdan. Más tarde, en [Lüc94],
Wolfgang Lück demostró la otra desigualdad para matrices autoadjuntas y pos-
itivas A ∈ Matn(Q[F ]). Veamos brevemente su enfoque. Lück mostró que el
punto 0 ∈ C no es un punto de acumulación de los autovalores de los operadores
AXi o, en otras palabras, que las medidas µAXi tienen una concentración pequeña
cerca de 0. Precisamente, demostró que existe una constante C = C(A) ∈ R>0

que solo depende de A, tal que para cada ε ∈ (0, 1) y cualquier conjunto finito
F -invariante X tenemos:

µAX((0, ε)) ≤ C

− log ε
. (4)

Una fácil aplicación del teorema de Portmanteau da como resultado:

lim inf
i→∞

µAXi({0}) ≥ µ
A
G({0}).

Junto con la desigualdad de Kazhdan, esto nos da la igualdad en (1). Solo se
necesitan cambios menores en su prueba para incluir no solo matrices autoad-
juntas sino también normales. La prueba de Lück depende en gran medida del
hecho de que los coeficientes en la matriz A estén en Q. Cabe mencionar que
Lück solo consideró el caso de grupos residualmente finitos como en el ejemplo
anterior para aproximaciones soficas. Utilizando los mismos métodos, en [Sch01]
Thomas Schick extendió este resultado a una clase más grande de grupos y en
[Dod+01] este resultado fue extendido por J. Dodziuk, P. Linnell, V. Mathai,
T. Schick y S. Yates a matrices sobre Q̄[F ]. En [ES05] G. Elek y E. Szabó
consideraron el caso general de grupos soficos. Sin embargo, para responder a
las preguntas (1) y (2) para una matriz arbitraria A ∈ Matn(C[F ]), se nece-
sitaron nuevos métodos. En [Jai19] Andrei Jaikin-Zapirain utilizó un enfoque
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algebraico, basado en la noción de funciones de rango de matriz de Sylvester,
para probar la ecuación (1) para matrices normales A ∈ Matn(C[F ]). Ejemplos
de funciones de rango de matriz de Sylvester son el rango de von Neumann rkG
definido por

rkGA = n− dimG kerAG

donde dimG es la dimensión de von Neumann y la función

rkX(A) =
1

|X|
rkCAX

para un conjunto finito F -set X. Sin embargo, el método de Jaikin no
proporciona una cota como en (2).

En esta tesis, demostraremos que existe una cota para µAXi((0, ε)) como en
2 también en el caso de matrices sobre C[F ] e incluso en un contexto más
general. Sin embargo, nuestra prueba no dará una cota expĺıcita sino solo su
existencia. Similar a la definición de la medida de Brown, para cualquier matriz
C ∈ Matk(C) con valores propios λ1, . . . , λk, denotamos la medida de valores
propios de C por:

µC =

k∑
j=0

δλj .

Nuestro primer resultado principal será el siguiente.

Theorem A. Sea A = C〈x1, x
∗
1, . . . , xd, x

∗
d〉 una ∗-álgebra libre, A ∈ Matm(A)

normal y c ∈ R> 0. Entonces hay una función f : R>0 → R>0 con lim
λ→0+

f(λ) =

0 tal que para cada ∗-homomorfismo ϕ : A → Matn(C) con ϕ(xi) ∈ Matn(Z) y
|ϕ(xi)|1, |ϕ(xi)|∞ ≤ c para todo i y cada y ∈ C se tiene que

1

n
µϕ(A)(B(y, λ) \ {y}) < f(λ).

Nótese que el resultado de Lück cubre el caso donde para cada i ∈ 1, . . . , d
la imagen ϕ(xi) es una matriz de permutación y y = 0. Hay una relación entre
la medida espectral µAG y la dimensión de von Neumann dimG dada por

µAG({0}) = dimG kerAG.

Por lo tanto, como corolario obtenemos:

Corollary A (La aproximación sofica de Lück). Sea Xi una aproximación
sofica de G y sea A ∈ Matn(C[F ]). Entonces,

lim
i→∞

dim kerAXi
|Xi|

= dimG kerAG.
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Para demostrar el Teorema A utilizamos métodos similares a los utilizados
por Jaikin en [Jai19]. Jaikin consideró una aproximación sofica Xi de algún
grupo sofico G y mostró que

lim
i→∞

rkXi = rkG

como funciones de rango de matriz de Sylvester en C[F ]. En particular, consideró
que AG era un operador en el espacio de Hilbert `2(G). Usaremos un enfoque
más general que ya fue considerado por Steffen Kionke en [Kio18] para álgebras
de grupo Q[G]. Para cada traza τ en A la construcción GNS nos da algún
espacio de HilbertHτ en el que A actúa como operadores acotados. Este espacio
de Hilbert nos permite definir una función de rango rkτ en A. Teniendo una
secuencia convergente puntualmente de trazas τi, su ĺımite τ = lim

i→∞
τi también

es una traza. Consideraremos la pregunta de si se cumple que

lim
i→∞

rkτi = rkτ .

En el Caṕıtulo 3 queremos discutir una aplicación del Corolario A. Aunque
la función de rango rkG está definida de manera anaĺıtica, en algunos casos,
por ejemplo, si G es amenable o localmente indicable, se puede caracterizar
algebraicamente. Por lo tanto, es plausible pensar que rkG es ŕıgido bajo algunas
manipulaciones algebraicas. Por ejemplo, en [Jai19], Andrei Jaikin plantea la
siguiente conjetura.

Conjecture 1 (La conjetura de independencia). Sea G un grupo. Sea K un
cuerpo y sean φ1, φ2 : K → C dos encajes de K en C. Entonces, para toda
matriz A ∈ Matn×m(K[G]) se cumple que

rkG(φ1(A)) = rkG(φ2(A)).

Esta conjetura se demostró para grupos soficos en [Jai19] y para grupos local-
mente indicables en [JL20]. Queremos considerar una manipulación algebraica
diferente. Para ello, sea σ : G→ GLn(C) una representación de dimensión finita
de G. Podemos definir un homomorfismo de álgebras de la siguiente manera:

σ̃ : C[G]→ Matn(C[G]),
∑
g∈G

agg 7→
∑
g∈G

agσ(g)g.

Obviamente, podemos extender σ̃ entrada por entrada a matrices sobre C[G].
La siguiente conjetura es una reformulación de una pregunta planteada por Lück
en [Lüc18, Question 0.1].

Conjecture 2 (La conjetura torcida de Lück). Sea G un grupo y σ : G →
GLk(C) un homomorfismo. Entonces, para toda matriz A ∈ Matn×m(C[G]) se
cumple que

rkG(σ̃(A)) = k · rkG(A).
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Lück notó que las representaciones torcidas aparecen al calcular los números
`2 de Betti de algunas fibraciones de CW -complejos finitos conectados F →
E → B donde π1(B) ∼= G y aplicación π1(E)→ π1(B) inducido por la fibración
es un isomorfismo. Hablaremos de esto en la sección 3.2.

La Conjetura 2 fue demostrada para grupos elementalmente amenables sin
torsión en [Lüc18] y para grupos localmente indicables en [KS21]. En nuestro
segundo resultado principal, probamos la conjetura para grupos soficos.

Theorem B. La Conjetura de Lück torcida es verdadera para grupos sofic.

La principal herramienta de nuestra prueba del Teorema B es la aproxi-
mación sofica de Lück demostrada en [Jai19], consulte el Corolario A. Observe
que en el caso sofico, la Conjetura de independencia sigue inmediatamente de
la aproximación sofica de Lück. Sin embargo, en el caso de la Conjetura torcida
de Lück, esta implicación no es tan directa.

En el último caṕıtulo queremos volver a nuestras tres preguntas del principio,
pero esta vez queremos considerar el caso en que la matriz A no es normal. Solo
trabajaremos en el caso de aproximaciones residualmente finitas. Por lo tanto,
podemos suponer que A ∈ Matn(C[G]) para algún grupo residualmente finito
G y no A ∈ Matn(C[F ]).

El problema de la convergencia de los autovalores de las matrices no normales
ya ha sido estudiado en la teoŕıa de las matrices aleatorias, vea [Sni02].

Ya que para matrices sobre Q[G] los métodos utilizados por Lück en [Lüc94]
aún funcionan en el caso de matrices no normales, una respuesta positiva a la
pregunta (3) implicaŕıa una respuesta positiva a las preguntas (1) y (2).

Presentamos un ejemplo que da esperanza a una respuesta positiva a la
pregunta (3) también en el caso de matrices no normales, al menos para algunos
grupos. Sea G = 〈g〉 un grupo ćıclico infinito y sea

A =

(
g2 + 3g 4
g3 −g4 + g

)
.

Sea Hi = 〈g5i〉 ⊆ G y, por lo tanto, Xi = Z/(5i)Z un grupo ćıclico de orden 5i.
Nótese que obtenemos la matriz AXi reemplazando g en A por la matriz

0 1 0 · · · 0
...

. . .
. . .

...
...

. . . 0

0
. . . 1

1 0 · · · 0


de dimensión |Xi| = 5i. El siguiente gráfico muestra los autovalores de AXi para
i = 1, 2, 3:
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En las gráficas, la curva ĺımite es el soporte de la medida de Brown del operador
AG. Esto será una consecuencia del siguiente teorema.

Theorem E. Sea G un grupo abeliano finitamente generado y sea G D H1 D
H2 · · · una cadena de subgrupos normales de ı́ndice finito con intersección triv-
ial, y sea Xi = G/Hi. Sea A ∈ Matn(C[G]) y sea AXi ∈ Matn|Xi|(C) la matriz
que representa la acción de A en C[Xi]

n. Entonces, las medidas µAXi convergen

débilmente y puntualmente hacia µAG.

En general, obtenemos una respuesta negativa a la pregunta (2) y, por lo
tanto, a la pregunta (3). Para ello, consideramos el grupo de Heisenberg discreto
G = H3(Z), que se puede ver como el grupo de matrices generado por las dos
matrices

a =

1 1 0
0 1 0
0 0 1

 y b =

1 0 0
0 1 1
0 0 1

 .

Nuestro resultado principal será el siguiente:

Theorem F. Sea G = H3(Z) el grupo de Heisenberg y sea a − b ∈ Z[G]. Sea
Hi = Id3 + pi ·Mat3(Z) ∩ G E G y consideremos la cadena residual G DH1 D
H2 D . . . . Definimos Xi = G/Hi

∼= H3(Z /pi Z). Sea AXi ∈ Matp3i(Z) la matriz

que representa la acción de a− b en C[Xi] ∼= Cp
3i

. Entonces

lim
i→∞

µAXi({0}) =
p

p+ 1
.

En particular, este ĺımite depende de p y, por lo tanto, de la aproximación
Xi.

La estructura de la tesis es la siguiente. En el Caṕıtulo 1 presentamos los
conocimientos previos necesarios para la tesis. En el Caṕıtulo 2 presentamos una
demostración del Teorema A. En particular, aqúı se necesitan los resultados y la
notación del Caṕıtulo 1. A continuación, en el Caṕıtulo 3, explicamos nuestros
resultados sobre números `2 de Betti torcidos. Demostramos el Teorema B en
la primera parte del caṕıtulo. En la segunda parte presentamos la aplicación a
las fibraciones que mencionamos antes. Este caṕıtulo necesita principalmente
el Corolario A. Por último, en el Caṕıtulo 4 discutimos nuestras tres preguntas
iniciales para matrices A no normales. Este caṕıtulo es casi autocontenido.



Chapter 1

Preliminaries

In this chapter we give the preliminaries for later results. We will talk about
necessary results from operator algebras, Sylvester rank functions, model theory
and measure theory. We will start with fixing some notation.

1.1 Notation

We use the following notation and conventions.

Rings R,S,Q
von Neumann algebras N
Algebras A
Groups G,H
morphisms α, β, f
Hilbert space H
von Neumann regular ring, ∗-regular ring U
von Neumann algebra, algebra of unbound operators,
Hilbert space coming from GNS construction with respect to τ N τ ,Uτ ,Hτ

For matrices A,B over a ring R we mean by A ⊕ B the matrix

(
A 0
0 B

)
.

Linear operators of Hilbert spaces will act on the right. For a ring R and a ∈ R
we denote by Annr(a) = {b ∈ R | ba = 0} the right Annihilator of a. All rings
will be unitary.

1.2 Operator Algebras

In this section we want to present the basic concepts and definitions of algebras
of operators. We will not present any new results here. The road map is the
following. We will start with the notion of tracial ∗-algebras in Section 1.2.1.
We will then describe the GNS construction to show how to represent tracial

23
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∗-algebras in a canonical way as operators on some Hilbert space. Having this
we will use von Neumanns bicommutant theorem to get a tracial von Neumann
algebra that contains our initial ∗-algebra. In this setting we will talk in Section
1.2.2 about the spectral theorem of normal operators and about spectral mea-
sures. The spectral measures with the trace allows us to develop a dimension
theory in 1.2.3. Last we will introduce an even larger algebra, the algebra of
unbounded operators affiliated to a von Neumann algebra in Section 1.2.4. The
advantage of this algebra is that it is von Neumann regular.

1.2.1 ∗-Algebras

Definition 1.2.1. A ∗-ring is a ring R together with an involution ∗ : R→ R
that means

• (x+ y)∗ = x∗ + y∗

• (xy)∗ = y∗x∗

• 1∗ = 1

• (x∗)∗ = x

for all x, y ∈ R.

For us K will always be a field. When we talk about algebras, we always mean
K-algebras. If K is a ∗-ring, for example C with complex conjugation, then a
∗-algebra is an algebra A with an involution that satisfies (λ · a)∗ = λ∗ · a∗,
where a ∈ A, λ ∈ K.

Definition 1.2.2. A tracial ∗-algebra is a tuple (A, τ), where A is a ∗-algebra
over a subfield K ⊆ C closed under complex conjugation and τ : A → K is a
positive linear functional with the trace property, that means

• τ(ab) = τ(ba)

• τ(1) = 1

• τ(a∗a) ≥ 0.

We will call τ just a trace. The trace τ is called faithful if

τ(aa∗) = 0⇒ a = 0

for all a ∈ A . For us there will be two main examples of tracial ∗-algebras. The
first one is the matrix algebra A = Matn(K). The involution (·)∗ is given by
taking the adjoint matrix (transpose and complex conjugate) and τ = 1

nTr is
just the normalized trace. The second main example is A = K[G], the group
algebra of a group G over K. Let us just recall what the group ring is. The
group ring R[G] over a ring R consists of all finite formal sums

∑
g∈G

rgg with

rg ∈ R. The addition of two elements a =
∑
g∈G

rgg and b =
∑
g∈G

sgg is given by
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a+ b =
∑
g∈G

(rg + sg)g. The product of a and b is a · b =
∑

g,h∈G
rgshgh. If R = K

is a field we call K[G] a group algebra. If K is a subfield of C the involution
(·)∗ is defined as (rgg)∗ = rgg

−1. The trace τ : K[G]→ C is defined as

τ

∑
g∈G

rgg

 = re (1.1)

where e ∈ G is the identity element in G. Traces on group algebras are usually
called characters.
Given a tracial ∗-algebra (A, τ), it is easy to see that the matrix algebra Matn(A)
is also a tracial ∗-algebra. For a matrix M = (mi,j) ∈ Matn(A) we define

Trτ (M) = 1
n

n∑
i=1

τ(mi,i) to extend the notion of trace to matrices over ∗-algebras.

For any ring R we denote the free ∗-ring over R in n ∈ N free variables X =
{x1, . . . , xn, x

∗
1, . . . , x

∗
n} by R〈X〉. It consists of all finite linear combinations

of finite words in X and coefficients in R. If R = K is a field we will speak
of the free ∗-algebra. Note that any ∗-algebra is a homomorphic image of a
free ∗-algebra. When talking about ∗-homomorphisms we mean ring/algebra
homomorphisms that commute with the involution.

Example 1.2.3. Let A = C〈x1, . . . , xn, x
∗
1, . . . , x

∗
n〉 be a free ∗-algebra and

α : A → Matm(C) be a ∗-homomorphism. Then 1
mTr◦α : A → C defines a trace

on A. This can be generalized to the case whenever we have a ∗-homomorphism
from a ∗-algebra to a tracial ∗-algebra.

Using the involution (·)∗ we can define the following ”special” elements in a
tracial ∗-algebra.

Definition 1.2.4. Let A be a tracial ∗-algebra. We call an element

(1) u ∈ A unitary, if uu∗ = u∗u = 1,

(2) p ∈ A projection, if p = p∗ and p2 = p,

(3) v ∈ A isometry, if vv∗ = 1,

(4) w ∈ A partial isometry, if both, ww∗ and w∗w are projections in A,

(5) v ∈ A idempotent, if v2 = v,

(6) a ∈ A self-adjoint, if a∗ = a and

(7) n ∈ A normal, if nn∗ = n∗n.

Note that every unitary is an isometry, every isometry is a partial isometry and
every projection is a partial isometry.
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Of course these notions are familiar in a context of operator theory. Since ∗-
algebras are kind of hard to treat, we are looking for a way to represent them as
algebras of operators acting on some Hilbert space H, such that the involution
(·)∗ just becomes taking the adjoint operator. Let us just define what a Hilbert
space is.

Definition 1.2.5. Let K = C or K = R . A Hilbert space H is a K-vector
space with a scalar product 〈·, ·〉 which is complete with respect to the norm
induced by the scalar product.

Remember that the norm of an element v ∈ H is defined by

‖v‖2 = 〈v, v〉.

Given a Hilbert space H we denote by B(H) its algebra of bounded linear
operators. For us, linear operators of Hilbert spaces will act on the right.
Corresponding to our two main examples of tracial ∗-algebras we also have two
main examples of Hilbert spaces. Corresponding to A = Matn(K),K ⊆ C there
is an obvious Hilbert space that A acts on which is H = Cn . So let us consider
our second main example A = K[G], where G is a group. There is a natural
C-vector space that A acts on by multiplication which is V = C⊗K A = C[G].
The basis elements are just the g ∈ G. Also we can define a scalar product on
V : For a =

∑
g∈G

agg and b =
∑
g∈G

bgg where ag, bg ∈ C we define

〈a, b〉 =
∑
g∈G

agbg. (1.2)

If G is finite we have V ∼= C|G| and this is already a Hilbert space. However, if
G is infinite, the space V is not complete. When we take the completion of V
with respect to the norm defined above, we end up with a Hilbert space denoted
by `2(G) which consists of infinite square summable formal sums:

`2(G) = {
∑
g∈G

cgg | cg ∈ C,
∑
g∈G
|cg|2 <∞}.

The scalar product is defined in the same way as for C[G]. Note that C[G] is a
dense subspace of `2(G).

So how exactly does an element a ∈ A = C[G] act as a linear operator
on `2(G)? There are two ways how G can act on `2(G). Let g, h ∈ G. We will
consider g as an operator acting on `2(G) and h = 1·h ∈ `2(G) as a vector. First
we have the left regular representation of G given by λG : G → B(`2(G)), g 7→
λG(g) : h 7→ g−1 · h. On the other side we have the right regular representation
ρG : G→ B(`2(G)), g 7→ ρG(g) : h 7→ h · g. Note that the two actions commute.
So given a group G there is always a Hilbert space that A = C[G] acts on.
We just take V = C[G] as a vector space and complete it with respect to the
norm given by the inner product defined in 1.2. We would like to generalize this
construction to arbitrary ∗-algebras. Let K ⊆ C be a field and (A, τ) a tracial
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∗-algebra over K. Then again we can consider the C-vector space V = C⊗A,
but this time we do not have an inner product. However, we can use the trace
τ to define one. For that let us go back to the group case A = K[G] for a group
G. Here we have the trace defined by 1.1 and the inner product defined by 1.2.
There is a relation between these, given by

〈a, b〉 = τ(b∗a)

for a, b ∈ C[G]. So the trace on C[G] already defines the inner product on
`2(G). We want to generalize this in the next proposition to the so called GNS-
construction after Gelfmark, Naimark and Segal.

Proposition 1.2.6. Let (A, τ) be a tracial ∗-algebra over C such that

A = 〈{x ∈ A | sup
k

(τ(xx∗)k)
1
k <∞}〉. (1.3)

Then there is a Hilbert space H = Hτ and a cyclic representation ρτ = ρ : A →
B(Hτ ) with generator e ∈ Hτ , such that

〈e.ρ(a), e〉 = τ(a), a ∈ A .

Here cyclic means that e.ρ(A) is dense in H. Moreover, if there is another cyclic
representation π : A → B(H) with generator e′ ∈ H for some Hilbert space H
such that 〈e′.π(a), e′〉 = τ(a), then π and ρ are unitarily equivalent that means
there is a unitary operator U ∈ U(H) such that

Uρ(a) = π(a)U

for all a ∈ A .

Proof. We only want to give a sketch of the construction, for details see [NS06,
Chapter 7] Consider the set N := {n ∈ A | τ(n∗n) = 0}. We want to see that
this is a left ideal of A. So let n ∈ N, a ∈ A. Then

τ((an)∗(an))2 = τ(n∗(a∗an))2 ≤ τ((a∗an)(a∗an)∗)τ(nn∗) = 0

by the Cauchy-Schwarz inequality. In fact, since τ is tracial, N is also a right
ideal. Consider now the quotient A /N as a vector space with an inner product
defined by

〈a+N, b+N〉τ = τ(b∗a).

This is well defined since if a, b ∈ A,m, n ∈ N then

〈a+m, b+ n〉τ = τ((b∗ + n∗)(a+m)) = τ(b∗a) + τ(n∗a) + τ(b∗m) + τ(n∗m∗)

and each of the last three terms is zero because of the Cauchy-Schwarz inequality.
Now, define a norm on A /N by ‖a+N‖2 = 〈x + N, a + N〉 and let Hτ be
the completion of A /N with respect to this norm. Set eτ = 1A + N. The
right regular representation r : A → End(A), a 7→ (r(a) : x 7→ xa) gives a
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representation ρ : A → End(A /N), a 7→ ρ(a) : x + N 7→ xa + N , since N is a
both sided ideal. It is left to show that the operators ρ(a) are actually bounded.
This ensures condition 1.3. One can show that in the limit we get

‖(b+N).ρ(a)‖2 ≤ τ(b∗b) lim sup
n→∞

(τ((a∗a)n)
1
n )

and therefore
‖ρ(a)‖ ≤ lim sup

n
(τ((a∗a)n)

1
n ) <∞.

Since eτ .ρ(A) is dense in Hτ the representation is cyclic. Let now π be another
cyclic representation with 〈e′.π(a), e′〉 = 〈eτ .ρ(a), eτ 〉. Then the map defined
on the dense subspace eτ .ρ(A) by eτ .a 7→ e′.a is a well defined isometry which
extends to Hτ .

Remark 1.2.7. Since N is a both sided ∗-ideal we also get a left action λ : Aop →
B(Hτ ), a 7→ λ(a) : x + N 7→ a · x + N . As in the group case these two actions
commute.

Remark 1.2.8. Obviously the maps λ, ρ : A → B(Hτ ) factor through the ∗-
algebra A /N. Therefore, in many situations, by replacing A by A /N , we can
assume that the trace τ on A is faithful.

A small difference to the group case does exist. Since all group elements
g ∈ G are by definition of the involution unitaries, we can define λG in a way
that it is a homomorphism G → U(H), where the latter denotes the group of
unitary operators. In the general algebra case, since we let operators act from
the right, left multiplication gives a map λ : A → B(H) that is an antihomomor-
phism that means a homomorphism from Aop. However this does not cause any
troubles. To avoid this difference one can see H as a left- and right-A-bimodule
and omit the maps A → B(H).
Note that we put an additional condition, namely that A is generated by ele-
ments x ∈ A with sup(τ(xx∗)k)

1
k < ∞. This condition ensures that A acts on

Hτ as bounded operators. In the case where A = K[G] is a group algebra this
is always true since the elements of G are unitaries. From now on we will always
assume that this additional condition holds.

We have just seen that we can always represent a tracial ∗-algebra (A, τ) in
the algebra of bounded operators of some Hilbert space H . Furthermore, if the
trace τ on A is faithful, this representation is an embedding. Furthermore we
have seen that this Hilbert space is an A-bimodule, that means we have a left
and a right action and these two actions commute. This allows us to consider
more interesting structures.

Definition 1.2.9. Let H be a Hilbert space. Then we have the following three
topologies on B(H):

(1) Let T ∈ B(H). The topology induced by the operator norm ‖T‖ =
sup
v∈H,
‖v‖=1

‖vT‖ is called the norm topology.
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(2) The coarsest topology for which all evaluation maps Ev : B(H)→ H, T 7→
vT with v ∈ H are continuous is called the strong operator topology.

(3) The coarsest topology for which all maps Eu,v : B(H) → C, T 7→ 〈u, vT 〉
with v, u ∈ H are continuous is called the weak operator topology.

For a subset M ⊆ B(H) for some Hilbert space H we denote by M ′ = {T ∈
B(H) | ST = TS for all S ∈ M} the commutant of M . The following theorem
connects the commutant, the strong and the weak operator topology.

Theorem 1.2.10. [Kam19, von Neumann bicommutant theorem, 1.19] Let M
be a unital ∗-subalgebra of B(H). The following are equivalent.

(1) M is closed in the weak operator topology.

(2) M is closed in the strong operator topology.

(3) (M ′)′ = M.

Definition 1.2.11. A unital ∗-subalgebra N of B(H) that satisfies one and
therefore all of the above conditions is called a von Neumann algebra.

Although we will not use it, let us just mention that a unital ∗-subalgebra
A of B(H) that is closed in the norm topology is called C∗-algebra.

Let us come back to our two running examples. The algebra A = Matn(C) is
already a von Neumann algebra. For the group case we have to work a little bit
more. So let G be a group, A = C[G] and τ be the trace on A as in 1.1. By 1.2.6
and the discussion before we have ∗-representation ρ, λ : A → B(l2(G)). The
Group von Neumann algebra N (G) is defined as all bounded operators on `2(G),
that commute with the left action of G. That means we have N (G) = (λ(G))′.
Obviously we have ρ(G) ⊆ N (G). For a general tracial ∗-algebra (A, τ) we can
do exactly the same and define N τ = (λ(A))′ ⊆ B(Hτ ), where Hτ is the Hilbert
space from 1.2.6. A von Neumann algebra is called tracial if it has a faithful
trace. Note that for a tracial ∗-algebra the trace τ of A can be extended to N τ

using the scalar product of the Hilbert space Hτ as in 1.2.6, and the resulting
trace is faithful. Note that we can see N τ as a subspace of Hτ via the map
a 7→ (1A).a. Here 1A is seen as the vector in Hτ that represents the class of
1A ∈ A. From now on we will see Hτ as a right N τ module and will write
v.n1n2, omitting the representations for n1, n2 ∈ N τ , v ∈ Hτ .

Remark 1.2.12. By 1.2.8 the map ρ : A → N τ is injective and we can see A as
a subalgebra of N τ .

1.2.2 Operators on Hilbert Spaces

In this section we want to recall basic facts about bounded and unbounded
operators on Hilbert spaces. A good source for more details is [Rud91]. We
already defined in 1.2.4 some notions of operators with special properties in
∗-algebras. We now want to translate some of these notions to operators on
Hilbert spaces. In the following let H and H′ be Hilbert spaces.
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Definition 1.2.13. An operator v ∈ B(H,H′) is called an isometry, if ‖x.v‖ =
‖x‖ for all x ∈ H .

Isometries are operators that behave well with the inner products on H and
H′. In fact we have the following lemma:

Lemma 1.2.14. Let v ∈ B(H,H′) be a isometry. then for all x, y ∈ H we have

〈x.v, y.v〉 = 〈x, y〉.

Proof. We have

‖x‖2 + 2Re(〈x, y〉) + ‖y‖2 = ‖x‖2 + 〈x, y〉+ 〈x, y〉+ ‖y‖2

= 〈x+ y, x+ y〉
= ‖x+ y‖2

= ‖(x+ y).v‖2

= 〈x.v + y.v, x.v + y.v〉
= ‖x.v‖2 + 2Re(〈x.v, y.v〉) + ‖y.v‖2.

From this we get Re(〈x.v, y.v〉) = Re(〈x, y〉). Using the linearity of v and the
same argument as above we get

Im(〈x, y〉 = Re(−i〈x, y〉)
= Re(〈−ix, y〉)
= Re(〈(−ix).v, y.v〉)
= Re(〈−ix.v, y.v〉)
= Re(−i〈x.v, y.v〉)
= Im(〈x.v, y.v〉).

We can now show that our definition from 1.2.4 behaves well with the defi-
nition we gave in this chapter.

Proposition 1.2.15. Let v ∈ B(H,H′). Then v is an isometry if and only if
vv∗ = IdH.

Proof. Assume first that v is an isometry. Then

〈x.v, y.v〉 = 〈x.vv∗, y〉

and therefore
〈x.(IdH − vv∗), y〉 = 0

for all x, y ∈ H . Therefore IdH = vv∗.
On the other hand let us assume that IdH = vv∗ holds. Then

‖x‖2 = 〈x, x〉 = 〈x.vv∗, x)〉 = 〈x.v, x.v〉 = ‖x.v‖2.

So v is an isometry.
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We now want to explain what a partial isometry is.

Definition 1.2.16. Let w ∈ B(H,H′). w is called a partial isometry, if for all
x ∈ ker(u)⊥ we have ‖x.w‖ = ||x‖.

The space ker(w)⊥ is called initial space and the space Im(w) is called final
space of w. So a partial isometry w ∈ H is an isometry between its initial space
and its final space. In the following we will collect some characterizations of
partial isometries.

Proposition 1.2.17. Let v ∈ B(H,H′). Then the following are equivalent:

(1) v is a partial isometry.

(2) v∗ = v∗vv∗.

(3) v = vv∗v.

(4) vv∗ is a projection.

(5) v∗v is a projection.

(6) v∗ ∈ B(H′,H) is a partial isometry.

Further im(v) is closed in H′, v∗v is the projection onto im(v) and vv∗ is the
projection onto ker(v)⊥.

Proof. (1)⇒ (2) : Let v be a partial isometry and fix x ∈ H′. Assume first that
y ∈ ker(v). Then

〈x.v∗vv∗, y〉 = 〈x.vv∗, y.v〉 = 0 = 〈x, y.v〉 = 〈x.v∗, y〉.

On the other hand, when y ∈ ker(v)⊥ we have

〈x.v∗vv∗, y〉 = 〈x.v∗v, y.v〉 = 〈x.v∗, y〉.

In the last equality we used that for any operator t ∈ B(H,H′) we have ker(t)⊥ =
im(t∗) and that v is an isometry on ker(v)⊥.
(2)⇔ (3) : Follows by taking adjoints.
(2)⇒ (4) : Obviously vv∗ is self-adjoint. Further we have

vv∗vv∗ = v(v∗vv∗) = vv∗.

(3)⇒ (5): Exactly as in (2)⇒ (4).
(5)⇒ (1) Let x ∈ ker(v)⊥ = im(v∗). Let (xn)n ∈ H′ such that lim

n→∞
(xn).v∗ = x.

Then we have

‖x.v‖2 = lim
n→∞

‖(xn).v∗v‖2 = lim
n→∞

〈(xn).v∗v, (xn).v∗v〉

= lim
n→∞

〈(xn).v∗vv∗v, xn〉 = lim
n→∞

〈(xn).v∗v, xn〉

= lim
n→∞

〈(xn).v∗, (xn).v∗〉 = 〈x, x〉

= ‖x‖2
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(4)⇒ (6) : Exactly as in (5)⇒ (1).
(6) ⇒ (3) : Exactly as in (1) ⇒ (2). To see that im(v) is closed let x ∈ im(v).
Let (xn)n ∈ H such that lim

n→∞
(xn).v = x Then we have

x.v∗v = lim
n→∞

(xn).vv∗v = lim
n→∞

(xn).v = x

and therefore x ∈ im(v). Next let us show that v∗v is the projction onto im(v).
Let x = y.v ∈ im(v). Then x.v∗v = y.vv∗v = y.v = x. On the other hand let
x ∈ im(v)⊥ = ker(v∗). Then we have x.v∗v = 0. The last thing that is left to
show is that vv∗ is the projection onto ker(v)⊥ = im(v∗). Since v∗ is also a
partial isometry we know that im(v∗) = im(v∗) and that vv∗ is the projection
onto im(v∗) = ker(v)⊥ by the previous statement.

Next we want to recall the spectral theorem for normal operators A ∈ B(H).
The proofs and more details can be found in [Rud91]. We will motivate this
theorem by looking at the finite dimensional case. So let H = Cn and A ∈
Matn(C) be a normal matrix. We will work with row vectors, so A acts by right
multiplication. Let λ1, . . . , λn be the eigenvalues of A and let v1, . . . , vn ∈ Cn
be normalized corresponding eigenvectors. Note that since A is normal we have
〈vi, vj〉 = 0 for i 6= j. Let U be the unitary matrix with columns vi and D be
the diagonal matrix with the λi’s on the diagonal. Then we have UA = DU or
equivalently A = U∗DU . This last equality gives

A =

n∑
i=1

λiEi (1.4)

where Ei = vi
trvi is the orthogonal projection onto the linear subspace generated

by vi. Note that using 1.4 we can make sense of f(A) for all functions f ∈ C(U)
where σ(A) ⊆ U is an open neighbourhood of the spectrum of A. We just set

f(A) =

n∑
i=1

f(λi)Ei. (1.5)

We want to generalize this now to bounded operators on infinite dimensional
Hilbert spaces.

Definition 1.2.18. Let B be a σ-algebra on a set Ω and let H be a Hilbert
space. A projection valued measure on B is a map E : B → B(H) such that

(1) E(∅) = 0, E(Ω) = 1.

(2) E(ω) is a projection for each ω ∈ B.

(3) E(ω ∩ ω′) = E(ω)E(ω′).

(4) If ω ∩ ω′ = ∅ then E(ω ∪ ω′) = E(ω) + E(ω′).
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(5) For all x, y ∈ H the function Ex,y : B → C, ω 7→ 〈E(ω)(x), y〉 is a complex
measure on Ω.

If Ω is a compact or a locally compact Hausdorff space one usually requires

(5’) Each measure Ex,y is a regular Borel measure.

We already have seen an example of a projection valued measure. Consider
again a normal matrix A ∈ Matn(C) with eigenvalues λ1, . . . , λn and corre-
sponding normalized eigenvectors vi. For a Borel set S let {µ1, . . . , µs} be the
eigenvalues that lie in S and let w1, . . . ws be the corresponding normalized

eigenvectors. Then we define EA(S) =
s∑
i=1

wi
trwi.

To make sense of 1.4 and 1.5 in the infinite dimensional setting we need to
define operator valued integrals with respect to a projection valued measure.

Theorem 1.2.19. [Rud91, Theorem 12.21] Let E be a projection valued mea-
sure on a σ-algebra B on a set Ω. Then there exists an isometric ∗-isomorphism
Φ from L∞(Ω) to a closed commutative ∗-subalgebra A of B(H) which is related
to E by the formula

〈Φ(f)x, y〉 =

∫
Ω

fdEx,y. (1.6)

This justifies the notation

Φ(f) =

∫
Ω

fdE. (1.7)

Moreover an operator Q ∈ B(H) commutes with every E(ω) if and only if it
commutes with every Φ(f).

We have now all the necessary notation to formulate the spectral theorem.

Theorem 1.2.20. [Rud91, Theorem 12.23, 12, 29] Let T ∈ B(H) be a normal
operator and let σ(T ) be its spectrum. Then there exists a unique projection
valued measure E on the Borel sets of σ(T ) which satisfies

T =

∫
σ(T )

λdE({λ}). (1.8)

Further the projection valued measure satisfies the following properties:

• For every Borel set ω ⊆ σ(T ) the projection E(ω) commutes with every
operator Q ∈ B(H) that commutes with T .

• For λ ∈ σ(T ) we have

im(E({λ})) = ker(T − λ · Id). (1.9)

• λ ∈ σ(T ) is an eigenvalue of T if and only if E({λ}) 6= 0.
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The projection valued measure E associated to a normal operator T is called
the spectral resolution of T . By 1.2.19 we get for every measurable function f
on σ(T ) an operator

Φ(f) =

∫
σ(T )

fdE({λ}). (1.10)

This operator is usually denoted by f(T ). One thing we want to highlight for
later use is that E({0}) is exactly the projection onto the kernel of T .

Remark 1.2.21. Let us consider the case when (N , τ) is a tracial von Neumann
algebra with representation Hτ coming from the GNS-construction. Every nor-
mal matrix A ∈ Matn(N ) with spectral measure E defines a complex measure
denoted by

µA,τ = τ ◦ E = Ee,e = 〈e.E(·), e〉

where e = 1A ∈ Hτ denotes the trace vector. If A ∈ Matn(C) with τ(A) =

Tr(A) we get µA,τ =
n∑
i=1

δλi , where λ1, . . . , λn are the eigenvalues of A and δx

denotes the Dirac measure at x ∈ C .
The last thing we want to mention here is the so called polar decomposition.

We know that we can represent a complex number z = x + y i ∈ C also by its
length r = |z| =

√
x2 + y2 and its argument ϕ. We then have z = r exp iϕ.

Something similar is possible for bounded operators on Hilbert spaces. For that
let T ∈ B(H). Since TT ∗ is a positive operator that means its spectrum is

contained in R≥0, by 1.10 we can form the operator |T | = (TT ∗)
1
2 , which is

still positive self-adjoint. We now define a partial isometry U by the following
steps. For v = w.|T | ∈ im(|T |) we set v.U = w.T . We can extend this to
vectors v ∈ im(|T |). Further, for v ∈ im(|T |)⊥ we set v.U = 0. Note that
im(|T |)⊥ = ker(|T |) = ker(U) = ker(T ). We have the following theorem.

Theorem 1.2.22. Let T ∈ B(H). Then there exists a positive operator P
and a partial isometry U such that T = PU . More precisely P = |T | and
ker(P ) = ker(U) = ker(T )

1.2.3 The von Neumann Dimension

We now want to use the theory we introduced before to define a type of dimen-
sion of subspaces of some Hilbert spaces. In the following let A = (A, τ) be
a tracial ∗-algebra and H = Hτ the Hilbert space from the GNS construction.
Let N = N τ = (λ(A))′

Remark 1.2.23. We can extend the action of λ diagonally to Hn for n ∈ N . It
is easy to see that the algebra of all bounded operators of Hn that commute
with the diagonal action of λ is given by Matn(N ). This algebra is called the
amplified von Neumann algebra.

Definition 1.2.24. Let (A, τ) be a tracial ∗-algebra and Hτ be the Hilbert
space from the GNS construction. A finitely generated Hilbert A-module is a
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closed subspace V ≤ Hnτ of Hnτ for some n ∈ N that is invariant under the left
A-action.

The following provides an easy example of a Hilbert A-module.

Example 1.2.25. Let (A, τ), n ∈ N and A ∈ Matn(A). Denote by rA : Hnτ →
Hnτ the operator given by right multiplication by A with respect to ρ. Then
ker rA is a finitely generated Hilbert A-module.

It is well known that closed subspaces of Hilbert spaces have orthorgonal
complements. That means for a finitely generated Hilbert A-module V ≤ Hn
we have Hn = V ⊕V ⊥ and so V ⊥ is also a finitely generated Hilbert A-module.
Since both, V and V ⊥ are λ(A) invariant, the projection

prV : Hn = V ⊕ V ⊥ → V ≤ Hn, v = v1 + v2 7→ v1

commutes with the λ(A) action and is therefore given by right multiplication
by a matrix PV ∈ Matn(N ). We are now ready to define the von Neumann
dimension of a finitely generated Hilbert A-module.

Definition 1.2.26. Let V ≤ Hnτ be a finitely generated Hilbert A-module. We
define the von Neumann dimension of V as

dimτV := Tr(PV ) =

n∑
i=1

〈eiPV , ei〉 (1.11)

where ei is the vector having the generator e ∈ Hτ in the i-th coordinate and
zeros in all others.

We call a sequence V1 → V → V2 of finitely generated Hilbert A-modules
weakly exact if the kernel of the second map coincides with the closure of the
image of the first map. We have the following result about the von Neumann
dimension and weakly exact sequences.

Proposition 1.2.27. Let 0 → V1 → V → V2 → 0 be a weakly exact sequence
of Hilbert-(A, τ)-modules. Then

dimτ V1 + dimτ V2 = dimτ V.

Proof. Let V ≤ Hn, V1 ≤ Hn1 , V2 ≤ Hn2 be finitely generated Hilbert A-
modules. We can assume that n = n1 = n2 since for k ≤ m we can embed Hk
into Hm ∼= Hk ⊕Hm−k into the first k components and this embedding does not
alter the von Neumann trace. The proof works in three steps. Let us first assume
that f : V1 → V2 is an A-equivariant isometry between finitely generated Hilbert
A-modules. We can extend f to a partial isometry f̄ : Hn = V1⊕ V1

⊥, v+w 7→
f(v). Since f is A-equivariant, it commutes with the λ(A)-action and therefore
f̄ is given by right multiplication by a matrix Mf̄ ∈ Matn(N ). Since f̄ is a

partial isometry we know that f̄∗f̄ is the projection onto im(f̄) = V2 and f̄ f̄∗

is the projection onto ker(f̄)⊥ = V1. Since Tr has the trace property we have
dimτ V2 = Tr(f̄∗f̄) = Tr(f̄ f̄∗) = dimτ V1.
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Let now f : V1 → V2 be a weak isomorphism that means ker(f) = 0 and
im(f) = V2. Let f = PU be the polar decomposition of f . Then U is a partial
isometry with im(U) = V2 and ker(U)⊥ = V1. Thus we are in the same situation
as in the previous case. Let now

0→ V1
i−→ V

f−→ V2 → 0

be a weak exact sequence. The theorem follows now, since

V → im(i) + V2, v 7→ (v.P
im(i)

, v.f)

is a weak isomorphism and the von Neumann dimension is additive with respect
to direct products.

Until now we have seen that a trace τ on a ∗-algebra A provides us with a
lot of further structure. We now want to introduce one more function, which
will be one of the main objects of interests in this thesis.

Definition 1.2.28. Let (A, τ) be a tracial ∗-algebra. Let A ∈ Matm,n(A) and
let rA : Hmτ → H

n
τ be the map given by right multiplication by A. We define

the von Neumann rank of A as

rkτ (A) = dimτ im rA = n− dim(ker rA).

The function rkτ is a Sylvester matrix rank function. We will learn more
about these functions in Chapter 1.3.3. If A = C[G] with trace defined as in 1.1
we will write rkG instead of rkτ .

Question 1.2.29. Let us denote by Ch(A) the space of traces of a ∗-algebra
A and by P(A) the space of Sylvester matrix rank functions. Both spaces carry
the topology of pointwise convergence. The above constructions give us a map
Ch(A)→ P(A). Is this map continuous?

It is easy to see that in this generality the answer is simply no.

Example 1.2.30. G = 〈g〉 ∼= Z be the infinite cyclic group and A = C[G]
be the group algebra. For every z ∈ C with |z| = 1 we get a character τz of
G with τz(g

k) = zk. Let a = (g − z) ∈ A. From τz(aa
∗) = 0 we see that

Hτz ∼= C is one-dimensional and the A action is just given by multiplication by
z. Let now (zi)i be a sequence in S1 that converges to 1. Then the characters
τzi converge to the trivial character 1G. However the element 1− g ∈ C[G] acts
as multiplication by some non zero number on Hτzi , but as the zero operator
on H1G

.

However, in some cases the answer to Question 1.2.29 is positive. We will
come back to this at a later point.
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1.2.4 Unbounded operators affiliated to a finite von Neu-
mann algebra

Given a tracial ∗-algebra (A, τ) we already introduced a Hilbert space Hτ and a
von Neumann algebra N τ . In this subsection we want to introduce the algebra
of unbounded operators, affiliated to a finite von Neumann algebra.

Definition 1.2.31. Let H be a Hilbert space and N = (N ′)′ ⊆ B(H) be a von
Neumann algebra. The von Neumann algebra is called finite, if every isometry
V ∈ N is already unitary.

Note that a von Neumann algebra with a faithful trace is already finite. This
applies to the von Neumann algebras we get from the GNS construction. Before
we introduce unbounded operators affiliated to a finite von Neumann algebra,
we want to briefly describe what unbounded operators are and what difficulties
arise with them. Let us start with an example. Consider the Hilbert space
H = `2(N) = {(a1, a2, . . .) |

∑
a2
i ≤ ∞}. Denote by en ∈ H the basis vector that

has 1 in the n-th coordinate and zeros elsewhere. Let M be the linear operator
defined by M(en) = nen. It is easy to see that ‖M‖ =∞ and that the spectrum
σ(M) of M is unbounded. As a consequence the operator M is not defined
everywhere on H, but only on a subspace D(M), called the domain of M . We
will call an operator T closed, if its graph Γ(T ) = {(x, xT ) | x ∈ D(T )} ⊆ H⊕H
is closed. The operator T is called densely defined, if D(T ) is dense inH. Dealing
with unbounded operators is not that easy. For example the set of unbounded
operators does not form an algebra, since every unbounded operator is only
defined on its own domain. Furthermore the definitions of the adjoint is not
straight forward. All these problems are solved when we look at unbounded
operators affilliated to a finite von Neumann algebra.

Definition 1.2.32. Let H be a Hilbert space and N ⊆ B(H) be a finite von
Neumann algebra. We denote by U the set of all unbounded operators (T,D(T ))
of H that satisfy

• T is densely defined,

• T is closed,

• T is affiliated to N that means we have

TU = UT

for all unitaries U ∈ N ′.

Proposition 1.2.33. [Rei, Theorem 11.20] The set U is a complex ∗-algebra
that contains N as a subalgebra.

U is called the ring of unbound operators affiliated to N . If N = N (G) is a
group von Neumann algebra we will write U(G) for U . When (A, τ) is a tracial
∗-algebra and N τ its von Neumann algebra representation we will write Uτ for
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U . Before describing some properties of the ring U we want to give two more
algebraic ways to construct it starting from N . The first method is to see that
U is the Ore localization of N .

Definition 1.2.34. Let R be a ring and T ⊆ R a multiplicative set of non-zero-
divisors. A right ring of fractions of R with respect to T is a ring S in which R
embeds and that satisfies

(1) Every element of T becomes invertible in S.

(2) Every element of S can be written as rt−1 with r ∈ R, t ∈ T.

In the commutative setting, we know that such a ring of fractions always
exists. However in the non-commutative setting we have a problem. Let R be a
non commutative domain and S = R \{0} and consider the set RS−1 = {rs−1 |
r ∈ R, s ∈ S}. We want to define a multiplication on this set, however we run
into a problem. Let r1s

−1
1 , r2s

−1
2 ∈ RS−1. To define r1s

−1
1 r2s

−1
2 we need to

find a way to pass s−1
1 past r2. So we want to find r3 ∈ R, s3 ∈ S such that

s−1
1 r2 = r3s

−1
3 . Multiplying by s1 from the left and by s3 from the right gives

exactly the Ore condition.

Definition 1.2.35. Let R be a ring and let S ⊆ R be a multiplicative subset
of non-zero divisors of R. The right Ore condition for S states that for every
s ∈ S, r ∈ R we have rS ∩ sR 6= ∅. The left Ore condition is defined similarly.

By the problem defined above, a ring of fraction does not exist with respect
to any multiplicative set T .

Theorem 1.2.36. [GW04, Theorem 6.2] Let R be a ring and let T ⊆ R be a
set of non-zero-divisors. Then there exists a right ring of fractions RT−1 if and
only if (R, T ) satisfy the right Ore condition.

A ring of fractions satisfies the following universal property.

Proposition 1.2.37. [GW04, Proposition 6.3, 6.5] Let R be a ring, T ⊆ R a
set of non-zero-divisors that satisfies the right Ore condition and S = RT−1 be
a ring of fractions. Let ϕ : R→ R′ be a T inverting ring homomorphism. Then
there is a unique extension ϕ̄ : S → R′ of ϕ.

Let us now come back to our situation. We have the following characteriza-
tion of Uτ .

Proposition 1.2.38. [Rei, Proposition 2.8] Let N be a finite von Neumann
algebra and let T ⊆ N be the set of non-zero divisors. Then T satisfies both Ore
conditions and N S−1 ∼= U .

This characterization allows us to extend the rank function rkτ from N τ

to Uτ . It is easy to see that the set T ⊆ N τ of non-zero divisors is exactly
given by those elements a ∈ N τ with rkτ (a) = 1. Otherwise we would have
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Pker(a) · a = 0 ∈ N . Thus for an element u = ab−1 ∈ Uτ with a, b ∈ N τ and
rkτ (b) = 1 we can set

rkτ (u) = rkτ (a).

The last characterization of Uτ we want to give is to see it as the completion
of N τ with respect to its rank metric. The rank metric on N τ is defined by

d(a, b) = rkτ (a− b).

Since τ is faithful on N τ , it is easy to see that from d(a, b) = 0 it follows that
a = b. We have the following proposition.

Proposition 1.2.39. [Tho08, Lemma 2.2] The completion of a tracial von
Neumann algebra (N , τ) is naturally identified with the algebra Uτ .

We want briefly sketch how to see that the rank completion of N τ and its
Ore Localization are isomorphic. For that let T ∈ N τ be a non-zero-divisor.
We want to find a sequence (Tn)n ∈ N τ that represents 1

T in (N τ )rk, where
the latter one denotes the rank completion of N τ . By the polar decomposition
and the fact that T is a non-zero-divisor, we can write T as a product of an
isometry and a positive operator. Since N τ is a finite von Neumann algebra,
every isometry is already unitary and therefore invertible. Thus we can assume
that T is already a positive operator. Let E be the projection valued measure
coming from the spectral resolution of T . Let Pn = 1−E((0, 1

n )) be a projection
and consider the operator Tn = PnTPn. If we consider Tn as an operator on
Hn = Hτ Pn it is bounded from below and therefore invertible. Then the
operators T−1

n ⊕ 0 : Hn⊕Hn⊥ = Hτ → Hτ converge in the rank metric to the
inverse of T .

We have seen three ways to think about the algebra Uτ . We have an analytic
approach as unbound operators, an algebraic approach as the Ore localization
of N τ and we can see it as the rank completion of N τ . It is helpful to have all
three approaches in mind. The algebra Uτ is very large in general. The reason
why we introduced it is that it is von Neumann regular [Rei, Proposition 2.4]
We will present this definition and some interesting properties of von Neumann
regular rings in the next chapter.

1.3 von Neumann regular rings, epic rings and
Sylvester rank functions

In this chapter we want to introduce some more advanced algebraic concepts.
Especially we want to talk about Sylvester rank functions and von Neumann
regular rings, things we already mentioned in Chapter 1.2.

1.3.1 Von Neumann regular rings

In this section we want to explain what von Neumann regular rings are. Good
sources to learn more details about von Neumann regular rings are [Rot08] and
[Goo79]. We will start with its definition.
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Definition 1.3.1. Let R be a ring. An element x ∈ R is called von Neumann
regular if there is y ∈ R with xyx = x. A ring U is called von Neumann regular
if all its elements are von Neumann regular.

As mentioned in the previous chapter, the algebra of unbound operators
affiliated to a finite von Neumann algebra is von Neumann regular. This will
be our main example. Obviously division rings are von Neumann regular.

We have the following characterization of von Neumann regular rings.

Proposition 1.3.2. [Goo79, Theorem 1.1][Ste75, Chapter 1, 12.1] Let R be a
ring. Then the following are equivalent:

(1) R is von Neumann regular.

(2) Every finitely generated right (left) ideal is generated by an idempotent.

(3) every right (left) R-module is flat.

We further have the following properties.

Proposition 1.3.3. [Goo79, Theorem 1.7, Theorem 1.11, Proposition 2.6] Let
U be a von Neumann regular ring. Then the following holds.

(1) For every n ∈ N, the ring Matn(U) is von Neumann regular.

(2) All finitely generated submodules of a projective left (right) module P are
direct summands of P .

(3) Let P be a countably generated projective left (right) U-module. Then P is
a direct sum of cyclic submodules, each of which isomorphic to a principal
left ideal of U .

The concept of a von Neumann regular ring already gives many interesting
properties, however when we combine it with a specific involution, it becomes
an even more powerful concept.

Definition 1.3.4. Let (R, ∗) be a ∗-ring. The involution ∗ is called proper if
for all r ∈ R : rr∗ = 0 implies r = 0. Further the involution is called n-positive

definite if
n∑
i=1

rir
∗
i = 0 implies r1 = . . . = rn = 0. The involution is called

positive definite if it is n-positive definite for all n.

Obviously C and therefore Matn(C) are positive definite. Since the trace on
Matn(Uτ ) is faithful, it is easy to see that the algebra Uτ is positive definite.
Combining the notions of von Neumann regular rings and proper involution we
get the following definition.

Definition 1.3.5. Let (R, ∗) be a ∗-ring. We call R ∗-regular if it is von
Neumann regular and its involution is proper.

To be consistent with the notation of Uτ from the previous chapter we will
denote a ∗-regular ring by U . We have the following proposition, which can be
found in [Jai19].
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Proposition 1.3.6. Let U a ∗-regular ring and x ∈ U . Then

(1) U x = U x∗x and xU = xx∗ U .

(2) There exist unique projections e, f ∈ U such that U x = U e and f U = xU .
We put e = RP(x) and f = LP(x).

(3) There exists a unique y ∈ eU f such that yx = e and xy = f . We put
y = x[−1] and call it the relative inverse of x.

(4) RP(x) = RP(x∗x) = LP(x∗) and (x∗)[−1] = (x[−1])∗.

(5) (x∗x)[−1] = x[−1](x∗)[−1] and x[−1] = (x∗x)[−1]x∗.

(6) If x is self-adjoint then x commutes with x[−1].

We have the following alternative description of the relative inverses.

Proposition 1.3.7. Let U be a ∗-regular ring and x ∈ U . Then the relative
inverse of x is the unique element y, such that both xy and yx are projections
with xyx = x and yxy = y.

Proof. It follows directly from the previous proposition that the relative inverse
has the given properties. For example using (5) we get

y = yy∗x∗ = yf∗ = yf = yxy.

On the other hand, from xyx = x it follows U x ⊂ U yx ⊂ U xyx = U x and
therefore U x = U yx. Similarly we get xU = xy U and therefore, by the unique-
ness in 1.3.6(2), we have yx = e and xy = f . Last we have

y = yxy = yxyxy = eyf ∈ eU f

and therefore y = x[−1].

Let us consider again the example of a tracial ∗-algebra (A, τ). We have
seen in the previous chapter that we can map A to a ∗-regular ring by first
representing it as bounded operators on the Hilbert space Hτ , then take the
completion with respect to the weak operator topology to get a von Neumann
algebra and then taking the Ore localization. We have the following diagram:

A N τ

Uτ

ρ

The issue with this construction is that only knowing A does not yield much
information about Uτ . The situation is comparable with embedding Z into a
field. One would naturally choose Q and not R,C or some function field over
C. We have the following proposition.
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Proposition 1.3.8. Let R be a ∗-subring of a ∗-regular ring U . Then there is
a smallest ∗-regular subring of U containing R, which is denoted by R(R,U).

Proof. Let {U i}i∈I be the set of all ∗-regular subrings of U that contain R.

Claim. The ring R(R,U) =
⋂
i∈I
U i is a ∗-regular ring.

To see this we have to show that for each x ∈ R(R,U) its relative inverse is
also in R(R,U). For each i let yi ∈ U i be the relative inverse of x in U i. By
proposition 1.3.7 we have yi = yj = x[−1] ∈ U for all i, j ∈ I. Therefore the
claim follows.

Define now R0 = R and Ri+1 as the subring of U generated by Ri and all
its relative inverses. By construction the ring⋃

i∈N
Ri

is ∗-regular and contains R. Therefore

R(R,U) =
⋃
i∈N

Ri.

Definition 1.3.9. The ring R(R,U) is called the ∗-regular closure of R in U .

Using this we can complete our diagram from above. We have

A N τ

R(R,U) Uτ

ρ

Let us consider a more explicit example. Let G = Z = 〈z〉 the cyclic group
and A = C[G] with the trace τ as in 1.1. We then get Hτ = `2(Z). Fourier
transformation gives us `2(Z) ∼= L2[−π, π]. Multiplication by z ∈ G acts like
a shift on a basis element k ∈ Z ⊆ `2(Z) : k 7→ k.z = k + 1. In L2[−π, π]

this corresponds to shifting a basis vector eikx√
2π

to ei(k+1)x
√

2π
. Note that C[Z] ∼=

C[z, z−1]. This gives the following diagram:

C[z, z−1] L∞[−π, π]

C(z) L[−π, π]

ρ

Here L[−π, π] is the algebra of measurable functions. For more details about
this example see [Kam19, Example 2.26]. Generalizing the previous example,
we get for any torsion-free elementary amenable group G the following diagram.

C[G] N (G)

Ore(C[G]) U(G)

ρ
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In general it is very hard to find an explicit description of N (G) or U(G),
however the algebra R(C[G],U(G)) is easier to handle.

Let us collect some more properties about ∗-regular rings. First let us show
that ∗-regular rings are closed under quotients.

Proposition 1.3.10. Let U be a ∗-regular ring and let I be a both-sided ideal
of U . Then the ring U /I is ∗-regular.

Proof. Let us first show that I is ∗-closed. For that let x ∈ I. Thus we have
xx∗ ∈ xx∗ U = xU ⊆ I and therefore x∗ ∈ x∗ U = x∗xU ⊆ I. Moreover, by the
same argument, if x∗x ∈ I, then x∗U = x∗xU ⊆ I and therefore the involution
∗ is proper on U /I.

Remember from Proposition 1.3.2 that in a von Neumann regular ring every
finitely generated ideal is generated by an idempotent. In a ∗-regular ring we
have the following stronger property.

Proposition 1.3.11. [Neu16, Part 2, Chapter 4, Theorem 4.5] Let U be a ∗-
regular ring. Then every finitely generated right (left) ideal is generated by a
unique projection.

We already mentioned that it makes sense not only to map a ∗-algebra in
any ∗-regular ring U , but somehow in the smallest possible ∗-regular subring of
U . We want to formalize this in the next subsection.

1.3.2 Epic R-Rings

In this section we want to introduce the notion of epic homomorphisms. We
follow [Ste75], where more details can be found. Let ϕ : R → S be a ring
homomorphism. We say that ϕ is epic if for any two ring homomorphisms
α1, α2 : S → Q, from α1 ◦ ϕ = α2 ◦ ϕ already follows that α1 = α2. More
generally then ϕ being epic, we call an element s ∈ S dominated by ϕ, if from
α1 ◦ ϕ = α2 ◦ ϕ it follows that α1(s) = α2(s). The set of elements of S that are
dominated by ϕ is called the dominion of ϕ and is denoted by dom(ϕ). So ϕ
is epic if and only if the dominion of ϕ is S. Let us look at some examples.

Example 1.3.12.

(1) Let ϕ : R→ S be a surjective ring homomorphism. Then ϕ is epic.

(2) The inclusion Z ↪→ Q is epic.

(3) The inclusion ϕ : Z ↪→ Q[i] is not epic. For that let α1 : Q[i] → C be the
standard embedding and α2 = σ ◦α1 where σ denotes the complex conjugation.
The dominion of ϕ is given by Q.

An epic R-ring is a pair (S, ϕ) where ϕ : R → S is an epic ring homo-
morphism. We call two epic R-rings (S1, ϕ1) and (S2, ϕ2) isomorphic, if there
is an isomorphism α : S1 → S2 with α ◦ ϕ1 = ϕ2. We have the following
characterization of epic homomorphism.
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Lemma 1.3.13. Let ϕ : R → S be a ring homomorphism. Then the following
are equivalent.

(1) s ∈ dom(ϕ).

(2) For all S-bimodules M and for all x ∈ M such that rx = xr for all
r ∈ ϕ(R), we have sx = xs.

(3) 1⊗ s = s⊗ 1 ∈ S ⊗R S.

(4) For all right S-modules M and N and α ∈ HomR(M,N) we have α(xs) =
α(x)s for all x ∈M.

As a direct corollary we have the following useful characterization.

Corollary 1.3.14. Let ϕ : R → S be a ring homomorphism. Then dom(ϕ) =
{s ∈ S | 1⊗s = s⊗1 ∈ S⊗RS}. Further is ϕ epic if and only if the multiplication
map

m : S ⊗R S → S, s1 ⊗ s2 7→ s1s2

is an isomorphism of S-bimodules.

Let us now prove the lemma.

Proof. (1)⇒ (2) : Define the ring Q = S ×M where the multiplication is given
by (s1,m1)(s2,m2) = (s1s2, s1m2+m1s2). For one fixed x ∈M let α, β : S → Q
be given by

α(s) = (s, 0) and β(s) = (s, sx− xs).

Now we have
α ◦ ϕ = β ◦ ϕ⇔ rx = xr ∀r ∈ ϕ(R).

If b ∈ dom(ϕ), we have α(b) = β(b), which is equivalent to bx = xb.

(2)⇒ (3) : Follows immediately with M = S ⊗R S and x = 1⊗ 1 ∈M.
(3) ⇒ (4) : Fix x ∈ M and define γ : S ×R S → N, s1 ⊗ s2 7→ α(xs1)s2. From
1⊗ s = s⊗ 1 we get α(xs) = α(x)s.
(4)⇒ (1) : Let Q be a ring and let α, β : S → Q be ring homomorphisms with
α ◦ ϕ = β ◦ ϕ. Let us consider Q as a S-right module with multiplication given
by q · s = q · β(s). Because α ◦ ϕ = β ◦ ϕ we have α ∈ HomR(S,Q), where we
consider both, S and Q as S-right modules. Therefore we have

α(b) = α(1 · b) = α(1) · b = 1 · β(b) = β(b).

We have the following characterization of von Neumann regular rings.

Proposition 1.3.15. Let ϕ : U → S be a ring homomorphism and U be von
Neumann regular. If ϕ is epic it is already surjective.

Obviously the other implication is also true.
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Proof. We know that U1 = ϕ(U) ⊂ S is von Neuman regular. Tensoring the
monomorphism U1 ↪→ S with the left U1-modules S/U1 and S we get the
following commutative diagram.

U1 S ⊗U1
S

S/U1 S ⊗U1 S/U1 .

i

γ

β

Note that the horizontal maps are injective by proposition 1.3.2. By 1 ∈ U1 we
have

β(s̄) = 1⊗ s̄ = γ(1⊗ s) = γ(s⊗ 1) = s⊗ 1̄ = 0.

Since β is injective we get s̄ = 0 and therefore s ∈ U1 for all s ∈ S.

A direct consequence of the previous proposition is that for every von Neu-
mann regular ring U and every ring homomorphism ϕ : U → S we have
dom(ϕ) = ϕ(U). Further we have the following corollary which can be found in
[Jai19].

Corollary 1.3.16. Let R be a ring and let f1 : R→ U1, f2 : R→ U2 be an epic
homomorphism into von Neumann regular rings U1 and U2. Let γ1 : U1 → S
and γ2 : U2 → S be homomorphisms with γ1 ◦ f1 = γ2 ◦ f2. Then im(γ1) =
im(γ2).

Proof. Let α, β : S → Q be ring homomorphisms, such that α ◦ γ1 ◦ f1 =
β ◦ γ1 ◦ f1. We want to show that dom(γ1 ◦ f1) = im(γ1). Since f1 is epic,
we have α ◦ γ1 = β ◦ γ1, in other words for all u ∈ U1 : α(γ1(u)) = β(γ1(u)).
Therefore we get im(γ1) ⊆ dom(γ1 ◦ f1). On the other hand we can show that
dom(γ1 ◦ f1) ⊆ dom(γ1) = im(γ1). For that let s ∈ dom(γ1 ◦ f1) and let α, β :
S → Q such that α ◦ γ1 = β ◦ γ1. In particular we have α ◦ γ1 ◦ f1 = α ◦ γ1 ◦ f1

and therefore α(s) = β(s). Thus dom(γ1 ◦ f1) ⊆ dom(γ1). In a similar way we
get dom(γ2 ◦f2) = im(γ2). Since γ1 ◦f1 = γ2 ◦f2, we have im(γ1) = im(γ2).

When we talk about ∗-rings, in the notion of epic we have to replace homo-
morphism by ∗-homomorphism. It is then easy to see that the dominion of a
∗-homomorphism is closed under the ∗-operation.

We want to finish this last subsection with showing why it was useful to
introduce the ∗-regular closure.

Proposition 1.3.17. Let R be a ∗-ring, U be a ∗-regular ring and let ϕ : R→ U
be a ∗-homomorphism. Then ϕ is epic if and only if U = R(ϕ(R),U).

Proof. ”⇒: ” Assume first that ϕ is epic. Then the inclusion ϕ(R) ↪→ U is epic
and therefore the inclusion i : R(ϕ(R),U) ↪→ U is epic. Since R(ϕ(R),U) is von
Neumann regular we get dom(i) = im(i) and therefore R(ϕ(R),U) = U .
”⇐: ” Let S = {u ∈ U | 1⊗ u = u⊗ 1 ∈ U ⊗ϕ(R) U} be the dominion of ϕ. It is
easy to see that S is a ∗-subring of U that contains ϕ(R). We now want to show
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that S is closed under taking relative inverses. For that let r ∈ S be self-adjoint
and let s ∈ U be its relative inverse. By 1.3.6 we have rs = sr. That gives us

1⊗ s = 1⊗ srs
= 1⊗ rss
= r ⊗ ss
= rsr ⊗ ss+ ss⊗ r(1− sr)
= rs⊗ rss+ ssr ⊗ (1− sr)
= sr ⊗ srs+ srs⊗ (1− sr)
= s⊗ rs+ s⊗ (1− rs)
= s⊗ 1.

We have just seen that all the relative inverses of self-adjoint elements r ∈ S
belong to S. Let now x ∈ S be any element. Then x∗x is self-adjoint, so its
relative inverse belongs to S. By 1.3.6 we have x[−1] = (x∗x)[−1]x∗ ∈ S since
S is a ∗-subring of U . Therefore S is a ∗-regular subring of U which implies
S = U = R(ϕ(R),U).

1.3.3 Sylvester rank functions

Sylvester matrix rank functions

In linear algebra we consider finite dimensional vector spaces over fields. We
learn that after choosing a basis a linear map between two K-vector spaces
V and W can be represented my a matrix A over K. In this setting it is
easy to define the dimension of V and W or the rank of the matrix A. But
what happens when we replace K by an arbitrary ring R and instead of K
vector spaces we consider R-modules? Is there still some notion or rank and
dimension? These questions lead us to the definition of Sylvester rank functions.
These were originally introduced by P. Malcomson in [Mal80] under the name
algebraic rank functions. Most of the results we present in this section can be
found in [Lóp21]. We will begin with Sylvester matrix rank functions. In the
following we denote by Mat(R) the set of all matrices over a ring R.

Definition 1.3.18. Let R be a unitary ring. A Sylvester matrix rank function
on R is a map rk : Mat(R)→ R≥0 such that

(1) rk(1) = 1, rk

0 . . . 0
...

...
0 . . . 0

 = 0.

(2) rk(A · B) ≤ rk(A), rk(B) for all matrices A,B over R that can be multi-
plied.

(3) rk(A ⊕ B) = rk(A) + rk(B) for all matrices A,B of the appropriate di-
mension.
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(4) rk

((
A C
0 B

))
≥ rk(A)+rk(B) for all matrices A,B,C of the appropriate

dimension.

For a ring R we denote by P(R)Mat the space of all Sylvester matrix rank
functions on R. Let us consider some examples.

Example 1.3.19. (1) A division ring D has only one Sylvester matrix rank
function rkD, which can be defined as the inner rank. For a matrix A ∈
Matn,m(R) over a ring R the inner rank of A is given by

ρ(A) = min{k ∈ N | ∃B ∈ Matn,k(R), C ∈ Matk,m(R) : A = BC}.

Note that the inner rank is not for all rings a Sylvester matrix rank func-
tion. The rings where the inner rank is a Sylvester matrix rank function
are called Sylvester domains.

(2) Let R be a ring. If there are m,n ∈ N, n 6= m with Rn ∼= Rm, then
P(R) = ∅ since

n = rk(Idn) = rk(Idm) = m

which is obviously nonsense.

(3) Let D be a division ring and R = Matn(D). Then P(D) = { 1
n rkD}.

The set P(R) of Sylvester matrix rank function on a ring R is a compact
convex subset of all real valued functions on the matrices over R. We denote by
E(R) ⊂ P(R) the set of extreme points, that means the set of all rank functions
that can not be expressed as a non trivial convex combination of points in P(R).
We have P(R) = 〈E(R)〉, where the latter one is the convex hull of E(R). For
an arbitrary ring R it is hopeless to determine P(R) or E(R). However in some
special cases we can do it.

Example 1.3.20. (1) Let D be a division ring and let R = Matn1
(D) ⊕

Matn2
(D) Let πi be the projection onto the ith summand and let rki =

1
ni
◦ πi. Then E(R) = {rk1, rk2}.

(2) Let G be a finite group and R = C[G]. Let ϕ1, . . . , ϕn be the irreducible
representations of G with dimensions d1, . . . , dn. Let rki = 1

di
rkC ◦ϕi.

Then E(R) = {rk1, . . . , rkn}.

(3) Let R = Z . Besides the Q-rank rkQ for each p ∈ P we have a map Z →
Z /pZ ∼= Fp and therefore a rank function rkp. We have {rkQ} ∪ {rkFp |
p ∈ P} ⊆ E(Z). However there are more extreme rank functions. See
[Lóp21, Section 2.3] for details.

The most fruitful source of Sylvester matrix rank functions comes from ring
homomorphisms. For that let ϕ : R → S be a ring homomorphism. Then we
get a map ϕ# : P(S)→ P(R) with ϕ#(rk)(A) = rk(ϕ(A)), where A is a matrix
over R. We want to collect some properties of Sylvester matrix rank functions.
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Proposition 1.3.21. [Lóp21, Proposition 1.2.2][Jai19, Proposition 5.1]. Let
R be a ring and rk ∈ P(R). Then for all matrices A,B of appropriate size the
following holds.

(1) If A has dimension n×m then rk(A) ≤ m,n.

(2) If A has dimension n× n and is invertible then rk(A) = n.

(3) rk(A+B) ≤ rk(A) + rk(B).

(4) rk
((
A 0

))
= rk

((
A
0

))
= rk(A) for any zero matrix.

(5) If A ∈ Matn,m(R), B ∈ Matm,k(R) then

rk(AB) ≥ rk(A) + rk(B)−m.

(6) Multiplying by a an invertible square matrix does not change the rank.

Sylvester module rank functions

When we turn back to matrices over a field K the rank of a matrix can also be
defined as the dimension of the image of the linear map given by multiplication
by A. Thus, the notion of the rank of a matrix is connected to the notion of the
dimension of a related vector space. In the general setting we also have such a
connection, which leads to the following definition.

Definition 1.3.22. Let R be a ring. A Sylvester module rank function dim on
R is a function that assigns to every finitely presented R-module a non negative
real number and that satisfies the following conditions.

(1) dim(0) = 0,dim(R) = 1.

(2) dim(M1 ⊕M2) = dim(M1) + dim(M2).

(3) If M1 →M2 →M3 → 0 is exact then

dim(M1) + dim(M3) ≥ dim(M2) ≥ dim(M3).

For a ring R we denote by PMod(R) the set of Sylvester module rank func-
tions. There is a duality between the notion of Sylvester module rank functions
and Sylvester matrix rank functions. In fact we have the following proposition.

Proposition 1.3.23. [Lóp21, Proposition 1.2.8] Let R be a ring. There exists
a bijective correspondence between PMod(R) and PMat(R).

• Let dim ∈ PMod(R). For A ∈ Matn,m(R) we set

rk(A) = m− dim(Rm/RnA).

Then rk ∈ PMat(R).
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• Let rk ∈ PMat(R). For any finitely presented R-module M with presenta-
tions M = Rm/RnA for some matrix A ∈ Matn,m(R) we set

dim(M) = m− rk(A).

Then dim(M) does not depend on the presentation of M and dim ∈
PMod(R).

Given a rank function rk we will write dimrk for the associated module rank
function. Similarly we will use rkdim. When R = D is a division ring, we know
that PMat(D) = {rkD}. Further we know that modules over division rings are
free which means they have a basis which naturally gives a dimension function
dimD ∈ PMod(D). Obviously we have dimD = dimrkD .
As in the case for matrix rank functions, given a ring homomorphism ϕ : R→ S
we also get a map ϕ# : PMod(S) → PMod(R). Given dim ∈ PMod(S) and a
finitely presented R-module M we define ϕ#(dim)(M) = dim(M⊗ϕ(R)S). Note

that we used ϕ# for both the map between module and matrix rank functions.
This makes sense since the map commutes with the duality from the previous
proposition we have ϕ#(dimrk) = dimϕ#(rk) and similarly for ϕ#(rkdim).

Regular rank functions

We know that if D is a division ring, then PMod(D) = {dimD}, where dimD
denotes the usual dimension function. However this dimension function is ”bet-
ter”, meaning it has some special properties. We have for an exact sequence

0→ A→ B → C → 0

of D-modules that

dimD(A) + dimD(C) = dimD(B).

This leads to the following definition.

Definition 1.3.24. Let R be a ring. dim ∈ PMod(R) is called exact, if for every
surjection ϕ : M � N of finitely presented R-modules we have

dim(M)− dim(N) = inf{dim(L) | L is finitely presented and L� ker(ϕ)}.

In this section we want to focus on Sylvester rank functions on von Neumann
regular rings and more general regular rank functions. For a ring R a rank
function rk ∈ PMat(R) is called regular, if there is a ring homomorphism ϕ :
R → U into a von Neumann regular ring with rk ∈ im(ϕ#). Let us start with
the following lemma.

Lemma 1.3.25. Every Sylvester module rank function dim of a von Neumann
regular ring U is exact.
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Proof. Let ϕ : M � N be a surjection of finitely presented U modules. By 1.3.2
and [Rot08, Theorem 3.56] the modules M,N are projective. As a consequence
the sequence

0→ ker(ϕ)→M → N → 0

splits. Thus we have M ∼= kerϕ⊕N and the result follows.

For any ring R, we call rk ∈ PMat(R) faithful if ker(rk) = {r ∈ R | rk(r) =
0} = {0}. The following lemma shows that faithful Sylvester matrix rank func-
tions on regular rings behave similar to rank functions on division rings.

Lemma 1.3.26. [Lóp21, Lemma 1.3.12] Let U be a von Neumann regular ring
and rk ∈ PMat(U) be faithful. A square matrix A ∈ Matn(U) is invertible if and
only if rk(A) = n.

For later use we note the following result.

Lemma 1.3.27. [Jai19, Proposition 5.10] Let R be an algebra over K and let
rk be a regular Sylvester matrix rank function on R. Then for every A,B ∈
Matn×m(R) and every ε > 0 we have

|{λ ∈ K | rk(A)− rk(A− λB) ≥ ε}| ≤ rk(A)

ε
.

Let us understand what this result means in a very specific case, namely
R = C, B = Idn the identity matrix, A ∈ Matn(C) and ε = d ∈ N . Then
rk(A)− rk(A−λIdn) > 0 means that λ is an eigenvalue of A. Moreover rk(A)−
rk(A− λIdn) is just the dimension of the kernel of (A− λId). So in this special
case the lemma is obviously true.

Extension of Sylvester module rank functions

Until now Sylvester module rank functions are only defined on finitely presented
modules. However we know that for a division ring D we can define dimD for
all D modules. It is more or less easy to extend exact rank functions to all
R-modules. Let us first define what we mean by an extension of rank functions.

Definition 1.3.28. Let R be a ring and dim ∈ PMod(R). An extension d̃im of
dim is a function R−Mod→ R≥0 ∪{+∞} such that

(1) dim = d̃im on finitely presented R-modules.

(2) d̃im(A⊕B) = d̃im(A) + d̃im(B) for R-modules A and B.

(3) If 0→ A→ B → C → 0 is a short exact sequence of R modules then

d̃im(A) + d̃im(C) ≥ d̃im(B).

It was Hanfeng Li in [Li21] who proved the following result.
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Proposition 1.3.29. [Li21, Theorem 3.3] Let R be a ring and dim ∈ PMod(R).

Then an extension d̃im of dim exists and is unique.

We want briefly sketch how to extend the function dim. Extending dim
to finitely generated modules is not a big problem. For a finitely generated
R-module M we set

d̃im(M) = inf{dim M̃ | M̃ is finitely presented and maps onto M}.

To extend dim to arbitrary R-modules is a little bit more difficult. When the
rank function dim is exact we can set

dimM = sup{dimM ′ |M ′ ≤M,M ′ is finitely generated}.

This was done in [Vir19]. In the general case the definition of d̃imM for an
arbitrary R-module is

d̃imM = sup
M1

inf
M2

(dimM2 − dimM2/M1)

where M1 ≤M2 ≤M and M2 is finitely generated.

Proposition 1.3.30. [Li21, Theorem 8.1] Let ϕ : R → S be an epic ring
homomorphism. Let dim1,dim2 ∈ PMod(S) such that for all finitely presented
R-modules M we have

dim1(M ⊗ϕ(R) S) = dim2(M ⊗ϕ(R) S).

Then d̃im1 = d̃im2.

Until now we have seen that given any Sylvester module rank function on
a ring R it can be extended to arbitrary modules over R. We now want to
introduce a different extension. For that let K be a subfield of C, let A be a K-
algebra and let rk be a Sylvester matrix rank function on A. If E ≤ C is a field
containing K, can we extend rk to E ⊗K A? This was first answered positively
by Jaikin in [Jai19]. Jaikin constructs two types of extensions. On the one hand
he considers the case where E is an algebraic extension of K. This construction
works for all rank functions. On the other side he constructs for a regular rank
functions an extension for E = K(t), where t ∈ C \K is transcendental. In
[JL21] Jiang and Li unify these two constructions for any field extension E of
K. We will briefly describe their construction here. For proofs and more details
see [JL21].

Let us fix a field K and a field E that contains K. Let A be a K-algebra and
let rk ∈ P(A). Let dim be the module rank function associated to rk. Last let
F := {V ⊗KA | V is a finite dimensional K− linear subspace of E}. Denote by
F̂ the non zero elements of F . Then the set F is a finite approximation system
for E ⊗K A and fulfills the following conditions.

(1) Each W ∈ F is a finitely generated free left A-module.
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(2) For every W,V ∈ F one has W ∩ V,W + F ∈ F .

(3) For any W,V ∈ F with V ⊆W one has W = V ⊕V ′ for some V ′ ∈ F . In
particular dim(V ) ≤ dim(W ).

(4) Every finitely generated left A-submodule of E⊗KA is contained in some
W ∈ F .

(5) For any finite subset F of E ⊗K A and every ε > 0 there is a W ∈ F̂ that
is (S, ε)-invariant in the sense that one has dim(V ) ≤ (1 + ε) dim(W ) for
some V containing W +WF .

Let now A = (ai,j) ∈ Matn×m(E ⊗K A) and W ∈ F̂ . By condition (4) there is

a V ∈ F̂ , such that Wai,j ⊆ V for every i, j. Then we have

WnA ⊆ V m.

Since W,V are free A-modules, we can choose a basis w1, . . . , wk for W and
v1, . . . , vr for V . Then there is some matrix B ∈ Matk×r(A) such thatw1A

...
wkA

 = B ·

v1

...
vr

 .

We set rkW (A) = rk(B). Jiang and Li show that rkW (A) does not depend on
the choice of bases. Further they show that

rkF := inf
W∈F̂

rkW (A)

dimW

exists and extends rk. The construction of Jiang and Li behaves well with the
composition of field extensions. Also, as mentioned before, it coincides with
the construction of Jaikin in his two cases. For a rank function rk on a K-
algebra A and a field extension E of K we denote the extension rkF of rk by
r̃k. In general it might be hard to recognize the extension r̃k in the following
sense. Given a rank function rk ∈ P(A) there might be many rank functions
rk1, rk2, . . . ∈ P(E⊗A) that extend the rank function rk. But we can not say if
rki = r̃k for some i. However in the cases when E = K̄ is the algebraic closure
of K or E = K(t) we can say something. We will begin with the algebraic case.

Theorem 1.3.31. Let rk1, rk2 be two rank functions on R = K̄ ⊗K A. Let
i : A → R be the inclusion and assume that i#(rk1) = i#(rk2) and rk1 ≤ rk2.
Then

rk1 = rk2 ∈ P(R).

Proof. Let A ∈ Matn×m(R) be a matrix over R. Since A has only finitely
many entries, we can find a finite Galois extension E/K such that A is a matrix
over E ⊗K A. Let G = {σ1, . . . , σd} be the Galois group of the extension
E/K. Further let α ∈ E be primitive element, that means we have E = K(α).
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Since Mat(E ⊗K A) ∼= E ⊗K Mat(A) and every element e ∈ E is of the form
e = f0α

0 + . . . fd−1α
d−1 for some fi ∈ K we can write the matrix A as a sum

A =
d−1∑
i=0

αi ⊗ Ai for some matrices Ai ∈ Matn×m(A). Consider now the matrix

B := σ1(A)⊕ . . .⊕ σd(A). Let

C =

σ1(α)
. . .

σd(α)

 .

Using the same decomposition as above we can write B =
d−1∑
i=0

(Ci ⊗ Ai). The

matrix C is similar over E to a matrix over K. That is because the characteristic
polynomial of C is the minimal polynomial of α. Thus the matrix C is similar
to the companion matrix of this polynomial. That means we have an invertible
matrix T ∈ Matd(E) such that TCT−1 ∈ Matd(K). Note that the matrices
T ⊗ Idn and T−1⊗ Idm are invertible over R. Thus multiplying with them does
not change the rank. We have

d∑
j=1

rk1(σj(A)) = rk1(B)

= rk1(T ⊗ Idn ·B · T ⊗ Idm)

= rk1(T ⊗ Idn ·
d−1∑
i=0

(Ci ⊗Ai) · T ⊗ Idm)

= rk1(

d−1∑
i=0

TCiT−1 ⊗Ai)

= rk2(

d−1∑
i=0

TCiT−1 ⊗Ai)

= rk2(T ⊗ Idn ·
d−1∑
i=0

(Ci ⊗Ai) · T ⊗ Idm)

= rk2(T ⊗ Idn ·B · T ⊗ Idm)

= rk2(B)

=

d∑
j=1

rk2(σj(A)).

Since we assumed that rk1 ≤ rk2, we have rk1(σj(A)) ≤ rk2(σj(A)). Since their
sum is equal we have equality for each j.

Let us now look at the transcendental case E = K(t). The following result
is a reformulation of [Jai19, Proposition 7.7], based on [JL21, Section 9.2].
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Proposition 1.3.32. Let U be a von Neumann regular K-algebra. Let rk ∈
P(U) and rk′ ∈ P(K(t)⊗KU) be a rank function that extends rk. If rk′(Idn +tA) =
n for any matrix A ∈ Matn(U), then rk′ = r̃k.

The following is a direct consequence of the previous proposition.

Corollary 1.3.33. [Jai19, Corollary 7.8] Let {rki}i∈N be a family of regular
Sylvester matrix rank functions on some algebra A. For each i ∈ N let r̃ki ∈
P(K(t) ⊗K A) be the natural transcendental extension of rki. Let ω be a non
principal ultrafilter on N. Then lim

ω
r̃ki is the natural transcendental extension

of lim
ω

rki.

Further we have the following result which can be found in [Li21].

Proposition 1.3.34. [Li21, Proposition 9.6] Let A be a K-algebra, rk be a
regular rank function on A and {xi}i∈N a sequence of distinct points in K. For
each i let πi : K[t] ⊗K A → A be the quotient map defined by sending t to xi.
Then for each matrix A ∈ Matn×m(K[t]⊗K A) we have

r̃k(A) = lim
i→∞

rk(πi(A)).

Epic ∗-regular R-rings

We want to introduce one more object that unifies all concepts we have described
in this chapter.

Definition 1.3.35. Let R be a ∗-ring. An epic ∗-regular R-ring is a triple
(U , rk, ϕ) such that

(1) U is a ∗-regular ring.

(2) rk is a faithful Sylvester matrix rank function on U .

(3) ϕ : R→ U is an epic ∗-homomorphism.

(4) R(ϕ(R),U) = U .

Note that by proposition 1.3.17 (3) and (4) are equivalent. Let us consider
some examples.

Example 1.3.36. (1) Let R = Z with a∗ = a for a ∈ Z . Then the triple
(Q, rkQ, i), where i : Z→ Q is the inclusion, is a ∗-regular Z-ring.

(2) Let (A, τ) be a tracial ∗-algebra and let Uτ be as in the previous chapter
the ring of unbound operators affiliated to A. Remember that we have a
map ϕ : A → Uτ . Let Rτ = R(ϕ(A),Uτ ). Then (Rτ , rkτ , ϕ) is an epic
∗-regular A-ring.
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We will say that two epic ∗-regular R-rings (U1, rk1, ϕ1) and (U2, rk2, ϕ2) are
isomorphic, if there exists a ∗-isomorpism f : U1 → U2 such that the diagram

R R

U1 U2

Id

ϕ1 ϕ2

f

commutes and rk1 = rk2 ◦f . The following result shows that the rank function
on a ∗ regular R-ring is completely defined by its values on R.

Lemma 1.3.37. [Jai19, Corollary 6.2] Let U be a ∗-regular ring and R be
a ∗-subring of U . Assume that U = R(ϕ(R),U). Then for any r1, . . . , rk ∈
Matn×m(U), there is a matrix M ∈ Mata×b(R) and matrices v1, . . . , vk ∈
Matn×b(R) such that for any t1, . . . , tk ∈ Matn(R) and every Sylvester matrix
rank function rk on U

rk(t1r1 + . . .+ tkrk) = rk

(
M

t1v1 + . . .+ tkvk

)
− rk(M).

Using this result we can even show that the values of rk on R do not only
determine rk, but determine the epic ∗-regular R ring up to isomorphism.

Theorem 1.3.38. [Jai19, Theorem 6.3] Let (U1, rk1 ϕ1) and (U2, rk2 ϕ2) be
two epic ∗-regular R-rings. Then, (U1, rk1 ϕ1) and (U2, rk2 ϕ2) are isomorphic
if and only if rk1 ◦ϕ1 = rk2 ◦ϕ2 ∈ P(R).

Proof. One direction follows directly from the definition of isomorphisms for epic
∗-regular R-rings. So let us assume that rk1 ◦ϕ1 = rk2 ◦ϕ2 ∈ P(R). Let ϕ0 :
R→ U1×U2, r 7→ (ϕ1(r), ϕ2(r)). Since U1×U2 is ∗-regular, we can define U0 =
R(ϕ0(R),U1×U2). For i = 1, 2 we have the following commutative diagram.

R U0

U i U i .

ϕ0

ϕi πi

Id

Since πiϕ0 = ϕi is epic, by Proposition 1.3.15, πi is surjective. So let us show
that πi is injective. Note that π#

1 (rk1), π#
2 (rk2) ∈ P(U0) are Sylvester matrix

rank functions on U0 . Let B ∈ Matn(R) and A = ϕ0(B) ∈ Matn(U0). Since

π#
1 (rk1(A)) = rk1(π1(A)) = rk1(π1(ϕ0(B))) = rk1(ϕ1(B))

= rk2(ϕ2(B)) = rk2(π2(ϕ0(B))) = π#
2 (rk2)(A)

the previous lemma implies

π#
1 rk1 = π#

2 rk2 ∈ P(U0).



56 CHAPTER 1. PRELIMINARIES

Let now u = (u1, u2) ∈ U0 such that π1(u) = 0. Obviously we have u1 = 0 and
therefore

0 = rk1(u1) = π#
1 rk1(u1, u2) = π#

2 rk2(u1, u2) = rk2(u2).

Since rk2 is faithful we obtain u2 = 0. Hence, π1 is injective and in the same
way it follows that π2 is injective. Therefore, f = π2 ◦ π−1

1 : U1 → U2 is a
∗-isomorphism. It is left to show that f ◦ ϕ1 = ϕ2 and rk1 = rk2 ◦f . Indeed we
have

f ◦ ϕ1 = π2 ◦ π−1
1 ◦ ϕ1 = π2 ◦ π−1

1 ◦ π1 ◦ ϕ0 = π2ϕ0 = ϕ2

and

rk2 ◦f = rk2 ◦π2 ◦ π−1
1 = π#

2 (rk2) ◦ π−1
1 = π#

1 (rk1) ◦ π−1
1 = rk1 ◦π1 ◦ π−1

1 = rk1 .

1.4 Ultralimits and Ultrafilters

In this chapter we want to introduce ultrafilters, ultralimits and ultraproducts.
For a bounded sequence (ai)i∈N ⊆ C we know that there is always a convergent
subsequence, although the sequence (ai) itself may not converge. Choosing an
ultrafilter on N avoids this problem. We will see that for any bounded sequence
(ai)i∈N and any ultrafilter ω on N the ultralimit lim

ω
ai does always exist and is

unique. Using this property allows us also do define the ultralimit of functions,
for example the ultralimit of traces, measures or rank functions. In this section
we will first define filters and ultrafilters. We will then present the definition
and some properties of ultralimits. Also we will see that for some sequence
(ai) the limit a = lim

i→∞
ai exists, if and only if a = lim

ω
ai for every non principal

ultrafilter ω on N. Last we will present the tracial ultraproduct of von Neumann
algebras, which is an important object whenever it comes to approximating von
Neumann algebras. For us the most important application of ultrafilters will be
the ultralimit of measures and rank functions.

We will start with the definition of a filter. For simplicity we will only
consider filters and ultrafilters on N. We will denote by P(N) the powerset of
N . For a more detailed introduction see [LW15].

Definition 1.4.1. A filter on N is a subset F ⊆ P(N) such that

(1) ∅ /∈ F .

(2) A ⊆ B,A ∈ F ⇒ B ∈ F .

(3) A1, . . . , An ∈ F ⇒
⋂
i

Ai ∈ F .

A filter F is called an ultrafilter if for all A ⊆ N we have A ∈ F or N \A ∈ F .
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We will denote an ultrafilter usually by the letter ω. An important example
of a filter is the Frechet filter

F = {A ∈ N | |N \A| <∞}.

The easiest but least helpful examples for ultrafilters are so called principal
utrafilters. These are ultrafilters of the form ωn = {A ⊆ N | n ∈ A}. Although
we have not defined ultralimits yet let us briefly say why these are not helpful.
For a sequence (ai)i∈N and a principal ultrafilter ωn we have

lim
ωn

ai = an.

Thus the limit does not depend at all on the actual values ai. The existence a
of non principal ultrafilter uses the axiom of choice. One basically starts with
the Frechet filter F and then chooses for each subset A ∈ N with A,Ac /∈ F if
either A ∈ F or Ac ∈ F . We have the following lemma.

Lemma 1.4.2. Let F be a filter on N and A ⊆ N, A 6= ∅, such that A,Ac /∈ F .
Then F ∪ {A} can be extended to a filter.

Proof. Define G = F ∪ {A ∩ B | B ∈ F} and set H = {B ⊆ N | C ⊆
B for some C ∈ G}. It is easy to see that H is a filter containing A and F .

Lemma 1.4.3. Every filter F is contained in an ultrafilter.

Proof. The proof uses Zorn’s Lemma. Let Ω be the set of all filters on N that
contain the filter F . Then Ω is partially ordered by inclusion. Let C be a chain
in Ω. Then the union over C is a filter and an upper bound for C. Therefore,
we can apply Zorns lemma and we get a maximal element ω ∈ Ω. We want to
show that ω is an ultrafilter. For that assume that there is a set A ⊆ N with
A,Ac /∈ ω. By the previous lemma ω ∪ {A} could be extended to a filter, which
would contradict the maximality of ω. Therefore, ω is an ultrafilter.

Non principal ultrafilters do not contain finite sets.

Lemma 1.4.4. Let ω be a non principal ultrafilter. Then, ω contains the Frechet
filter.

Proof. Since ω is non principal, for each n ∈ N we have N \{n} ∈ ω. Therefore,
for each finite set N = {n1, . . . , nk} we have N \N =

⋂
i

N \{ni} ∈ ω.

Using an ultrafilter, one can construct an ultralimit.

Definition 1.4.5. Let ω be a non principal ultrafilter on N. If (xn)n∈N is a
sequence of points in a metric space (X, d) and x ∈ X then x = lim

ω
xn is called

the ω-limit of (xn)n∈N if for all ε > 0 we have

{i ∈ N | d(x, xi) ≤ ε} ∈ ω.

If the ultrafilter ω is clear from the context we will call x = lim
ω
xn the ultralimit

of the xn.
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From this definition our previous statement about ultralimits with respect
to principal ultrafilters becomes clear. It is a standard result of model theory
that if X is compact, an ultralimit always exists which is obviously not true for
the usual limit. We will show the case for X = [a, b] ⊆ R.

Lemma 1.4.6. Let (xn)n be a sequence in [a, b] ⊆ R with a, b ∈ R and let ω
be a non principal ultrafilter on N Then the ultralimit x = lim

ω
xn exists and is

unique.

Proof. Without loss of generality assume X = [0, 1]. Let A1 = {n ∈ N | xn ≥
1
2}. Then either A1 ∈ ω or Ac1 ∈ ω. Without loss of generality lets assume
A1 ∈ ω. Define then B2 = {n ∈ N | xn ≥ 3

4}. Then again we have B2 ∈ ω
or Bc2 ∈ ω. If B2 ∈ ω set A2 = B2, otherwise set A2 = Bc2 ∩ A1. We can
do this iteratively and get a set An = {n ∈ N | k

2n ≤ xn < k+1
2n } ∈ ω for

some k. Therefore the ultralimit always exists. Assume now that we have

c 6= d ∈ [0, 1] that both satisfiy the condition of 1.4.5. Let ε = |c−d|
3 . Then both,

C = {n ∈ N | |xn− c| ≤ ε} and D = {n ∈ N | |xn− d| ≤ ε} belong to ω. But we
have D ⊆ Cc and therefore Cc ∈ ω which is a contradiction.

The ultralimit has the following properties, we know from usually limits.
For simplicity we will again only consider the case X = R .

Lemma 1.4.7. Let ω be a non prinicpal ultrafilter on N and let (an)n∈N and
(bn)n∈N be bounded sequences in R. Then the following holds.

(1) lim
ω
an + bn = lim

ω
an + lim

ω
bn.

(2) if an ≤ bn for all n, then lim
ω
an ≤ lim

ω
bn.

Proof. Let a = lim
ω
an and b = lim

ω
bn. For every ε > 0 set Aε = {n ∈ N |

|a−an| ≤ ε} and similar for Bε. Further set Cε = Aε∩Bε. Then Aε, Bε, Cε ∈ ω.
For (1) see that the set {n ∈ N | |a+ b| − |an + bn|} contains Cε/2 and therefore
belongs to ω.
For (2) assume for a contradiction that a − b ≥ ε > 0 and see that Cε/2 = ∅,
which can not be since Cε/2 belongs to ω.

Considering the ultralimit of a bounded sequence is comparable to choose a
convergent subsequence. The following lemma connects ultralimits to classical
limits.

Lemma 1.4.8. Let (an)n be a a bounded sequence of real numbers. Then the
limit lim

n→∞
an exists and is equal to a ∈ R if and only if for every non principal

ultrafilter ω on N we have a = lim
ω
an.

Proof. Since every non principal ultrafilter contains the Frechet filter the ”only
if” part is clear. Assume now that a is not the limit of the an. That means there
exists a ε > 0 such that the set A = {n ∈ N | |a− an| > ε} is infinite. As usual
let F be the Frechet filter. By 1.4.2 we can extend F ∪ {A} to a filter and by
1.4.3 we can find a ultrafilter ω that contains F ∪{A}. But then lim

ω
an 6= a.



1.5. MEASURES ON COMPACT SUBSETS OF C 59

Next we want to introduce the tracial ultraproduct of von Neumann algebras.
For that let (Nn, τn) be tracial von Neumann algebras and ω be a non principal
ultrafilter on N. The tracial ultraproduct of the Nn is the quotient space

Nω =
∏
n∈N

b
Nn /Iω (1.12)

where

Nω =
∏
n∈N

b
Nn =

{
(an)n ∈

∏
n∈N
Nn | sup

n
‖an‖ ≤ ∞

}
and

Iω =

{
(an)n ∈

∏
n∈N

b
Nn | lim

ω
τ(a∗a) = 0

}
.

The most interesting case for us will be when (dn)n is a sequence of natural
numbers and Nn = Matdn(C) with τn = 1

dn
Tr. This algebra is a tracial von

Neumann algebra with trace given by τω = lim
ω
τn. More information about this

can be found in [AH14].
The last thing we want to consider in this section is the ultraproduct of rank

functions. For that let R be a ring, let (rki)i∈N ⊆ PMat(R) be a sequence of
rank functions of R and as usual let ω be a non principal ultrafilter on N. For
any matrix A ∈ Matn×m(R) the numbers rki(A) are bounded by max{m,n},
thus the limit rkω(A) = lim

ω
rki(A) always exists.

Proposition 1.4.9. The function rkω is a Sylvester matrix rank function on
R.

Proof. One checks each property of a Sylvester matrix rank function easily with
1.4.7.

1.5 Measures on compact subsets of C
In this section we briefly want to explain some measure theory. We already
had some contact with measures when we talked about the spectral theorem.
In this section we want to discuss the notion of convergence of measures and
we will give a sufficient condition to pass from weak convergence to point wise
convergence of a series of measures. We will start with explaining the weak
convergence of measures and will then state the Riesz Representation Theorem
for measures. In this section let X ⊆ C be a compact set and let C(X) be
the algebra of continuous functions f : X → C . We denote by B(X) the Borel
σ-algebra on X.

Definition 1.5.1. Let (µi)i∈N be a sequence of Borel measures on X with
µi(X) = c ∈ R for all i. We say that the measures µi converge weakly to some
limit measure µ on X, if for all continuous functions f ∈ C(S) we have

lim
i→∞

∫
S

fdµi =

∫
S

fdµ.
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Example 1.5.2. Let X = [−1, 1] be a closed interval and let µn = δ 1
n

be the

Dirac measure at 1
n ∈ R. Then the measures µn converge weakly to µ = δ0.

Note further that µ([−1, 0]) = 1 6= 0 = lim
n→∞

µn([−1, 0]). This example shows

that weak convergence does not imply convergence for all Borel sets.

We have the following characterization of weak convergence, known as the
theorem of Portmanteau.

Proposition 1.5.3. [Els13, Chapter 8, 4.10] Let X be a compact subspace of
C and µ, µn (n ∈ N) be Borel measures on X with µ(X), µn(X) ≤ ∞. The
following are equivalent.

(a) For every continuous function X → C we have

lim
n→∞

∫
X

fdµn =

∫
X

fdµ.

(b) For all closed sets A ⊆ X we have

lim sup
n→∞

µn(A) ≤ µ(A).

(c) For all open sets U ⊆ X we have

lim inf
n→∞

µn(U) ≥ µ(U).

(d) For all Borel sets S with µ(δ(S)) = 0 where δ(S) denotes the boundary of
S we have

lim
n→∞

µn(S) = µ(S).

We now want to explain the Riesz Representations Theorem for measures.

Proposition 1.5.4. [Els13, Chapter 8, 2.19] Let X ⊆ C be compact and let
I : C(X) → C be a positive linear functional. Then there exists exactly one
finite measure µ on X such that for all measureable sets A ⊆ X we have µ(A) =
sup
K
{µ(K) | K ⊆ A,K compact} and

I(f) =

∫
X

fdµ

for all f ∈ C(X). In particular we have

µ(K) = inf{I(f) | f ∈ C(X), f ≥ χK} when K is compact.

µ(A) = sup{µ(K) | K ⊆ A,K compact} when A is measurable.
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We just want to describe one use case of this proposition which will be
helpful later when we talk about approximation of spectral measures in a finite
von Neumann algebra. Assume we have a series of measures µn(X) such that
for all f ∈ C(X) the limit

lim
n→∞

∫
X

fdµn (1.13)

exists. Then, 1.13 defines a linear functional on C(X). Thus, by the previous
theorem there exists a limit measure µ on X such that the µn converge weakly
towards µ. Moreover this limit measure is unique.

In contrast to weak convergence of measures, there is also the notion of
strong convergence. That is lim

n→∞
µ(A) = µ(A) for all Borel sets A. However,

for later use, we are more interested in the convergence in points. In particular
we are interested in conditions that ensure lim

n→∞
µn({λ}) = µ({λ}) for measures

µn that converge weakly to µ. For simplicity let y ∈ C and X = B(y, d) ⊆ C be
the closed ball with radius d ∈ R around y. Let µn be a series of finite measures
on X that converge weakly to µ. We have the following sufficient condition.

Proposition 1.5.5. Assume that there is a function f : R+ → R+ such that
lim
λ→0

f(λ) = 0 and µn(B(x, λ) \ {x}) ≤ f(λ) for all n ∈ N . Then for any x ∈ X
we have

lim
n→∞

µn({x}) = µ({x}).

Proof. Since the measures µn converge weakly towards µ, part (c) of Proposition
1.5.3 already gives us lim supµn({x}) ≤ µ({x}). Thus we only have to show the
other inequality. For that we have for every λ > 0

lim inf µn({x}) = lim inf µn(B(x, λ) \ (B(x, λ) \ {x}))
= lim inf µn(B(x, λ))− lim inf µn(B(x, λ) \ {x}))
≥ lim inf µn(B(x, λ))− f(λ)

≥ µ(B(x, λ))− f(λ).

Since this holds for all λ we get

lim inf µn({x}) ≥ lim
λ→0

µ(B(x, λ))− f(λ) = µ({x}).

We now want to consider the question if the converse is also true. That
means given that lim

n→∞
µn(0) = µ({0}), is there a function f as in Proposition

1.5.5?
In fact we have the following theorem.

Theorem 1.5.6. Let (µn)n∈N be a sequence of weakly convergent measures on
a compact set X ⊆ C with weak limit µ and let x ∈ X. Then the following are
equivalent:
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(1) lim
n→∞

µn({x}) = µ({x}).

(2) There is a function f : R+ → R+ with lim
λ→0

f(λ) = 0 such that for all

n ∈ N we have

µn(B(x, λ) \ {x}) ≤ f(λ).

Proof. We have already seen (2) ⇒ (1) in the previous proposition. So let us
show (1)⇒ (2). The proof works by contradiction. So let us assume that for all
functions f : R+ → R+ with lim

λ→0
f(λ) = 0 there is n ∈ N such that

µn(B(x, λ) \ {x}) > f(λ).

The assumption lim
n→∞

µn({0}) = µ({0}) implies lim
ω
µn({0}) = µ({0}) for all non

principal ultrafilters ω. Consider the function f(λ) = sup
n
µn(B(x, λ) \ {x}).

Then by definition we have µn(B(x, λ) \ {x}) ≤ f(λ) for all n. Further we
have f(λ) ≥ 0 for all λ. Since the function is monotonically increasing, by
our assumption we have lim

λ→0
f(λ) > 0. Thus there exists c > 0 such that

f(λ) = sup
n
µn(B(x, λ) \ {x}) > c. Set ε = c/2 and define

I(λ) := {n ∈ N | µn(B(x, λ) \ {x}) > ε}.

Claim. The set I = {A ⊆ N | I(λ) ⊆ A for some λ > 0} is a filter on N that
contains no finite sets.

Proof. Obviously we have N ∈ I and since each I(λ) 6= ∅ we have ∅ 6= I. Let
now A ⊆ B ⊆ N and assume A ∈ I. Then there is some λ > 0 such that
I(λ) ⊆ A. But then I(λ) ⊆ B and therefore B ∈ I. Since for λ1 ≤ λ2 we have
I(λ1) ⊆ I(λ2) the set I is closed under finite intersections. For the last part it
is enough to show that each I(λ) is an infinite set. For that note that for each
n ∈ N there is λ(n) > 0 such that µn(B(x, λ) \ {x}) < ε. Assume now that
I(λ) = {n1, . . . , nk}. Set λ′ = min{λ(n1), . . . , λ(nk)}. But then I(λ′) would be
empty, which can not be.

Thus we can construct a non principal ultrafilter ω that contains I.

Claim. For all λ > 0 we have

lim
ω
µn((B(x, λ) \ {x}) ≥ ε.

Proof. Assume that lim
ω
µn(B(x, λ) \ {x}) = δ < ε. Let µn((B(x, λ) \ {x}) =

m(n). That means that for any κ > 0 the set J(λ) = {n ∈ N | |δ −m(n)| < κ}
belongs to the ultrafilter ω. But for κ ≤ |ε−δ|2 we have J(λ)∩ I(λ) = ∅, which is
a contradiction.
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Consider now the linear functional Iω on C(X) given by

Iω(g) = lim
ω

∫
X

gdµn.

By 1.5.4 there exists a measure µω on X such that

Iω(g) =

∫
X

gdµω.

Let us calculate µω({x}). Again by the properties of µω we have

µω({x}) = inf{Iω(g) | g ∈ C(X), g ≥ χ{x}}

= inf

lim
ω

∫
X

gdµn | g ∈ C(X), g ≥ χ{x}


≥ inf

lim
ω
g(x) · µn({0}) +

∫
X\{x}

g dµn | g ∈ C(X), g ≥ χ{x}

 .

Without loss of generality we can assume that g(x) = 1. Let C = {h ∈ C(X) |
h ≥ χ{x}, h(x) = 1}. Fix δ > 0. By continuity, for each h ∈ C there is a
λ(h) > 0 such that h(y) ≥ 1 − δ for all y ∈ B(x, λ(h)). With this notation we
get

µω({x}) = inf

lim
ω
g(x) · µn({x}) +

∫
X\{x}

g dµn | g ∈ C(X), g ≥ χ{x}


= lim

ω
µn({x}) + inf

lim
ω

∫
X\{x}

g dµn | g ∈ C


≥ lim

ω
µn({x}) + inf

lim
ω

∫
B(x,λ(g))\{x}

g dµn | g ∈ C


≥ lim

ω
µn({x}) + inf

g

{
lim
ω

(1− δ) · µn(B(x, λ(g)) \ {x})
}

≥ lim
ω
µn({x}) + (1− δ) · ε

> lim
ω
µn({x}).

Since the measures µn converge weakly to µ, by the uniqueness property in
1.5.4, we have µ = µω. By assumption we have µ({0}) = lim

n→∞
µn({0}). Since

this implies lim
ω′
µn({0}) = µ({0}) for all non principal ultrafilters ω′ we have a

contradiction.



64 CHAPTER 1. PRELIMINARIES



Chapter 2

Effective Lück
approximation Theorem

2.1 Motivation

In this chapter we want to discuss the effective Lück approximation theorem.
To motivate this problem we will discuss the easiest case first. For that, let G be
a residually finite group and let GDN1DN2 . . . be a chain of normal subgroups
in G of finite index with trivial intersection. Let Gi = G/Ni and fix a matrix
A ∈ Matn(Z[G]). The group G acts by right multiplication on the groups Gi
and this action can be extended linearly to an action of Matn(Z[G]) on (C[Gi])

n

by right multiplication. Note that, as C-vector spaces, we have C[Gi] ∼= C|Gi|.
Therefore the matrix A induces a matrix Ai ∈ Mat|Gi|·n(Z) that represents the

action of A on C|Gi|·n. We can now ask the following questions:

(1) Does lim
i→∞

1
|Gi| rkC(Ai) exist?

(2) If the answer to question (1) is yes, is the limit independent of the chain
N1 DN2 D . . .?

(3) If the answer to question (2) is yes, is lim
i→∞

1
|Gi| rkC(Ai) = rkG(A)?

In this specific case, Wolfgang Lück showed in 1994 in [Lüc94] that the answer
to all questions is yes. In this chapter we want to generalize these questions.

2.2 The approximation property of traces

The situation described in the previous section is very specific and we want to
introduce a more general viewpoint. For that let us remember how rkG was
defined in 1.2.28 We considered Matn(C[G]) as a subalgebra of the amplified
von Neumann algebra Matn(N (G)) which sits in B(`2(G)n), the algebra of

65
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bounded operators on (`2(G))n. On the amplified group von Neumann algebra
Matn(N (G)) we defined a trace by

τ(a) =

n∑
i=1

〈1ia, 1i〉,

where 1i ∈ `2(G)n was the vector having 1G in the i-th coordinate and zeros
elsewhere. Note that the quotient maps G→ Gi give us representations

ϕi : Matn(C[G])→ Matn(C[Gi]) = Matn(N (Gi)) = B(`2(Gi)
n).

Using the notation of 1.2.28 we have the following lemma.

Lemma 2.2.1. Let A be a ∗-algebra over a subfield K of C and let ϕ : A →
Matn(K) be a ∗-homomorphism. Consider the trace τ = 1

nTrC ◦ ϕ on A. Then

rkτ =
1

n
rkC ◦ ϕ ∈ P(A).

Further, for a normal element a ∈ Matn(A) we have

µa,τ =
1

n

n∑
i=1

δλi

where λi are the eigenvalues of ϕ(a) and µa,τ = τ ◦ Ea,τ as in 1.2.21. We call
this measure the normalized eigenvalue measure.

Proof. To determine rkτ we have to determine Hτ and N τ first. For simplicity
we will only determine rkτ (a) for a ∈ A. We will use the notation of 1.2.6. Let
us determine N = {a ∈ A | τ(a∗a) = 0}. For a ∈ N we have

0 = τ(a∗a)

=
1

n
TrC(ϕ(a∗a))

=
1

n
TrC(ϕ(a∗)ϕ(a)).

Since the usual trace on Matn(C) is faithful we get ϕ(a) = 0 and therefore
N = ker(ϕ). As a result we have that A /N is isomorphic to some subalgebra
of Matn(C). The norm on A /N induced by τ is just the Frobenius norm on

Matn(C). From that it follows easily that Hτ is a subspace of Matn(C) ∼= Cn
2

and N τ is a subalgebra of Matk(C) the action is given by matrix multiplication
from the right. Let now a ∈ A and denote by ra = ϕ(a) the induced operator
on Hτ . Since for any matrix C ∈ Matd(C) we have Annr(C) ∼= ker(C)d as C
vector spaces we obtain

dimC Annr(C) = d · dimC kerC.
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Let P ∈ Matn(C) be the projection onto kerϕ(A). Note that P as an operator
on Hτ ∼= Matn(C) is the projection onto Annr(ϕ(a)). By the definition of rkτ
it is enough to see that

dimτ ker ra = dimτ Annr(ϕ(a))

= τ(P )

=
1

n
TrC(P )

=
1

n
dimC kerϕ(a).

The statement about the spectral measures follows directly from the uniqueness
in 1.5.4.

Let us come back to the situation from the beginning of this chapter. Let
G, {Ni} and {Gi} be a residually finite group, a chain of normal subgroups
with trivial intersection and the associated quotient groups respectively. Let
ϕi : Z[G] → Mat|Gi|(Z) be the homomorphism induced by the action of G on

C[Gi] ∼= C|Gi|. Let τi = 1
|Gi|TrC ◦ ϕi and A ∈ Matn(Z[G]).

Lemma 2.2.2. We have

lim
i→∞

τi = τG,

where τG denotes the regular character as in 1.1.

Proof. Since τi, τG are linear for all i, it is enough to consider elements g ∈ G.
Note that

τi(g) =

{
1 g ∈ Ni
0 g /∈ Ni

and

τG(g) =

{
1 g = eG

0 g 6= eG.

Therefore the result follows since
⋂
Ni = {1G}.

Knowing this, our three questions are just one special situation of question
1.2.29, which asked if the assignment τ 7→ rkτ is continuous with respect to
point wise convergence. We now want to consider this question in more detail.
The following definition first appeard similar in [Kio18].

Definition 2.2.3. Let A be an algebra and let C be a class of traces on A .
We say that C has the approximation property if for every point wise converging
sequence of traces (τi)i∈N, τi ∈ C with lim

i→∞
τi = τ we have

lim
i→∞

rkτi = rkτ .
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We will see examples for C in the next chapter. In 1.2.30 we have seen a
converging sequence of traces lim

i→∞
τi → τ with lim

i→∞
rkτi 6= rkτ . Thus the class

of all traces does not have the approximation property. So why should the
convergence of the traces imply the convergence of the ranks in some cases?
A more analytic approach can answer this question. Let (A, τ) be a tracial
∗-algebra and let A ∈ Matn(A) be a normal matrix over A. We have seen
in the previous chapters that rkτ (A) = n − dimτ ker(A) = n − τ(Prker(A)) =
n− τ(EA,τ ({0})) = n− µA,τ ({0}), where EA,τ denotes the spectral measure of
the operator on Hτ given by right multiplication by A. We will write µA,τ for
the complex measure τ ◦ EA,τ as in 1.2.21.

Therefore a measure theoretic reformulation of the point wise convergence
of rank functions is given by

lim
i→∞

µA,τi({0}) = µA,τ ({0}).

Remark 2.2.4. Note that for any matrix A ∈ Matn×m(A) and any trace τ we
have kerA = kerAA∗ as subspaces of Hnτ and therefore rkτ (A) = rkτ (AA∗).
Therefore we can always assume that the matrix A is positive self-adjoint, in
particular normal.

When talking about convergence of measures, pointwise convergence is usu-
ally not the first thing what one asks for. The starting point is usually the weak
convergence. Remember that for weak convergence we have to check

lim
i→∞

∫
S

fdµi =

∫
S

fdµ

for all f ∈ C(S). To check the convergence of these integrals for all kind of
continuous functions would be a lot of work, however it is not necessary. We
have the following theorem.

Theorem 2.2.5 (Stone-Weierstrass-Approximation). Let S be a compact met-
ric space and let C(S,C) be the algebra of continuous functions on S. Let
R ⊆ C(S,C) be a complex unital subalgebra that is closed under complex con-
jugation and separates points in X, which means for all x 6= y in S there is a
g ∈ R with g(x) 6= g(y). Then R is dense in C(S,C).

We are now ready to prove the following proposition.

Proposition 2.2.6. Let A be a ∗-algebra and let τ, (τi)i∈N be traces on A such
that lim

i→∞
τi = τ. Let A ∈ Matn(A) be a normal matrix and denote by ρτi(A) ∈

B(Hnτi) the operator given by right multiplication by A and similar for τ . Assume
that there is a constant c such that for all i ∈ N ‖ρτi(A)‖, ‖ρτ (A)‖ ≤ c. Then
the measures µA,τi converge weakly to µA,τ .

Proof. Since the operator norm of all operators ρτ (A), ρτi(A) is bounded by
c, the measures µA,τ , µA,τi are supported on S = B(0, c) ⊆ C. Consider the
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algebra R generated by all functions fn,m(x) = xnx̄m. By the previous theorem
the algebra R is dense in C(S,C), therefore it is enough to show that for all
functions f ∈ R we have

lim
i→∞

∫
S

fdµA,τi =

∫
S

fdµA,τ .

Since integrals are linear it suffices to show that for each n,m we have

lim
i→∞

∫
S

xnx̄mdµA,τi =

∫
S

xnx̄mdµA,τ .

Note that by the definition of µA,τi and µA,τ we have

lim
i→∞

∫
S

xnx̄mdµA,τi = lim
i→∞

τi(A
n(A∗)m) = τ(An(A∗)m) =

∫
S

xnx̄mdµA,τ .

Remark 2.2.7. By the Theorem of Portmanteau 1.5.3 the above already gives

lim
i→∞

µA,τi({0}) ≤ µA,τ ({0})

for any normal matrix A over A. Thus, for any arbitrary matrix A over A, we
have

rkτ (A) = rkτ (AA∗) = µAA∗,τ ({0}) ≥
lim sup
i→∞

µAA∗,τi({0}) = lim sup
i→∞

rkτi(AA
∗) = lim sup

i→∞
rkτi(A).

This inequality is known as Kazhdan Inequality.

Having the weak convergence of the measures and keeping in mind Theorem
1.5.6 ,to show that lim

i→∞
µA,τi({0}) = µA,τ ({0}) we need a function that bounds

the measure of B(0, λ) \ {0} in terms of λ.

Definition 2.2.8. Let A be a ∗-algebra and let C be a class of traces on A .
We say that C has the effective approximation property if for any normal matrix
A ∈ Matn(A) there is a function f : R≥0 → R≥0 with lim

λ→0
f(λ) = 0 such that

for all τ ∈ C and for all x ∈ C

µA,τ (B(x, λ) \ {x}) < f(λ).

2.3 Effective approximation property for integer
valued bounded traces

In this section we want to introduce some classes of traces and consider the
question whether they have the effective approximation property. Let us first
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consider the group case. Let F = 〈x1, . . . , xm〉 be a finitely generated free
group and let A = C[F ] be the group algebra. If X is a finite F -set, from
the permutation action of F on X we get an induced homomorphism fX :
C[F ]→ Mat|X|(C). Then the character τ = 1

|X|Tr◦fX is called a permutation

character. A character τ on C[F ] is called a sofic if there exists a sequence of
permutation characters τi such that

τ = lim
i→∞

τi.

One example of a class of traces C on A would be the class of all permutation
traces/characters. Wolfgang Lück showed that the class of all permutation
characters on Q[F ] has the approximation property (see 2.4.1). A character τ
on C[F ] is called unitary if there is a representation ϕ : F → Un(C) with finite
image such that

τ =
1

|Xi|
Tr ◦ ϕ.

Here n ∈ N and Un(C) denotes the group of unitary matrices of dimension n.
We call τ unitary of degree d ∈ N, if there is a numberfield K with |K : Q | = d
and ϕ(F ) ∈ Matn(K). We call a character τ on C[F ] hyperlinear (of degree d)
if there exists a sequence of unitary characters (τi) (of degree d) with lim

i→∞
τi = τ.

Since permutation matrices are unitary, every sofic character is hyperlinear of
degree 1. In [Kio18] Steffen Kionke shows that for fixed d, the class of unitary
characters of degree d on A = Q̄[F ] has the approximation property.

Let us now consider the case of general ∗-algebras. Obviously every matrix
over some algebra has only finitely many entries. Therefore we can restrict
ourselves to finitely generated algebras. Since every ∗-algebra is the image of a
free ∗-algebra, we can assume that A = C〈x1, x

∗
1, . . . , xm, x

∗
m〉.

Let b ∈ R>0 . A trace τ on A is called b-bounded integer valued, if there
is a ∗-homomorphism ϕ : A → Matn(C) with ϕ(xj) ∈ Matni(Z) for each j and
such that the row- and column-sum norms of ϕ(xj) are bounded by b.:

‖ϕ(xj)‖1, ‖ϕ(xj)‖∞ ≤ b. (2.1)

Note that since for every matrix A ∈ Matn(C), we have

‖A‖2 ≤
√
‖A‖1 · ‖A‖∞,

this condition already gives a uniform bound on the operator norm of the ϕ(xj).
To extend this definition to traces τ on arbitrary algebras A, we choose a sur-
jective ∗- homorphism ϕ : F → A from a free ∗-algebra F to A and define the
trace τ on A to be b-bounded integer valued, if the induced trace τ ◦ ϕ on F is
so. The main result of this chapter is the following.

Theorem A. Let A = C〈x1, x
∗
1, . . . , xd, x

∗
d〉 be a free ∗-algebra, and let C be

the class of b-bounded integer valued traces on A . Then C has the effective
approximation property.
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Note that this is a generalization of Lück’s Lemma 2.4.1. To prove this theorem
we will make use of traces and limit measures.

Example 2.3.1. Let G be a sofic group (see 3.1.1 for a definition), A ∈
Matn(C[G]) and let τG be the regular character on G. Let F be a finitely
generated free group with a surjective group homomorphism α : F → G. Let
B ∈ Matn(C[F ]) be a preimage of A under α and let (Xi) be a sofic approxi-
mation of G. Each finite F -set Xi gives a trace τi = 1

|Xi|Tr ◦ ϕi : C[F ] → C,

where ϕi : C[F ] → Mat|Xi|(C) is the map that represents the action of F on

C[Xi] ∼= C|Xi| after choosing a basis. In [Jai19] Andrei Jaikin proved that

lim
i→∞

1

|Xi|
rk(αi(B)) = rkG(A).

In the rest of this chapter we want to prove Theorem A. We will now briefly
describe the structure of the proof. In the following K will denote different sub-
fields of C. We will always consider the free ∗-algebraA = K〈x1, x

∗
1, . . . , xm, x

∗
m〉 =

K〈X,X∗〉 over K and the class C of b-bounded integer valued traces on A. Let
τ ∈ C. We will start with the case K = Q. For matrices A over Q〈X,X∗〉 we
will first give an explicit bound for µA,τi(B(0, λ)\{0}) in Proposition 2.4.1. We
have seen that this implies the approximation property. We will then show that
the class C also has the approximation property for K = C using 1.3.31 and
1.3.32 in the following way. Set K1 = Q and for each i ≥ 1 let K2i = Ki be
the algebraic closure of Ki in C and K2i+1 = K2i(λ) where λ ∈ C \K2i is some
complex number that is transcendental over K2i. Thus, to prove the approx-
imation property for K2i we can use the approximation property over K2i−1

and Theorem 1.3.31. To prove the approximation property from for K2i+1 we
can use the approximation property over K2i and 1.3.32. Note here that for
λ ∈ C \K2i the field K2i+1 is isomorphic to the field K2i(t) of rational functions
in one variable. Since any matrix A ∈ C〈X,X∗〉 has only finitely many entries,
there is an n ∈ N such that A is a matrix over K2n〈X,X∗〉. Thus we can show
the approximation property for all matrices over C〈X,X∗〉. This is the same
strategy that Jaikin uses in his proof in [Jai19]. Having the approximation prop-
erty and some converging sequence (τi) ⊆ C we will first show that for every
normal matrix A over A there is a function f as in 2.2.8, such that

µτi,A(B(0, λ) \ {0}) ≤ f(λ).

Note that this function still depends on the sequence τi. By considering the
operator A⊗ 1− 1⊗A, we will show that there is such a function f such that

µτi,A(B(y, λ) \ {y}) ≤ f(λ)

for all y ∈ C . Note that this function still depends on the sequence (τi). However
we will see that this is already enough to prove Theorem A.
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2.4 The Base Case

In this section we want to present a proof for A over the field Q. This proof
goes back to Wolfgang Lück [Lüc94].

Proposition 2.4.1 (Lück’s Lemma). Let A ∈ Matn(Z) with ‖A‖ ≤ d and

eigenvalues λ1, . . . , λs with multiplicities m1, . . . ,ms. Let µA =
r∑
i=1

miδλi be the

eigenvalue measure of A. Then for λ ∈ (0, 1)

µA(B(0, λ) \ {0}) ≤ log(d) · n
| log(λ)|

.

Proof. Assume that λ1, . . . , , λr are the non zero eigenvalues and that ‖λ1‖ ≤
‖λ2‖ ≤ · · · ≤ ‖λr‖. Further let ‖λi‖ ≤ λ for i ∈ {1, . . . , t}.

Then we have
µA(B(0, λ) \ {0}) = m1 + . . .+mt.

Let R =
r∑
i=1

mi. The characteristic polynomial of A is given by

p(x) = xn−R(x− λ1)m1 · · · (x− λr)mr .

Therefore we have

p(x)

xn−R
= (x− λ1)m1 · · · (x− λr)mr ∈ Z[x]

which gives us
λm1

1 · · ·λmrr ∈ Z \{0}.

This gives

1 ≤ ‖λm1
1 · · ·λmrr ‖

≤ ‖λm1
1 ‖ · · · ‖λmrr ‖

≤ ‖λm1
1 ‖ · · · ‖λ

mt
t ‖dn

≤ λm1+...+mt · dn.

By taking the logarithm we obtain the following. Note that log(λ) < 0.

1 ≤ λm1+...+mt · dn

⇔ 0 ≤ (m1 + . . .mt) · log(λ) + n · log(d)

⇔ | log(λ)| · (m1 + . . .+mt) ≤ log(d) · n

⇔ m1 + . . .+mt ≤
log(d) · n
| log(λ)|

.

Corollary 2.4.2. Let A = Q〈x1, x
∗
1, . . . , xd, x

∗
d〉 and C be the class of b-bounded

integer valued traces on A . Then C has the approximation property.
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Proof. Set AZ = Z〈x1, x
∗
1, . . . , xd, x

∗
d〉 and let A ∈ Matm(A) be a normal matrix

over A. Since every element from A is a finite linear combination of the xi, x
∗
i

and the matrix A contains only finitely many entries, we can find a q ∈ N such
that q · A ∈ Matm(AZ). Let now τ = 1

nTr ◦ ϕ ∈ C with ϕ : A → Matn(Q). Let
µϕ(qA) be as in the previous proposition. Since µϕ(qA) = m · µτ,A The result
follows from the previous proposition and 1.5.6.

So we have done our first step. We already have all the ingredients to apply
Theorem 1.3.31, however to apply Theorem 1.3.32 we have to check a condition;
namely that for any n× n matrix A over K〈x1, x

∗
1, . . . , xd, x

∗
d〉, where K ⊆ C is

an algebraically closed field and for any λ ∈ C \K we have rkτ (A − λId) = n.
This is often called the algebraic eigenvalue property.

2.5 The strong eigenvalue property

In this subsection we want to provide a key ingredient to the algebraic eigenvalue
property. Let us fix some notation. Let X = {x1, . . . , xd}, K ⊆ C be a subfield
closed under complex conjugation and let A = K〈X,X∗〉 be the free ∗-algebra
on X over K. Fix b > 0 and let

Fb = {f : X → Matnf (Z) | nf ∈ N, ‖f(xi)‖1, ‖f(xi)‖∞ < b for all i}. (2.2)

Note that each f ∈ Fb extends uniquely to a ∗-algebra homomorphism A →
Matnf (K) which we will also denote by f . Set

V = Vb =
∏
f∈Fb

Matnf (K)

and
f̄ = (f)f∈Fb : A → V.

Obviously f̄ is injective, thus we will identify A with its image in V. We write
an element a ∈ V in the form a = (af ), with af ∈ Matnf (K). Note that V is a
∗-regular ring, thus we can consider R(f̄(A),V), the regular closure of A in V.
Note further that every projection πf : V → Matnf (K) gives a rank function
rkf = 1

nf
rkK ◦πf on V and therefore on A. In this section we want to prove the

following theorem. It first appeared in a similar form in Andrei Jaikin’s paper
[Jai19]. Jaikin called it the strong eigenvalue property.

Theorem 2.5.1. Let A,B ∈ Matn×m(R(f̄(A),V)) For every ε > 0 the set

Sε(A,B) = {λ ∈ K̄ | there is f ∈ Fb such that rkf (B)− rkf (B − λA) ≥ ε}

is finite.

The case where for each map f the image f(x)i is a permutation matrix
was already proved by Jaikin in [Jai19, Chapter 8]. We will follow his proof to
obtain this slightly more general result. Let us explain one special case of the
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previous theorem. Assume A,B are square matrices over some group algebra
C[G] and assume that B is the identity matrix. Then λ ∈ Sε(A,B) implies
that λ−1 is an eigenvalue of f(A) for some f ∈ Fb. Thus the theorem states
that in all possible representations f ∈ Fb the matrix A has only finitely many
eigenvalues where the dimension of the eigenspace is greater then ε. The proof
of this result is very technical. In the next subsections we will introduce the
necessary tools.

2.5.1 Reduction of the problem

In this subsection we want to show that it is enough to prove the theorem
for matrices A,B ∈ Matn×m(f̄(O〈X,X∗〉)) where O = Z or O = Q[x] for
some algebraically closed subfield Q of C. Let us assume the notation from
the previous section. For now we can assume that K is algebraically closed.
So let U = R(f̄(K〈X,X∗〉),V) and A,B ∈ Matn×m(U). We will use the rank
functions rkf ∈ P(U) also for rank function on V and K〈X,X∗〉. By Corollary
1.3.37 we can find matrices M ∈ Mata×b(f̄(K〈X,X∗〉)) and matrices v1, v2 ∈
Matn×b(f̄(K〈X,X∗〉)) such that for any λ ∈ K ⊆ K〈X,X∗〉 and any rank
function rk on U we have

rk(B − λA) = rk

(
M

v1 − v2

)
− rk(M) = rk(B′ − λA′)− rk(M),

where

B′ =

(
M
v1

)
and A′ =

(
0
v2

)
.

Therefore we have

rk(B)− rk(B − λA) = rk(B − 0 ·A)− rk(B − λA)

= rk(B′ −A′)− rk(M)− rk(B′ − λA′) + rk(M)

= rk(B′)− rk(B′ − λA′).

Thus we have shown that it is enough to show the theorem for matrices over
K〈X,X∗〉.

So let A,B ∈ Mata×b(f̄(K〈X,X∗〉)). Since A,B have only finitely many
entries, we can assume thatK has finite transcendental degree over Q. Therefore
it is enough to consider the cases

(1) K = Q̄, in this case put T = Q and

(2) K = Q(x) for some algebraically closed subfield Q of C with x ∈ C \Q
and we can assume that the theorem holds for A = Q〈X,X∗〉. In this
case we put T = Q(x).

In each case we can find a finite Galois extension E of T , such that A,B
are matrices over E〈X,X∗〉. Let d be the degree of this extension and G =
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{σ1, . . . , σd} its Galois group. Let Ā =
d⊕
i=1

σi(A) and similar for B̄. Note that

if for some λ ∈ Ē and some f ∈ Fb we have

rkf (B)− rkf (B − λA) ≥ ε,

then
rkf (B̄)− rkf (B̄ − λĀ) ≥ d · ε.

Just like in the proof of 1.3.31 there is an invertible matrix J over E〈X,X∗〉,
such that A′ = JĀJ−1, B′ = JB̄J−1 are matrices over T 〈X,X∗〉. Since

rkf (B̄)− rkf (B̄ − λĀ) = rkf (B′)− rkf (B′ − λA′)

it is enough to consider matrices over T 〈X,X∗〉. Note that T is the fraction
field of O, where O = Z or O = Q[x]. Since multiplying with some constant
does not change the rank, we can multiply A,B with some element r ∈ O, such
that rA, rB ∈ O〈X,X∗〉. Thus we can assume that A,B ∈ O〈X,X∗〉.

2.5.2 Dedekind domains

We want to start with some general results about Dedekind domains.

Definition 2.5.2. An integral domainO which is not a field is called a Dedekind
domain if

(1) R is Noetherian.

(2) Every nonzero prime ideal of R is maximal.

(3) R is integrally closed in its field of fractions.

There will be two main examples of Dedekind domains we care about. For
any algebraic number field K, its ring of integers OK is a Dedekind domain. The
second example is slightly more complicated. For that let Q be an algebraically
closed field and let K be a finite extension of Q(x), where Q(x) is the function
field in one variable over Q. Set OK to be the integral closure of Q[x] in K.
Then OK is a Dedekind domain. For more information see [SZ14]. For the rest
of this section let us fix an arbitrary Dedekind domain O with field of fractions
K. We first want to collect some facts about Dedekind domains.

Proposition 2.5.3. [Nar04, Theorem 1.12] Every proper non zero ideal I of R
can be represented uniquely up to order in the form

I = P1 · · ·Pr,

where Pi are prime ideals of R.

Further we have the following structure theorem for finitely generated mod-
ules over Dedekind domains.



76 CHAPTER 2. EFFECTIVE LÜCK APPROXIMATION THEOREM

Proposition 2.5.4. [Nar04, Theorem 1.32] Let M be a finitely generated O
module. Let M tors ≤M be the submodule of all torsion elements. Then M can
be decomposed as

M = Ok ⊕I ⊕M tors

where k ∈ N and I is an ideal of O . Further we have M tors ∼= O /I1⊕ . . .⊕O /Ir
for ideals I1, . . . , Ir of O .

We now want to introduce the notion of length functions on O-modules.

Definition 2.5.5. A length function on O-Mod is a function l : O -Mod →
R≥0 ∪{∞} that satisfies

(LF1) If 0 → M1 → M2 → M3 → 0 is an exact sequence of O-modules then
l(M1) + l(M3) = l(M2).

(LF2) l(M) = sup{l(L) : L ≤M and L is finitely generated }

If O = Z we can set l(M) = log2 |M | for a Z-module M . Let us fix a length
function l on O-mod such that l(M) =∞ if M is finitely generated non Artinian
and l(M) <∞ if M is finitely generated Artinian. For more information about
length functions on Dedekind domains see [NR65, Section 7].

For each maximal ideal P of O we denote by

OP =
{a
b
∈ K | a, b ∈ O, b /∈ P

}
the localization of O at P .

Lemma 2.5.6. OP is a discrete valuation ring.

Proof. By construction OP is a local Dedekind domain with maximal ideal P .
Thus it is enough to show that P is principal. For that let a ∈ P \ P 2 and
consider the ideal (a) ≤ OP which is generated by a. Since OP is local we
have (a) = P k for some k ∈ N . Since a /∈ P 2 we have k = 1 and therefore
P = (a).

For any OP module V we put lP (V ) = l(V ).

Lemma 2.5.7. lP is a length function on OP and we have

l(V ) =
∑
P≤O

lP (OP ⊗OV )

where P runs over all prime ideals of O .

Proof. The fact that lP is a length function follows from the definitions. So let
us consider the summation formula. By (LF2) it is enough to consider finitely
generated O-modules. By 2.5.4 we can assume that V ∼= Ok ⊕I ⊕O /I1 ⊕ . . .⊕
O /Ir for ideals I, I1, . . . , Ir of O. If l(V ) =∞ the module V is not Artinian and
therefore k > 0 or I 6= 0 and therefore the result is true. So let us assume that
l(V ) < ∞. Since O is not a field, we have that l(O) = l(I) = ∞ and therefore
V = O /I1 ⊕ . . . ⊕ O /Ir where Ij are ideals in O . Thus the statement follows
from 2.5.3.
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Definition 2.5.8. A fractional ideal I of O is a O-submodule of K such that
there exists a d ∈ O with dI ⊆ O. We denote by IO the set of all fractional
ideals, also called the ideal group of O.

Each fractional ideal I can be uniquely written as

I =

r∏
i=1

Pnii

with different prime ideals Pi ≤ O and nonzero ni ∈ Z. We put I+ =
∏
ni>0

Pnii

and I− =
∏
ni<0

P−nii . Note that I+, I− ≤ O . Thus it makes sense to define

deg+(I) = l(O /I+) and degP,+(I) = lP (O /I+).

For an element 0 6= a ∈ K we define

deg+(a) = deg+(aO) and degP,+(a) = lP (aO).

Next, we want to generalize the notion of deg+ to matrices over K. So let
M ∈ Matn×m(K) and let

V = (Om +OnM)/OnM.

By 2.5.4 we can write
V = V/V tors ⊕ V tors,

where V tors denotes the torsion part of V . Thus we can define

deg+(M) = l(V tors) and degP,+(M) = l(OP ⊗OV tors).

Remark 2.5.9. Note that K ⊗O V/V tors ∼= Km−rkK(M).

For non zero ideals I, J of O we have

I/IJ ∼= O /J.

Thus by 2.5.4 we get

(V/V tors)/(J · (V/V tors)) ∼= (O /J)m−m rk(M). (2.3)

We now want to compute deg+(M) for a matrix M ∈ Matn×m(O). When we
write V = Om /OnM we automatically define a homomorphism ϕ : Om → V
with ker(ϕ) = OnM. Thus, the matrix M defines one generating system for
ker(ϕ) given by the rows of M . But that means that when we multiply M
with an invertible matrix we just change the generating system for ker(ϕ). Thus
for S ∈ GLn(O), T ∈ GLm(O) we have V = Om /OnM = Om /On SMT .
Further, if M is a diagonal matrix it is easy to calculate deg+(M). For principal
ideal domains we have the Smith normal form. For a proof see [Jac95].
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Proposition 2.5.10. Let R be a principal ideal domain and M ∈ Matn×m(R)
Then there exist matrices S ∈ GLn(R) and T ∈ GLm(R), such that A = SMT
is a rectangular diagonal matrix with diagonal (a1, a2, . . . , as, 0, . . . , 0) such that
ai divides ai+1 for all i. Further we have ai = di

di−1
, where di is the greatest

common divisor of all i× i minors of M and d0 = 1.

Thus if R is a prinicipal ideal domain, M ∈ Matn×m(R) with Smith normal
form A with non zero diagonal entries a1, . . . , as we get deg+(M) = deg+(A) =
s∑
i=1

l(R/aiR).

Lemma 2.5.11. Let M ∈ Matn×m(O) be a non zero matrix of rank s over K.
Let I be the ideal generated by all s×s minors of M . Then deg+(M) = l(O /I).

Proof. Let us first assume that O is a principal ideal domain and use the same
notation for ai and di as in 2.5.10, especially we have dsO = I. From 2.5.10 we

know that deg+(M) = l(
s⊕
i=1

O /aiO). Note that we have
s∏
i=1

ai = ds. From 2.5.5

we get l(
s⊕
i=1

O /aiO) = l(O /dsO). Let us now assume that O is a Dedekind

domain. Thus for any prime ideal P of O we have

degP,+(M) = lP (OP /I).

From 2.5.7 we obtain

deg+(M) =
∑
P

degP,+(M) =
∑
P

lP (O /I) = l(O /I).

The following lemma gives bounds for deg+

(
M

α Idm

)
whereM ∈ Matn×m(O), α ∈

O.

Lemma 2.5.12. Let M ∈ Matn×m(O) and 0 6= α ∈ O. Then

deg+(α)(m− rkK(M)) ≤ deg+

(
M

α Idm

)
≤ deg+(α)(m− rkK(M)) + deg+(M).

Proof. Let V = On /OmM = V/V tors ⊕ V tors. Thus, by 2.3 we have

Om /(OnM +Om α) ∼= (Om /OnM)/((Om /OnM)α)

∼= (V/V tors)/(V/V torsα)⊕ V tors/(V torsα)

∼= (O /α)m−rkK(M) ⊕ V tors/(V torsα)

Since deg+

(
M

α Idm

)
= l(Om /(OnM + Om α)) The statement follows from

l((O /α)m−rkK(M)) = deg+(α)(m− rkK(M)) and deg+(M) = l(V/V tors).
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Proposition 2.5.13. Let M1,M2 ∈ Matn×m(O) and let 0 6= α ∈ K. Define
m1 = rkK(M2 − αM1) and m2 = rkK(M2). Assume m2 > m1. Then

deg+(α) ≤
deg+(M2)

m2 −m1

Proof. Since deg+(α) =
∑
P

degP,+(α) and deg+(M2) =
∑
P

degP,+(M2) it is

enough to show

degP,+(α) ≤
degP,+(M2)

m2 −m1

for each prime ideal P of O. Let α = a
b with a, b ∈ O, thus we have deg+(α) =

deg+(a). Note that if α /∈ OP , then a is invertible in OP , so degP,+(α) = 0.
Therefore we can assume that α ∈ OP . By applying 2.5.12 to matrices over OP
we get

degP,+(α)(m−m1) ≤ degP,+

(
M2 − αM1

α Idm

)
. (2.4)

Since (On(M2 − αM1) + Om α = OnM2 + Om α, by applying 2.5.12 again we
get

degP,+

(
M2 − αM1

α Idm

)
= degP,+

(
M2

α Idm

)
≤ degP,+(α)(m−m2) + degP,+(M2).

(2.5)
Taking 2.4 and 2.5 together we get our result.

So what have we have done so far? Let us consider the situation from
the previous proposition. We found a bound for deg+(α) only in terms of M2

and m2 −m1. Note that with respect to Theorem 2.5.1 the value m2 −m1 is
connected to the threshold ε. In the case O = Z, M2 = Idn and M1 ∈ Matn(Z)
the previous theorem gives us a bound for deg+(λ−1) where λ is an eigenvalue
of M1.

In the next two sections we want to apply these results first in the case of
rings of integers of number fields and function fields.

2.5.3 Rings of integers of number fields

In this section we want to apply the results from the previous section to the
special case where K is a finite extension of Q and O = OK is its ring of integers.
The length function l is defined as

l(M) = log2(|M |)

for any O-module M . If we work with two extensions Q ≤ K1 ≤ K2, for α ∈ K1

we will write degK1
+ (α) and degK2

+ (α), depending on what base field we consider.

Since OK2
∼= O|K2:K1|

K1
as OK1

modules we have

degK2
+ (α) = |K2 : K1| · degK1

+ (α). (2.6)
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For 0 6= α ∈ OK let α1, . . . , αn ∈ Q̄ be the roots of the minimal polynomial of
α over Q . The norm NK/Q(α) of α over K is

NK/Q(α) =

(
n∏
i=1

αi

)|K:Q(α)|

=

(
n∏
i=1

αi

) |K:Q |
n

.

Recall that
|NK/Q(α)| = | OK /OK α| = 2deg+(α).

Let us put dαe = max
i
|αi|. Then we get

deg+(α) = log2(|NK/Q(α)|) ≤ |K : Q | · log2(dαe). (2.7)

Note that dαe ≥ 1 and that for α, β ∈ OK we have

dα+ βe ≤ dαe+ dβe and dα · βe ≤ dαe · dβe (2.8)

For a non-zero matrix M = (mi,j) ∈ Matn×m(K) we define

dMe = max
j

∑
i

dmi,je.

If M is a zero matrix we put dMe = 1. We are now ready to estimate deg+(M)
for a matrix M ∈ Matn×m(OK).

Proposition 2.5.14. Let M ∈ Matn×m(OK). Then

deg+(M) ≤ m · |K : Q | · log2(dMe).

Proof. Let rkK(M) = s. Lemma 2.5.11 gives us deg+(M) = l(OK /I) where I
is the ideal generated by all s× s-minors of M . So let y be such a minor. Then
we have

deg+(M) = l(OK /I) ≤ l(OK /OK y) = deg+(y).

By the properties 2.8 we get

dye ≤ dMes ≤ dMem.

Thus, using 2.7, we obtain

deg+(M) ≤ deg+(y) ≤ |K : Q | · log2(dye) ≤ |K : Q | ·m · log2(dMe).

Let us consider the ring R = OK〈X,X∗〉 again. Let W be the set of all
finite words in X and X∗. So W is a basis for K〈X,X∗〉. A word w ∈ W is of
length n, if w = yi1 · · · yin for yj ∈ X ∪X∗. For an element a =

∑
w∈W

aww ∈ R

with aw ∈ OK we define

dae =
∑
w∈W
dawe.
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Just as before, for a matrix M = (mi,j) ∈ Matn×m(R) we define

dMe = max
j

∑
i

dmi,je.

The following lemma follows directly from the definitions. Recall that Fb was
defined in equation 2.2 as

Fb = {f : X → Matnf (Z) | nf ∈ N, ‖f(xi)‖1, ‖f(xi)‖∞ < b for all i}.

Lemma 2.5.15. Let f ∈ Fb and M ∈ Matn×m(R). Let t be the length of the
longest word w that appears in the coefficients of M . Then

df(M)e ≤ btdMe.

If we apply the last lemma to the previous proposition, we obtain

deg+(f(M)) ≤ m · nf · |K : Q| · log2(btdMe)

for M ∈ Matn×m(R) and f ∈ Fb, f : R → Matnf (R). Thus we obtain that the
torsion part of (Onf ·m /(Onf ·n f(M))) grows linearly in nf .

We now want to see what this means for possible elements of Sε(M1,M2).
For α ∈ Q̄ we define

N+(α) = 2deg
Q(α)
+ (α) = | OQ(α) /(OQ(α) α)+|.

Corollary 2.5.16. Let M1,M2 ∈ Matn×m(R), f ∈ Fb, α ∈ K and t be the
length of the longest word that appears in M2. We put

m1 = rkK(f(M2 − αM1)) and m2 = rkK(f(M2)).

Assume that m2 > m1. Then

N+(α) ≤ bt · dM2e
m·nf ·| Q(α):Q |

m2−m1 .

Proof. Using all the previous results we obtain

deg
Q(α)
+ (α)

(2.6)
=

degK+ (α)

|K : Q(α)|
(2.5.13)

≤
degK+ (f(M2))

|K : Q(α)| · (m2 −m1)

(2.5.14)

≤

m · nf · |K : Q | · log2(df(M2)e)
|K : Q(α)| · (m2 −m1)

(2.5.15)

≤ m · nf · |Q(α) : Q | · log2(btdM2e)
m2 −m1

.

2.5.4 Function fields

Let Q be an algebraically closed subfield of C and let K be a finite extension
of Q(x). In this section we want to apply our results about Dedekind domains



82 CHAPTER 2. EFFECTIVE LÜCK APPROXIMATION THEOREM

to the integral closure of Q[x] in K, which we denote by O = OK . The length
function l on OK modules is given by l(M) = dimQM for a OK-module M .
Since we will also consider the ring O′ which will be the integral closure of
Q[x−1] in K, we will write degOK+ if the base ring is not clear.

In this section we need the notion of valuations. A good source to learn
about those is [SZ14].

Definition 2.5.17. A Q-valuation on K is a homomorphism v : K \ {0} →
(R,+) such that

(1) v(q) = 0 for all q ∈ Q \ {0} and

(2) v(a+ b) ≥ min{v(a), v(b)} for all a, b ∈ K.
Further we extend v to K by defining v(0) =∞.

A valuation is called trivial if v(a) = 0 for all a ∈ K. From now on lets
assume that all valuations are non trivial. Two valuations v1, v2 are called
equivalent if there is an r ∈ R>0 such that rv1 = v2. Let CK be the set
of all equivalent classes of Q-valuations of K. In each class v ∈ CK there is
exactly one valuation which takes values in Z. By abuse of notation we will
also write v for this valuation. Further put Ov = {k ∈ K | v(k) ≥ 0} and
Pv = {k ∈ K | v(k) > 0}. Then Ov is a discrete valuation domain with maximal
ideal Pv. Further, the field Ov /Pv is isomorphic to Q, where the isomorphism
comes from the inclusion Q ↪→ Ov. Thus for any k ∈ Ov there is exactly one
q ∈ Q such that k − q ∈ Pv. We define k(v) = q for k ∈ Ov and k(v) = ∞ for
k ∈ K \Ov. This way we can consider the elements of K as functions over CK .

The following lemma can be found in [SZ14, Theorem 2.5.2].

Lemma 2.5.18. Let Q be an algebraically closed subfield of C, K a finite ex-
tension of Q(x) and 0 6= α ∈ K. Then

|K : Q(a)| =
∑

v∈CK ,v(a)>0

v(a) = −
∑

v∈CK ,v(a)<0

v(a).

Corollary 2.5.19. Let Q be an algebraically closed field, K/Q(a) a finite ex-
tension and a1, a2 ∈ K. Assume a1 − a2 /∈ Q. Then

|K : Q(a1 − a2)| ≤ |K : Q(a1)|+ |K : Q(a2)|.

Proof. Let v ∈ LK . Since v(α1 − α2) = v(α1 + α2) ≥ min{v(α1), α2}, if v(α1 −
α2) < 0 we get v(α1) < 0 or v(α2) < 0. Therefore,

|K : Q(α1 − α2)| (2.5.18)
= −

∑
v∈CK ,v(α1−α2)<0

v(α1 − α2) ≤

−
∑

v∈CK ,v(α1−α2)<0

min{v(α1), v(α2)} ≤

−
∑

v∈CK ,v(α1)<0

v(α1)−
∑

v∈CK ,v(α2)<0

v(α2)
(2.5.18)

= |K : Q(α1)|+ |K : Q(α2)|.
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As mentioned before let us denote byO′K the elements of K that are integtral
over Q[x−1]. The following lemma connects our notion of deg+ with the notion
of valuations.

Lemma 2.5.20. Let α ∈ K. Then

degOK+ (a) =
∑

v∈CK ,v(a)≥0,v(x)≥0

v(a) and deg
O′+
+ (a) =

∑
v∈CK ,v(a)≥0,v(x)≤0

v(a).

In particular we have

max{degOK+ (a),deg
O′K(a)
+ } ≤ |K : Q(a)| ≤ degOK+ (a) + deg

O′K
+ (a).

Proof. We will only proove the formula for degOK+ . The other formula is ob-
tained in the same way. Note that by [SZ14, Theorem 2.21, Application E]
we have OK = {a ∈ K | v(a) ≥ 0 for all v ∈ CK with v(x) ≥ 0} and every
maximal ideal of OK is of the form Pv = {a ∈ K | v(a) > 0} for some v ∈ CK
that satisfies v(x) ≥ 0. Thus we obtain

(α)+ =
∏

v(x)≥0,v(α)≥0

P v(α)
v .

Since Ov /Pnv ∼=
n⊕
i=1

Q we obtain

degOK+ (α) =
∑

v∈CK ,v(a)≥0,v(x)≥0

v(a).

As in the previous section we now want to find an invariant of matrices M
over OK and OK〈X,X∗〉 that serves as an upper bound for degOK+ and does
not increase when we pass from matrices over OK〈X,X∗〉 to matrices over OK .

So let M = (Mi,j) ∈ Matn×m(K). We define

DK(M) =
∑
v∈CK

min{{v(mi,j)}, 0}

Let us first show that for matrices over OK we do get a bound on degOK+ .

Lemma 2.5.21. Let M ∈ Matn×m(OK). Then

degOK+ (M) ≤ mDK(M).

Proof. First we want to use Lemma 2.5.11. Let k = rkK(M) and let I be the
ideal of OK generated by all k×k minors of M . In particular let y be one k×k
minor. Then we get

degOK+ (M) = l(OK /I) ≤ l(OK /OK y) = degOK+ (y).
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Now since y is a k×k minor, it is a sum with k summands, where each summand
is a product with k factors and each factor is an entry of M . Since v(ab) =
v(a) + v(b) and v(a+ b) ≥ min{v(a), v(b)} we get

v(y) ≥ k ·min
i,j
{v(mi,j)}.

Putting everything together we get

degOK+ (M) ≤ degOK+ (y)
(2.5.20)

≤ |K : Q(y)|
(2.5.18)

≤

−
∑

v∈CK ,v(y)<0

v(y) ≤ −k
∑

v∈CK ,v(y)<0

min
i,j
{v(mi,j)} ≤ mDK(M).

We now want to extend the notion of DK to matrices over R = OK〈X,X∗〉.
As in the previous section let W be the set of all finite words in X∪X∗. For any
element f =

∑
w∈W

fww we put v(f) = min
w
{v(fw)}. If M = (mi,j) ∈ Matn×m(R)

we define
DK(M) = min

i,j
{{v(mi,j)}, 0}.

Since the maps f ∈ Fb map the elements x ∈ X to matrices over Z and we have
v(z) = 0 for all z ∈ Z the next lemma follows directly from the definitions.

Lemma 2.5.22. Let M ∈ Matn×m(O〈X,X∗〉) and let f ∈ Fb. Then

DK(f(M)) ≤ DK(M).

Let now Q(x) ≤ K ≤ L be two finite extensions of Q(x). By restricting we
can see any valuation v on L as a valuation on K. By [SZ14, Theorem 2.2.1]
the restriction map

resL/K : CL → CK

is onto. Further, by [SZ14, Theorem 2.5.2], for any v ∈ CK and any ṽ ∈ CL
with resL/K(ṽ) = v there exists a number eṽ such that

|L : K| =
∑

ṽ∈CL,res(ṽ)=v

eṽ

and for every α ∈ K we have

ṽ(α) = eṽv(α). (2.9)

From these equations we obtain

DL(M) = |L : K|DK(M). (2.10)

We are now ready to prove the equivalent of 2.5.16 for the case of function fields.
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Corollary 2.5.23. Let Q be an algebraically closed field and let E be an al-
gebraic closure of Q(x). Let K/Q(x) be a finite subextension of E/Q(x) and
a ∈ E. Let OK be the integral closure of Q[x] in K and O′K the integral closure
of Q[x−1] in K. Let M1,M2 ∈ Matn×m(OK〈X,X∗〉) and let 0 6= d ∈ K, such
that dM1, dM2 ∈ Matn×m(O′K〈X,X∗〉). Let f ∈ Fb. We put

m1 = rkE(f(M2 − aM1)) and m2 = rkE(f(M2)).

Suppose that m2 ≥ m1. Then

|K(a) : Q(a)| ≤ m · nf · |K(a) : K|(DK(M2) +DK(dM1))

m2 −m1

Proof. Let L = K(a),OL the integral closure of Q[x] in L and let O′L be the
integral closure of Q[x−1] in L. Using (2.5.13),(2.5.21) and (2.5.22) we get

degOL+ (a) ≤
degOL+ (f(M2))

m2 −m1
≤ m · nf ·DL(f(M2))

m2 −m1
≤ m · nf ·DL(M2)

m2 −m1
.

Similarly we get

deg
O′L
+ (a) ≤ m · nf ·DL(dM2)

m2 −m1
.

Therefore (2.5.20) gives us

|L : Q(a)| ≤ degOL+ (a) + deg
O′L
+ (a) ≤ m · nf · (DL(M2) +DL(dM2))

m2 −m1

=
m · nf · |L : K| · (DK(M2) +DK(dM2))

m2 −m1

2.5.5 Two finiteness results

In this section we want to show two finiteness results that allow us to apply the
theory we developed so far. Both statements can be found in [Jai19, Chapter
8]. We will begin with an algebraic result.

Proposition 2.5.24. For given k ∈ N and C ∈ R there are only finitely many
algebraic numbers α that satisfy

(1) |Q(α) : Q | = k and

(2) N+(α− i) ≤ C for i ∈ {0, . . . , k}.

Proof. Let K = Q(α) and OK its ring of integers. Write α = a
b with a, b ∈ OK .

Let σj : K → Q̄, j ∈ {0, . . . , k} be k different embeddings of K into Q̄. Let
aj = σj(a) and bj = σj(b) and consider the polynomial

f(x) =

k∏
j=1

(aj − bjx) =

k∑
j=0

cjx
j .
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Since we included all the possible embeddings of K into Q̄ we have f(x) ∈ Z[x].
Note that for z ∈ Z we have f(z) = NK/Q(a − zb) and therefore |f(z)| =
| OK /OK(a− zb)|. Thus, with A = | OK /(OK a+OK b)|, we obtain

|f(i)| = | OK /OK(a− ib)| = A · |(OK a+OK b)/OK(a− ib)| =
A · |(OK(a− ib) +OK b)/OK(a− ib)| =

A · | OK +OK(α− i)/OK(α− i)| = A ·N+(α− i)

Put now mi,j = (j − 1)i−1 for i, j ∈ {0, . . . , k} and consider the matrix M =
(mi,j). Note that M is invertible and that

(c0, c1, . . . , ck)M = (f(0), f(1), . . . , f(k)).

Therefore, we have

(c0, c1, . . . , ck) = (f(0), f(1), . . . , f(k))M−1 = A·(±N+(α), . . . ,±(N+(α−k))M−1.

Consider now the polynomial f̃(x) = 1
Af(x) =

k∑
i=0

c′ix
i. Obviously f̃(α) = 0 and

c′i = ci
A . Note that

(c′0, . . . , c
′
k) = (±N+(α), . . . ,±(N+(α− k))M−1.

Since we assumed that each N+(α− i) is bounded by C, there are only finitely
many such polynomials f̃ . Thus, the number of all their possible roots α is also
finite.

We now want to prove a finiteness result for valuations on function fields.
For that let Q be an algebraically closed field and let E be an algebraic closure
of Q(x). As in the previous section for any extension K/Q(x) we denote by
CK the set of Q valuations of K over Q. Remember that for finite extensions
Q(x) ≤ K ≤ L we have surjective maps resL/K : CL → CK . Since E is the
union of its finite dimensional subextensions we get

CE = lim←−
K/Q(x) is finite, K≤E

CK

with surjective maps resE/K : CE → CK . Remember that we interpreted the
elements α ∈ L as functions on CL. Thus for ṽ ∈ CE and and α ∈ L ≤ E we
have α(ṽ) = α(resE/L(ṽ).

We have the following result.

Proposition 2.5.25. Let C ∈ R and let K/Q(x) be a finite subextension of
E/Q(x). For every i ∈ N let ai ∈ E such that

(1) |K(ai) : Q(ai)| ≤ C

(2) |K(ai) : K| ≤ C.
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Assume that all ai are different. Let S = {ṽ ∈ CE | {ai(ṽ)} is finite }. Then
resE/K(S) contains at most C(2C + 1) valuations.

Proof. Let ṽ1, . . . , ṽN ∈ S such that resE/K(ṽi) 6= resE/K(ṽi) for i 6= j. Since
ṽ1 ∈ S, the set {αi(ṽ1) | i ∈ N} is finite. Therefore, there is a β1 ∈ Q∪{∞} such
that the set J1 = {i ∈ N | αi(ṽ1) = β1} is infinite. Now since J1 is infinite and
ṽ2 ∈ S, there is β2 ∈ Q ∪ {∞} such that the set J2 = {i ∈ J1 | αi(ṽ2) = β2} is
infinite. Repeating this procedure we get for each j ∈ {0, . . . , N} a βj ∈ Q∪{∞}
and an infinite subset Ji ∈ N such that

αj(ṽs) = βs for each j ∈ Ji, s ∈ {1, . . . , i}.

By reordering the αi and the ṽj we can assume that 1, 2 ∈ JN , β1, . . . , βN1
∈

Q, βN1+1, . . . , βN = {∞}. Therefore, for j ∈ {1, . . . , N} we have α1(ṽj) = α2(ṽj)
and therefore (α1 − α2)(ṽj) = 0. Let L = K(α1, α2). We have

|L : Q(α1 − α2)|
(2.5.19)

≤ |L : Q(α1)|+ |L : Q(α2)| ≤
|L : K(α1)| · |K(α1) : Q(α1)|+ |L : K(α2)| · |K(α2) : Q(α2)| ≤
|K(α2) : K| · |K(α1) : Q(α1)|+ |K(α1) : K| · |K(α2) : Q(α2)| ≤ 2C2.

By Lemma 2.5.18 the function α1 − α2 has at most 2C2 zeros in CL. Since
we assumed that res(ṽi) 6= res(ṽj) for i 6= j we get obtain N1 ≤ 2C2. Since
|K(α1) : Q(α1)| ≤ C, again by Lemma 2.5.18 there are less then C valuations
v ∈ CK(α1) with v(α1) < 0. Since v(α1) < 0 implies α1(v) = ∞ we obtain
N −N1 ≤ C and therefore N ≤ 2C2 + C.

2.5.6 Proof of Theorem 2.5.1

We are now ready to proof the main theorem of this section. We have already
seen that it is enough to prove the theorem for matricesA,B ∈ Matn×m(f̄(O〈X,X∗〉))
where

(1) O = Z.

(2) O = Q([x]) where Q is an algebraically closed subfield of C and the theo-
rem holds for K = Q.

In both cases let K be the field of fractions of O and E be an algebraic closure
of K. Assume that the set Sε(A,B) is infinite. For each j ∈ N let us choose a
λj ∈ Sε(A,B) such that λi 6= λj for i 6= j. For each j let now ϕj ∈ Fb such that

rkϕj (B)− rkϕj (B − λjA) ≥ ε. (2.11)

For simplicity we set rkj = rkϕj , Aj = ϕj(A), Bj = ϕj(B) and nj = nϕj . Let
Lj be the extension of K generated by λj . For each σ ∈ Gal(E/K) we have
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σ(Aj) = Aj and σ(Bj) = Bj . Therefore we have

rkj(B − λA) =
1

nj
rkLj (Bj − λAj) =

1

nj
rkσ(Lj)(σ(Bj − λAj)) =

1

nj
rkσ(Lj)(Bj − σ(λ)Aj) =

rkj(B − σ(λ)A).

Therefore, by 1.3.27, we obtain |Lj : K| ≤ n
ε . Put C1 = n

ε . Let us fix a non
principal utralfilter ω on N and set rkω = lim

ω
rkj .

Case K = Q,O = Z.

We will first consider the algebraic case. We want to apply 2.5.24. By proposi-
tion 1.3.27 there is C2 ∈ Z≥0 such that for all i ∈ {0, . . . , C1} we have

rkω(B)− rkω(B + (C2 − i)A) ≤ ε

4
.

Therefore, by definition of the ultralimit, the set

J = {j ∈ N | rkj(B)− rkj(B + (C2 − i)A) ≤ ε

2
for every i = 0, . . . , C1} (2.12)

belongs to the ultrafilter ω and is therefore infinite. Thus we obtain for every
j ∈ J and i ∈ {0, . . . , C1},

rkLj (Bj + (C2 − i)Aj)− rkLj (Bj + (C2 − i)Aj − (λj + C2 − i)Aj) =

rkLj (Bj + (C2 − i)Aj)− rkLj (Bj − λjAj) =

nj · (rkj(B + (C2 − i)A)− rkj(B − λjA)) ≥
nj · (rkj(B + (C2 − i)A)− rkj(B) + ε) ≥

nj · (−
ε

2
+ ε) = nj

ε

2

We can now apply 2.5.16 with M1 = A,M2 = B+(C2−i)A and α = λj+C2−i.
Remember that t is the length of the largest word that appears in M2. This way
we get for each j ∈ J, 0 ≤ i ≤ C1,

N+(λj + C2 − i) ≤ (btdB + (c2 − i)Ae)
m·nj ·| Q(λj):Q |

rkLj
(wBj+(C2−i)Aj)−rkLj

(Bj)−λjAj) ≤

(cldB + (C2 − i)Ae)
2m·| Q(λj):Q |

ε ≤

(cldBe+ (C2 + C1)dAe)
2mC1
ε .

Note that the last expression does not depend on j anymore. Since C2 ∈ Z we
have Q(λj + C2) = Q(λj) and therefore |Q(λj + C2) : Q | ≤ C1. Thus we can
apply Proposition 2.5.24 and get that there are only finitely many λj , which is
a contradiction.
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Case K = Q(x),O = Q[x].

We now want to prove our second case. For that let L/Q(x) be a subextension
of E/Q(x). For v ∈ CL we put Ov = {a ∈ L : v(a) ≥ 0} and Pv = {a ∈
L : v(a) > 0}. Denote by ϕv : Ov → Q the Q-algebra homomorphism coming
from the reduction modulo Pv. For every Sylvester matrix rank function rk on
Ov〈X,X∗〉 we define rkv = rk ◦ϕv ∈ P(Q〈X,X∗〉). Put Spec(O) = {v ∈ CK :
O ⊆ Ov} = {v ∈ CK : v(x) ≥ 0}.

Lemma 2.5.26. Let M ∈ Matn×m(O〈X,X∗〉). For almost all v ∈ Spec(O) we
have rkω(M)− rkω,v(M) ≤ ε

4 .

Proof. By 1.3.33 rkω is the natural transcendental extension of the restriction
of rkω to Q〈X,X∗〉. Thus by 1.3.34 we get

lim
i→∞

rkω,v = rkω .

Let now

C2 = max

{
C1,

mC1(DK(B) +DK(db))

ε

}
and C3 = C2(2C2 + 1) + 1.

By the previous lemma we can choose C3 different vi ∈ Spec(O), i ∈ {1, . . . , C3}
such that

rkω(B)− rkω,v(B) ≤ ε

4
.

Remember that rkω = lim
ω

rkj and therefore rkω,v = lim
ω

rkj,v . Therefore the set

J = {J ∈ N | rkj(B)− rkj,vi(B) ≤ ε

2
for i ∈ {1, . . . , C3}}

belongs to ω and is infinite. For each i ∈ {1, . . . , C3} let ṽi ∈ CE such that
resE/K(ṽi) = vi.

Lemma 2.5.27. There exists an i ∈ {1, . . . , C3} such that

{λj(ṽi) | j ∈ J}

is infinite.

Proof. We have to show that the set {λj , j ∈ J} satisfies the conditions of 2.5.25
Remember that K = Q(x) and we have already seen that |K(λj) : K| ≤ C1.
Further we have for each j ∈ J

|K(λj) : Q(λj)|
(2.5.23)

≤ m · nf · |K(a) : K|(DK(M2) +DK(dM1))

rkE(ϕj(B))− rkE(ϕj(B)− λjϕj(A))

(2.11)

≤ m · C1(DK(M2) +DK(dM1))

ε
.

Thus, by 2.5.25, the set resE/K(S) has only C3 − 1 elements where S = {ṽ ∈
CE | {λj(ṽ)}j∈J is finite}. Therefore there exsits an i ∈ {1, . . . , C3} such that
the set {λj(ṽi) | j ∈ J} is infinite.
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Let now ṽ = ṽi, where {λj(ṽi) | j ∈ J} is infinite. Let

I = {j ∈ J | λj(ṽ) 6=∞},

that means ṽ(λj) ≥ 0. Obviously I is infinite as well. The rank of a finite matrix
over Oṽ cannot increase after the reduction modulo ker(φṽ) = Pṽ = {a ∈ E |
ṽ(a) > 0}. We get for each j ∈ I,

rkQ(fij (ϕṽ(B)− λj(ṽ)ϕṽ(A))) = rkQ(fij (ϕṽ(B − λjA)))

≤ rkE(fij (B − λjA)).

Therefore, we obtain

rkQ(fij (ϕṽ(B)))− rkQ(fij (ϕṽ(B)− λj(ṽ)ϕṽ(A))) ≥

rkE(fij (B))− ε

2
· ij − rkE(fij (B − λjA)) ≥ ε

2
· ij .

This means that S ε
2
(ϕṽ(A), ϕṽ(B)) is infinite. Since we assumed that our the-

orem holds over Q we have a contradiction.

2.6 The strong algebraic eigenvalue property

In this section we want to verify the conditions of 1.3.32. For that let K be
an algebraically closed field, A = K〈x1, x

∗
1 . . . , xr, x

∗
r〉 and C the class of b-

bounded integer valued traces on A . Let (τi) be a converging sequence in C
with representations ϕi : A → Matni(K). Set τ = lim

i→∞
τi. Assume that the

class C has the approximation property that means we have

lim
i→∞

1

ni
rkC ◦ϕi = rkτ

as rank functions on A. Let Rτ = R(A,Uτ ) be the ∗-regular closure of A in
Uτ . We want to prove the following theorem.

Theorem 2.6.1. Let A ∈ Matn(Rτ ) and λ ∈ C \K. Then

rkτ (A− λIdn) = n.

This means that the point spectrum of the matrix A, seen as an operator on
Hnτ does not contain numbers that are transcendental over K, or equivalently,
all eigenvalues of A are algebraic over K. Let us for a moment assume that
A ∈ Matn(A) is normal. For simplicity write Ai = ϕi(A). We will see in
Theorem 2.7.4 that from rkτ = lim

i→∞
1
ni

rkC ◦ϕi we obtain that the spectral

measures µA,τi not only converge weakly towards µA,τ , but also that for any
z ∈ C we have

lim
i→∞

µA,τi({z}) = µA,τ ({z}).
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Note that the Ai are matrices over the algebraically closed field K. In particular,
the support of the eigenvalue measures associated to the Ai lies in K. Thus, we
have

rkτ (A− λIdn) = n− dimτ ker(A− λIdn)

= n− µA−λId,τ ({0})
= n− µA,τ ({λ})
= n− lim

i→∞
µA,τi({λ}

= n− lim
i→∞

0

= n.

However, when A is not normal, we can not argue in this way. We do not know
if the eigenvalues of the matrices Ai describe the eigenvalues of the operator
associated to the matrix A. By abuse of notation we will denote this opera-
tor also by A. Therefore we will scan the operator associated to A indirectly
for eigenvalues by checking the dimension of its centralizer inside the space of
Hilbert-Schmidt-operators. We will start with the definition of this space, the
definition of the centralizer and we will see how to define a von Neumann di-
mension on this space. In this section we will follow [Jai19, Chapter 9].

2.6.1 The space of Hilbert-Schmidt-Operators

Definition 2.6.2. Let H be a separable Hilbert space with orthonormal basis
X = {x1, x2, . . .}. An operator A ∈ B(H) is called Hilbert-Schmidt operator, if∑

x∈X
‖xA‖2 <∞.

We denote by HS(H) ⊆ B(H) the set of Hilbert-Schmidt operators of H.

It is important to note that HS(H) forms an ideal in B(H). If Y is another
orthonormal basis of H and A ∈ HS(H) we have∑

x∈X
‖xA‖2 =

∑
y∈Y
‖yA∗‖2 =

∑
y∈Y
‖yA‖2.

We now want to define a module structure on the space HS(H). We have the
following result.

Proposition 2.6.3. Let H be a Hilbert space. The space H∗⊗H is isometrically
isomorphic to HS(H), the space of Hilbert Schmidt operators of H.

Proof. Let v, u ∈ H . Let δv ∈ H∗ be the element defined by w.δv = 〈w, v〉
for w ∈ H . It is enough to consider the elements δv ⊗ u ∈ H∗⊗H . Define
Ψ : H∗⊗H → HS(H) by (w)[Ψ(δv ⊗ u)] = 〈w, v〉u. This is obviously injective
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and since the image contains a dense subset it is also surjective. Let {e1, e2, . . .}
be an orthonormal basis of H. Then we have

‖Ψ(δv ⊗ u)‖2 =
∑
i

〈〈ei, v〉u, 〈ei, v〉, u〉

=
∑
i

〈ei, v〉〈ei, v〉〈u, u〉

= ‖v‖2 · ‖u‖2

= ‖δv ⊗ u‖2.

The bounded inverse theorem gives the result.

Now consider the algebra A⊗σ A, where σ : C → C is the complex conju-
gation. In the following we will write H = Hτ , where Hτ is the Hilbert space
coming from the GNS construction with respect to τ. We turn H∗⊗H into a
right A⊗σ A module by defining

(δv ⊗ u)(a⊗ b) = δva ⊗ ub

for v, u ∈ H . Remember that Hτ was basically the completion of some quotient
of A with respect to the norm induced by τ. In particular, the orbit of the vector
coming from 1 ∈ A is dense in Hτ . By abuse of notation we will denote this
vector by e ∈ Hτ . From that it follows that the orbit of the vector δe ⊗ e under
the A⊗σA action is dense in H∗⊗H. Thus we can define a trace on A⊗σA by

τ̃(a⊗ b) = 〈(δe ⊗ e)(a⊗ b), δe ⊗ b〉. (2.13)

Lemma 2.6.4. We have

τ̃(a⊗ b) = τ(a)τ(b).

Proof.

τ̃(a⊗ b) = 〈(δe ⊗ e)(a⊗ b), δe ⊗ b〉
= 〈δe.a, δe〉 · 〈e.b, e〉
= 〈e, e.a〉 · τ(b)

= 〈e.a∗, e〉 · τ(b)

= τ(a)τ(b).

Thus, by 1.2.6, we get that H∗⊗H is isometrically isomorphic to Hτ̃ . We
now also want to define a right A⊗σ A action on HS(H). For v ∈ H, A ∈ HS(H)
and a, b ∈ A we set

(w)[A(a⊗ b)] = [(wa∗)A]b.

Lemma 2.6.5. Let Ψ : H∗⊗H → HS(H) be as above. Then Ψ is a A ⊗σ A
module isomorphism.
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Proof. It is left to show that Ψ interchanges with the A⊗σ A action. So let
v, u, w ∈ H, a, b ∈ A .

(w)[Ψ((δv ⊗ u)(a⊗ b))] = (w)[Ψ(δva ⊗ ub)]
= 〈w, va〉(ub)
= (〈wa∗, v〉u)b

= (w)[Ψ(δv ⊗ u)(a⊗ b)].

Thus, having identified HS(H) with Hτ̃ we have a von Neumann dimension
for closed invariant subspaces of HS(H). As stated before, for A ∈ Uτ we are
interested in the centralizer of A in HS(Hτ ). But what exactly is the centralizer
of A? If A ∈ N τ , since HS(H) is an ideal, we can just define

CHS(H)(A) = {B ∈ HS(H) | AB = BA}.

However, if A ∈ Uτ , for D ∈ HS(H), the product AD or DA might not be
defined. Remember that the definition of a Hilbert Schmidt operator is totally
independent of A. Thus we have to define the centralizer differently. We know
that Uτ can be seen as the Ore localization of N τ . Thus, for any A ∈ Uτ
there are B1, C1, B2, C2 ∈ N τ , where C1, C2 are non-zero divisors, such that
A = B1C

−1
1 = C−1

2 B2. Thus we can define

CHS(H)(A) = {D ∈ HS(H) | C2DB1 = C1DB2}.

Let us just check that this definition is independent of the choice of Ci, Bi. For
example assume we also have A = B3C

−1
3 . We want to show that from

C2DB1 = B2DC1

we also get

C2DB3 = B2DC3.

In fact we have

B2DC3 = B2DC1C
−1
1 C3

= C2DB1C
−1
1 C3

= C2DB3C
−1
3 C3

= C2DB3.

The next proposition shows that CHS(H)(A) is actually a A⊗σA Hilbert sub
module of HS(H).

Proposition 2.6.6. Let A = B1C
−1
1 = C−1

2 B2 ∈ Uτ . Then we have

Ψ(ker(A∗ ⊗ 1− 1⊗A)) = CHS(H)(A).
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Proof. Since (1⊗ C1) and (C∗2 ⊗ 1) are injective and commute we have

ker(A∗ ⊗ 1− 1⊗A) = ker(B∗2(C−1
2 )∗ ⊗ 1− 1⊗B1C

−1
1 )

= ker(B∗2(C−1
2 )∗ ⊗ 1− 1⊗B1C

−1
1 )(C∗2 ⊗ 1)(1⊗ C1))

= ker(B∗2 ⊗ C1 − C∗2 ⊗B1).

Furthermore we have

δv ⊗ u ∈ ker(B∗2 ⊗ C1 − C∗2 ⊗B1)

⇐⇒ δvB∗2 ⊗ uC1 = δvC∗2 ⊗ uB1

⇐⇒ 〈w, vB∗2〉uC1 = 〈w, vC∗2 〉uB1 for all w ∈ H
⇐⇒ wB2Ψ(δv ⊗ u)C1 = wC2Ψ(δv ⊗ u)B1 for all w ∈ H
⇐⇒ Ψ(δv ⊗ u) ∈ CHS(H)(A).

2.6.2 An application of the approximation property

In the previous section we have seen that for A ∈ Uτ we can see CHS(Hτ )(A)
as Hilbert A⊗σ A module. We now want to see that we can approximate the
dimension of this module. Let us repeat some notation. Let K be a subfield
of C closed under complex conjugation. Let A be a finitely generated free ∗-
algebra over K and let τ = lim

i→∞
τi be the limit of a sequence of converging

b-bounded integer valued trace ons A . That means we have ∗-homomorphism
ϕi : A → Matni(K) such that for every a ∈ A we have

τ(a) = lim
i→∞

1

ni
Tr(ϕi(a)).

Let V0 = Uτ and Vi = Matni(C) for i ≥ 1. For the definition of Uτ see section
1.2.4. Let ϕ0 : A → V0 be the natural ∗-homomorphism of A to V0. For
simplicity let Rτ = R(ϕ0(A),Uτ ) be the ∗-regular closure of A under ϕ0 in V0.
Consider now the algebra

V =

∞∏
j=0

Vj .

This algebra is ∗-regular and further we have a map

ϕ = (ϕj) : A → V.

This allows us to define and consider

U = R(ϕ(A),V),

the ∗-regular closure of the image of A under ϕ in V. Let πi : V → Vi be the
projection map. For i ≥ 1 we define rki = 1

ni
rkC ◦πi ∈ P(V). Note that with

τi = 1
ni

Tr ◦ ϕi we have rki ◦ϕi = rkτi ∈ P(A). Further we define rk0 = rkτ ◦π0.
Remember we extended rkτ from A first to N τ and then to Uτ . We have the
following proposition.
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Proposition 2.6.7. The following holds:

(a) The projection π0 : V → V0 restricts to a surjective ∗-homomorphism
π0 |U : U → Rτ .

(b) For i ≥ 1, the projection πi satisfies πi(U) ⊆ Matni(K).

(c) If the class C has the approximation property, for any z = (zi) ∈ Matn(U)

lim
i→∞

rki(z) = rk0(z).

Proof. Obviously we have ϕ0 = ϕ ◦ π0 : A → Vi. Note now that ϕ0 : A → Rτ ⊆
V0 and ϕ : A → U are epic ∗-homomorphism. Therefore, the first part follows
from 1.3.16. Part (b) follows by the same argument and the fact that Matni(K)
is ∗-regular. The last statement follows directly from 1.3.37.

Let now as before A = K〈x1, x
∗
1, . . . , xd, x

∗
d〉 and let τ = lim

j→∞
τj be the limit

of b-bounded integer valued traces on A with representation maps ϕj : A →
Matnj (K). Let B = K〈y1, y

∗
1 , . . . , y2d, y2d∗〉 and let α : B → A⊗σA defined by

α(yi) = xi⊗1 for i ≤ d and α(yi) = 1⊗xi−d for i ≥ d+ 1. For j ≥ 1 define now
ϕ̃ : A⊗σA→ Matnj (K)⊗σMatnj (K) ∼= Matn2

j
(K) by ϕ̃j(a⊗b) = ϕj(a)⊗ϕj(b).

Then the maps ϕ̃j are representation maps that yield b′–bounded integer valued
traces τ̃j with lim

j→∞
τ̃j = τ̃ defined in 2.13. Via the map α we can lift all our

maps to a free ∗-algebra, however, for simplicity we will stick with the notion
of A⊗A. We are now ready to prove the main result of this section.

Proposition 2.6.8. Assume that for all b the class of b-bounded integer valued
traces has the approximation property on finitely generated free ∗-algebras over
K. Let z = (zi) ∈ Matn(U). Then

dimτ̃ CMatn(HS(Hτ ))(z0) = lim
j→∞

dimC CMatn(Vj)(zj)

n2
j

.

Proof. For simplicity let us assume n = 1. We have seen in 2.6.6 that

dimτ̃ CHS(Hτ )(z0) = 1− rkτ̃ (z∗0 ⊗ 1− 1⊗ z0)

and similarly

dimC CVj (zj)

n2
j

=
1

n2
j

rkC(z∗j ⊗ 1− 1⊗ zj).

Thus the result follows by 2.6.7 (c) applied to the algebra B and the trace τ̃ ◦α
with approximation maps ϕ̃j ◦ α.
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2.6.3 A lower bound for the dimension of the centralizer

In the previous two sections we have seen how to define the centralizer of some
matrix A ∈ R(ϕ(A),Uτ ) and also that we can approximate its dimension. But
remember that our goal was to show that the matrix A has no transcendental
eigenvalues. So what is the connection between the dimension of the centralizer
of A and its eigenvalues. For that let us first consider the case of a complex
matrix A ∈ Matn(C). Since conjugation does not change the dimension of the
centralizer we can assume that A is already in Jordan normal form. Consider
the following matrices:

A1 =

λ1 1 0
0 λ1 1
0 0 λ1

 , A2 =

(
λ1 1
0 λ1

)
and A3 =

(
λ2 1
0 λ2

)
for λ1, λ2 ∈ C. A straight forward caluclation shows

CMatn(C)(A1) =


a1 a2 a3

0 a1 a2

0 0 a1

 | ai ∈ C

 ,

CMatn(C)(A1 ⊕A2) =




a1 a2 a3 d1 d2

0 a1 a2 0 d1

0 0 a1 0 0
0 c1 c2 b1 b2
0 0 c1 0 b1

 | ai, bi, ci, di ∈ C

 ,

CMatn(C)(A1 ⊕A3) =




a1 a2 a3 0 0
0 a1 a2 0 0
0 0 a1 0 0
0 0 0 b1 b2
0 0 0 0 b1

 | ai, bi ∈ C

 .

It seems that every eigenvalue contributes to the dimension of the centralizer.
So how can we generalize this? For λ ∈ C we define

nλ,i(A) = dimC ker(A− λ)i.

The following result describes completely the relation between the dimension of
the centralizer of A and the Jordan structure of A. Let us denote by σp(A) the
point spectrum of A that is in the finite dimensional case just the eigenvalues
of A.

Proposition 2.6.9. [CM93, Theorem 6.13] Let A ∈ Matn(C) with σp = λ1 . . . , λk.
Then we have

dimC CMatn(C)(A) =

k∑
j=1

n∑
i=0

(nλj ,i+1 − nλj ,i)2.

Let us first note the following corollary.
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Corollary 2.6.10. Let K be a subfield of C, A ∈ Matn(K) and let ε < 1
2 . Put

δ = 1+
√

1−2ε
2 . Assume that dimC CMatn(C)(A) ≥ n2(1 − ε). Then there exists

exactly one λ ∈ σp(A) with nλ,1(A) ≥ δn. Moreover λ ∈ K.

Proof. We know that
∑

λ∈σp(A)

∞∑
i=0

(nλ,i+1−nλ,i) = n. Let a = max{nλ,1(A) | λ ∈

σp(A)}. Then we have
∑

λ∈σp(A)

∞∑
i=0

(nλ,i+1−nλ,i)2 ≤ a2 + (n−a)2. The existence

follows then from a2 + (n − a)2 ≥ n2(1 − ε). The uniqueness follows because
δ > 1

2 . Obviously λ is algebraic over K and every Galois conjugate λ′ of λ also
satisfies nλ′,1 ≥ δn. Therefore it follows λ ∈ K by the uniqueness.

We would like to state the result of 2.6.9 also for the case A ∈ Matn(Uτ ).
Just as before let us define

nλ,i(A) = dimτ ker(A− λ)i.

For each eigenvalue λ ∈ σp(A) of A we now want to construct an A-invariant
subspace of the centralizer of A. In the following we will write A− λ instead of
A− λIdn. Define

UA,λ,j = ker(A− λ)j+1 ∩ (ker(A− λ)j)⊥.

Obviously UA,λ,j is closed and invariant under the left A action, however the
operator A might not be bounded when restricted to UA,λ,j . Therefore, for any
ε > 0, let U εA,λ,j be a closed, A-left invariant subspace of UA,λ,j such that

• dimτ U
ε
A,λ,j ≥ dimτ UA,λ,j − ε and

• A is bounded when restricted to U εA,λ,j , (U
ε
A,λ,j)A, . . . , (U

ε
A,λ,j)A

j .

In the same way we define a subspace U ε
A∗,λ,j

. By definition we have

dimτ U
ε
A,λ,j ,dimτ U

ε
A∗,λ,j

≥ nλ,j+1(A)− nλ,j(A)− ε. (2.14)

For v ∈ U ε
A∗,λ̄,j

and u ∈ U εA,λ,j we put

wj(v, u) =

j∑
i=0

(δv(A∗−λ̄)j−i ⊗ (u)(A− λ)i ∈ H∗τ ⊗Hτ )

and define W ε
A,λ,j as the closed subspace of H∗τ ⊗Hτ generated by the vectors

{wj(v, u) | v ∈ U ε
A∗,λ̄,j

, u ∈ U εA,λ,j}.

Lemma 2.6.11. Let A ∈ Uτ . Then the following holds.

(a) For every ε ≥ 0 we have Ψ(WA,λ,j)
ε ⊆ CHS(Hτ )n(A).
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(b) Let k ∈ N, λ1, . . . λk ∈ σp(A) and n1, . . . , nk ∈ N . Then

lim
ε→0

dimτ̃ (

k∑
i=1

ni∑
j=0

Ψ(W ε
A,λ,j)) =

k∑
i=1

ni∑
j=0

(nλi,j+1(A)− nλi,j(A))2.

Proof. (1) For simplicity let us assume that λ = 0. Let v ∈ U εA∗,0,j , u ∈ U εA,0,j .
Represent A = B−1

1 C1 = C2B
−1
2 with B1, B2, C1, C2 ∈ N τ . Then we have

C1Ψ(

j∑
i=0

(δv(A∗)j−i ⊗ u(A)i)B2 −B1Ψ(

j∑
i=0

(δv(A∗)j−i ⊗ u(A)iC2 =

j∑
i=0

〈·, v(A∗)j−iC∗1 〉u(A)iB2 −
j∑
i=0

〈·, v(A∗)j−iB∗1〉u(A)iC2 =

j∑
i=0

〈·, v(A∗)j−iC∗1 ((B∗1)−1B∗1)〉u(A)iB2−
j∑
i=0

〈·, v(A∗)j−iB∗1〉u(A)iC2B
−1
2 B2 =

j∑
i=0

〈·, v(A∗)j−i+1B∗1〉u(A)iB2 −
j∑
i=0

〈·, v(A∗)j−iB∗1〉u(A)i+1B2 =

B1(

j∑
i=0

〈·, v(A∗)j−i+1〉u(A)i −
j∑
i=0

〈·, v(A∗)j−i〉u(A)i+1)B2 =

B1(

j∑
i=1

〈·, v(A∗)j−i+1〉u(A)i −
j−1∑
i=0

〈·, v(A∗)j−i〉u(A)i+1)B2 = 0.

(2) Fix ε > 0. Let

ρ : ⊕ki=1 ⊕
ni
j=1 δUεA∗,λi,j

⊗ UA,λ,j →
k∑
i=1

ni∑
j=1

Ψ(W ε
A,λi,j)

be the continuous linear map defined on the generating set {δvi,j ⊗ ui,j |
vi,j ∈ U εA∗,λi,j , ui,j ∈ U

ε
A,λi,j

} by

ρ(δvi,j ⊗ ui,j) = Ψ(wj(vi,j , ui,j)).

Note that ρ is bounded. Furthermore for different λ and different j the
spaces UA,λ,j and δUA,λ,j are all disjoint. Therefore the sums

U ε =

k∑
i=1

ni∑
j=0

U εA,λi,j and V ε =

k∑
i=1

ni∑
j=0

δUε
A∗,λi,j

are direct sums of closed subspaces of Hτ or H∗τ respectively. Since the
map

α : ⊕ki=1⊕
ni
j=0 : δUA∗,λi,j

⊗ UA,λ,j → V ε ⊗ U ε
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is a weak monomorphism, ρ = Ψ ◦ α is also a weak monomorphism. The
result follows then by 2.14 .

The following follows directly from the previous lemma.

Proposition 2.6.12. Let A ∈ Matn(Uτ ). Then

dimτ̃ CMatn(HS(Hτ ))(A) ≥
∑
λ∈σp

∞∑
i=0

(nλ,i+1(A)− nλ,i(A))2.

2.6.4 The centralizer dimension property

In the previous section we have seen a lower bound for dimτ̃ CHS(Hτ )(A) for
A ∈ Matn(Uτ ). We now want to see that for matrices A ∈ Rτ = R(A,Uτ ) the
inequality in 2.6.12 is actually an equality. For that we will first use that by
Proposition 2.6.8 we can approximate the dimension of the centralizer by the
dimensions of the centralizers of some matrices. We will then use Proposition
2.6.9 to calculate these dimension. Since the dimension of the approximation
matrices goes to infinity we need the following result.

Proposition 2.6.13. Let A ∈ Matn(C) and k ∈ N . Then

dimC CMatn(C)(A)−
∑

λ∈σp(A),nλ,1(A)≥nk

k−1∑
i=0

(nλ,i+1(A)− nλ,i(A))2 ≤ n2

k
.

Proof. Let λ ∈ C and s ≥ 0. Note that nλ,k(A)− nλ,(k−1)(A) is the number of
Jordan blocks of the Jordan normal form of A related to the eigenvalue λ of size
at least k. Therefore we have

nλ,i(A)− nλ,i−1(A) ≥ nλ,i+1(A)− nλ,i(A)

for all i. Note further that for k > n we have

nλ,k(A)− nλ,(−1(A) = 0.

Having this in mind we obtain

∞∑
i=s

(nλ,i+1(A)− nλ,i(A))2

≤ (nλ,s+1(A)− nλ,s(A))

∞∑
i=s

(nλ,i+1(A)− nλ,i(A))

≤ min{nλ,1,
n

s+ 1
} · nλ,n.
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Therefore we get

dimC CMatn(C)(A)−
∑

λ∈σp(A)
nλ,1(A)≥nk

k−1∑
i=0

(nλ,i+1(A)− nλ,i(A))2

=
∑

λ∈σp(A)
nλ,1(A)≥nk

∞∑
i=k

(nλ,i+1(A)− nλ,i(A))2 +
∑

λ∈σp(A)
nλ,1(A)<n

k

∞∑
i=0

(nλ,i+1(A)− nλ,i(A))2

≤ n

k

∑
λ∈σp(A)

nλ,n(A).

Let now as in the previous section τ be the limit of b-bounded integer valued
traces τi on A with approximation maps ϕi. Let τ̃ be as in Section 2.6.2. We
now have all the necessary ingredients to prove the following theorem.

Theorem 2.6.14. Let Rτ = R(A,Uτ ) and A ∈ Matn(Rτ ). Assume the class
of b-bounded integer valued traces has the approximation property for finitely
generated free ∗-algebras over K. Then

dimτ̃ CMatn(HS(Hτ ))(A) =
∑
λ∈K

∞∑
i=0

(nλ,i+1(A)− nλ,i(A))2.

Proof. By Proposition 2.6.12 we already know the ” ≥ ” part. So let us show
the other direction. We will use the notation introduced in the beginning of
Section 2.6.2. By Proposition 2.6.7 there is an element z = (zi) ∈ Matn(U) such
that z0 = A and zi ∈ Matn·nj (K) for all i ≥ 1. For every ε > 0 let

Sε = {λ ∈ K | ∃j : rkj(z − λ) ≤ (1− ε)n}.

By 2.5.1 the set Sε is finite for every ε. Further we have

|dimτ̃ CMatn(HS(Hτ ))(z0)− lim
j→∞

∑
λ∈S 1

k

1

nj

k−1∑
i=0

(nλ,i+1(zj)− nλ,i(zj))2|
(2.6.13)

≤

lim
j→∞

|dimτ̃ CMatn(HS(Hτ ))(z0)− 1

n2
j

dimC CVj (zj)|+
n2

k

(2.6.8)
=

n2

k
.

By Proposition 2.6.7 we have for every λ ∈ K, k ∈ N

nλ,k(z0) = lim
nλ,k(zj)

nj
.
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Therefore, we get

dimτ̃ CMatn(HS(Hτ ))(z0) = lim
k→∞

lim
j→∞

∑
λ∈S 1

k

k−1∑
i=0

(nλ,i+1(zj)− nλ,i(zj))2
S 1
k

finite

=

lim
k→∞

∑
λ∈S 1

k

k−1∑
i=0

lim
j→∞

1

n2
j

(nλ,i+1(zj)− nλ,i(zj))2 =

lim
k→∞

∑
λ∈S 1

k

k−1∑
i=0

(nλ,i+1(z0)− nλ,i(z0))2 ≤

∑
λ∈K

∞∑
i=0

(nλ,i+1(z0)− nλ,i(z0))2.

The proof of Theorem 2.6.1 is now easy. We have

dimτ̃ CMatn(HS(Hτ ))(A)
(2.6.12)

≥
∑
λ∈σp

∞∑
i=0

(nλ,i+1(A)− nλ,i(A))2

≥
∑
λ∈K

∞∑
i=0

(nλ,i+1(A)− nλ,i(A))2

(2.6.14)
= dimτ̃ CMatn(HS(Hτ ))(A)

and therefore n(λ,1)(A) = dimτ ker(A− λ) = 0 for all λ ∈ C \K.

2.7 Proof of Theorem A

In this section we want to prove Theorem A. First we will prove that the class
of b-bounded integer valued traces on free ∗-algebras has the approximation
property.

Theorem 2.7.1. Let A be a finitely generate free ∗-algebra over C. Let b ∈ R>0

and let C be the class of all b-bounded integer valued traces on A. Then C has
the approximation property.

Proof. Let as before A = C〈x1, x
∗
1, . . . , xd, x

∗
d〉 and A ∈ Matn(A). Let (τi) ⊆ C

be a converging sequence and let Let τ = lim
i→∞

τi. Set K1 = Q and for i ≥ 1

set K2i = K2i−1 and K2i+1 = K2i(ti) where ti ∈ C \K2i is one coefficient of
an entry of A that is transcendental over K2i. Since A has only finitely many
entries, there is a k ∈ N such that A is a matrix over K2k〈x1, x

∗
1, . . . , xd, x

∗
d〉.

Set Ai = Ki〈x1, x
∗
1, . . . , xd, x

∗
d〉 ≤ A. Let us denote by τ i and ϕij the restriction

of τ and ϕj to Ai and by Ci the class of all b-bounded integer valued traces on
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Ai . By 2.4.2 we know that C0 has the approximation property defined in 2.2.3.
That means we have for any matrix A0 ∈ Matn(A0)

rkτ0(A0) = lim
j→∞

1

nj
rkK0 ϕ

0
n(A0).

We can reformulate this by saying that for every non principal ultrafilter ω with
rkω,0 = lim

ω

1
nj

rkK0
◦ϕ0

j we have

rkτ0 = rkω,0 ∈ Prk(A0).

Let us generalize this notation and define rkω,i = lim
ω

1
nj

rkKi ◦ϕij ∈ Prk(Ai).

Claim. Let i ≥ 1 and assume that rkτ2i−1 = rkω,2i−1 ∈ Prk(A2i−1). Then

rkτ2i = rkω,2i ∈ Prk(A2i).

Proof. We want to apply Theorem 1.3.31. Note that A2i = K2i ⊗K2i−1
A2i−1.

Let α : A2i−1 ↪→ A2i be the inclusion. Note that rkτ2i−1 = α#(rkτ2i) and
rkω,2i−1 = α#(rkω,2i). Last, by 2.2.7 we have

rkτ2i ≥ rkω,2i .

Thus the statement follows by 1.3.31.

Claim. Let i ≥ 1 and assume that rkτ2i = rkω,2i ∈ Prk(A2i). Then

rkτ2i+1 = rkω,2i+1 ∈ Prk(A2i+1).

Proof. Note that A2i+1 = K2i(ti) ⊗K2i A2i. We want to apply 1.3.32. That
means, we want to show that both, rkτ2i+1 and rkω,2i+1, are the natural transcen-
dental extensions of rkτ2i and rkω,2i respectively. Obviously we have rkK2i+1

=

r̃k2i and therefore, by 1.3.33 also rkω,2i+1 = r̃kω,2i. On the other hand, by 2.6.1
and 1.3.32 we get

rkτ2i+1 = r̃kτ2i .

Thus the statement follows.

By applying these two claims iteratively, we obtain

rkτ2k = rkω,2k ∈ Prk(A2k)

which implies that Ck has the approximation property for all k.

Lemma 2.7.2. Let A and C class of traces on A that satisfies the approximation
property. Let (τi) ⊆ C be a sequence of converging traces on A with lim

i→∞
τi = τ .

Let A be a normal matrix over A. Then there is a function f : R>0 → R>0 with
lim
λ→0+

f(λ) = 0 such that

µτi,A(B(0, λ) \ {0} ≤ f(λ).
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Proof. Since C satisfies the approximation property

lim
i→∞

rkτi(A) = rkτ (A)

which is equivalent to

lim
i→∞

µτi,A({0}) = µτ,A({0}).

Since the measures µτi,A converge weakly to µτi,A the result follows from 1.5.6.

In the previous setting, we now want to show the existence of such a function
f that bounds µτi,A(B(y, λ) \ {y}) for all points y ∈ C . We will consider the
operator A⊗1−1⊗A to move areas where the measures µτi,A have large density
to zero. The following lemma describes what happens in the case of matrices
over C.

Lemma 2.7.3. Let A ∈ Matn(C) with eigenvalues λ1, . . . , λn. The Kronecker
product B = A⊗ Idn − Idn ⊗ A ∈ Matn2(C) has the eigenvalues λi,j = λi − λj
for i, j ∈ {1, . . . , n}. In particular the multiplicity of the eigenvalue 0 of B is at
least n.

Proof. Follows directly by the definition of the Kronecker product and the Jor-
dan normal form.

The idea to consider the differences of all eigenvalues goes back to Andreas
Thom in [Tho08].

Theorem 2.7.4. Let A be a finitely generated free ∗-algebra and let C be the
class of b-bounded integer valued traces on A . Let (τi) ⊆ C be a sequence of
converging traces. Then there is a function f : R>0 → R>0 with lim

λ→0+
f(λ) = 0

such that for all y ∈ C

µτi,A(B(y, λ) \ {y} ≤ f(λ).

Proof. Let τ = lim
i→∞

τi. Consider the ∗-homomorphism ϕ : A = C〈y1, y
∗
1 , . . . , y2d, y

∗
2d〉 →

A⊗CA defined by

ϕ(yj) =

{
xj ⊗ 1 j ≤ d
1⊗ xj−d j > d.

We then get a trace τ on A given by τ = (τ ⊗ τ) ◦ ϕ, where (τ ⊗ τ)(a1 ⊗ a2) =
τ(a1) · τ(a2). Note that τ = lim

i→∞
τi where τi = (τi ⊗ τi) ◦ ϕ.

Let A ∈ Matn(A) be normal matrix. Consider a preimage A of the element
A⊗ 1− 1⊗A ∈ Matn(A)⊗C Matn(A) under ϕ. Note that µA,τi is the normal-
ized eigenvalue measure of Ai = ϕi(A) and µA,τi is the normalized eigenvalue
measure of Ai ⊗ Idni − Idni ⊗ Ai. Here we see the matrix tensor products as
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the Kronecker product. Let di(λ) be the number of eigenvalues of Ai that lie in
B(x, λ) \ {x}. That means we have

µA,τi(B(x, λ) \ {x}) =
di(λ)

ni
.

By the previous lemma we have

µA,τi(B(0, 2λ) \ {0}) ≥ di(λ)2 − di(λ)

n2
i

=
di(λ)

ni
· di(λ)− 1

ni
. (2.15)

Assume now that for all λ we have

sup
i
µA,τi(B(x, λ) \ {x}) =

di(λ)

ni
> ε.

In particular, for each λ there must be infinitely many i ∈ N such that µA,τi(B(x, λ)\
{x}) ≥ ε

2 . Thus, since |ni|
i→∞−−−→ ∞, for each λ there exists an i ∈ N such that

µA,τi(B(x, λ) \ {x}) ≥ ε
2 and 1

ni
≤ ε

8 Therefore, by 2.15 we get

sup
i
µA,τi(B(0, 2λ) \ {0}) ≥ ε2

4
− di(λ)

n2
i

≥ ε2

4
− ε

8
≥ ε

8
. (2.16)

Since the traces τ i are b′-bounded integer valued for some b′ ∈ R>0 by 2.7.1 we
have

lim
i→∞

rkτ̃i = rkτ̃

and therefore

lim
i→∞

µA,τ i({0}) = µA,τ ({0}).

Thus, by 2.7.2, there is a function f : R≥0 → R≥0 with lim
λ→0

f(λ) = 0 such that

µA,τi((B(0, λ) \ {0}) ≤ f(λ).

But this is a contradiction to Equation 2.16.

We finally have all the ingredients to prove our main result.

Proof of Theorem A. For a contradiction we can assume that there is a c ∈ R>0,
a matrix A ∈ Matm(A), a point y ∈ C and a constant ε > 0 such that for each
i ∈ N there is a ∗-homomorphism ϕi : A → Matni(C) with ϕ(xj) ∈ Matni(Z)
and ‖ϕ(xj)‖1, ‖ϕ(xj)‖∞ < c and

1

ni
µϕi(A)(B(y,

1

i
) \ {y}) ≥ ε.

From this situation we want to obtain a contradiction to Theorem 2.7.4. The
following lemma will be helpful.
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Lemma 2.7.5. Let S be a countable set and let (fn), fn : S → C be a sequence
of functions, such that for all n ∈ N and x ∈ S there is c ∈ R>0 such that
‖fn(x)‖ ≤ c. Then there is a point wise convergent subsequence (fnk).

Proof. Since S is countable we can write S = {sk | k ∈ N}. The proof works by
induction. By the theorem of Bolzano Weierstrass we can choose a subsequence
(f1,1, f1,2, . . .) of (fn) such that f1,i(s1) converges. So let us assume we have a
subsequence (fn,1, fn,2, . . .) such that for all i ∈ {1, . . . , n} f(n, j)(si) converges.
Then fn,j(sn+1) is also a bounded sequence and we can choose a subsequence
fn+1,j that converges for all s ∈ {si | 1 ≤ i ≤ n+ 1}. By induction we can find
a subsequence that converges for all s ∈ S.

We want to apply this lemma to our situation. For that let t1, . . . , tr be all
the numbers that appear as coefficients in the matrix A that are transcendental
over Q. The field K = Q(t1, . . . , tr) is countable, and since the algebra A′ =
K〈x1x

∗
1, . . . , xd, x

∗
d〉 is finitely generated it is also countable. Thus we can replace

A with A′ and the previous lemma yields us a point wise convergent sequence of
b-bounded integer valued traces τik = 1

nik
Tr◦ϕik . Thus we have a contradiction

to 2.7.4 which finishes the proof of Theorem A.
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Chapter 3

Twisted `2-Betti numbers

In this chapter we want to talk about twisted `2-Betti numbers. We will use
some notation of the previous chapters, however, instead of talking about general
∗-algebras from now on we will focus on group algebras. Let us recall some
notation first. For a group G we denote by

• C[G] the complex group algebra,

• `2(G) the group Hilbert space that is the completion on C[G],

• N (G) the group von Neumann algebra and by

• U(G) the algebra of unbounded operators affiliated to N (G).

Remember that in the first chapter we defined a rank function rkG on U(G). In
this chapter we want to study what happens when we twist rkG with some finite
dimensional representation. So what do we mean by that? Let σ : G→ GLk(C)
be a representation of G. We can define a twisting map

σ̃ : C[G]→ Matk(C[G]),
∑
g∈G

agg 7→
∑
g∈G

agσ(g)g. (3.1)

As always we can extend σ̃ entry wise to matrices over C[G]. So given any
matrix A ∈ Matn(C[G]) is there any relation between rkG(A) and rkG(σ̃(A))?

It was Wolfgang Lück in [Lüc18] who conjectured the following.

Conjecture 2. Let G be a group and let σ : G→ GLk(C) be a homomorphism.
Then for any matrix A ∈ Matn(C[G])

1

k
rkG(σ̃(A)) = rkG(A).

Thus, Lück conjectured that for any representation σ of G the rank func-
tions rkG and rkG,σ = 1

k rkG ◦σ̃ are equal. Conjecture 2 was proven in [Lüc18]
for elementary torsion-free amenable groups and in [KS21] for locally indicable
groups. In this chapter we want to prove the conjecture for sofic groups.

107
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Theorem B. Let G be a sofic group and σ : G→ GLk(C) be a representation
of G. Then, for all matrices A ∈ Matn×m(C[G]) we have

k · rkG(A) = rkG(σ̃(A)).

First, lets explain a different view on twisting. For that let G, σ and A be
as above. The matrix A can be seen as a map

C[G]n → C[G]n, (a1, . . . , an) 7→ (a1, . . . , an)A.

Now, consider the C-vector space Ck ⊗C C[G]n. As a C-vector space this is
isomorphic to C[G]n·k. For that let (e1, . . . , ek) be the standard basis for Ck
and let α : Ck ⊗C C[G]n → C[G]n·k be the isomorphism defined by

ei ⊗ (0, . . . , 0, aj , 0, . . . , 0)→ (0, . . . , 0, aj , 0, . . . , 0)

where in the latter the entry aj is in the i · n + jth coordinate. On the vector
space Ck ⊗C C[G] we can define two different G-module structures. First define
for v ∈ Ck, a ∈ C[G]

(v ⊗ a) ·1 g = v ⊗ ag.
Second, we define

(v ⊗ a) ·2 g = vσ(g)⊗ ag.
If we pass via α to C[G]k, the first action is given by right multiplication by
the matrix Idk ⊗g = g · Idk ∈ Matk(C[G]) while the second action is given by
right multiplication by the matrix σ(g) ⊗ g = g · σ(g) = σ̃(g) ∈ Matk(C[G]).
This construction gives the origin of the map σ̃. In the first part of this chapter
we want to prove Conjecture 2 when the group G is sofic. We will recall the
notion of a sofic group later. In the second part of this chapter we want briefly
explain the topological view point on `2-Betti numbers and we will explain how
twisting naturally occurs when dealing with fibrations. This chapter is based
on the article [BJ22].

3.1 Twisted rank function for sofic groups

In this section we want to prove Conjecture 2 for sofic groups. We already
mentioned the word sofic when we talked about sofic traces. Let us start with
the definition of a sofic group.

Definition 3.1.1. Let G be a finitely generated group. Write G = F/N where
F is a finitely generated free group and N a normal subgroup of F . We say
that G is sofic if there is a family {Xk | k ∈ N} of finte F -sets such that for any
w ∈ F

lim
k→∞

|FixXk(w)|
|Xk|

= 1 if w ∈ N and
|FixXk(w)|
|Xk|

= 0 if w 6∈ N.

An arbitrary group G is called sofic if each of its finitely generated subgroups is
sofic.
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The family {Xk} is called a sofic approximation for G = F/N . Examples
of sofic groups are residually finite groups and amenable groups. At the moment
there is no non sofic group known, however people believe that non sofic groups
do exist. It is not difficult to see that a group is sofic if and only if its regular
character τG is sofic. Note that the action of F on Xk gives us maps ϕk :
F → Mat|Xk|(Z) which extends linearly to a ∗-homomorphism ϕk : C[F ] →
Mat|Xk|(C). For a matrix A ∈ Matn(C[G]) by abuse of notation we will also
write A for the lifted matrix over C[F ]. In the previous chapter we have seen
that

rkG(A) = lim
k→∞

1

|Xk|
rkC(ϕk(A)). (3.2)

This equation is usually called the sofic Lück approximation. Note that from
this equation it follows that we can change the sofic approximation of G without
changing the limit. This will be a key ingredient to our proof of Conjecture 2.
The proof will work in two steps. In the first one we will assume that all
coefficients that appear in A and σ̃(A) are algebraic over Q. In the second step
we will then extend our results to the general case.

3.1.1 The algebraic case

In this section we want to prove the following theorem.

Theorem 3.1.2. Let G be a sofic group, σ : G → GLk(Q̄) be a representation
and A ∈ Matn(Q̄[G]). Then

rkG(A) =
1

k
rkG(σ̃(A)).

We will first proof some auxiliary results. As mentioned before the sofic
Lück approximation will play a crucial role in the proof. So let F be a finitely
generated free group and X a finite F -set. For x ∈ X denote by Fx the stabilizer
of x in F. Let F be any field and V be right F[F ] module of dimension k over F.
As in the beginning of this chapter we want to define two different F[F ] module
structures on V ⊗F F[X]. Let v ∈ V, x ∈ X and f ∈ F. First define

(v ⊗ y) ·1 f = v ⊗ yf

and second

(v ⊗ y) ·2 f = vf ⊗ yf.

Denote the corresponding F[F ]-modules by (V ⊗F F[X])1 and (V ⊗F F[X])2

respectively. We have the following lemma.

Lemma 3.1.3. Assume that for any x ∈ X, v ∈ V and f ∈ Fx we have vf = v.
Then

(V ⊗F F[X])2
∼= (V ⊗F F[X])1

∼= F[X]k as F[F ]-modules.



110 CHAPTER 3. TWISTED `2-BETTI NUMBERS

Proof. Assume first that the action of F on X is transitive. So fix y ∈ X such
that X = y · F . For each x ∈ X choose a fx such that x = yfx and define the
map

α : (V ⊗F F[X])1 → (V ⊗F F[X])2 by α(v ⊗ yfx) = vfx ⊗ yfx

for any v ∈ V, x = yfx ∈ X. Let us first show that this map is independent
of the choice of fx. Assume that x = yf = yg. Then fg−1 ∈ Fy and therefore
(vfg−1)g⊗yg = vf ⊗yf . So let us show that α interchanges with the F -action.
For g ∈ F we have

α((v⊗yfx)·1g) = α(v⊗yfxg) = vfxg⊗yfxg = (vfx⊗yfx)·2g = α((v⊗yfx))·2g.

Since the linear extension of α is clearly bijective, α is a F[F ]-module isomor-
phism.

If the action of F on X is not transitive, let X1, . . . , Xl be the different orbits
of the action. We then get

F[X] ∼= F[X1]× . . .× F[Xl]

and the construction above yields an isomorphism on each factor.

Later we want to apply the previous result when the finite F set X belongs
to a sofic approximation of a group G.

Next, we want to introduce so called S-integers. For that let K be a finite
extension of Q and denote by OK its ring of integers. Note that OK is a
dedekind domain, therefore every prime ideal P of OK is maximal. Let us fix a
prime ideal P in OK . We define a map

vP : OK → N0 ∪{∞}, a 7→ max{n ∈ N | a ∈ Pn}

for a 6= 0 and vP (0) = ∞. Since every element x ∈ K can be written as
x = a

b , a, b ∈ OK we can extend vP to a map

vP : K → Z ∪ {∞} by vP (
a

b
) = v(a)− v(b).

It is easy to see that vP restricted to K∗ is a group homomorphism. Further we
have for all a, b ∈ K :

v(a+ b) ≥ min{v(a), v(b)}.

The function vP is called the valuations associated to P . Let now S ⊆ Spec(OK)
be a set of prime ideals of OK . The ring OK,S of S-integers of K is defined by

OK,S = {x ∈ K | vP (x) ≥ 0 for all P ∈ Spec(K) \ S}.

We are now ready to proof Theorem 3.1.2.
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Proof of 3.1.2. Since G is finitely generated we can find a finite extension K of
Q, such that σ(G) ⊆ Matm(K). Let OK be the ring of integers of K. Since
each image of σ(g) of a generator g of G is of the form a

b with a, b ∈ OK we
can choose a finite set S ⊆ Spec(OK) such that σ(G) ≤ GLk(OK,S) and A ∈
Matn×m(OK,S [G]). Since multiplying by a nonzero constant does not change
the rank of a matrix, we can assume that A and σ̃(A) have entries in OK [F ]. Let
now {Xi} be a sofic approximation for G. By the Lück approximation theorem
we know that

rkG(A) = lim
i→∞

1

|Xi|
rkC(fXi(A)). (3.3)

Fix an infinite collection {Pi | i ∈ N} of maximal ideals in OK,S and put
Fi = OK,S /Pi. Obviously we have

lim
i→∞

|Fi | → ∞. (3.4)

Let σi : F → GLk(Fi) be the composition of the quotient map F → F/N = G,
the map σ : G → GLk(OK [ 1

c ]) and the reduction map OK,S → Fi . Now, put
Ni = kerσi and consider the family of finite F -sets given by Yi = Xi × F/Ni.

Claim. The family {Yi | i ∈ N} is a sofic approximation for G.

Proof. Observe that N ⊆ Ni for every N . Therefore, if w ∈ N , we have
FixYi(w) = FixXi(w)×F/Ni. On the other hand, when w /∈ N , then FixYi(w) ⊆
FixXi(w)× F/Ni. Since {Xi} is a sofic approximation for G so is {Yi}.

Via the map σi we can, as in 3.1.3, define the two Fi[F ]-modules (Fki ⊗Fi Fi[Yi])1

and (Fki ⊗Fi Fi[Yi])2 for each i ∈ N. Furthermore, by Lemma 3.1.3, these two
modules are actually isomorphic. Now, consider the finite dimensional Fi vector

space Fi[Yi] ∼= F|Yi|i . Reduction modulo Pi gives an action of OK,S [F ] on Fi[Yi].
Let ρYi,Pi : OK [ 1

c ][F ] → Mat|Yi|(Fi) be the representation associated to this

action. We define a Sylvester matrix rank function rkYi,Pi on OK [ 1
c ][F ] by

rkYi,Pi(B) =
rkFi(ρYi,Pi(B))

|Yi|
.

for any matrix B over OK,S [F ].

Claim. For any matrix B over OK,S [F ] we have

k · rkYi,Pi(B) = rkYi,Pi(σ̃(B)).

Proof. By identifying Fki ⊗Fi Fi[Yi] with Fi[Yi]k we obtain

k · rkYi,Pi(B) =
1

|Yi|

(
dimFi

((
Fki ⊗Fi Fi[Yi]m

)
1
/
((

Fki ⊗Fi Fi[Yi]n
)

1
·1 B

)))
and

rkYi,Pi(σ̃(B)) =
1

|Yi|

(
dimFi

((
Fki ⊗Fi Fi[Yi]m

)
2
/
((

Fki ⊗Fi Fi[Yi]n
)

2
·2 B

)))
.
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Since
(
Fki ⊗Fi Fi[Yi]

)
1

and
(
Fki ⊗Fi Fi[Yi]

)
2

are isomorphic as Fi[F ] modules,

the result follows.

Let us compare rkYi(B) = 1
|Yi| rkK fYi(B) and rkYi,Pi(B).

Claim. Let B ∈ Matn×m(OK,S [F ]). Then there exists a constant C depending
only on B such that

| rkYi(B)− rkYi,Pi(B)| ≤ C

log2 |Fi |
.

Proof. We want to use the same notation as introduced in Section 2.5.3. So for
any element α ∈ K let α1, . . . , αn ∈ C be the roots of the minimal polynomial
of α over Q . For any element b =

∑
h∈F ahh (ah ∈ K) of the group algebra

K[F ] we put

dbe =
∑
h∈F

dahe.

We also define

dBe = max
j

∑
i

dbije.

Since multiplication by a constant does not change the rank of B, we can as-
sume thatB ∈ Matn×m(OK [F ]) For each i ∈ N setMi = OK [Yi]

m/OK [Yi]
nfYi(B).

By the structure theorem of finitely generated modules over Dedekind domains
we have

Mi
∼= Mi/M

tors
i ⊕M tors

i .

Here M tors
i is the torsion part of the OK module Mi. Recall that

rkYi(B) = m− dimK(K ⊗OK Mi)

|Yi|

and

rkYi,Pi(B) = m− dimFi(Fi⊗OKMi)

|Yi|
.

Note further that

(K ⊗OK Mi) = (K ⊗OK Mi/M
tors
i )⊕ (K ⊗OK M tors

i ) = K |Yi|(m−rkYi (B))

and

(Fi⊗OKMi) = (Fi⊗OKMi/M
tors
i )⊕ (Fi⊗OKM tors

i ) =

F|Yi|(m−rkYi (B))

i ⊕Fi⊗OKM tors
i
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All together we get

|rkYi(B)− rkYi,Pi(B)| =
∣∣∣∣(m− dimK(K ⊗OK Mi)

|Yi|
)− (m− dimFi(Fi⊗OKMi)

|Yi|
)

∣∣∣∣
=

∣∣∣∣∣dimFi(F
|Yi|(m−rkYi (B))

i ⊕Fi⊗OKM tors
i )

|Yi|
− dimK K

|Yi|(m−rkYi (B))

|Yi|

∣∣∣∣∣
=

dimFi Fi⊗OKM tors
i

|Yi|
≤ log| Fi | |M

tors
i | = log2 |M tors

i |
|Yi| log2 |Fi |

.

By 2.5.14 and 2.5.15 we have

log2 |M tors
i | ≤ m|Yi||K : Q | log2dBe.

Thus, with C = m|K : Q | log2dBe we obtain

|rkYi(B)− rkYi,Pi(B)| ≤ C

log2 |Fi |
.

We can now finish the proof of 3.1.2. Let ε > 0 and let B ∈ Matn×m(OK,S [F ]
that maps onto A. Since {Yi} is a sofic approximation for G, we can choose a
j1 ∈ N such that for all i ≥ j1 we have

|rkG(B)− rkYi(B)| ≤ ε

4k
and |rkG(σ̃(B))− rkYi(σ̃(B))| ≤ ε

4
. (3.5)

By 3.4 and 3.1.1 we can choose an j2 ∈ N such that for all i ≥ j2 we have

|rkYi(B)− rkYi,Pi(B)| ≤ ε

4k
and |rkYi(σ̃(B))− rkYi,Pi(σ̃(B))| ≤ ε

4
. (3.6)

Taking everything together we obtain for every i ≥ j1, j2 :

| rkG(σ̃(B))− k · rkG(B)| ≤ | rkG(σ̃(B))− rkYi(σ̃(B))|+
| rkYi(σ̃(B))− rkYi,Pi(σ̃(B))|+ | rkYi,Pi(σ̃(B))− k · rkYi,Pi(B)|+

k · | rkYi,Pi(B)− rkYi(B)|+ k · | rkYi(B)− rkG(B)| ≤ ε.

Since ε was arbitrary this finishes the proof.

3.1.2 The general case

In this section we want to show that Conjecture 2 holds for sofic groups. The
proof of the general case uses again the sofic Lück approximation as well as
the already proven algebraic case. The idea is to approximate all transcenden-
tal coefficients that appear in a given matrix A ∈ Matn×m(C[G]) by algebraic
numbers. However we can not just choose any algebraic numbers for this ap-
proximation. The numbers need to fulfill some algebraic properties. We first
need an auxiliary result.
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Density of algebraic points in a variety

In this section we want to prove the following theorem.

Theorem 3.1.4. Let I be an ideal of Q̄[x1, . . . , xn] and let

V (I) = {x ∈ Cn | f(x) = 0 for all f ∈ I}.

Then V (I) ∩ Q̄n is dense in V (I) with respect to the euclidean topology.

For the proof we need some terminology. We will call a field K real, if there
is a total ordering ≤ on K such that for all x, z, y ∈ K :

• x ≤ y ⇒ x+ y ≤ y + z,

• 0 ≤ x, 0 ≤ y ⇒ 0 ≤ xy.

We call a field K real closed, if K is real and K[
√
−1] = K. Every subfield of R

is real. Examples for real closed fields are R and Ralg = R∩ Q̄.
By a boolean combination of polynomial equations and inequalities over a

field K we mean a finite combination of conjunction, disjunction and negation of
polynomial equations and inequalities. Since we only consider a finite number of
polynomials we can assume that all ocurring polynomials are in K[X1, . . . , Xn]
for one fixed n ∈ N .

Let now K be a real closed field and a ∈ K. We define

sign(a) = −1 if a < 0

sign(a) = 0 if a = 0

sign(a) = 1 if a > 0.

We are now ready to formulate the Tarski-Seidenberg Principle which can be
found in [BCR13, Theorem 1.4.2].

Theorem 3.1.5 (Tarski-Seidenberg Principle). Let F be a real field (eg. Q) and
f1(X,Y ), . . . , fm(X,Y ) be a sequence of polynomials in n+ 1 variables over F,
where Y = (Y1, . . . , Yn). Let ε be a function from {1, . . . ,m} to {−1, 0, 1}. Then
there exists a boolean combination B(Y ) of polynomial equations and inequalities
in the variables Y and coefficients in F such that for every real closed field K
containing F and every y ∈ Kn the system

sign(fi(X, y)) = ε(i), i ∈ {1, . . . ,m}

has a solution x ∈ K if and only if B(y) holds true in K.

Definition 3.1.6. Let K be a real closed field. A semi-algebraic subset of Kn
is a set of the form

s⋃
i=1

ri⋂
j=1

{x ∈ Kn | fi,j(x) ∗i,j 0},

where ∗i,j ∈ {=, <} and fi,j ∈ K[x1, . . . , xn].
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Obviously all algebraic sets are semi-algebraic. Further note that open and
closed balls in Kn are semi-algebraic. It is easy to see that finite unions and
intersections of semi-algebraic sets are again semi-algebraic. Note further that
every semi-algebraic set can be described by a boolean combination of polyno-
mial equations and inequalities. The following lemma is also obvious.

Lemma 3.1.7. Let A ⊆ Cn be an algebraic set. Then the image of A under
the identification C ∼= R2n is a semialgebraic set.

Proposition 3.1.8. [BCR13, Theorem 4.1.1] Let K,K1 be real closed fields with
K ⊆ K1. Let B(X), X = (X1, . . . , Xn) be a boolean combination of polynomial
equations and inequalities over K. If B(x) holds true for some x ∈ Kn1 , then
B(y) holds true for some y ∈ Kn.

Proof. We proceed by induction on n. For n = 0 there is nothing to show. So let
n ≥ 1 and assume that the statement holds for n− 1. By the Tarski-Seidenberg
Principle there exists a boolean combination C(X1, . . . , Xn−1) with coefficients
in K such that for every real closed field K2 containing K and every
x = (x1, . . . , xn−1) ∈ K2, the system B(x,Xn) has a solution xn ∈ K2, if and
only if C(x) holds true. Since we have a solution for B over K1, by our induction
hypothesis there is a y ∈ Kn−1 such that C(y) holds true. Then again by the
Tarski-Seidenberg principle there is a yn ∈ K such that (y, yn) ∈ Kn is a solution
for B(X).

With this proposition we are ready to prove the main theorem of this section.

Proof of Theorem 3.1.4. We identify Q and C with R2
alg and R2, respectively,

in the usual way (Q = Ralg +Ralg i, C = R+R i). Then V (I) becomes a
set of zeros in R2n of some polynomials g1, . . . , gm over Ralg in 2n-variables
x1, . . . , x2n.

Let y = (y1, . . . , y2n) ∈ V (I) and ε > 0. Consider

B = (g1 = 0) ∧ . . . ∧ (gm = 0) ∧ (

2n∑
i=1

(xi − yi)2 ≤ ε2).

Then B(y) holds. By Proposition 3.1.8, B(z) holds for some z ∈ R2n
alg. Therefore,

(V (I) ∩Oε(y)) ∩Qn 6= ∅,

and so, Qn ∩ V (I) is dense in V (I).

Proof of Theorem B

We are now ready to finish the proof.

Proof of Theorem B. Since the matrix A has only finitely many entries we can
assume that G is finitely generated. Thus, we may choose t = (t1, . . . , tl) ∈
Cl \Ql, such that with R = Q̄[t1, . . . , tl] the matrices A and σ̃(A) are matrices
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over R[G]. Let I be the kernel of the homomorphism Q̄[x1, . . . , xl] → R that
maps xi 7→ ti. Thus we have R ∼= Q̄[x1, . . . , xl]/I. For any matrix C over R[G]
and any point p = (p1, . . . , pl) ∈ V (I) let C(P ) be the image of the matrix C
when sending ti to pi. Thus we have A(t) = A and σ̃(A(t)) = σ̃(A). Note
further that we have σ̃(A)(p) = σ̃(A(p))

Claim. Let (si) be a sequence of points in V (I) such that lim
i→∞

si = t. Then for

any matrix C ∈ Matn×m(R[G]) we have

rkG(C) ≤ lim inf
i→∞

rkG(C(si)).

Proof. We want to use the notion of traces and their approximation. Note that
for each i ∈ N we get a maps fi : R[G]→ C̄[G] defined by sending t→ si. Thus
we can define the traces τi = τG ◦ fi on R[G] Further, since R[G] ⊆ C[G] we
also have the trace τG on R[G]. Remember that for any matrix C ∈ Matn(C)
the trace τG(C) is defined by

τG(C) =

n∑
i=1

〈1iC, 1i〉

where 1i ∈ `2(G)n is the vector having 1G in the i-th coordinate and zeros
elsewhere. Since lim

i→∞
si = t we get

lim τi(C) = τG(C).

Consider the matrix T = CC∗ and let ρi : Matn(R[G])→ B(Hnτi) = Matn(B(Hτi))
be the right representation coming from the GNS-representation with respect
to τi and similarly ρ : R[G]→ B(`2(G)) with respect to τG. Let µi be the spec-
tral measure associated to the operator ρi(T ) and µ be the spectral measure
associated to the operator ρ(T ). By 2.2.6 we get that the measures µi converge
weakly towards the measure µ. Thus, by the theorem of Portmanteau, we have

lim sup
i→∞

µi({0}) ≤ µ({0}).

However, we have

µ({0}) = dimG ker ρ(T ) = dimG ker ρ(C) = n− rkG(C)

and
µi({0}) = dimG ker ρi(T ) = dimG ker ρi(C) = n− rkG(C(si)).

From these equations the result follows.

We still have to show the other inequality.

Claim. Let s ∈ V (I). Then, for any matrix C over R[G] we have

rkG(C(s)) ≤ rkG(C).
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Proof. Here we want to use the sofic Lück approximation. So let F be a finitely
generated free group and N E F such that G = F/N . Let {Xi} be a sofic
approximation for G and let B be a matrix over R[F ] that maps onto C. Note
that B(s) maps onto C(s). Let fXi : F→ Mat|Xi|(Z) be the map that represents

the action of F on C[Xi] = C|Xi|. Since for each i the matrix fXi(B(s)) is an
image of the matrix fXi(B), we obtain

rkC(fXi(B(s))) ≤ rkC(fXi(B))

for each i. Thus, with rkXi =
rkC ◦fXi
|Xi| we obtain

rkG(C) = rkG(B) = lim
i→∞

rkXi(B) ≥

lim
i→∞

rkXi(B(s)) = rkG(B(s)) = rkG(C(s)).

By 3.1.4 we can choose a sequence (si) of points in V (I) ∩ Q̄l such that
lim
i→∞

si = t. From the previous two claims we deduce that

lim
i→∞

rkG(A(si)) = rkG(A) and lim
i→∞

rkG(σ̃(A)(si)) = rkG(σ̃(A)).

By 3.1.2 we have k · rkG(A(si)) = rkG(σ̃(A)(si)) for each i ∈ N. Thus we obtain

rkG(σ̃(A)) = lim
i→∞

rkG(σ̃(A)(si)) = lim
i→∞

k · rkG(A(si)) = k · rkG(A).

3.2 Twisted rank functions and fibrations

The von Neumann rank function rkG of a group G is especially interesting when
G = π1(X) is the fundamental group of some finite CW-complex X. For a CW-
complex X the n-th Betti number is the dimension of the n-th homology group
with coefficients in C. The universal covering X̃ of X has the structure of a G-
CW-complex, that means we have an action of G on X̃ that permutes the open

n-cells. The n-th `2-Betti number b
(2)
n (X) of a G-CW complex X is defined as

the von Neumann dimension dimG of the n-th homology of `2(G)⊗Z[G]C(X,C),
the cellular chain complex of X with local coefficients in `2(G).

Given a fibration
F → E → B,

spectral sequences are a tool to calculate the homology of E, given the homology
of F and B. The situation is similar when we want to calculate the `2 homology.
We will see that in some cases during the calculation the twisted von Neumann
rank function occurs. We will prove the following theorem.

Theorem 3.2.1. Let
F → E → B
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be a fibration of connected CW-complexes of finite type and d be a natural num-
ber. Suppose that the n-th `2-Betti number of the universal covering of B with re-

spect to the action of the fundamental group b
(2)
n (B̃) vanishes for n ≤ d. Assume

further that G = π1(E) is sofic and the induced homomorphism π1(E)→ π1(B)

is an isomorphism. Then b
(2)
n (Ẽ) = 0 for n ≤ d.

This theorem first appeared in [Lüc18]. Lück showed that Theorem B implies
Theorem 3.2.1. In this section we will first define Betti numbers and `2-Betti
numbers. We will then give a short introduction to fibrations and spectral
sequences. Lastly we will present a proof of Theorem 3.2.1

3.2.1 Betti numbers and `2-Betti numbers

In this section we want to give the basic topological definitions and results
that are necessary to talk about Betti numbers and `2-Betti numbers. A great
introduction to the topic is [Kam19]. In the following let X be a finite CW-
complex. We denote by Xn the n-skeleton of X and by enα the open n-cells,
where α runs over some index set. Having a CW-complex X we can consider
the cellular chain complex C∗(X,C) and its cellular homology

H∗(X,C) = H(C∗(X,C)).

Each Hn(X,C) is a finite C vector space, thus it makes sense to define the nth
Betti number of X as

bn(X) = dimCHn(X,C).

Let now G be a countable discrete group that acts by homeomorphisms on
X. We call the action cellular, if

(1) G permutes the open n-cells that means enα = genβ for all g ∈ G and

(2) if genα ∩ enα 6= ∅ then gx = x for all x ∈ enα.

Definition 3.2.2. A G-CW-complex is a CW-complex X with a cellular action
of G on X. X is called

• finite type if it has finitely many equivariant n-cells for every n,

• finite if it has finitely many equivariant n-cells all together,

• proper if all stabilizer groups are finite,

• free if all stabilizer groups are trivial.

We now obtain the `2-chain complex of X by tensoring the original chain com-
plex C∗(X,C) with `2(G). Thus we have

C
(2)
∗ (X) = `2(G)⊗C[G] C∗(X,C). (3.7)

We have the following theorem.



3.2. TWISTED RANK FUNCTIONS AND FIBRATIONS 119

Theorem 3.2.3. [Kam19, Theorem 3.11] The `2-chain complex defines a func-
tor from proper finite type G-CW-complexes to Hilbert N (G)-modules.

Remark 3.2.4. Remember that with a HilbertN (G) module H ≤ (`2(G))n there
comes a projection p ∈ Matn(N (G)) onto H. Thus we can also consider the
projective N (G) module M = N (G)np. This gives a bijection between Hilbert
N (G) modules and projective N (G) modules. Thus, instead of working with
`2(G)⊗ C∗(X,C) we could also set

C
(2)
∗ (X) = N (G)⊗C[G] C∗(X,C).

One can extend this argument also to finitely generated modules over U(G).
For a detailed description see [Rei].

Now as we have the `2-chain complex we can proceed as before to define
`2-Betti numbers. We denote by

H
(2)
∗ (X) = H∗(C

(2)
∗ (X))

the `2-homology of X where

H(2)
n (X) = ker(dn)/imag(dn+1)

and dn : C
(2)
n (X)→ C

(2)
n−1(X) denote the chain maps. Note further that we have

to take the closure on the image to ensure that the projection onto imag(dn+1)
exists in Matn(N (G)). We can now define the n-th `2-Betti number as

b(2)
n = dimG(H(2)

n (X)).

3.2.2 Fibrations and Spectral Sequences

In this section we briefly want to recall the notions of fibrations and spectral
sequences. For more details see [Kir]. In the following let E and B be topological
spaces.

Definition 3.2.5. A continuous map p : E → B is called a fibration if it has
the homotopy lifting property that means for every space Y and commuting
diagram

Y × {0} E

Y × I B

g̃

i p

G

we can lift the homotopy G to a homotopy G̃ : Y ×I → E such that the diagram

Y × {0} E

Y × I B

g̃

i p

G

G̃

commutes.
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Obviously direct products of spaces give rise to fibration. Probably the most

famous example of a fibration is the so called Hopf fibration S1 → S3 p−→ S2.
Fibrations are interesting, because unlike arbitary continuous maps they give
rise to a long exact sequence in homotopy. Let p : E → B be a fibration and
let B be path connected. Let a, b ∈ B and let α : I → B be a path from a to b.
Let Ea = p−1(a). Thus, the inclusion Ea ⊆ E gives us a diagram

Ea × {0} E

Ea × I B

i p

G

where G(e, t) = α(t) Note that G(e, 1) is a map from Ea to Eb. In fact one can
show that the homotopy α∗ = [G(e, 1)] depends only on the homotopy class of
α. Furthermore, one can show that α∗ is a homotopy equivalence. We have the
following theorem.

Theorem 3.2.6. [Kir, Theorem 6.12] Let p : E → B be a fibration and let
B be path connected. Then all fibers Ea = p−1(a) are homotopy equivalent.
Moreover every path α : I → B defines a homotopy class of of homotopy equiv-
alences Eα(0) → Eα(1) which depends only on the homotopy class of α relative
to its endpoints in such a way that multiplication of path corresponds to com-
position of homotopy equivalences. In particular there is a well defined group
homomorphism

π1(B, b0)→ {homotopy classes of self homotopy equivalences Eb0 → Eb0}.

As a direct consequence of this theorem, by applying the homology functor,
we get an action of π1(B, b0) on Hn(Eb0 ,M), for any coefficient group M .

We now want to introduce spectral sequences.

Definition 3.2.7. A homology spectral sequence is a sequence of bigraded chain
complexes

{Erp,q, dr}r
where (p, q) ∈ Z×Z, r ∈ N . The differentials dr have bidegree (−r, r − 1) that
means dr(Erp,q) ⊆ Erp−r,q+r−1 and we have isomporhisms

Erp,q
∼=

ker dr : Erp,q → Erp−r,q+r−1

imag dr : Erp+r,q−r+1 → Erp,q
.

Before we can use spectral sequences we have to talk about convergence of
spectral sequences. Let us collect some definitions first.

Definition 3.2.8. Let R be a ring.

• A graded R module A∗ can be either thought of a collection of R-modules
{Ak}k∈Z or as a module A =

⊕
k∈Z

Ak. A homomorphism of a graded R-

module is an element of
∏
k

Hom(Ak, Bk).
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• A filtration of an R-module A is an increasing union

0 ⊆ . . . ⊆ F−1 ⊆ F0 ⊆ F1 ⊆ · · · ⊆ Fp ⊆ . . . ⊆ A

of submodules. A filtration is convergent, if
⋃
k

Fk = A and
⋂
k

Fk = 0.

• Given a filtration F = {Fk} of an R-module A, the associated graded
module is given by Gr(A,F )∗ with

Gr(A,F )k = Fk/Fk−1.

We can now define what it means if a spectral sequence converges.

Definition 3.2.9. Let {Erp,q} be a spectral sequence and let A = A∗ be a
graded module. We say the spectral sequence converges to A and write

E2
p,q ⇒ Ap+q

if:

• For every p, q there exists r0 such that drp,q is the zero map for all r > r0.

• There is a convergent filtration of F of A∗ such that for each n the limit
E∞p,n−p = colim

r→∞
Erp,n−p is isomorphic to the associated graded module

Gr(A∗, F )p.

We will only consider first quadrant spectral sequences that means Erp,q = 0
if p < 0 or q < 0. In this case we actually get a stronger notion of convergence.
Namely, for each pair (p, q) there exists an r0 such that for all r > r0 we have
Erp,q = E∞p,q.

3.2.3 Twisted `2-Betti numbers

In this section we want to prove Theorem 3.2.1. For that let us first introduce
twisted `2-Betti numbers. Remember that for a G-CW-complex X we defined
the n-th `2-Betti number as

b(2)
n (X) = dimG(H(2)

n (X))

where H
(2)
n (X) is the n-th homology group of the `2-chain complex

N (G)⊗C[G] C∗(X,C) = C
(2)
∗ (X).

For a finite dimensional representation σ : G → GLm(C) we can consider
the twisted chain complex

C
(2)
∗,σ(X) = (Cm⊗CN (G))⊗C[G] C∗(X,C)
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where the G-action on (Cn⊗CN (G)) is given by

(v ⊗ x) = vσ(g)⊗ xg.

Thus we define the n-th twisted `2-Betti number of X as

b(2)
n,σ(X) = dimGH

(2)
n,σ(X) = dimGH

(2)
n (C

(2)
∗,σ(X)).

The chain map dn : C
(2)
n (X)→ C

(2)
n−1(X) is given by multiplication by a matrix

An over Z[G]. Thus the twisted chain map dn,σ : C
(2)
n,σ(X) → C

(2)
n−1,σ(X) is

given by multiplication by the matrix σ̃(A) as in 3.1. Therefore, Theorem B
implies that if G is sofic we have

b(2)
n,σ(X) = m · b(2)

n (X). (3.8)

Consider a fibration

F → E
p−→ B

of path connected CW-complexes of finite type. Let G = π1(B). Since a
fibration gives rise to a long exact sequence in homotopy groups we have maps

π1(F )→ π1(E)→ π1(B) = G.

Thus on the ring N (G) we can define a π1(F ), π1(E) and π1(B) = G-module
structure. For the spaces F,E,B it makes sense to consider homology with
local coefficients in N (G). Remember that by definition of local coefficients,
one passes to the universal covers, since we need an action of the fundamental
group. That means we consider the homology of the chain complex

H(B;N (G)) = N (G)⊗π1(B) Hn(C(B̃))

and similarity for F and E. By [Kir, Theorem 5.12] homology with local coeffi-
cients describes an ordinary homology theory. Therefore we have the following
theorem.

Proposition 3.2.10. [Kir, Theorem 9.6] Let F → E → B be a fibration of
CW-complexes of finite type where B is path connected. Let π1(B) = G. Then
there exists a spectral sequence

Hp(B;Hq(F ;N (G))) ∼= E2
p,q ⇒ Hp+q(E;N (G)).

Let us explain what each term actually means. We have

Hq(F ;N (G)) = Hq(N (G)⊗π1(F ) C∗(F̃ )).

With that we obtain

Hp(B;Hq(F ;N (G))) = Hp(Hq(F ;N (G))⊗π1(B) C∗(B̃)).
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The action of G on F comes from the fiber transport. This action gives an
action of G on Cn(F ). The action of G on C∗(F )⊗π1(B)N (G) is then given by

(δ ⊗ a).g = δg ⊗ ag.

This comes from the definition of local coefficient systems. A special situation
occurs when π1(B) ∼= π1(E). Since a fibration gives rise to a long exact sequence
in homotopy groups, we obtain π1(F ) = 1 that means F is simply connected.
Therefore we have F̃ = F and by the universal coefficient theorem

Hq(F,N (G)) = Hq(N (G)⊗π1(F ) C∗(F̃ )) =

Hq(N (G)⊗C C∗(F,C)) ∼= N (G)⊗C Hq(F,C). (3.9)

In this case the G action on Hq(F,C) ⊗C N (G) is again given diagonally. We
are now ready to prove our main Theorem 3.2.1.

Proof of 3.2.1. We want to calculate b
(2)
n (Ẽ) = dimG(Hn(E;N (G))). By 3.2.10

we have a homological spectral sequence

Hp(B;Hq(F ;N (G))) ∼= E2
p,q ⇒ Hp+q(E;N (G)) = H

(2)
p+q(Ẽ).

By 3.9 we have
Hq(F ;N (G)) ∼= N (G)⊗C Hq(F,C).

Note that we have Hq(F,C) ∼= Cm for some m and the action of G on Hq(F,C)
by fiber transport gives a representation σ : G→ GLm(C). By 3.8 we obtain

dimGHp(B,Hq(F ;N (G))) = b(2)
n,σ(B̃) = m·b(2)

n (B̃) = m·dimGH
(2)
p (B̃). (3.10)

Thus by our assumption, we have

E2
p,q = 0

for all p ≤ d and q ∈ Z. Thus we obtain

E∞p,q = 0

for these p, q and therefore
H(2)
n (Ẽ) = 0

for n ≤ d.
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Chapter 4

Limit eigenvalue
distributions in groups

4.1 The limit eigenvalue distribution associated
to residual chains

In this chapter we want to consider a similar problem as in Chapter 2. Let G be
a residually finite group and let A ∈ Matn(C[G]) be a matrix over the complex
group ring. Let G DN1 DN2 . . .D a chain of normal subgroups of finite index
with trivial intersection and set Gi = G/Ni. By right multiplication we get an
action of G on C[Gi] ∼= C|Gi|. This action extends linearly to matrices over
C[G]. Let Ai ∈ Matn·|Gi|(C) be the matrix that represents the linear operator

on C[G]n ∼= Cn·|Gi| given by right multiplication by A. Let now λ1, . . . , λn·|Gi|
be the eigenvalues of Ai. We define the regularized eigenvalue measure of Ai as

µAi =
1

|Gi|

n·|Gi|∑
j=1

δλj (4.1)

δz is the Dirac measure at z ∈ C. Note that in the measure the eigenvalues
appear with multiplicities. We are now interested in the following questions:

(1) Does the limit lim
i→∞

µAi({0}) exist?

(2) If the answer to question (1) is yes, is the limit independent of the chain
(Ni)i?

(3) Let µA be the Brown measure of the operator on `2(G) given by right
multiplication by A. Do the measures µAi converge weakly to µA?

For a definition of the Brown measure see Section 4.5. So what is the connection
to the effective Lück approximation? For that assume that the matrix A is

125
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normal. In this case we know that µAi({0}) = n − 1
|Gi| rkC(Ai). Further the

Brown measure is just the spectral measure and therefore the answer to all
questions is yes. In this section we want to focus on the case when A is not
normal. Of course we could ask all these questions for general ∗-algebras with
a converging series of characters as well, however we will see that already in
the case described above things do not work out as nice as before. Let us first
consider a small computable example. Let G = 〈g〉 be an infinite cyclic group
and let

A =

(
g2 + 3g 4
g3 −g4 + g

)
.

Let Ni = 〈g5i〉 ⊆ G and therefore Gi ∼= Z/(5i)Z a cyclic group of order 5i. Note
that we get the matrix Ai by replacing g in A by the matrix

0 1 0 · · · 0
...

. . .
. . .

...
...

. . . 0

0
. . . 1

1 0 · · · 0


(4.2)

of dimension |Gi| = 5i. The following plot shows the eigenvalues of Ai for
i = 1, 2, 3 :

These graphics show that at least there is some hope that the eigenvalue mea-
sures do converge to some limit measure. We will first focus on the questions
(1) and (2). We will show that in the case when G is a finitely generated abelian
group the answer to both questions is yes. Later we will give an example to
answer question (2) in general in the negative. Last we will focus on the Brown
measure. We will show that for finitely generated abelian groups the answer to
question (3) is yes, but the same counter example of question (2) will show that
the answer is negative in the general case. This chapter is based on [Bos22].

4.2 Some Representation Theory

In this section we want briefly repeat some definitions and facts from represen-
tation theory of finite groups. We will only work with complex representations.
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In the following let G be a finite group.

Definition 4.2.1. A (complex) n dimensional representation of G is a group
homomorphism ρ : G→ GLn(C) for some n ∈ N. The representation ρ is called
irreducible if there is no invariant subspace V ≤ Cn, that means no subspace V
such that v · ρ(g) ∈ V for all v ∈ V, g ∈ G.

One important example is the regular representation. For that note that
C[G] is isomorphic to C|G| as a C-vector space. The regular representation is
the map ρreg : G → Perm(|G|) ≤ GL|G|(C) that represents the permutation
action given by multiplication of G on itself.

Given a n dimensional representation ρ and a matrix A ∈ GLn(C) the map
ρA : G → GLn(C), g 7→ Aρ(g)A−1 is also a representation of G. This leads to
the following definition.

Definition 4.2.2. Two n-dimensional representations ρ, π : G → GLn(C) of
G are called equivalent, if there is a matrix A ∈ GLn(C) such that ρ(g) =
Aπ(g)A−1 for all g ∈ G. For two equivalent representations ρ and π we write
ρ ∼= π

Since we are interested in spectral properties and conjugation does not
change eigenvalues, it makes sense to consider equivalence classes of representa-
tions. Here for each equivalence class it does not matter which representative we
choose to make calculations. Since G is a finite group, the image ρ(G) ≤ GLn(G)
of G under a representation is a finite subgroup of GLn(C). It is a well known
theorem that every finite subgroup of GLn(C) is conjugate to a subgroup of
Un(C), the group of unitary matrices. Therefore we can restrict ourselves to
unitary representations that means we can assume that ρ(G) ≤ Un(C). Let
now ρ be an n dimensional and π be an m dimensional representation of G.
We can then easily build an n+m dimensional representation of G defined by
π ⊕ ρ : G → GLn+m(C), (π ⊕ ρ)(g) = π(g) ⊕ ρ(g). The representation π ⊕ ρ is
called the direct sum of π and ρ. Expanding the notation for vector spaces we
will write ρn = ρ⊕ ρ⊕ . . .⊕ ρ.

We have the following theorem.

Theorem 4.2.3. [Isa94, Maschke’s Theorem 1.9, 1.10] Every representation ρ
of G is equivalent to a direct sum of irreducible representations.

For the regular representation ρtextreg we can specify this result. The follow-
ing theorem is also well known and follows directly from the above and [Isa94,
Theorem 2.11, Theorem 1.17.]

Theorem 4.2.4. Let G be a finite group and M be a set of representatives of
all irreducible representations of G. For ρ ∈M let dρ be its dimension. Then

ρreg
∼=
⊕
ρ∈M

ρdρ . (4.3)
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Remark 4.2.5. Given a representation ρ : G → GLn(C) we can define a right
module structure on Cm given by

vg = v · ρ(g).

Thus when the representation is clear we will use this notation.

To identify irreducible representations, one often uses character theory.

Definition 4.2.6. LetG be a group and let ρ : G→ GLn(C) be a representation
ofG. The character τ induced by ρ is the function τ = τρ = TrC◦ρ : G→ C. The
character τ is called irreducible if the underlying representation ρ is irreducible.

Since the trace of matrices is invariant under conjugation we directly get
that equivalent representations have the same character. The other direction is
also true. In fact we have the following result.

Lemma 4.2.7. [Isa94, Corollary 2.9] Let ρ, π are two representations of G.
Then ρ and π are equivalent if and only if they afford the same character.

Also note that the direct sum of two representations gives the sum of the
two characters. For two characters τ, χ : G→ C we define

[τ, χ] =
1

|G|
∑
g∈G

τ(G)χ(g). (4.4)

We have the following result.

Lemma 4.2.8. [Isa94, Corollary 2.17] A character τ of G is irreducible if and
only if

[τ, τ ] = 1.

4.3 The Abelian Case

In this section we want to answer question (1) and (2) in the case of finitely
generated abelian groups. For simplicity we will only consider the case G ∼= Z
explicitly. At the end of the chapter we will explain briefly the necessary changes
for the general case. Let {Nm} be a chain of normal subgroups in G = 〈t〉
with trivial intersection and set Gm = G/Nm. Each Gm is a cyclic group of
finite order. Put nm = |Gm| and consider the nm dimensional C vector space
Vm = Cnm ∼= C[Gm]. The action of G on Vm is completely determined by the
action of t on Vm. Since t acts as a shift on C[Gm], the action of t on Vm is
given by right multiplication with the matrix

Tm =



0 1 0 · · · 0
...

. . .
. . .

...
...

. . . 0

0
. . . 1

1 0 · · · 0


.
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Thus we obtain algebra homomorphisms ρm : C[G]→ Matnm(C) by sending t to
Tm and extending linearly. Obviously we can extend ρm to matrices, that means
we have ρm : Matn(C[G])→ Matn·nm(C). Let now A ∈ Matn(C[G]) and Am =
ρm(A). Since C[G] is abelian, we can define the determinant on Matn([C[G]).
Having a determinant we can also define the characteristic polynomial of A

p(y) = det(y Idn−A) ∈ C[G][y].

By identifying C[G] with C[t±1] we obtain a polynomial p(t, y) ∈ C[t±1, y].

Proposition 4.3.1. The characteristic polynomial of Am is given by χm(y) =∏
ζnm=1

p(ζ, y)

For the proof the following lemma will be helpful.

Lemma 4.3.2. [Sil, Theorem 1] Let R be a commutative subring of Matn(C)
and let M ∈ Matm(R). Then detC(M) = detC(detR(M)).

Proof of the Proposition 4.3.1. Using the previous lemma, we just have to cal-
culate the characteristic polynomial of ρm(p(t, y)), where p(t, y) ∈ C[G][y] is the
characteristic polynomial of A. Since the matrix Tm is conjugated to the diago-
nal matrix with the nm-th roots of unity on the diagonal the result follows.

Note that for each ζ ∈ C the polynomial p(ζ, y) is of fixed degree n. For
a polynomial f ∈ C[y] with roots λ1, . . . , λn counted with multiplicities let us
denote by µf the uniform measure on {λ1, . . . , λn}. With this notation we can
write the normalized eigenvalue measure of Am as

µAm =
1

nm

∑
ζnm=1

µp(ζ,y) (4.5)

We can define a limit measure µ by

µ =
1

2π

∫
S1

µp(ζ,y)dζ. (4.6)

That means that for a Borel set K ⊆ C we have

µ(K) =
1

2π

∫
S1

µp(ζ,y)(K)dζ.

We now want to show that the measures µAm converge weakly towards the
measure µ. We will need the following lemma.

Lemma 4.3.3. [HM87, Theorem B] Consider a polynomial

a(x) = xn + a1x
n−1 + . . .+ an =

s∏
i=1

(x− λi)mi ∈ C[x]
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for distinct λ1, . . . , λs. Let ε > 0 be given such that for i 6= j we have B(λi, ε)∩
B(λj , ε) = ∅. Then there exists δ > 0 such that for bi ∈ B(ai, δ) for all i the
polynomial

b(x) = xn + b1x
n−1 + . . .+ bn

has exactly mj roots in B(λj , ε) for each j where multiplicities are counted.

Theorem 4.3.4. The measures µAm converge weakly to the measure µ from
Equation 4.6.

Proof. For ζ ∈ S1 let us denote by h(ζ) = (h1(ζ), . . . , hn(ζ)) the roots of p(ζ, y)
counted with multiplicities. By Lemma 4.3.3, for each ζ we can order the roots
of p(ζ, y) in a way such that h(ζ) as a function h : S1 → Cn is continuous. Let
now f : C→ C be a continuous function with compact support. We have∫

C

fdµ =
1

2π

∫
S1

n∑
i=1

f(hi(ζ))dζ = lim
m→∞

∑
ζnm=1

n∑
i=1

f(hi(ζ)) = lim
m→∞

∫
C
fdµAm

since the functions f(hi(ζ)) are continuous.

We will see later that the measure µ is exactly the Brown measure µA asso-
ciated to A. The following Theorem answers our questions (1) and (2).

Theorem 4.3.5. Let λ ∈ C. Then

lim
m→∞

µAm({λ}) = µ({λ}).

Proof. Note that for polynomials f1, f2 ∈ C[y] we have µf1·f2 = µf1 + µf2 .
Remember that we denoted by p(t, y) ∈ C[t±1, y] the characteristic polynomial
of the matrix A ∈ Matn(C[G]). We can write p(t, y) = (y−λ)r ·p′(t, y) where p′

has y-degree equal to n−r and (y−λ) does not divide p′(t, y). For a polynomial
f ∈ C[y] and c ∈ C let us denote by mf (c) the multiplicity with which c appears
as a root of f.

By definition we have

µ({λ}) =
1

2π

∫
S1

µp(ζ,y)({λ})dζ =
1

2π

∫
S1

µp′(ζ,y) + µ(y−λ)r ({λ})dζ =

1

2π

∫
S1

mp′(ζ,y)(λ)dζ + r ≤ 1

2π
(n− r)

∫
ζ∈S1

p′(ζ,λ)=0

1 dζ + r = r

Here the last equality holds since we are integrating over a finite set which
has Lebesgue measure 0. Obviously for each ζ ∈ S1 we have µp(ζ,y)({λ}) ≥ r.
By the theorem of Portmanteau we have lim sup

m→∞
µAm({λ}) ≤ µ({λ}). Putting

everything together we obtain

r ≤ lim sup
m→∞

µAm({λ}) ≤ µ({λ}) ≤ r.

and therefore lim
m→∞

µAm({λ}) = µ({λ})
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Let us briefly explain what needs to be done in the case if G is an arbitrary
finitely generated abelian group. If G ∼= Zk and A ∈ Matn(C[G]), we can
identify C[G] with C[t±1

1 , . . . , t±1
k ] and obtain a characteristic polynomial p ∈

C[t±1
1 , . . . , t±1

k , y] of A. Then for every vector ζ = (ζ1, . . . , ζk) we obtain a
polynomial p(ζ1, . . . , ζk, y) ∈ C[y]. To obtain the limit measure as in e Equation
4.6 we need to integrate over the k-dimensional torus T k ∼= S1× . . .×S1. If G is
not free abelian but also has a torsion part we can write G ∼= Zk ×H where H
is a finite abelian group. Considering our chain (Nm)m∈N of normal subgroups
with trivial intersection there exists l ∈ N such that Nl∩H = {1} and therefore
Nl ∼= Zk . Put L = Nl. We can consider C[G] as a right C[L]-module and to
the matrix A ∈ Matn(C[G]) we can associate a matrix Ã ∈ Matn·|G:L|(C[L])
that mirrors the action of A on C[G]n seen as a C[L]-module. We then have
µA = 1

|G:L|µÃ. Since for i > l we have Ni ≤ Nl we also obtain µAi = 1
|G:L|µÃi .

Thus the case when G has torsion follows from the result for L.

4.4 A Counter Example in the Heisenberg Group

In this section we want to give an explicit example to show that the answer to
question (2) is no in general. Our example comes from the Heisenberg group.
For a unital commutative ring R let G = H3(R) be the Heisenberg group over
R. It can be seen as the subgroup of GL3(R), generated by matrices a, b given
by

a =

1 1 0
0 1 0
0 0 1

 and b =

1 0 0
0 1 1
0 0 1

 .

Note that

[a, b] = a−1b−1ab = c =

1 0 1
0 1 0
0 0 1


and

[G,G] = 〈c〉 = Z(G).

Further we have 1 x z
0 1 y
0 0 1

 = byaxcz. (4.7)

We will only consider the case R = Z and R = Z/nZ. The goal of this section
is to prove the following theorem:

Theorem D. Let G = H3(Z) be the Heisenberg group and let a− b ∈ Z[G]. Let
Ni = Id3+pi ·Mat3(Z)∩GEG and consider the residual chain GDN1DN2D. . . .
Set Gi = G/Ni ∼= H3(Z /pi Z). Note that |Gi| = p3i. Let Ai ∈ Matp3i(Z) be the

matrix that represents the action of a − b on C[Gi] ∼= Cp
3i

. Let µAi be the
regularized eigenvalue measure of Ai as in 4.1. Then

lim
i→∞

µAi({0}) =
p

p+ 1
. (4.8)
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In particular the limit depends on the prime p. Thus for each prime p we
get a different limit measure. The proof of the theorem works with the same
approach as in the abelian case. Note that the matrix Ai represents the action
of a − b in the regular representation of Gi. Further we know from 4.2.4 that
the regular representation of a finite group is unitary equivalent to the direct
sum of all its irreducible representations where each irreducible representation
appears with multiplicity of its dimension. We will show that the matrix that
represents the action of a−b in any irreducible representation is either nilpotent,
and therefore gives only the eigenvalue 0, or is a root of a scalar matrix, and
gives therefore no eigenvalue equal to 0. We then just have to count in how
many irreducible representations a − b acts as a nilpotent matrix and add up
their dimensions. First let us repeat how the equivalence classes of irreducible
representations look like.

4.4.1 Irreducible Representations of H3(Z /nZ)
In this section we want to explain the irreducible representations ofG = H3(Z /nZ)
up to equivalency. These results are not new and we will follow [GH01] to
present them. We will use the same notation for a, b, c ∈ G as above. Let
N = 〈b, c〉 ≤ G and ρ : G → GLm(C) any representation of G. Since c is
central in G the subgroup N is abelian and therefore ρ(N) ⊆ GLm(C) is a set
of commuting matrices. We know that commuting matrices are simultaneously
diagonalizable that means we can choose a basis v1, . . . , vm of Cm, such that

vib = λivi and vic = µivi (4.9)

for all i ∈ {1, . . . ,m} and some eigenvalues λi, µi ∈ C . Since bn = cn = 1G ∈ G
we know that λni = µni = 1. Fix now one v = vi and consider the vector space
V ≤ Cm generated by {v, va, va2, . . . , van−1}.

Let ω = exp(2πi 1
n ). Then we have

vb = ωsv and vc = ωkv (4.10)

for some k, s ∈ {0, . . . , n−1} Note that the subspace V is G-invariant. We have

(v(aj))b = v(ajb) = v(bajcj) = v(bcjaj) = ((vb)cj)aj = ωj·k+s · vaj . (4.11)

So the vectors vaj are eigenvectors for ρ(b). Since a and c commute they are
also eigenvectors for ρ(c).

Theorem 4.4.1. Let V = 〈v, va, . . . , van−1〉. Then the action of G on V via ρ
gives an irreducible representation of G.

Proof. Let d1 = gcd(n, k) and d2 = n
d1

.
Because of

ωk·d2 = ωk·
n
d1 = ωk·

n
gcd(n,k) = ωn·

k
gcd(n,k) = 1



4.4. A COUNTER EXAMPLE IN THE HEISENBERG GROUP 133

we have

(vaj)(ad2b) = (vaj)(bad2cd2) = ωk·d2(vaj)(bad2) = (vaj)(bad2).

That means that b and ad2 commute as operators on V . Therefore the operators
induced by b and ad2 on V have the same eigenvectors what means that

vad2 = ωr̄v where ωr̄d1 = 1.

Here the latter equality follows from

vωr̄·d1 = v(ad2)d1 = van = v.

From that it follows that n | r̄ · d1 and therefore d2 | r̄. That means that in the
generating set {v, va, va2, . . . , van−1} are at most d2 linear independent vectors.
By 4.11 the vectors {v, va, . . . , vad2−1} = B are eigenvectors for b for different
eigenvalues. Thus B forms a basis for V . It is now easy to describe the action
of G on V by giving explicitly the matrix representations with respect to B. We
have c 7→ ωk · Idd2 and

a 7→


0 1 0 . . . 0
0 0 1 . . . 0
...

...
. . .

. . . 0
0 0 0 . . . 1

ωr·d2 0 0 . . . 0

 , b 7→ ωs ·


1 0 . . . 0
0 ωk . . . 0
...

. . .
...

0 . . . 0 ω(d2−1)·k

 (4.12)

with
r ∈ {0, . . . , d1 − 1}, r · d2 = r̄. (4.13)

We denote this representation by ρk,r,s. Having the matrix representation it
is easy to calculate the associated character τk,r,s. By 4.7 we just have to
consider the expression τk,r,s(b

yaxcz). Since ρk,r,s(c) is a scalar matrix we have
τk,r,s(b

yaxcz) = ωk·zτk,r,s(b
yax). From the structure of ρk,r,s(a) we directly

obtain τ(byax) = 0 if d2 does not divide x. Thus, if d2 does divide x, ρk,r,s(a)
is also a scalar matrix. In this case we obtain

τk,r,s(b
yaxcz) = ωkz+rxτ(by).

Now b always acts as a diagonal matrix, thus we obtain

τk,r,s(b
yaxcz) = ωkz+rx+sy

d2−1∑
i=0

ωiky.

Assume now that ωky 6= 1. Then we have

d2−1∑
i=0

ωiky =
ωkyd2 − 1

ωky − 1
=

(ωkd2)y − 1

ωky − 1
=

1− 1

ωky − 1
= 0

Lets sum up what we have until now. We have τk,r,s(b
yaxcz) = 0 if



134 CHAPTER 4. LIMIT EIGENVALUE DISTRIBUTIONS IN GROUPS

• d2 - x or

• ωky 6= 1.

Thus, to get a non zero value, from the latter we obtain that n divides ky which
implies k = 0 or d2 | y. Thus we obtain the following.

τk,r,s(b
yaxcz) =

{
0 if d2 - x ∨ (d2 - y ∧ k 6= 0)

d2ω
kz+rx+sy else.

(4.14)

Having this we want to apply 4.2.8 to show that the characters τk,r,s and there-
fore the representations are irreducible. If k = 0 we have d1 = n and therefore
the representation is one dimensional. In this case, for each byaxcz ∈ G we have

τ0,r,s(b
yaxcz) = ωrx+sy.

Thus we have

τ0,r,s(b
yaxcz)τ0,r,s(byaxcz) = 1

and

[τ0,r,s, τ0,r,s] = 1

and therefore ρ0,r,s is irreducible by 4.2.8. If k 6= 0 we have

τk,r,s(b
yaxcz) 6= 0

if and only if d2 | x and d2 | y where x, y, z ∈ {0, . . . , n − 1}. In this case we
have

τk,r,s(b
yaxcz)τk,r,s(byaxcz) = (d2)2.

Thus we obtain

[τk,r,s, τk,r,s] =
1

n3

∑
z,d2|x,d2|y

d2
2 =

1

n3
· n · d1 · d1 · d2

2 = 1.

Again by 4.2.8 the representation is ρk,r,s is irreducible.

We have seen that the irreducible representations are completely described
by the choices of k, s ∈ {0, . . . , n} and r ∈ {0, . . . , d1} Now have a closer look
at 4.14. Note that in the situation d2 | y, say for example d2 · u = y, we
have ωsy = exp(2πi sd2ud1d2

) = exp(2πi sud1 ). Thus the value of τk,r,s and therefore
the equivalence class of the representation ρk,r,s depends only on s mod d1.
Therefore the irreducible characters of G = H3(Z /nZ) are given by{
ρk,r,s : G→ GLd2(C) | k ∈ {0, . . . , n}, r, s ∈ {0, . . . , d1}, d1 = gcd(n, k), d2 =

n

d1

}
.
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4.4.2 An almost nilpotent element in C[H3(Z/nZ)]
In this section we want to use the irreducible representations of G = H3(Z/nZ)
to present an element in the integral group ring Z[G] that is almost nilpotent.
Here by almost nilpotent we mean that the eigenvalue λ = 0 has a large algebraic
multiplicity.

Proposition 4.4.2. Let n ∈ N and G = H3(Z/nZ). Let ρk,r,s be an irreducible
representation of G, using the above notation. Let d1 = gcd(n, k) and d2 = n

d1
.

Then
ρk,r,s ((a− b)n) = ((−1)d2−1ω(s−r)·d2 − 1) · Idd2

Proof. The proof is an explicit calculation. In the following we will use

• the equality

(1− a−1b)a = a− a−1ba

= a− bb−1a−1ba

= a− bc−1

= a(1− a−1bc−1),

• the fact that c ∈ G is central and

• G has exponent n.

We have

(a− b)n = (a(1− a−1b))n

= a(1− a−1b) · a(1− a−1b) · . . . · a(1− a−1b)

= an(1− a−1bc−(n−1)) · (1− a−1bc−(n−2)) · . . . · (1− a−1b)

=

n∏
i=1

(1− a−1bc−(n−i))

= (−1)n
n∏
i=1

(a−1bc−(n−i) − 1)

= (−1)n
n∏
i=1

(a−1bci − 1)

= (−1)n
n∏
i=1

cic−i(a−1bci − 1)

= (−1)n
n∏
i=1

ci(a−1b− c−i)

= (−1)nc
n(n+1)

2

n∏
i=1

(a−1b− ci)
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The above calculation took place in the group ring Z[G]. We now want to pass
to the irreducible representation ρk,s,r Therefore let ā = ρk,s,r(a), b̄ = ρk,s,r(b)
and c̄ = ρk,s,r(c). Note that c̄ is now a scalar matrix with c̄d2 = Id. We have

c̄
n(n+1)

2 = (−1)n+1 · Id

and therefore we get

(ā− b̄)n = (−1)nc̄
n(n+1)

2

n∏
i=1

(ā−1b̄− c̄i) = −
n∏
i=1

(ā−1b̄− c̄i). (4.15)

Here c̄ behaves like a primitive d2-th root of unity, that means it commutes with
ā−1b̄ and it satisfies c̄d2 = Id and c̄m 6= Id for m ∈ {1, . . . , d2 − 1}. Therefore
the last expression in 4.15 is just a cyclotomic polynomial. That means we get

(ā− b̄)n = −
n∏
i=1

(ā−1b̄− c̄i) (4.16)

= −((ā−1b̄)d2 − 1)d1 (4.17)

Note that we have

(ā−1b̄)d2 = (ā−1)d2 b̄d2 c̄
d2(d2−1)

2 .

Thus we get

(ā−b̄)n = −((ā−1b̄)d2−1)d1 = (ād2 b̄d2 c̄
d2(d2−1)

2 −1)d1 = ((−1)d2+1 ·ā−d2 b̄d2−1)d1

In this case an easy calculation shows that

ā−d2 = ω−rd2 · Idd2 and b̄d2 = ωs·d2 · Idd2 .

and therefore

(ā− b̄)n = ((−1)d2+1 · ω(s−r)·d2 − 1) · Idd2 . (4.18)

Note that this is always a scalar matrix. That means that the matrix
ρk,r,s(a − b) has either only 0 as an eigenvalue or only non zero eigenvalues.
We now want to check in which cases this is the zero matrix. Remember that
ω is a primitive n-th root of unity, n = d2 · d1 and r, s ∈ {0, . . . , d1 − 1}. That
means we have 0 ≤ (s− r) · d2 < n. So if d2 is odd then (a− b)n = 0 if and only
if s = r.

4.4.3 p odd prime

We are now ready to proof our main theorem. In this section let p be an odd
prime.
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Theorem D. Let G = H3(Z) be the Heisenberg group and let a− b ∈ Z[G]. Let
Ni = Id3+pi ·Mat3(Z)∩GEG and consider the residual chain GDN1DN2D. . . .
Set Gi = G/Ni ∼= H3(Z /pi Z). Note that |Gi| = p3i. Let Ai ∈ Matp3i(Z) be the

matrix that represents the action of a − b on C[Gi] ∼= Cp
3i

. Let µAi be the
regularized eigenvalue measure of Ai. Then

lim
i→∞

µAi({0}) =
p

p+ 1
. (4.19)

Proof. Let us fix m ∈ N and set n = pm. We want to analyze the regular
representation of the group G = H3(Z/nZ). We know that the regular rep-
resentations decomposes as a direct sum of equivalence classes of irreducible
representations, where each irreducible representations appears with the multi-
plicity of its dimension. We use the notation from the previous section.

For each i ∈ {0, . . . ,m− 1} we have

(pm−i − pm−i−1) · pi · pi (4.20)

irreducible representations of dimension d2 = pm−i each one appearing with
the multiplicity of pm−i. Note that with the notation of Section 4.4.1 we have
d1 = n

d2
= pi. In Equation 4.20 the first factor represents the choices for k, to

actually get a d2 dimensional representation, and the last two factors represent
the choices for r and s. In addition we have p2m one dimensional representations,
when the center of G acts trivially, that means k = 0. We now want to count
how often the eigenvalue 0 appears in the regular representations of the element
a− b ∈ Z[G]. For that have us let a look on Equation 4.18. This gives us that
the element a − b is nilpotent in the irreducible representations if and only if
s = r. In this case the only eigenvalue of a − b is 0. If s 6= r then a − b is a
root of some non zero scalar matrix and has therefore no eigenvalue equal to 0.
Therefore we just have to count all the cases when s = r and add up their total
dimensions. Let us sum up the multiplicity of the eigenvalue 0 in the regular
representation. Let us decompose C[G] as C[G] ∼= M1 ⊕M2, where M2 is the
direct sum of all one dimensional irreducible representations of G. The following
sum describes the algebraic multiplicity of 0 in the representation of a − b on
M1.

S1 =

m−1∑
i=0

pm−i · pm−i · (pm−i − pm−i−1) · pi = p3m(1− 1

p
)

m−1∑
i=0

(
1

p2

)i
Let us explain this equation. The first pm−i is the dimension of the irreducible
representation. The second pm−i is its multiplicity with which it appears in the
regular representation. The third factor is the number of choices we have for k
to get a pm−i dimensional irreducible representation. The last factor represents
the choices of r and s such that r = s. Further we have S2 = pm times the
eigenvalue 0 in the one dimensional representations in M2, that means when
k = 0, r = s.



138 CHAPTER 4. LIMIT EIGENVALUE DISTRIBUTIONS IN GROUPS

We are now interested in the normalized multiplicity of the eigenvalue 0,
that means in µAm({0}) = S1+S2

p3m . Using the above equations we get

µAm({0}) = (1− 1

p
) ·

(
m−1∑
i=0

(
1

p2

)i)
+

1

p2m
.

We are interested in the limit behaviour, that means in lim
m→∞

µAm({0}). Using

the geometric series we get

lim
m→∞

µAm({0}) = lim
m→∞

(1− 1

p
) ·

m−1∑
i=0

(
1

p2

)i
= (1− 1

p
) · p2

p2 − 1

=
p− 1

p
· p2

(p+ 1)(p− 1)

=
p

p+ 1

4.5 The Brown measure in group algebras

In this section we want briefly discuss a generalization of the spectral measure,
called the Brown measure. We have seen that in a tracial von Neumann algebra
(N , τ), the projection valued spectral measure Ea of a normal operator a ∈ N
concatenated with the trace τ gives a complex measure

µA = τ ◦ EA. (4.21)

In [Bro83] Lawrence Brown generalized this and constructed a complex measure
for any operator A ∈ N . We will here only give the definitions and some
properties. More details can be found in [MS17].

4.5.1 Fuglede-Kadison determinant and Brown measure

Definition 4.5.1. Let (N , τ) be a tracial von Neumann algebra. If a ∈ N is
invertible we define the Fuglede-Kadison determinant of a as

∆(a) = exp(τ(log |a|))

where |a| = (a∗a)
1
2 . More general, for arbitrary a ∈ N we define

∆(a) = lim
ε→0

exp(τ(log(|a|+ ε2)))

and set ∆(a) = 0 if the above limit tends to −∞.



4.5. THE BROWN MEASURE IN GROUP ALGEBRAS 139

Remark 4.5.2. The Fuglede Kadison determinant has the follwoing properties.

(1) We have ∆(a) =
∫

R>0

log |a|dµ|a|, where µ|a| is the complex spectral mea-

sure as in 4.21.

(2) ∆(ab) = ∆(a)∆(b) for all a, b ∈ N .

(3) ∆(a) = ∆(a∗) = ∆(|a|).

(4) ∆(u) = 1 if u ∈ N is unitary.

(5) ∆(λa) = |λ|∆(a) for λ ∈ C.

(6) The function a 7→ δ(a) is upper semi continuous in the norm topology.

If A ∈ Matn(C) and τ is the normalized trace on Matn(C) we obtain

∆(A) = n
√

det(A).

We are now ready to define the Brown measure. We will skip all the analytic
details in the definition. Details can be found in [MS17].

Definition 4.5.3. Let (N , τ) be a tracial von Neumann algebra and a ∈ N .
Then we have

(1) The function z 7→ log δ(a− z) is subharmonic (z ∈ C).

(2) The corresponding Riesz measure

µa :=
1

2π
∇2 log ∆(a− z)

is a probability measure on C with support contained in the spectrum of

a. Here ∇2 = δ2

δz2r
+ δ2

δz2i
is the Laplace operator, where zr and zi are the

real and imaginary part of z = zr + izi ∈ C .

(3) For all λ ∈ C we have∫
C

log(λ− z)dµa(z) = log ∆(a− z)

and this characterizes µa.

(4) For all functions f ∈ C2(K) with compact K ⊆ C we have∫
K

f(z)dµa(z) =
1

2π

∫
K

log ∆(a− z)∇2f(z)dz.

The measure µa is called the Brown measure of a ∈ N .
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Remark 4.5.4. • If a ∈ N is normal, then µa coincides with the complex
spectral measure from 4.21.

• If A ∈ Matn(C) with eigenvalues λ1, . . . , λn and τ is the normalized trace
on Matn(C) we obtain the normalized eigenvalue measure.

µA =
1

n

n∑
i=1

δλi .

• For all k ∈ N we have∫
C

xkdµa = τ(ak) and

∫
C

xkdµa = τ((a∗)k.

4.5.2 Convergence of eigenvalue measures

In this section we want to address the third question we raised at the beginning
of this chapter. Let us formulate it again. Let G be a residually finite group,
(Ni)i a chain of normal subgroups of finite index with trivial intersection and
A ∈ Matn(C[G]). Set Gi = G/Ni and denote by Ai ∈ Matn|Gi|(C) the matrix

that represents the action of A on C[Gi]
n ∼= Cn|Gi| by right multiplication.

Denote by µA, µAi the Brown measures of A and Ai. Do we then have

lim
i→∞

µAi = µA

in the weak sense? In this generality we have already proven that the answer is
simply no. For that let us consider again our counterexample A = a−b from the
Heisenberg group. We calculated that the limit lim

i→∞
µAi({0}) depends on the

chain (Ni)i. However all the matrices Ai are matrices over Z. Thus Proposition
2.4.1 would imply that weak convergence of the measures µAi would already
imply convergence in 0. But since for different chains (Ni) we get different
values lim

i→∞
µAi({0}) there can not be a common limit measure. So what is

going on, or better what is going wrong here? For that let ω be a non principal
ultrafilter on N, let (dn)n be a sequence of natural numbers and let Nω be the
tracial ultraproduct of the tracial von Neumann algebras (Matdn(C), 1

dn
Tr) as

in 1.12. In the following let (An) ∈ (Matdn(C))n be a sequence of matrices
that converges in ∗-moments that means for every non commutative polynomial
f ∈ C〈X,Y 〉 in two variables we have that the limit

lim
n→∞

1

dn
Tr(f(An, A

∗
n))
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exists. Let us consider five sequences of matrices that converge in ∗-moments.
The matrices of all sequences will be of the shape

Mn =



0 1 0 . . . 0

0 0 1
. . .

. . . 0
1

an 0

 ∈ Matdn(C).

The sequences will only differ by the parameter an.

• For the first sequence A1,n, let an = 1 for all n ∈ N.

• For the second sequence A2,n let an = 0 for all n ∈ N .

• For the third sequence A3,N , let an = ε for some ε > 0, n ∈ N.

• For the fourth sequence A4,n let an = 1
n for all n ∈ N.

• For the fifth sequence A5,n let an = ( 1
n )dn .

Note that all these sequences represent the same element A in Nω, and this
element has one unique Brown measure denoted by µA. Let us calculate

µi = lim
n→∞

µAi,n

for i ∈ {1, . . . , 5}. The characteristic polynomial of the matrix Ai,n is given by

fi,n = xdn + (−1)dn+1an.

Thus it is easy to see that µ1 = µ3 = µ4 is the uniform probability measure
on the unit circle whereas µ2 = µ5 = δ0 is the Dirac measure at 0. Note that
the element A ∈ Nω is unitary, therefore its Brown measure, which is in this
case the complex spectral measure, is given by the measures µ1 = µ3 = µ4. The
problem is that the eigenvalues of non normal matrices are not stable under small
perturbations. The sequences (A2,n)n and (A3,n)n differ only by an arbitrary
small value ε, however since the dimension grows the set of eigenvalues changes
completely. However we do have some positive results.

Let us again consider the case G ∼= Z. We have seen that for any matrix A ∈
Matn(C[G]) and any chain of normal subgroups of finite index the eigenvalue
measures µAi do converge to some limit measure, independent of the chain,
compare Equation 4.6. A natural question is if this measure is actually the
Brown measure of the matrix A as an operator on (`2(G))n. The answer to this
is positive.

Theorem 4.5.5. Let G = 〈t〉 The Brown measure of a matrix A ∈ Matn(C[G])
is given by the measure µ from 4.6.
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Proof. Let rt be the operator on `2(G) given by right multiplication with t ∈ G.
Then rt is unitary, especially normal. Thus there exists a projection valued
measure E, such that

rt =

∫
S1

λdE(λ).

We can use the same spectral measure to decompose the von Neumann algebra
Matn(N (G)) as a direct integral. For details see [Dyk+16]. With that we get
that

A =

∫
S1

A(λ)dE(λ)

where we see A = A(t) ∈ Matn(C[G]) ∼= Matn(C[t±1]). By [Dyk+16, Theorem
5.6] we get for the Brown measure µA of A that

µA =
1

2π

∫
S1

µA(λ)dλ,

where µA(λ) it the uniform distribution on all eigenvalues of A(λ) counted with
multiplicities. But this is exactly our measure µ from 4.6.

Again this can be generalized to the finitely generated free abelian groups.
This, together with Theorem 4.3.5, Theorem 4.3.4 and the discussion at the end
of section 4.3 yields the following.

Theorem C. Let G be a finitely generated abelian group and let GDN1DN2 · · ·
be a chain of normal subgroups of finite index with trivial intersection and set
Gi = G/Ni. Let A ∈ Matn(C[G]) and let Ai ∈ Matn|Gi|(C) be the matrix that
represents the action of A on C[Xi]

n. Then the measures µAi converge weakly
and pointwise towards µA.

We further can show that the Brown measure does detect eigenvalues. For
simplicity let us consider the von Neumann algebra Nω again. Note that we
can embed the N (G) into Nω if the group G is sofic. We have the following
result.

Proposition 4.5.6. [HS09, Proposition 6.5] Let T ∈ Nω and let P ∈ Nω be a
projection such that PTP = PT (remember that operators act from the right).
Then

µT = τ(P )µPTP + (1− τ(P ))µP⊥TP⊥ .

Corollary 4.5.7. Let λ ∈ C be an eigenvalue of T ∈ Nω. Then

µT ({λ}) ≥ dimτ ker(T − λ).

Proof. Obviously ker(T−λ) is closed and by the double commutant theorem the
projection P onto ker(T − λ) belongs to Nω. Further P satisfies the conditions
of the previous theorem which gives us the result.
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The following question remains open.

Question 4.5.8. Let T ∈ Nω and let λ be an eigenvalue of T . Let (Tn)n be a
series of matrices, such that T = [(Tn)]. In which situations does λ appear as
an eigenvalue of one of the Tn?

Results in this direction could give a way easier proof of 2.6.1. We want to
finish with one last positive approximation result of Brown measures.

Proposition 4.5.9. Let (Mn),Mn ∈ Matdn(C) be a series of matrices that
converges in ∗-moments. Let M = [(Mn)] ∈ Nω. Let µ be the Brown measure
of M and let µn be the normalized eigenvalue measure of Mn. Then for all
polynomials f ∈ C[X] we have

lim
n→∞

∫
C
fdµn =

∫
C

fdµ.

Proof. This follows directly from the last point of 4.5.4.
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